
Application of the Sparse grid technique
to Discontinuous Galerkin methods:

some simple hyperbolic problems

Author: Advisor:

Saverio Castelanelli Prof. B. Ayuso de Dios

A thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science

in Mathematical Modelling in Engineering: Theory, Numerics, Applications1.

Universitat Autònoma de Barcelona

Barcelona, Catalunya, Spain

1Part of Erasmus Mundus Program sponsored by EU Commission scholarship and partially by CRM grant.

2

Ringraziamenti

Un ringraziamento particolare alla Professoressa Blanca Ayuso de Dios, con cui ho avuto la
fortuna di poter lavorare a questa tesi, per il fatto di aver sempre potuto, dall’inizio alla fine di
questa avventura, contare sul suo aiuto e sostegno nei momenti di difficoltà, per la pazienza e il

tempo dedicatomi, e per il suo contagiante entusiasmo nel tema e nella matematica tutta.

Vorrei anche ringraziare Ilario Mazzieri del Politecnico di Milano (I) e Xiaozhe Hu
dell’università di Penn State (US) per l’interesse mostrato in questo lavoro e per i loro utili

commenti e suggerimenti per la parte riguardante l’implementazione.

Infine un grazie speciale ai miei genitori, Silvana e Sergio, per tutto ciò che hanno fatto per me
in questi 27 + ε anni.

3

4

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Function spaces and basic notations . 10

2 Transport equation - 1D case 11
2.1 The weak formulation . 11
2.2 Notations for the discrete formulation . 12
2.3 The Discontinous Galerkin formulation . 13
2.4 Implementation - Basis functions . 14

2.4.1 Standard basis . 14
2.4.2 Two sets of hierarchical basis . 15

2.5 Time integration . 21
2.6 Numerical experiments . 24

2.6.1 Standard basis . 24
2.6.2 Hierarchical basis . 25

3 Transport equation - 2D case 27
3.1 Continuous problem . 27

3.1.1 The weak formulation . 27
3.1.2 Properties of the system . 28

3.2 Notations for the discrete formulation . 29
3.3 The Discontinuous Galerkin formulation . 31

3.3.1 L2-stability . 32
3.3.2 Mass conservation . 34
3.3.3 Implementation - Basis functions . 35
3.3.4 Sparse grid . 39

3.4 Numerical experiments . 45
3.4.1 Approximations on the sparse grid spaces 45
3.4.2 2D Transport equation . 46

3.5 An alternative method . 54
3.5.1 Alternative sparse grid . 54
3.5.2 Numerical experiments . 57

4 The Vlasov-Poisson system 59
4.1 Motivation . 59
4.2 The continuous problem . 59

4.2.1 The weak formulation of the Vlasov equation 61
4.2.2 Properties of the system . 61

5

CONTENTS CONTENTS

4.3 The discrete Vlasov equation . 62
4.3.1 Notation . 62
4.3.2 The Discontinuous Galerkin formulation 63
4.3.3 L2-stability . 63
4.3.4 Mass conservation . 63

4.4 The Poisson equation . 64
4.4.1 The weak formulation of the Poisson equation 64
4.4.2 The LDG-formulation . 65

4.5 Error analysis for VP-system . 66
4.6 Numerical results . 67

4.6.1 Convergence . 67
4.6.2 Mass conservation . 71
4.6.3 Energy conservation . 71

5 Appendix - The implementation 73
5.1 One dimension . 73

5.1.1 Transport equation with standard basis 73
5.1.2 Transport equation with hierarchical basis 74
5.1.3 Time integration . 75
5.1.4 The LDG-implementation . 75

5.2 Two dimensions . 79
5.2.1 Transport equation with standard basis 79
5.2.2 Transport equation with hierarchical basis 80
5.2.3 Alternative method . 84

6

Chapter 1

Introduction

1.1 Motivation

High dimensional problems arise in several real life applications (of different nature) in science
and technology. Many of them can be expressed by mathematical models; the valuation of Stock
options in mathematical finance, data-mining problems related to medicine or the underlying
problems in the controlled fusion in the area of plasma physics. The numerical approximation
of such high dimensional models, by conventional or classical methods, often run into difficulties
due in part to the huge number of unknowns that are required to provide a reasonable solution.
In fact, at the present time classical numerical methods for approximating many of these prob-
lems do not supply a feasible option. In spite of the advance of big computers in recent times,
classical approximation of high dimensional problems involves enormous storage requirements
and extremely large computational complexity. Traditionally, probabilistic methods of Monte
Carlo type have been frequently used, but depending on the specific application, the approxi-
mation is far from being satisfactory. This is indeed the case, in the numerical approximation
of plasma physics problems, typically modeled by kinetic equations, for which deterministic or
Eulerian solvers (based on a fixed grid) can produce more accurate descriptions. However un-
less they were specifically tailored, their cost increases exponentially with the dimension of the
problem, which forbids their use in many of the real practical applications.

By using an eulerian classical scheme; say a finite element method, if we consider a uniform
grid with piecewise d-polynomial functions over a bounded domain, the approximation error
||f − fh|| (in some norm) is of the order O(hα) where h refers to the mesh size and α is a
parameter depending on the smoothness of the exact solution f and the polynomial degree used
for its approximation fh. This complexity estimate translates into O(Nd) grid points or degrees
of freedom, where N is the number of grid points in one coordinate direction at the boundary.
Thus, the computational cost and storage requirements grow exponentially with the dimension-
ality of the problem. We encounter the so-called curse of dimensionality.
The sparse grid approach, introduced by Zenger (1991), allow to partially overcome this prob-
lem, affecting only slightly the accuracy of the numerical solution. By using a higher-dimensional
multiscale basis derived from a one-dimensional multiscale basis (by a tensor product construc-
tion) a discretization based on the sparse grid technique involve only O(N(logN)d−1) degrees of
freedom, where d denotes the underlying dimension of the problem. The accuracy (in L2-norm)
obtained with, for instance piecewise linear basis functions is of order O(N−2(logN)d−1) if the
solution has bounded second mixed derivatives. This feature renders the technique particularly

7

1.1. Motivation

suitable to tackle problems of high dimensionality.

In the last decades, this technique has been applied in various contexts. In the context of numer-
ical analysis, the theory for linear conforming finite element methods has been widely studied
and applied, in particular, to tackle problems whose underlying model is a partial differential
equation of elliptic or parabolic type.
Nevertheless, in science, many high dimensional problems are of hyperbolic types. In kinetic
theory, for example, system of equations such as the Vlasov-Poisson and the Vlasov-Maxwell
belong to this category.
In this work we explore the application of the sparse grid technique to solve some hyperbolic
problems by means of a discontinuous Galerkin (DG) approach.

Based on a totally discontinuous finite element spaces, DG methods are extremely versatile and
have numerous attractive features: they conserve local properties, can easily handle irregularly
refined meshes and vary the approximation degrees of the polynomials from element to element
(hp-adaptivity). Moreover, DG mass matrices are block-diagonal, and, so, they can be inverted
at a low computational cost, giving rise to very efficient time-stepping algorithms in the context
of time-dependent problems. DG methods have undergone a rapid development in recent years,
and nowdays new methods are designed to solve more complex linear and nonlinear problems.
On the other hand, DG methods usually require more degrees of freedom than their conforming
relatives. Furthermore, since they are finite element methods, they do also suffer the curse of
dimensionality when approximating high dimensional problems.

The aim of this work is to tackle some simple hyperbolic problems by using a DG-method com-
bined with the sparse grid technique. We would like to reduce the number of degrees of freedom,
trying to take advantage, at the same time, of the nice features of the DG-methods.
Since in DG-methods discontinuities on interelement boundaries are allowed, the construction of
a multilevel hierarchy of spaces imposes extra-difficulties as compared to the conforming case.
We also note that, to the best of our knowledge, this issue has not been studied before in litera-
ture nor in the elliptic nor in the hyperbolic case. For these reasons, in this work, we have started
by studying a simple hyperbolic equation and by considering the lowest order polynomials (P0)
for the approximation.

The second chapter is devoted to the one-dimensional transport equation. Here the sparse grid
technique reduces to use a multilevel hierarchy. What we observe in one dimension is just a
change of basis, but this step is fundamental for understanding the construction of the multilevel
hierarchy of spaces and their corresponding basis functions in higher dimensions.

In the third chapter, we consider the two-dimensional transport equation for both constant and
variable coefficients. Here, the main issues concern the construction and the way of choosing
the two-dimensional hierarchical subspaces when we apply the idea of the sparse grid. For the
sparse grid we show the convergence of the method and the conservation of the total discrete
mass. Unfortunately, with the new proposed schemes, we do not preserve the positivity. We
have explored two different strategies to overcome this issue, although none of them gave a com-
pletely satisfactory answer. The former consist to add sequentially some of the subspaces that
were deleted from the full space in the sparse construction. However, it turns out that to get
a positive approximation all but one subspaces need to be included which ruins completely the
sparse idea. The latter approach consist in using a modified projection at the initial time, which

8

1.1. Motivation

ensures the positivity of the discrete initial data. Here the approximation preserves positivity,
but the overall accuracy (and order) of sparse-DG method, degrades slightly.

In the fourth chapter, we use the method to approximate a more challenging problem: the
Vlasov-Poisson system of equations with periodic boundary conditions. The nonlinearity of the
problem, given by the coupling of the Poisson problem and the Vlasov-equation (transport equa-
tion), requires particular attention. We consider the LDG-method to approximate the Poisson
equation and the sparse DG-method to solve the Vlasov equation. Here as well, we show con-
vergence and total discrete mass conservation. We also state the result with the error analysis
of the method.

In the last chapter the implementation of the different methods is given.

Finally we wish to emphasize that we demonstrate numerically that the new methods (resulting
from the combination of sparse grid and DG) allow to significantly reduce the number of degrees
of freedom in the discretization with essentially no loss of accuracy. This, however, does not
guarantee that the computational time to solve the problem scales down at the same rate. The
development and implementation efficient algorithms tailored to sparse DG finite elements will
be subject of future research. The final aim would be to solve the VP system at overall computa-
tional costs that are proportional to the number of degrees of freedom in the sparse discretization.

In the following section, we present the function spaces and some notations which we will use
throughout the work.

9

1.2. Function spaces and basic notations

1.2 Function spaces and basic notations

Given a domain Ω ⊂ R2. A typical point in R2 will be denoted by (x, y).
Let α = (α1, α2) with αj ≥ 0 for j = 1, 2 , we call α a multi-index and denote by

Dα =
∂|α|

∂xα1∂yα2

the differential operator of order |α| = α1 + α2.
For a function f we will usually write its partial derivatives as

∂|α|

∂xα1∂yα2
f = fx . . . x︸ ︷︷ ︸

α1

y . . . y︸ ︷︷ ︸
α2

.

For any nonnegative integer m let Cm(Ω) be the vector space consisting of all functions ϕ which,
together with all their partial derivatives Dαϕ of order |α| ≤ m, are continuous on Ω.

Furthermore, we use the standard notation for Sobolev spaces and their norms [4], namely, we
denote by

Hm(Ω) = {ϕ ∈ L2(Ω) | Dαϕ ∈ L2(Ω) ∀ |α| ≤ m}

the L2-Sobolev space of order m. Here, the derivatives Dα are taken in the weak sense.
For m = 0, we write L2(Ω) instead of H0(Ω).

We denote by || · ||0 the usual L2-norm

||ϕ||20 =
∫

Ω

|ϕ(x)|2dxdy.

The norm and seminorm in Hm(Ω) are given by

||ϕ||2m =
∑
|α|≤m

||Dαϕ||20 and

|ϕ|2m =
∑
|α|=m

||Dαϕ||20 respectively.

Finally, to denote periodic boundary conditions we use the following notation:
for any space Hm(Ω)

Hm
per (Ω) = {f ∈ Hm(Ω) | f periodic at the boundaries ∂Ω}.

and we denote by Lploc the space of local Lp-functions.

10

Chapter 2

Transport equation - 1D case

Let a ∈ R be a given constant.
We consider the one dimensional transport equation

ut(x, t) + aux(x, t) = 0, for x ∈ Ωx ⊂ R, t ∈ [0,∞), a ∈ R, (2.1)
u(x, 0) = u0(x), for x ∈ Ωx. (2.2)

In the case considered we set Ωx to be the interval [0, 1].
We complement the equation by imposing periodic boundary conditions,

u(0, t) = u(1, t), for all t ≥ 0. (2.3)

2.1 The weak formulation

In order to derive the weak formulation, we multiply the equation (2.1) with a test function
ψ ∈ C∞per (Ωx) and then integrate over [0, 1], this yields

(ut, ψ)Ωx + (aux, ψ)Ωx = 0

in which the following notation has been used:

(u, ψ)Ωx =
∫ 1

0

u(x, t)ψ(x)dx.

Integrating by parts the second term yields

(ut, ψ)Ωx − (au, ψx)Ωx + a [u(1, t)ψ(1, t)− u(0, t)ψ(0, t)] = 0.

Using (2.3) the terms regarding the boundaries disappear and we obtain the weak formulation
which reads: Find u such that

(ut, ψ)Ωx − (au, ψx)Ωx = 0, for all ψ ∈ C∞per (Ωx). (2.4)

Before deriving the DG-method, we define the partition, the finite element space and we introduce
the notation we will use.

11

2.2. Notations for the discrete formulation

2.2 Notations for the discrete formulation

We fix Ωx = [0, 1] and consider a uniform partition Ih = {Ii}Ni=1 of N elements

Ii = [xi− 1
2
, xi+ 1

2
] for all i = 1, . . . , N.

We denote by xi the center of the i.th element Ii and since the partition is assumed to be uniform
we have h = xi+1 − xi, for all i = 1, . . . , N − 1. Moreover, we define the following set of points:
γx = {xi+ 1

2
}Ni=0.

Figure 2.1: Notation at a node.

i−1/2
x

i

I
i

i+1/2
x

i+1

I
i+1

i+3/2

− +

We define the finite element space V 0
h , in which we will search our approximate solution uh,

as

V 0
h (Ωx) = {v ∈ L2(Ωx)| v|Ii ∈ P0(Ii) for all i = 1, . . . , N},

where P0(Ii) is the space of constants functions on Ii.

Let w ∈ L2(Ih), we denote by P 0 the standard L2-projection of function onto the finite Element
Space V 0

h defined locally, i.e., for each 1 ≤ i ≤ N∫
Ii

(
P 0(w)− w

)
qh dx = 0 ∀ qh ∈ P0(Ii). (2.5)

For dealing with the discontinuities of the finite element functions at the interelement boundaries,
we introduce the following notation

ϕ(x±
i+ 1

2
) = ϕ±

i+ 1
2

:= lim
s→0+

ϕ(xi+ 1
2
± s) (see figure 2.1). (2.6)

In order to simplify the notation we will sometimes write uk instead of u(xk).

12

2.3. The Discontinous Galerkin formulation

2.3 The Discontinous Galerkin formulation

We consider the weak formulation of problem (2.1)-(2.3) restricted to an element Ii,

(ut, ψ)Ii + (aux, ψ)Ii = 0, (2.7)

We start by considering the second term in (2.7). Integration by parts yields

(aux, ψ)Ii =
∫ x

i+ 1
2

x
i− 1

2

aux(x, t)ψ(x)dx

= −
∫ x

i+ 1
2

x
i− 1

2

au(x, t)ψx(x)dx+
[
au(xi+ 1

2
, t)ψ(xi+ 1

2
)− au(xi− 1

2
, t)ψ(xi− 1

2
)
]

The next step is to substitute u and ψ by the approximations uh, ψh ∈ V 0
h .

Since these functions are constants on each interval, the derivative ψhx vanishes and as a conse-
quence, in the second line only the second term is left.
Thus, we have (

a
(
uh
)
x
, ψh

)
Ii

=
[
auh(xi+ 1

2
, t)ψh(xi+ 1

2
)− auh(xi− 1

2
, t)ψh(xi− 1

2
)
]

=
(
âuh

)
i+ 1

2

ψh−
i+ 1

2
−
(
âuh

)
i− 1

2

ψh+
i− 1

2
,

where
(
âuh

)
k

for k ∈ {i− 1
2 , i+ 1

2} denotes the numerical flux.

The numerical flux âuh is a function defined on interelement boundaries. It depends on the
value of a and on the values of the numerical approximation uh from the elements that share the
observed boundary. Its definition is what really characterize the method.

In this case we take the upwind-flux,(
âuh

)
k

=

{
a
(
uh
)−
k

if a > 0,

a
(
uh
)+
k

if a < 0.
(2.8)

Furthermore, since ψh ∈ P0(Ii) and we consider the element Ii, we have

ψh−
i+ 1

2
= ψh+

i− 1
2

= ψhi .

Also, assuming a > 0, (2.8) implies(
uh
)−
i+ 1

2
= uhi and

(
uh
)−
i− 1

2
= uhi−1.

On the other hand, if a < 0, we have(
uh
)+
i+ 1

2
= uhi+1 and

(
uh
)+
i− 1

2
= uhi .

So, considering both cases, the second term in (2.7) becomes(
a
(
uh
)
x
, ψh

)
Ii

=
[
min(a, 0)(uhi+1 − uhi) + max(a, 0)(uhi − uhi−1)

]
ψhi .

13

2.4. Implementation - Basis functions

Finally, we set uh(0) = Ph(u0) and then considering also the first term in (2.7), and fixing a
positive T , we obtain the following formulation:
find uh : [0, T]→ V 0

h such that for all i = 1, . . . , N∫
Ii

(
uh
)
t
ψhdx+

[
min(a, 0)(uhi+1 − uhi) + max(a, 0)(uhi − uhi−1)

]
ψh = 0, (2.9)

for all ψh ∈ V 0
h .

2.4 Implementation - Basis functions

2.4.1 Standard basis

The standard constant basis functions are defined by (the characteristic function of the interval
Ii)

χi(x) =

{
1, if x ∈ Ii,
0, otherwise,

(2.10)

for all i = 1, . . . , N . The case N = 4 is depicted in figure 2.2.

Figure 2.2: Standard basis for N = 4

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x
1

x
2

x
3

x
4

Notice (and see also figure 2.2) that the functions χi have non-overlapping support.
The approximate solution uh can be written as

uh(x, t) =
N∑
i=1

ūi(t)χi(x),

where ūi is the time-dependent coefficient with respect to the basis (2.10), i.e.

ūi(t) =
1
h

(
uh(x, t), χi

)
L2 .

Then (2.9) becomes

h (ūi)t + min(a, 0)(ūi+1 − ūi) + max(a, 0)(ūi − ūi−1) = 0. ∀ i.

For the initial condition we set

uh(0) = P 0(u0).

14

2.4. Implementation - Basis functions

2.4.2 Two sets of hierarchical basis

In the following we present another way to approximate a function using sets of functions based
on a multilevel construction, a hierarchical basis.
To this end, we still consider the interval Ωx = [0, 1] but we need to introduce some further
notation:

We define l to be the level in hierarchy which indicates how many times we halve our domain.
In fact, when l is fixed, we consider a uniform partition of Ωx in 2l elements.
This implies that all elements have the same length hl, in this case (for Ωx = [0, 1]), we have
hl = 2−l.
The hierarchical meshes for l ≤ 3 are shown in the following figure.

x
1,0

l=0

x
1,1

x
1,2

l=1

x
2,1

x
2,2

x
2,3

x
2,4

l=2

x
3,1

x
3,2

x
3,3

x
3,4

x
3,5

x
3,6

x
3,7

x
3,8

l=3

For a fixed level l, we identify the i.th element of the grid with its center, this means we are
considering the following set of points

xl,i = 2−l−1 + (i− 1) hl, where i = 1, . . . , 2l. (2.11)

0

x
l, 1

I
i

x
l, i

x
l, 2

l

1

Next, we present the two sets of hierarchical basis function we consider throughout this work.

15

2.4. Implementation - Basis functions

The hierarchical One basis

For a fixed level l ≥ 0 we define the functions φl,i as

φl,i(x) =

{
2
l
2 if x ∈ [xl,i − hl

2 , xl,i + hl
2],

0 otherwise,
(2.12)

for i = 1, . . . , 2l.
We can define the following spaces:

Vl = span{φl,i(x) : for i = 1, . . . , 2l} (2.13)

Wl = span{φl,i(x) : for i = 1, . . . , 2l − 1, i odd}

Notice that Wl is a subspace of Vl. In fact, it consists on the space spanned by the functions
with the odd indices in the level l [1]. In figure 2.3 the collection of spaces Vl and Wl until level
2 are shown.

Figure 2.3: Vl and Wl for l ≤ 2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x
0,1

V
0

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x
1,1

x
1,2

V
1

0 0.2 0.4 0.6 0.8 1
0

1

2

x
2,1

x
2,2

x
2,3

x
2,4

V
2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x
0,1

W
0

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x
1,1

W
1

0 0.2 0.4 0.6 0.8 1
0

1

2

x
2,1

x
2,3

W
2

For fixed level l note that:

� The functions that span the space Vl are a scaled version of the standard basis for P0

elements given in (2.10):

φl,i = 2
l
2χi, for i = 1, . . . , 2l.

Hence Vl = V 0
hl

.

� Note that the basis functions (2.12) have disjoint support which implies

∫
Ωx

φl,k(x)φl,j(x)dx =


∫

supp(φl,k) φ2
l,kdx = 2−l22 l2 = 20 = 1 if k = j,

∫ 1

0
φl,kφl,jdx = 0 if k 6= j.

16

2.4. Implementation - Basis functions

In the following lemma an important relation between the spaces Vl and Wl is stated.
The important consequence of this lemma is the fact that it allows us to consider the direct sum
of subspaces Wl for l ≤ n to describe the space Vn.

Lemma 2.4.1 For n ≥ 0 and for Vn and {Wl}l≤n defined as in (2.13) we have that

Vn = ⊕
l≤n

Wl. (2.14)

Proof 1 There are two things that have to be shown:

(i) The functions that span the spaces are linearly independent.

(ii) The basis of the two spaces have the same dimension (number of elements).

We start by showing (ii):
The number of basis functions in Vn is

|Vn| = |span{φn,i : for i = 1, . . . , 2n}| = 2n.

So one has to show that also | ⊕
l≤n

Wl| = 2n.

From (2.12) and from the definition of the space Wl we have

|W0| = 1 |Wl| =
2l

2
= 2l−1 for l ≥ 1.

Thus

| ⊕
l≤n

Wl| = 1 + | ⊕
1≤l≤n

Wl| = 1 +
n∑
i=1

2i−1 = 1 +
n−1∑
i=0

2i︸ ︷︷ ︸
=2n−1

= 2n.

Hence dim(Vn) = dim
(
⊕
l≤n

Wl

)
.

For (i) we show first that, fixing the level l = n, the functions φn,i ∈ Vn for i = 1, . . . , 2n are a
basis of Vn.
We have said that the φn,i have non-overlapping support, hence they are linearly independent.
Then, since the number of functions is exactly the same as the number of intervals in which we
divide our domain, it follows that {φn,i}1≤i≤2n is a basis of Vn.

Next, we have to show that also the functions φl,i that appear on the right part of (2.14) are
linearly independent and, consequentely, a basis.
This is different from above because here we consider all levels from 0 to n (not only n as before)
but let us also point out that here we only consider the odd indeces i.

We recall that, in order to show that a finite set of functions {ϕk}1≤k≤N is linearly independent
on Ω, the following equivalence has to hold:

N∑
k=1

akϕk(x) = 0, for all x ∈ Ω⇔ ak = 0, for all k = 1, . . . , N.

The implication ”⇐” holds trivially, so, next, we show ”⇒” for our case by induction.

17

2.4. Implementation - Basis functions

� For n = 1 we have φ0,1 and φ1,1 and we need to show that

if α0,1φ0,1(x) + α1,1φ1,1(x) = 0, for any x ∈ [0, 1] ⇒ α0,1 = α1,1 = 0,

To this end we choose particular values of x. Recalling (2.11), we take

z = x1,1 and w = x1,1 + h1.

This choice implies

φ0,1(z) = φ0,1(w) = 1, φ1,1(z) =
√

2 and φ1,1(w) = 0,

see also figure 2.3.
So, we have {

0 = α0,1φ0,1(z) + α1,1φ1,1(z) = α0,1 + α1,1

√
2

0 = α0,1φ0,1(w) + α1,1φ1,1(w) = α0,1,

and this yields α0,1 = α1,1 = 0.

� The induction step n− 1→ n, goes as follows:
assuming

Vn−1 = ⊕
l≤n−1

Wl (2.15)

we want to show that

⊕
l≤n−1

Wl ⊕Wn = Vn.

We know that |Wn| = 2n−1, so we need to show that∑
l

∑
k

αl,kφl,k(x) = 0 ∀ x⇔ αl,k = 0 ∀ l, k. (2.16)

We recall that l = 0, . . . , n and k = 1, . . . , 2l − 1 odd.

To this end, similarly to above, for every function of the n.th level we define the following
points:

zk = xn,k and wk = xn,k + hn.

This definition implies

φn,k(zj) = δkj2
n
2 and φn,k(wj) = 0 ∀k,

where

δkj =

{
1 if k = j,

0 otherwise.

18

2.4. Implementation - Basis functions

From this we have that the left hand side of the equivalence (2.16) is the following system
of equations:
for l = 0, . . . , n− 1 and k = 1, . . . , 2l − 1 odd,∑

l

∑
k

αl,kφl,k(zi) + αn,i2
n
2 = 0 (2.17)∑

l

∑
k

αl,kφl,k(wi) = 0. (2.18)

Observe that the special choice of zk an wk implies

φl,k(zi) = φl,k(wi) ∀ l ≤ n and ∀ k, i.

This implies that in (2.17) we remain with just

αn,i2
n
2 = 0, thus αn,i = 0, ∀ i = 1, . . . , 2n − 1 odd.

Note that we have | ⊕
l≤n−1

Wl| = 2n−1 and also that we still have 2n−1 equations involving

the points wi that can be used.

Let us recall our asumption (2.15) which says that Vn−1 = ⊕
l≤n−1

Wl.

This implies that the set {φl,k}n−1
l=0 is a basis of ⊕

l≤n−1
Wl, and so the φl,i’s are linearly

independent.

Now, we consider the 2n−1 equations concerning the point wi.
These equations have the following form∑

l

∑
k

αl,kφl,k(wi) = 0,

and because of the linear independence of the φl,i’s we have that all the coefficients αl,k,
for l = 0, . . . , n− 1 and k = 1, . . . , 2n−1 − 1 odd, are equal to zero.

The hierarchical Haar basis

Another set of basis function that we consider is the one based on the hierarchical Haar basis.

The functions θl,i for i = 1, . . . , 2l are defined in the following way:

for l = 0, θ0,1(x) =

{
1 if x ∈ Ωx,
0 otherwise,

for l ≥ 1, θl,i(x) =


2
l−1
2 if x ∈ [xl,i − hl

2 , xl,i + hl
2],

−2
l−1
2 if x ∈ [xl,i+1 − hl

2 , xl,i+1 + hl
2],

0 otherwise.
(2.19)

We define W ∗l in the same way as before (2.13), i.e.,

W ∗l = span{θl,i(x) : for i = 1, . . . , 2l − 1, i odd}

19

2.4. Implementation - Basis functions

The subspaces W ∗l up to level 2 are shown in figure 2.4.

Figure 2.4: W ∗l for l ≤ 2 using hierarchical Haar basis functions

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x
0,1

W
0

*

0 0.2 0.4 0.6 0.8 1

−1

0

1
x

1,1W
1

*

0 0.2 0.4 0.6 0.8 1

−1

0

1
x

2,1
x

2,3W
2

*

Notice that hierarchical Haar basis is orthogonal in L2, i.e., for any choice of (l,m, k, i) we have

∫
Ωx

θl,k(x)θm,i(x)dx =


1 if l = m, k = i

0 otherwise.

20

2.5. Time integration

2.5 Time integration

We now describe how we perform the integration in time.

Before presenting the method we introduce the notation needed:

For a Tend > 0 we consider the time interval [0, Tend], so we take a uniform partition

0 = t0 < t1 < . . . < tM = Tend,

and for a fixed time-step dt =
[
Tend−t0

M

]
, the discretization in time is given recursively by

t1 = t0 + dt, and, for m ∈ N, tm+1 = tm + dt.

We set (uh)0 := Ph(u0) and for any future tm the numerical approximation uh will be denoted
by uh(tm) = (uh)m.

Now, using that V 0
h is a space of piecewise constants, we rearrange the DG-formulation (2.9) as

follows ∫
Ii

(
uh
)
t
ψhdx = −

[
min(a, 0)(uhi+1 − uhi) + max(a, 0)(uhi − uhi−1)

]
ψh.

Then we use the explicit Euler method in which (uh)t at time m is approximated through a
forward difference which reads

(uh)t =
(uh)m+1 − (uh)m

dt
.

This is a one-step explicit method, because the solution at time m + 1 is computed directly in
terms of the value um at the previous time-step:
for m = 0, given (uh)0 := Ph(u0)∫

Ii

(
uh
)1
ψhdx =

∫
Ii

(
uh
)0
ψhdx

− dt
[
min(a, 0)(

(
uh
)0
i+1
−
(
uh
)0
i
) + max(a, 0)(

(
uh
)0
i
−
(
uh
)0
i−1

)
]
ψh.

and, for any m > 0,∫
Ii

(
uh
)m+1

ψhdx =
∫
Ii

(
uh
)m

ψhdx

− dt
[
min(a, 0)(

(
uh
)m
i+1
−
(
uh
)m
i

) + max(a, 0)(
(
uh
)m
i
−
(
uh
)m
i−1

)
]
ψh.

In order to give a stability result we consider the time discretization in one element Ii when the
standard basis function are used, this reads

um+1
i = umi −

dt

h

[
min(a, 0)

(
umi+1 − umi

)
+ max(a, 0)

(
umi − umi−1

)]
.

This is the usual formulation that we derive using finite difference (with forward difference) or
finite volume (with upwind fluxes) methods, on a uniform mesh.

21

2.5. Time integration

For this case the method is stable provided

dt <
h

|a|
. (2.20)

which is the, so-called, CFL condition (Courant, Friedrichs, Lewy). A prove can be found in [10].

Lemma 2.5.1 Using the standard basis functions (2.10), the scheme (2.9) for the one-
dimensional transport equation is total variation diminishing (TVD), which means that the
approximate solution uh of the discretized problem satisfies

TV ((uh)m+1) ≤ TV ((uh)m)

where the total variation seminorm is defined by

TV (u) =
∑
i

|ui+1 − ui|.

To this end let us state the following lemma due to Harten.

Lemma 2.5.2 (Harten’s lemma)
If a scheme can be written in the form

um+1
i = umi + Ci+ 1

2
∆umi+1 −Di− 1

2
∆umi ,

with periodic or compactly supported boundary conditions, where ∆umi = umi − umi−1 and Ci+ 1
2

and Di− 1
2

may be nonlinear functions of the grid values umj for j = i − p, . . . , i + q with some
p, q ≤ 0 satisfying

Ci+ 1
2
≥ 0, Di+ 1

2
≥ 0, Ci+ 1

2
+Di+ 1

2
≤ 1, ∀ i (2.21)

then the scheme is total variation diminishing.

Proof of Harten’s lemma: see [11].

Proof 2 In order to show that our numerical scheme is TVD, we start by recalling the scheme

hx
ūm+1
i − ūmi

dt
+ min(a, 0)(ūmi+1 − ūmi) + max(a, 0)(ūmi − ūmi−1) = 0,

where ūmi is the value taken in the interval Ii (or associated at the grid point xi).

Rewriting this expression by using the differential operator introduced above and moving some
terms, we obtain

ūm+1
i = ūmi −

dtmin(a, 0)
hx

∆ūmi+1 −
dtmax(a, 0)

hx
∆ūmi .

Since a is a constant different from zero, we have that either a > 0 or a < 0, so

� a > 0:
this implies Ci+ 1

2
= 0 and Di+ 1

2
= dt a

hx
> 0. In order to satisfy also the third condition in

(2.21) we need to have

dt a

hx
≤ 1 ⇒ dt ≤ hx

a
.

22

2.5. Time integration

� a < 0:
this implies Ci+ 1

2
= −dt ahx > 0 and Di+ 1

2
= 0. The third condition in (2.21) is satisfied as

long as dt is chosen in such a way that the following holds:

−dt a
hx
≤ 1 ⇒ dt ≤ −hx

a
.

Considering both cases together, we observe that, if we choose a time stepping dt such that

dt ≤ hx
|a|
,

all conditions (2.21) of Harten’s lemma are satisfied. This requirement is exactly the CFL
condition we have seen before (2.20), hence our numerical scheme is TVD.

23

2.6. Numerical experiments

2.6 Numerical experiments

One-dimensional transport equation with constant coefficients

We check the convergence of the numerical method using the standard basis functions and the
two different sets of hierarchical basis functions to solve the following one-dimensional transport
equation with periodic boundary condition

ut(x, t) + ux(x, t) = 0, for (x, t) ∈ [0, 1]× [0, Tend],
u(x, 0) = sin(2πx), for all x ∈ [0, 1],
u(0, t) = u(1, t), for all t ∈ [0, Tend].

The exact solution of this problem is given by

uex(x, t) = sin(2π(x− t)), for (x, t) ∈ [0, 1]× [0, Tend].

2.6.1 Standard basis

We performed the experiment using first the standard basis dividing the domain [0, 1] in N =16,
32, 64, 128 and 256 uniform subintervals and fixing Tend = 1.
In this experiment we looked at the absolute errors computed using the L2 norm

||uex(·, 1)− uh(·, 1)||0.

In the following table the errors in the L2 norm and the rates of convergence are given.

N 16 32 64 128 256

L2-error 0.1887 0.1012 0.0525 0.0267 0.0135

Rates 0.8989 0.9468 0.9755 0.9839

The convergence is shown in figure 2.5.

Figure 2.5: Convergence using the standard basis

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

h

L
2
 e

r
r
o

r

P

0

h

24

2.6. Numerical experiments

2.6.2 Hierarchical basis

With both sets of hierarchical basis functions we performed the same experiment fixing n = 4,
5, 6, 7 and 8. These values corresponds to N = 16, 32, 64, 128, 256 respectively.
In the following table, again, the absolute errors (in L2 norm) and the rates of convergence are
given.

n 4 5 6 7 8

Hier. One b. L2-error 0.1887 0.1012 0.0525 0.0267 0.0135
Rates 0.8989 0.9468 0.9755 0.9839

Hier. Haar b. L2-error 0.1887 0.1012 0.0525 0.0267 0.0135
Rates 0.8989 0.9468 0.9755 0.9839

In figure 2.6 we have represented the diagrams for the DG method using hierarchical basis. On
the left it is represented the one which refers to the hierarchical One basis and on the right the
one obtained by using the hierarchical Haar basis. Since we only perform a change of basis the
results are not surprisingly exactly the same as the ones obtained by using the standard basis.

Figure 2.6: Convergence diagrams using hierarchical basis functions

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

h

L
2
 e

r
r
o

r

Hier. One basis

h

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

h

L
2
 e

r
r
o

r

Hier. Haar basis

h

25

2.6. Numerical experiments

26

Chapter 3

Transport equation - 2D case

3.1 Continuous problem

Let Ω = Ωx × Ωy ⊂ R2, a ∈ L∞(Ωy) and b ∈ L∞(Ωx).
We consider the transport equation:

ut + a(y)ux + b(x)uy = 0, for x ∈ Ωx, y ∈ Ωy, t ∈ [0,∞), (3.1)
u(x, y, 0) = u0(x, y) for x ∈ Ωx, y ∈ Ωy.

The problem we consider is obtained by completing the equation (3.1) with periodic boundary
conditions both in x and y:

∂Ωx = [xleft, xright] and ∂Ωy = [ydown, yup],

we have

u(x, ydown, t) = u(x, yup, t) ∀ x ∈ Ωx, (3.2)
u(xleft, y, t) = u(xright, y, t) ∀ y ∈ Ωy.

3.1.1 The weak formulation

In order to get the weak formulation, we proceed as in the one-dimensional case. We multiply
the equation (3.1) by a test function ψ ∈ C∞per (Ω) and then integrate over Ω.
We rewrite the equation as

(ut, ψ)Ω + (aux, ψ)Ω + (buy, ψ)Ω = 0

where

(u, ψ)Ω =
∫

Ω

u(x, y, t)ψ(x, y) dxdy.

Integrating by parts the second and the third term we obtain

(ut, ψ)Ω − (au, ψx)Ω + (au, ψ)∂Ωy
− (bu, ψy)Ω + (bu, ψ)∂Ωx

= 0,

27

3.1. Continuous problem

where

(au, ψ)∂Ωy
=
∫

Ωy

[au(x, y, t)ψ(x, y)]x∈∂Ωxdy,

(bu, ψ)∂Ωx
=
∫

Ωx

[bu(x, y, t)ψ(x, y)]y∈∂Ωydx.

Again, because of (3.2) the integrals defined on the boundaries simplify and the weak formulation
reads: Find u such that

(ut, ψ)Ω − (au, ψx)Ω − (bu, ψy)Ω = 0, for all ψ ∈ C∞per (Ω). (3.3)

3.1.2 Properties of the system

We now state some properties of the continuous solution of (3.1)-(3.2).
In deriving numerical methods, we will try to ensure that the resulting schemes will produce
approximate solutions, which will be able to mimic some of these properties.

Mass conservation

The function u, continuous solution of the problem (3.1)-(3.2), conserves the total mass, i.e.

d

dt

∫
Ω

u(x, y, t) dxdy = 0, ∀t > 0.

Proof 3 In (3.3) we take ψ = 1 ∈ C∞per (Ω) and so we have∫
Ω

ut1 dxdy −
∫

Ω

auψx︸ ︷︷ ︸
=0

dxdy −
∫

Ω

buψy︸ ︷︷ ︸
=0

dxdy = 0

Thus
d

dt

∫
Ω

u(x, y, t) dxdy = 0, ∀t > 0.

L2-conservation

For the continuous solution of problem (3.1)-(3.2) we also have L2-conservation, i.e.

d

dt
||u(·, ·, t)||0 = 0 ∀t > 0.

Proof 4 By taking ψ = u in (3.3) we have

0 =
∫

Ω

utu dxdy −
∫

Ω

auux dxdy −
∫

Ω

buuy dxdy

=
∫

Ω

(
u2

2

)
t

dxdy −
∫

Ωy

a(y)
(∫

Ωx

(
u2

2

)
x

dx

)
dy −

∫
Ωx

b(x)

(∫
Ωy

(
u2

2

)
y

dy

)
dx

=
1
2
d

dt

∫
Ω

u2 dxdy − 1
2

∫
Ωy

a u2|∂Ωx︸ ︷︷ ︸
=0

dy − 1
2

∫
Ωx

b u2|∂Ωy︸ ︷︷ ︸
=0

dx

28

3.2. Notations for the discrete formulation

where we have used the periodicity of u in x and y.
So we end up with

d

dt

∫
Ω

u2(x, y, t) dxdy = 0,

which is
d

dt
||u(·, ·, t)||20 = 0.

3.2 Notations for the discrete formulation

From now on, we consider our domain to be Ω = [0, 1]2.
Before deriving the DG-method we define the partition, the finite element space and we present
some notations.
Similarly to the one-dimensional case, we consider a uniform partition

Th = Ih × Jh = {Kij = Ii × Jj}1≤i,j≤N ,

of N2 elements (Kij). Here we have

Ii = [xi− 1
2
, xi+ 1

2
], Ji = [yj− 1

2
, yj+ 1

2
],

hx = xi+ 1
2
− xi− 1

2
, hy = yj+ 1

2
− yj− 1

2
and h = min{hx, hy} for all 1 ≤ i, j ≤ N.

The element Kij (figure 3.1) is centered in (xi, yj) and its vertices are given by

(xi− 1
2
, yj− 1

2
), (xi+ 1

2
, yj− 1

2
), (xi+ 1

2
, yj+ 1

2
) and (xi− 1

2
, yj+ 1

2
).

Figure 3.1: The element Kij and the notation at the boundaries

x
i
,y

j

K
ij

x
i−1/2

,y
j−1/2

x
i−1/2

,y
j+1/2

x
i+1/2

,y
j−1/2

x
i+1/2

,y
j+1/2

I
i

J
j

−

+

− +

29

3.2. Notations for the discrete formulation

We introduce some trace operators that allow for dealing with the discontinuities (of the FE
functions) at interelement boundaries:
First, we define the space

H1(Th) = {v ∈ L2(Ω) : v ∈ H1(Kij) for all Kij ∈ Th},

then for any function ϕ ∈ H1(Th) we define its jump J·K and its average {·} at (xi+ 1
2
, y) for all

y ∈ Jj as

JϕKi+ 1
2 ,y

:= ϕ+
i+ 1

2 ,y
− ϕ−

i+ 1
2 ,y
, {ϕ}i+ 1

2 ,y
:=

1
2

[
ϕ+
i+ 1

2 ,y
+ ϕ−

i+ 1
2 ,y

]
, (3.4)

where ϕ+
i+ 1

2 ,y
and ϕ−

i+ 1
2 ,y

denote the values of ϕ evaluated at the point (xi+ 1
2
, y) from the right

element Ki+1,j and from the left element Kij respectively:

ϕ±
i+ 1

2 ,y
= ϕ(x±

i+ 1
2
, y) = lim

s→0+
ϕ(xi+ 1

2
± s, y). (3.5)

In the same way, but in the other coordinate, we have that ϕ+
x,j+ 1

2
and ϕ−

x,j+ 1
2

denote the values
of ϕ evaluated at the point (x, yj+ 1

2
) from the upper element Ki,j+1 and from the buttom element

Kij respectively:

ϕ±
x,j+ 1

2
= ϕ(x, y±

j+ 1
2
) = lim

s→0+
ϕ(x, yi+ 1

2
± s), (3.6)

see again figure 3.1 for the spatial representation.

The finite element space we consider is

Z0
n = {z ∈ L2(Ω) : z ∈ Q0(Kij) = P0(Ii)⊗ P0(Jj), 1 ≤ i, j ≤ N = 2n}, (3.7)

where we construct Q0(Kij) by doing tensor product of the spaces of constant functions in both
Ii and Jj .
Notice that, for reasons that will become clear soon (the use of hierarchical basis) we take N = 2n

where n ∈ N.

In the numerical experiments we will measure errors in the discrete L2-norm which is defined
by

||u||20,Th =
∑
i,j

∫
Kij

|u|2 dxdy.

In the two-dimensional case we define the standard L2-projection Ph : L2(Th)→ Z0
n by

Ph(w) =
(
P 0
x ⊗ P 0

y

)
(w) ∀ w ∈ L2(Th),

where P 0
x and P 0

y are the one-dimensional projections (2.5) in x and y respectively,
i.e., for all 1 ≤ i, j ≤ 2n,∫

Kij

(Ph(w)− w)ψh dxdy = 0 ∀ ψh ∈ P0(Ii)⊗ P0(Jj). (3.8)

30

3.3. The Discontinuous Galerkin formulation

3.3 The Discontinuous Galerkin formulation

We now derive the DG-method for approximating (3.1)-(3.2). As in one dimension, we observe
the weak formulation on an arbitrary element Kij ∈ Th:

(ut, ψ)Kij + (aux, ψ)Kij + (buy, ψ)Kij = 0 for all ψ ∈ Z0
n. (3.9)

We replace u and ψ by their approximations uh and ψh and we integrate by parts.
For the second term we have

(a
(
uh
)
x
, ψh)Kij =

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

a
(
uh
)
x
ψh dxdy

=−
∫ y

j+ 1
2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

uh(aψh)x dxdy

+
∫ y

j+ 1
2

y
j− 1

2

[
auhψh

]x
i+ 1

2
x
i− 1

2

dy ∀ ψh ∈ Z0
n.

Observe that, since ψh ∈ Q0(Kij) and a depends only on the variable y, the derivatives in x-
direction are equal to zero and, as a consequence, the first integral of the second line disappears.
Precisely ∫ y

j+ 1
2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

uh(aψh)xdxdy =
∫ y

j+ 1
2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

uh[aψh]xdxdy

=
∫ y

j+ 1
2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

uh (axψh + a
(
ψh
)
x
)︸ ︷︷ ︸

=0

dxdy = 0.

Rewriting the term left, by using the numerical fluxes we obtain

(a
(
uh
)
x
, ψh)Kij =

∫ y
j+ 1

2

y
j− 1

2

[
̂auh
i+ 1

2 ,y

(
ψh
)−
i+ 1

2 ,y
− ̂auh

i− 1
2 ,y

(
ψh
)+
i− 1

2 ,y

]
dy.

We repeat the same procedure for the third term in (3.9)

(b
(
uh
)
y
, ψh)Kij =

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

b
(
uh
)
y
ψ dxdy

= −
∫ y

j+ 1
2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

u(x, y, t)
(
bψh

)
y
dxdy +

∫ x
i+ 1

2

x
i− 1

2

b
[
uhψh

]y
j+ 1

2
y
j− 1

2

dx.

Arguing as before, we have
(
bψh

)
y

= 0, so

(b
(
uh
)
y
, ψh)Kij =

∫ x
i+ 1

2

x
i− 1

2

[
̂buh
x,j+ 1

2

(
ψh
)−
x,j+ 1

2
− ̂auh

x,j− 1
2

(
ψh
)+
x,j− 1

2

]
dx.

At the end, we have the following element-based formulation:
find uh : [0, Tend]→ Z0

n such that, for all i, j,((
uh
)
t
, ψh

)
Kij

+
〈
âuh, ψh

〉
Jj

+
〈
b̂uh, ψh

〉
Ii

= 0, ∀ψh ∈ Z0
n, (3.10)

31

3.3. The Discontinuous Galerkin formulation

where the following notation has been used〈
âuh, ψ

〉
Jj

=
∫ y

j+ 1
2

y
j− 1

2

[
âuh(xi+ 1

2
, y)ψ(xi+ 1

2
, y)− âuh(xi− 1

2
, y)ψ(xi− 1

2
, y)
]
dy

=
∫
Jj

[(
âuh

(
ψh
)−)

i+ 1
2 ,y
−
(
âuh

(
ψh
)+)

i− 1
2 ,y

]
dy,〈

b̂uh, ψ
〉
Ii

=
∫ x

i+ 1
2

x
i− 1

2

[
b̂uh(x, yj+ 1

2
)ψ(x, yj+ 1

2
)− b̂uh(x, yj− 1

2
)ψ(x, yj− 1

2
)
]
dx

=
∫
Ii

[(
b̂uh

(
ψh
)−)

x,j+ 1
2

−
(
b̂uh

(
ψh
)+)

x,j− 1
2

]
dx

and uh(0) := Ph(u0) is the approximation to the initial data. By summing up over all elements
of the partition in (3.10) we will get the DG-method.
As in one dimension, âuh and b̂uh denote the numerical fluxes, and, also here, we consider
upwind fluxes:

(
âuh

)
i+ 1

2

=

{
auh(x−

i+ 1
2
, y) if a(y) ≥ 0

auh(x+
i+ 1

2
, y) if a(y) < 0

(
b̂uh
)
j+ 1

2

=

{
buh(x, y−

j+ 1
2
) if b(x) ≥ 0

buh(x, y+
j+ 1

2
) if b(x) < 0.

(3.11)

Here we used the notation defined in (3.5)-(3.6).

3.3.1 L2-stability

The definition of the numerical fluxes is the key point in the construction of a DG-scheme, in
particular they have to be defined in such a way to ensure the stability of the method.
Next, we show that our numerical method is L2-stable when upwind fluxes (3.11) are used.

Lemma 3.3.1 Consider the transport equation (3.1) and its DG-formulation (3.10).
If upwind fluxes (3.11) are used, then the numerical solution uh is L2-stable, i.e.

||uh(·, ·, t)||0,Th ≤ ||uh(·, ·, 0)||0,Th ∀ t > 0. (3.12)

Proof 5 We have to show (3.12).
We start by replacing ψh by uh in (3.10).
For the first integral we have∫

Kij

(uh)tuh dxdy =
∫
Kij

(
(uh)2

2

)
t

dxdy =
1
2
d

dt

∫
Kij

(uh)2 dxdy

and when we sum up over all elements we obtain

1
2
d

dt

∑
i,j

∫
Kij

(uh)2 dxdy =
1
2
d

dt
||uh||20,Th .

32

3.3. The Discontinuous Galerkin formulation

Now, observe that if the sums over all elements of the second and third term in (3.10) are
non-negative we would have

1
2
d

dt
||uh||20,Th + Ξ = 0.

in which Ξ ≥ 0. In this case, rearrenging the terms and integrating in time we would get

||uh(·, ·, t)||20,Th − ||u
h(·, ·, 0)||20,Th = −Ξ ≤ 0

and the lemma would be proved.

So, next we show the non-negativity for the second term in (3.10).
We consider the sum over all i, j of the following term∫

Jj

(
âuhi+ 1

2 ,j
(uh)−

i+ 1
2 ,j
− âuhi− 1

2 ,j
(uh)+

i− 1
2 ,j

)
dy.

Notice that, since uh ∈ Q0(Kij) and we deal with a uniform partition, this expression can be
rewritten as follows

hy

(
âuhi+ 1

2 ,j
(uh)−

i+ 1
2 ,j
− âuhi− 1

2 ,j
(uh)+

i− 1
2 ,j

)
.

In order to try to keep the notation as clear as possible, let us divide the term by hy > 0.
In fact, one notices that hy is a positive quantity that can be easily simplified by multiplying all
terms in (3.10) with 1/hy.

We have then

âuhi+ 1
2 ,j

(uh)−
i+ 1

2 ,j
− âuhi− 1

2 ,j
(uh)+

i− 1
2 ,j

= âuhi+ 1
2 ,j

(uh)−
i+ 1

2 ,j
±âuhi− 1

2 ,j
(uh)−

i− 1
2 ,j︸ ︷︷ ︸

=0

−âuhi− 1
2 ,j

(uh)+
i− 1

2 ,j

= âuhi+ 1
2 ,j

(uh)−
i+ 1

2 ,j︸ ︷︷ ︸
:=F

i+ 1
2 ,j

− âuhi− 1
2 ,j

(uh)−
i− 1

2 ,j︸ ︷︷ ︸
:=F

i− 1
2 ,j

+ âuhi− 1
2 ,j

(uh)−
i− 1

2 ,j
− âuhi− 1

2 ,j
(uh)+

i− 1
2 ,j︸ ︷︷ ︸

:=Θ
i− 1

2 ,j

= Fi+ 1
2 ,j
− Fi− 1

2 ,j
+ Θi− 1

2 ,j
.

Now, observe that, by summing up over all elements (sum over all i and j), the first two terms
in the last line form a telescopic sum and, since we deal with periodic boundary conditions, the
boundary terms cancel and so the whole sum.
So, it remains to be shown the non-negativity of the sum of the Θ-terms.
We decompose the Θ-term as follows

Θi− 1
2 ,j

= âuhi− 1
2 ,j

(uh)−
i− 1

2 ,j
− âuhi− 1

2 ,j
(uh)+

i− 1
2 ,j

= −âuhi− 1
2 ,j

JuhKi− 1
2 ,j
.

33

3.3. The Discontinuous Galerkin formulation

Notice that from the definition of the fluxes (3.11) and the definition of the trace operators (3.4),
we have

âuhi− 1
2 ,j

= a{uh}i− 1
2 ,j
− |a|

2
q
uh

y
i− 1

2 ,j
,

q
(uh)2

y
i− 1

2 ,j
= 2{uh}i− 1

2 ,j

q
uh

y
i− 1

2 ,j
.

Then each Θ-term can be rewritten as

Θi− 1
2 ,j

= −a{uh}i− 1
2 ,j

q
uh

y
i− 1

2 ,j
+
|a|
2

q
uh

y2

i− 1
2 ,j

(3.13)

= −a
2

q
(uh)2

y
i− 1

2 ,j
+
|a|
2

q
uh

y2

i− 1
2 ,j

Since uh ∈ Q0(Kij) we have that

(uh)+
i− 1

2
= (uh)−

i+ 1
2

= uhi ,

so, in particular, when we sum up over all i, the first term in 3.13 simplifies∑
i

q
(uh)2

y
i− 1

2 ,j
=
∑
i

[
(uh)+

]2
i− 1

2 ,j
−
[
(uh)−

]2
i− 1

2 ,j
= 0

and so ∑
i

Θi− 1
2

=
∑
i

|a|
2

q
uh

y2

i− 1
2
≥ 0.

With the same procedure one can prove that with this choice of numerical fluxes also the third
term in (3.10) is non-negative, which proves the L2-stability of the numerical method.

3.3.2 Mass conservation

Let uh : [0, Tend]→ Z0
n be the numerical solution of (3.10) for all 1 ≤ i, j ≤ 2n, then the following

equalities hold∑
i,j

∫
Kij

uh(t) dxdy =
∑
i,j

∫
Kij

uh(0) dxdy =
∑
i,j

∫
Kij

u0 dxdy, ∀t ∈ [0, Tend]. (3.14)

Proof 6 Observe that the definition of the standard L2-projection (3.8) and the fact that uh(0) =
Ph(u0) imply ∑

i,j

∫
Kij

uh(0) dxdy =
∑
i,j

∫
Kij

Ph(u0) dxdy =
∑
i,j

∫
Kij

u0 dxdy. (3.15)

By taking

ψh(x, y) =

{
1, if (x, y) ∈ Kij

0, otherwise,

34

3.3. The Discontinuous Galerkin formulation

in (3.10) we obtain∫
Kij

(
uh
)
t
dxdy +

∫
Jj

[(
âuh

)
i+ 1

2 ,y
−
(
âuh

)
i− 1

2 ,y

]
dy

+
∫
Ii

[(
b̂uh
)
x,j+ 1

2

−
(
b̂uh
)
x,j− 1

2

]
dx = 0.

Since this latter holds true for all i, j, summing up over all elements the boundary terms disappear
because of periodic boundary conditions (in i and j). We get∑

i,j

∫
Kij

(
uh
)
t
dxdy = 0,

integrating in time we obtain∑
i,j

∫
Kij

uh(t) dxdy −
∑
i,j

∫
Kij

uh(0) dxdy = 0

which, together with (3.15), yields (3.14).

3.3.3 Implementation - Basis functions

Standard basis

We start by using the usual standard basis functions χij defined by

χij(x, y) = χi(x)χj(y) =

{
1, if (x, y) ∈ Kij ,

0, otherwise.
(3.16)

Considering (3.10), we observe that, by taking ψh = χij , we have

ψh|Kij = χij |Kij = 1, and uh|Kij =
1

hxhy
(uh, χij)L2 =: ūij .

Consequently the numerical solution can be written as

uh(x, y, t) =
N∑

i,j=1

ūij(t)χij(x, y),

and the fluxes become(
âuh

)
i+ 1

2

=

{
auh(x−

i+ 1
2
, y) = aūij if a(y) ≥ 0

auh(x+
i+ 1

2
, y) = aūi+1,j if a(y) < 0

and (
b̂uh
)
j+ 1

2

=

{
buh(x, y−

j+ 1
2
) = būij if b(x) ≥ 0

buh(x, y+
j+ 1

2
) = būi,j+1 if b(x) < 0.

35

3.3. The Discontinuous Galerkin formulation

Then (3.10) can be rewritten as

hxhy (ūij)t +
∫
Jj

[max(a(y), 0)(ūij − ūi−1,j) + min(a(y), 0)(ūi+1,j − ūij)] dy

+
∫
Ii

[max(b(x), 0)(ūij − ūi,j−1) + min(b(x), 0)(ūi,j+1 − ūi,j)] dx = 0,

which is similar to what one would obtain by using finite differences (with forward differences)
and finite volumes (with upwind-fluxes) schemes.

Hierarchical basis

The construction of the hierarchical basis is done here using a tensor product construction of
one dimensional hierarchical basis in each coordinates.
Before entering into details, we need to introduce the notation we will use. Basically, it’s very
similar to the one-dimensional case, in two dimension however, we use bold letters.

� l = (l1, l2) is the two-dimensional level and it indicates how many times we halve each
coordinate: l1 refers to the one-dimensional level in the x-coordinate and l2 to the one in
the y-coordinate.
Moreover, for l = (l1, l2) we define the following operators:

|l|∞ = max(l1, l2) and |l|1 = l1 + l2.

� hl = (hl1 , hl2) indicates the grid size for each coordinate: hl1 = 2−l1 refers to the x-
coordinate and hl2 = 2−l2 to the y-coordinate.

� The two-dimensional grid points at level l are the ones given by

(x, y)l,i = (xl1,i1 , yl2,i2), for i1 = 1, . . . , 2l1 and i2 = 1, . . . , 2l2

in which the one-dimensional points xl1,i1 and yl2,i2 are defined as before (2.11).

The hierarchical basis functions

We define the two-dimensional hierarchical basis functions by considering the tensor product of
the corresponding one-dimensional ones:

φl,i(x, y) = φ(l1,l2),(i1,i2)(x, y) = φl1,i1(x)φl2,i2(y), (3.17)
θl,i(x, y) = θ(l1,l2),(i1,i2)(x, y) = θl1,i1(x)θl2,i2(y)

An example of this tensor product approach is shown in figure 3.2 : on the left, the one-
dimensional hierarchical Haar basis functions in the different coordinates are given (θ1,1(x),
θ2,1(y) and θ2,3(y)), on the right, the result of the tensor product among them is shown.

36

3.3. The Discontinuous Galerkin formulation

Figure 3.2: Tensor product approach for two-dimensional hierarchical Haar basis functions

x

W
1

y

W
2

X

x

y

W
12

The definition of the two-dimensional hierarchical basis functions yields the following definitions
for the subspaces Wl and W ∗l in two dimension:

Wl = {φl,i | i1 = 1, . . . , 2l1 − 1 and i2 = 1, . . . , 2l2 − 1, with i1, i2 odd}
W ∗l = {θl,i | i1 = 1, . . . , 2l1 − 1 and i2 = 1, . . . , 2l2 − 1, with i1, i2 odd}

In figure 3.3-3.4 the collection of subspaces Wl and W ∗l for |l|∞ ≤ 2 are shown. On the left, the
ones spanned by the set of hierarchial One basis functions, on the right, the ones spanned by
the hierarchical Haar basis functions.

Figure 3.3: Wl (left) and W ∗l (right) for |l|∞ ≤ 2

Because of the definition of the hierarchical basis functions the black and white parts in the
different basis have different meaning.
For the hierarchical One basis (left) the black parts represent the non-zero value taken by the
functions in the corresponding subspace while the white parts corresponds to the regions in which

37

3.3. The Discontinuous Galerkin formulation

the basis functions are zero. For example the hierarchical One basis function in W11 is given by

φ(1,1),(1,1)(x, y) = φ1,1(x)φ1,1(y) =

{
2, if 0 ≤ x, y ≤ 0.5,
0, otherwise.

On the other hand, for hierarchical Haar basis the black parts correspond to the regions where
the corresponding function takes its positive value while in the white parts it takes the negative
one. Again, the example of the function of the subspace W ∗11

θ(1,1),(1,1)(x, y) = θ1,1(x)θ1,1(y) =

{
1, if 0 ≤ x, y ≤ 0.5 or 0.5 ≤ x, y ≤ 1,
−1, otherwise.

Figure 3.4: Wl (left) and W ∗l (right) for |l|∞ ≤ 2

Next, we state the two-dimensional version of the important property (2.14). Here, it involves
the space Z0

n (3.7) and the subspaces Wl or W ∗l for the levels that satisfy |l|∞ ≤ n.

Lemma 3.3.2 For a fixed n ∈ N we have that

Z0
n = ⊕

|l|∞≤n
Wl = ⊕

|l|∞≤n
W ∗l .

Proof: the proof is done similarly as in the one-dimensional case, we omit the details for sake of
conciseness.

38

3.3. The Discontinuous Galerkin formulation

3.3.4 Sparse grid

In the following we present the ingredient behind the sparse grid technique we use. The main
idea of the sparse grid is to choose wisely the subspaces Wl or W ∗l in which we want to find our
approximate solution in order to reduce the complexity of the method without losing too much
accuracy.
We also have to point out that, in what follows, we give the presentation of the idea using the
hierarchical Haar basis and the corresponding notation.
For an index set I that has to be identified, we define the sparse grid space ZSn as

ZSn = ⊕
l∈I
W ∗l ,

in which the index S stands for sparse.
The definition of the index set I is obtained by solving a discrete optimization problem [1]. The
question we ask is how to construct discrete approximation spaces that are better than Z0

n in
the sense that the same relative error is obtained by a lower number of degrees of freedom.
In the following we look for an optimal space Z(opt)

n which will consist in a collection of finite sets
W ∗l , i.e.,

Z(opt)
n = ⊕

l∈I(opt)
W ∗l ,

where I(opt) is a finite index set for which the indices belong to N2.

We follow the discrete optimization presented by Bungartz and Griebel [1].

We search for an optimal grid I(opt) among all possible grids I ⊂ I(max) := {(0, 0), . . . , (n, n)}.
Notice that for any level l and some norm ||·|| we can bound the difference between the interpolant
ul ∈W ∗l (ul =

∑
i αl,iθl,i) and the solution u in the following way:

∣∣∣∣∣
∣∣∣∣∣u−∑

l∈I

ul

∣∣∣∣∣
∣∣∣∣∣
2

'

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

l∈I(max)

ul −
∑
l∈I

ul

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
∑

l∈I(max)\I

||ul||2

We start by presenting the local cost c(l) and the benefit b(l) functions for any two-dimensional
level l:

c(l) := number of degrees of freedom in the level l.

b(l) := upper bound for ||ul||, where || · || is some norm.

In order to state our optimization problem we need to define, for an arbitrary I its global cost
C(I) and global benefit B(I).
For the global cost function one takes the sum of the local cost functions

C(I) =
∑
l∈I

c(l) =
∑

l∈I(max)

η(l) c(l),

where

η(l) =

{
1, if l ∈ I
0, if l /∈ I,

39

3.3. The Discontinuous Galerkin formulation

while the global benefit is derived considering the interpolant to u on the grid defined by I as
follows ∣∣∣∣∣

∣∣∣∣∣u−∑
l∈I

ul

∣∣∣∣∣
∣∣∣∣∣
2

'

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

l∈I(max)

ul −
∑
l∈I

ul

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
∑

l∈I(max)\I

||ul||2 ≤
∑

l∈I(max)

(1− η(l)) b(l)

=
∑

l∈I(max)

b(l)−
∑

l∈I(max)

η(l) b(l)︸ ︷︷ ︸
=:B(I)

.

Now, for some prescribed cost or work count w, the optimization problem is to find the grid
I ⊂ I(max) which maximizes the global benefit, i.e.,

max
I⊂I(max)

∑
l∈I(max)

η(l) b(l) (3.18)

for the fixed cost w, so it has to satisfy also∑
l∈I(max)

η(l) c(l) = w. (3.19)

Arranging the l ∈ I(max) in some linear order i = 1, . . . , (n + 1)2 = M with local cost c =
(c1, . . . , cM)T and local benefit b = (b1, . . . , bM)T , the optimization problem reads

max
x

bTx with cTx = w,

where w ∈ N and x ∈ {0, 1}M is the vector of length M for which xi is either 0 or 1 for all
i = 1, . . . ,M .
A problem of this kind is called binary knapsack problem which is known to be difficult to solve
(NP-hard). However, by allowing x ∈ ([0, 1] ∪ Q)M , a simple algorithm provide an optimal
solution. The idea of the algorithm is to sort the local cost-benefit ratios bi/ci in decreasing
order and then put a 1 to the corresponding position of x till the work count w is reached and
set the rest to 0. In this way only one component of x would be rational.

1. rearrange the order in such a way that

b1
c1
≥ b2
c2
≥ . . . ≥ bM

cM
.

2. set the limit of the knapsack to r, i.e.

r := max{j :
j∑
i=1

ci ≤ w}.

3. set the solution vector x = (x1, . . . , xM) as follows:

xi := 1, for all 1 ≤ i ≤ r,

xr+1 :=

(
w −

r∑
i=1

ci

)
/cr+1,

xk := 0, for all r + 2 ≤ k ≤M.

40

3.3. The Discontinuous Galerkin formulation

Because the work count w is an arbitrarily chosen natural number, our knapsack problem is of
variable size, therefore it is possible to force the solution of the rational problem to be a binary
one. Consequently, the optimization problem (3.18)-(3.19) can be reduced to the discussion of
the local cost-benefit ratios b(l)/c(l) of the underlying subspaces W ∗l . Those subspaces with the
best cost–benefit ratios are taken into account first, and the smaller these ratios become, the
more negligible the underlying subspaces turn out to be.
In order to define these ratios, we first need to have the local cost and benefit functions.
The local cost function c(l) depends on the degrees of freedom of the underlying subspace W ∗l .
We have

c(l) = |W ∗l | = |W ∗l1 | |W
∗
l2 |.

We have seen previousely that |W ∗0 | = 1 and for all l ≥ 1 |W ∗l | = 2l−1, these imply

c(l) =


1, if l1 = l2 = 0,
2l1−1, if l1 6= 0, l2 = 0,
2l2−1, if l1 = 0, l2 6= 0,
2|l|1−2, if l1 6= 0, l2 6= 0.

For the local benefit function we take a bound of ||ul||2 in some norm. By taking the L2-norm
we have

||ul||20 =

∣∣∣∣∣
∣∣∣∣∣∑

i

αl,iθl,i

∣∣∣∣∣
∣∣∣∣∣
2

0

≤
∑
i

|αl,i|2 ||θl,i||20. (3.20)

It follows that we need a bound for both coefficients and basis functions.
We notice that for a function θl,i the measure of its support is |supp(θl,i)| = 2−|l|1+2,
then we have

||θl,i||20 =
∫

supp(θl,i)

(
2
l1−1

2 2
l2−1

2

)2

dx = 2−|l|1+2 22
|l|1−2

2 = 20 = 1,

for the basis functions.
For the coefficients the bound is obtained in a more complicated way.
First, let C ∈ R22n×22n

be the matrix which is needed to change basis:

ū = Cα.

Observe that a linear ordering for the two-dimensional coefficients has been used: ū = (ū11, ū12, . . . , ū2n2n)T

and α = (α(0,0),(1,1), . . . , α(n,n),(2n,2n))T .
Notice that because we are using hierarchical Haar basis functions (L2-orthogonal) the matrix
C results to satisfy

C−1 = 2−2nCT.

Let p ∈ N to represent any couple (l, i) and k ∈ N an index of the linear ordering of the couples
(i, j), then the bound on the coefficient αp is

|αp| =

∣∣∣∣∣∑
k

(
C−1

)
pk
ūk

∣∣∣∣∣ = 2−2n

∣∣∣∣∣∑
k

(
CT
)
pk
ūk

∣∣∣∣∣ ≤ 2−2n
∑
k

∣∣∣(C)kp
∣∣∣max

k
(ūk).

41

3.3. The Discontinuous Galerkin formulation

Observe that |supp(χij)| = 2−2n and recalling that θl,i is either ±2
|l|1−1

2 or 0, we have

Ckp = (χk, θp)L2 =

{∫
2−2n ±2

|l|1−1
2 , if supp(χk ∩ θp) = supp(χk)

0, otherwise.

Furthermore we have, ∑
k

ζ(χk, θp) = 22n−|l|1+2,

where

ζ(χk, θp) =

{
1, if |supp(χk ∩ θp)| = |supp(χk)|
0, otherwise.

With this preliminaries we can now focus on the following∑
k

|Ckp| =
∑
k

ζ(χk, θp)| ± 2
|l|1−1

2 2−2n| = 2
−|l|1−1

2 2−2n22n−|l|1+2 = 2−
|l|1−3

2 .

So for the bound of the coefficient αp we have:

|αp| ≤ 2−2n2−
|l|1−3

2 max
k

(ūk)

Then (3.20) becomes

||ul||20 ≤
∑
i

|αl,i|2 ≤ 22n2−4n−|l|1+3 max
k

ūk

and with this latter result the local cost-benefit ratios, denoted by cbr, turns out to be

cbr(l) :=
b(l)
c(l)

=
2−2n−|l|1+3 maxk(ūk)

2|l|1−2
= 2−2n−2|l|1+5 max

k
(ūk)

An optimal grid I(opt) consists of all levels l where cbr(l) is bigger than some prescribed threshold
κ(n) that we choose to be of the order of cbr(̄l) with l̄ := (n, 0):

κ(n) := cbr(̄l) = 2−4n+5 max
k

(ūk).

That is, we search for all W ∗l whose cost–benefit ratio is equal or better than the one of the
subspace W ∗(n,0). Thus, applying the criterion cbr(l) ≥ κ(n) we have the following

2−2n−2|l|1+5 max
k

(ūk) ≥ 2−4n+5 max
k

(ūk) ⇒ −2n− 2|l|1 + 5 ≥ −4n+ 5 ⇒ |l|1 ≤ n.

Thus, the relation

|l|1 ≤ n

qualifies a subspace W ∗l to be taken into account. This result leads us to the definition of the
desired approximation space

ZSn = ⊕
|l|1≤n

W ∗l ,

42

3.3. The Discontinuous Galerkin formulation

which is optimal with respect to our cost–benefit setting. The selected subspaces W ∗l and Wl,
for the case with n = 2 are shown in figure 3.5.

Figure 3.5: Sparse grid for hierarchical One (left) and Haar (right) basis functions

For general n ∈ N, the sparse grid ZSn is the collection of subspaces which lie in the upper-left
triangle in our representation’s diagram of the subspaces (see figure 3.6).

Figure 3.6: Selected subspaces in the two-dimensional case

W
0,0

W
0,1

W
0,2

. . . W
0,n

W
1,0

W
1,1

W
1,2 . . .

..

.

W
2,0

W
2,1 . . .

. . . W
n−2,n

..

.
. . .

. . . W
n−1,n−1

W
n−1,n

W
n,0

. . . W
n,n−2

W
n,n−1

W
n,n

43

3.3. The Discontinuous Galerkin formulation

Mass conservation

Also in the Sparse grid space, the approximation uh : [0, Tend] → ZSn that solves (3.10) for all
1 ≤ i, j ≤ 2n conserves the total mass, i.e., we have∑

i,j

∫
Kij

uh(t) dxdy =
∑
i,j

∫
Kij

uh(0) dxdy ∀t ∈ [0, Tend]. (3.21)

Proof 7 Since the hierarchical basis functions φl,i have global support we have to consider the
DG-formulation on the whole domain∑

i,j

∫
Kij

(
uh
)
t
ψh dxdy +

∑
i,j

∫
Jj

[(
âuh

(
ψh
)−)

i+ 1
2 ,y
−
(
âuh

(
ψh
)+)

i− 1
2 ,y

]
dy (3.22)

+
∑
i,j

∫
Ii

[(
b̂uh

(
ψh
)−)

x,j+ 1
2

−
(
b̂uh

(
ψh
)+)

x,j− 1
2

]
dx = 0. (3.23)

By taking ψh = 1 ∀ (x, y) this latter equation becomes∑
i,j

∫
Kij

(
uh
)
t
dxdy +

∑
i,j

∫
Jj

[(
âuh

)
i+ 1

2 ,y
−
(
âuh

)
i− 1

2 ,y

]
dy

+
∑
i,j

∫
Ii

[(
b̂uh
)
x,j+ 1

2

−
(
b̂uh
)
x,j− 1

2

]
dx = 0.

Observe that we have uh =
∑

l,i αl,iφl,i, so for all (l, i) let us define

Jl,i := all vertical edges in which the function φl,i has non-zero jump,
Il,i := all horizontal edges in which the function φl,i has non-zero jump.

Now, with this new notation we rewrite the boundary terms in (3.22) obtaining∑
i,j

∫
Jj

[(
âuh

)
i+ 1

2 ,y
−
(
âuh

)
i− 1

2 ,y

]
dy =

∑
l,i

∫
Jl,i

∑
i,j

[(
̂aαl,iφl,i

)
i+ 1

2 ,y
−
(

̂aαl,iφl,i

)
i− 1

2 ,y

]
dy = 0

∑
i,j

∫
Ii

[(
b̂uh
)
x,j+ 1

2

−
(
b̂uh
)
x,j− 1

2

]
dx =

∑
l,i

∫
Il,i

∑
i,j

[(
̂bαl,iφl,i

)
x,j+ 1

2

−
(

̂bαl,iφl,i

)
x,j− 1

2

]
dx = 0.

Again, summing up over all i and j the terms telescope and we obtain only one integral∑
ij

∫
Kij

(
uh
)
t
dxdy = 0,

and, as before, integration in time yields the desired result.

44

3.4. Numerical experiments

3.4 Numerical experiments

3.4.1 Approximations on the sparse grid spaces

We compare the approximation in the sparse grid spaces spanned by the two set of hierarchical
basis functions: the ones based on the One basis and the ones based on the Haar basis.

We observe the relative errors for different functions defined on the domain [−1, 1]2 on different
uniform meshes.

We remind that N represents the number of intervals in which we devide each coordinate and
by Z0

n and ZSn the whole space and the space of the sparse grid are denoted.

The obtained results are collected in the following table. Observe that the results that follows
hold for both of the basis.

Functions N = 8 N = 16 N = 32 N = 64 N = 128

x2 L2-error 0.00519e-15 0.00397e-15 0.06145e-15 0.46789e-15 0.94153e-15

x− y L2-error 3.67682e-16 3.48507e-16 2.65130e-15 8.14088e-15 3.56748e-14

xy
L2-error 0.35952 0.20814 0.11705 0.06444 0.03494

rates 0.7885 0.8305 0.8610 0.8830

e−4y2 |x|
L2-error 0.30011 0.19173 0.11350 0.06464 0.03588

rates 0.6462 0.7566 0.8120 0.8494

x2y
L2-error 0.42592 0.26276 0.15345 0.08658 0.04774

rates 0.6969 0.7759 0.8257 0.8587

x2 + y L2-error 0.0006e-12 0.00025e-12 0.00700e-12 0.05191e-12 0.10972

sin(πx) sin(πx)
L2-error 0.52100 0.30744 0.22478 0.14203 0.08364

rates 0.7610 0.45176 0.6624 0.7640

e−4y2
sin(x)

L2-error 0.36347 0.21183 0.12054 0.06699 0.03657
rates 0.7789 0.8134 0.8476 0.8730

1 if x, y > 1− 2−4,
0 else

L2-error NaN NaN 0.94373 0.90139 0.82916
rates NaN NaN 0.0662 0.1205

dof Z0
n 64 256 1024 4096 16384

dof ZS
n 20 48 112 256 576

For the initial projection, one notes that the functions that only depends on one variable are well
approximated. Moreover, even linear combinations of functions depending only on one variables
are not affected by the truncation. Finally one can note the increasing difference between the
degrees of freedom involved for the different spaces and for any choice of grid.

45

3.4. Numerical experiments

3.4.2 2D Transport equation

In the following experiments we compare the numerical solutions of different cases of the two
dimensional transport equation. The results refering to the whole space are obtained by using
the standard basis (3.16) while the results on the sparse grid spaces refer to the set of hierarchical
Haar basis functions.

Constant coefficients

We consider the two-dimensional transport equation with constants coefficients

ut(x, y, t) + ux(x, y, t) + uy(x, y, t) = 0, for (x, y) ∈ [0, 1]2,

u(x, y, 0) = sin(2πx) sin(2πy) for (x, y) ∈ [0, 1]2, (3.24)
u(0, y, t) = u(1, y, t) and u(x, 0, t) = u(x, 1, t) for all t.

This problem can be solved analytically and the exact solution at any time t is given by

uex(x, y, t) = sin(2π(x− t)) sin(2π(y − t)).

We use this model problem for both the whole space and the sparse grid space.
In the following table we collect the relative L2-errors and the rates of convergence obtained for
the different mesh sizes.
N indicates the number of interval in which both coordinates are devided, we performed the
computations up to time Tend = 0.25.

N 8 16 32 64 128 256

Whole space L2-error 0.53033 0.33178 0.18870 0.10120 0.05320 0.026949
rates 0.6767 0.8141 0.8989 0.9278 0.9812

Sparse grid L2-error 0.85731 0.85202 0.63136 0.42160 0.25521 0.14331
rates 0.0089 0.4324 0.5826 0.7242 0.8325

Degrees of freedom Whole space 64 256 1024 4096 16384 65536
Sparse grid 20 48 112 256 576 1280

In figure 3.7 the convergence diagrams for the relative errors (in L2-norm) of the approximate
solution are given. In the diagram above we show the convergence with respect to the size of
the elements in the uniform grid h = 1/N . In the diagram below the convergence with respect
to the number of degrees of freedom are given. In both diagrams the black lines (with dots)
refer to the sparse grid while the red lines (with squares) refer to the whole space. In the first
diagram the dashed green line refers to the order of accuracy h and the dashed blue one to the
order hlog(h−1).

46

3.4. Numerical experiments

Figure 3.7: Convergence: whole space vs. sparse grid.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

h

L
2 e

rr
o

r

entire space

sparse grid

h

hlog(h−1)

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

(dof)1/2

L
2 e

rr
o

r

In the figure below we observe that taking into account the amount of degrees of freedom, at
some point (already in two dimensions), we have that the error in the sparse grid is lower than
the one obtained in the whole space when we consider the same number of degrees of freedom.
This means that, for the same amount of degrees of freedom, the sparse grid technique becomes
more accurate than the whole space after a certain number of degrees of freedom and for a fixed
level of error it costs much less.

Mass Conservation

We now study how the discrete mass of a given initial condition is preserved in time.
We perform the experiment in both the whole and the sparse spaces. We compute the difference
of mass between the initial data and all the future time, i.e., we look at

∆Mass(t) :=

∫
Ω
uh(x, y, 0)dxdy −

∫
Ω
uh(x, y, t)dxdy∫

Ω
uh(x, y, 0)dxdy

for all discrete time-steps t ∈ [0, Tend].

For this experiment we slightly change the problem and we consider

ut(x, y, t) + ux(x, y, t) + uy(x, y, t) = 0, for (x, y) ∈ [0, 1]2,

u(x, y, 0) = sin(πx) sin(πy) for (x, y) ∈ [0, 1]2, (3.25)
u(0, y, t) = u(1, y, t) and u(x, 0, t) = u(x, 1, t) for all t.

We point out that we choose a non-negative initial data and that the exact solution at any time
t is given by the expression

uex(x, y, t) = sin(π(x− t)) sin(π(y − t)).

We perform computations up to time Tend = 1 on a uniform grid 64× 64.

47

3.4. Numerical experiments

On the left part of figure (3.8) the conservation of mass for the whole space is displayed. On the
right the one of the sparse grid is given.

Figure 3.8: Conservation of mass: whole space vs. sparse grid.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−12

−10

−8

−6

−4

−2

0

2
x 10

−15

t

d
if

fe
r
e
n

c
e
 o

f
m

a
s
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

6

8
x 10

−15

t

d
if

fe
r
e
n

c
e
 o

f
m

a
s
s

Observe that the order of magnitude in both figures is 10−15, which indicates that in both cases
the difference of mass between the numerical solution at time t = 0 and the one computed at any
future discrete time t ∈ (0, 1] is close to machine precision (hence zero), so we can conclude that
the total mass is conserved. These results confirms the theoretical results we stated in previous
sections.

Positivity

In the following we study the positivity of the method. When we start with a non-negative initial
condition, we would like the numerical solution to be non-negative for all future times.
To this end we observe the behaviour of the numerical solution in a specific element in both the
whole and sparse space for the same problem used for testing the conservation of mass (3.25).

The reference element is the one depicted in figure 3.9, in which, given our initial condition, the
value of the solution is close to zero.

Figure 3.9: The observed element.

(x
1
,y

1
)

2 N

N+1

N
2

48

3.4. Numerical experiments

In figure 3.10 two different graphs are given: we have the approximated solutions in the reference
element using the whole space (left) and the sparse grid (right).

Figure 3.10: Positivity: approximate solution for the whole space (left) and the sparse grid
(right)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t

u
(x

1,y
1)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

t

u
(x

1,y
1

We observe that there are time-steps in which the numerical solution on the sparse grid is
negative.
In particular, at the beginning, performing the projection on the sparse space, the numerical
solution is already negative. Therefore, by starting with such initial data it is hopeless to expect
positivity of the approximate solution at later time.

Next, we try to modify the initial projection or the choice of spaces in such a way that the
positivity (at least at the beginning) could be preserved.

We do it using two different approaches:

1. Among all subspaces that we have removed to construct the sparse grid finite element
space, we select (and re-use) the ones that give a greater contribution to the projection on
the entire space spanned by the complete set of hierarchical basis functions.

This selection turns out to be the sequential addiction of the diagonals which were not
considered after the selection of the subspaces (see figure 3.11).
We consider the initial projection on [0, 1]2 of the function

u(x, y, 0) = sin (πx) sin (πy) . (3.26)

In this experiment we consider a uniform grid 32×32 (n = 5) and we observed the minimal
value taken by the projection on the following sparse spaces:

� ZS5 = ⊕
|l|1≤5,|l|∞≤5

Wl.

� ZS1

5 = ⊕
|l|1≤6,|l|∞≤5

Wl.

� ZS2

5 = ⊕
|l|1≤7,|l|∞≤5

Wl.

49

3.4. Numerical experiments

Figure 3.11: Sparse space considered.

Z
5

S
Z

5

S
1

Z
5

S
2

Z
5

S
3

Z
5

S
4

� ZS3

5 = ⊕
|l|1≤8,|l|∞≤5

Wl.

� ZS4

5 = ⊕
|l|1≤9,|l|∞≤5

Wl.

This selection of spaces is showed in figure 3.11.
In the next table we write the minimal values taken by the projection on the sparse grids
and the degrees of freedom of the corresponding spaces.

ZS5 ZS
1

5 ZS
2

5 ZS
3

5 ZS
4

5 Z0
5

min(uh(x1, y1)) -0.17900 -0.09624 -0.03607 -0.00935 0.00002 0.00241

Degrees of freedom 112 192 320 512 768 1024

We observe that the only projection that preserves the positivity of the initial condi-
tions (3.26) is the one on the space ZS

4

5 , in which the only subspace removed with respect
to the whole space Z0

5 is W5,5.

The problem in this case is the number of degrees of freedom that one is considering.
This number increased considerably: in the case observed (n = 5), it’s almost 7 times the
one of the usual sparse grid

(
ZS5
)
. Therefore, the whole idea of sparse gird technique is lost.

2. The second approach keeps the sparse space fixed (f.e. ZS5) and uses a sort of ”brute
force” to obtain non-negative initial condition: the idea is to correct the projection in each
element by adding the minimal value taken by the function in the whole domain. In this
way the problem of the increase of the number of degrees of freedom is overcome.

Also in this case we consider the domain [0, 1]2 and the initial conditions given by (3.26).
We consider the space ZSn for n =3, 4, 5, 6, 7, which means that we devide each coordinate
in 8, 16, 32, 64, 128 intervals respectively.
We observe the relative error between the exact solution and the approximated ones in
the sparse space by using different initial data: from one side we use the usual projection

50

3.4. Numerical experiments

uh(0) = Ph(u0) which, as we have seen before, yields some negative values. From the other
side we use initial data uh(0) = P̄h(u0) where the new projection P̄h is defined by

u ∈ L2 7→ P̄h(u) = Ph(u) + |min (Ph(u)) | ∈ ZSn .

The relative errors are calculated using the L2-norm, and the results are collected in the
following table.

n 3 4 5 6 7

Sp.grid with uh(0) = Ph(u0) L2-error 0.08947 0.06212 0.03807 0.02203 0.012339
rates 0.5262 0.7064 0.7892 0.8364

Sp.grid with uh(0) = P̄h(u0) L2-error 0.18378 0.22075 0.18300 0.12928 0.08378
rates -0.2644 0.2706 0.5013 0.6258

We notice that by using the new projection for the initial data some accuracy is lost and
the order degrades, in fact the relative errors increase considerably: depending on the grid,
it’s from 2 to 8 times bigger.

Next we observe the behaviour in time of the numerical solution of the transport equation
with constant coefficients, when we use the usual Ph and the modified projection P̄h on
the initial data.
Also in this case we consider the problem (3.25). We use a uniform grid 64 × 64 and
we observe the numerical solution computed in the same reference element as before (see
figure 3.9) but we perform the experiments up to time Tend = 1.2.

In figure 3.12 the numerical solution in the case of the usual projection (left) and in the
case of the modified projection (right) are given.

Figure 3.12: Behaviour in time: usual vs. modified projection.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

u
(x

1,y
1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

u
(x

1,y
1)

Notice that the correction’s value we add at the beginning in order to have a non-negative
initial condition is enough to prevent the numerical solution to become negative in a future
time. Thus, the problem of a slightly negative initial condition can be overcome with this
method. However, by doing so, one has to be aware of the fact that the error in the
numerical solution will increase, and the order will degrade a bit.

51

3.4. Numerical experiments

Variable coefficients

We consider the following forced transport equation with variable coefficients

ut(x, y, t) + yux(x, y, t) + x2uy(x, y, t) = ξ(x, y, t), for (x, y) ∈ [−1, 1]2,

u(x, y, 0) = [1− cos(π(x+ 1))] e−8y2
for (x, y) ∈ [−1, 1]2,

u(−1, y, t) = u(1, y, t) and u(x,−1, t) = u(x, 1, t) for all t ≥ 0.

The forced term on the right part of the first equality is defined in order for

uex(x, y, t) = [1− cos(π(x+ 1) + 2πt)] e−8y2

to be the exact solution, i.e.

ξ(x, y, t) = e−8y2 [
(2 + y)π sin(π(x+ 1) + 2πt)− 16yx2 (1− cos(π(x+ 1) + 2πt))

]
.

Similarly to the case in which the coefficients were constants we consider the convergence in both
the whole and the sparse spaces. Because of the 1-periodicity of the exact solution we performed
the experiment up to time Tend = 1, and we obtained the following (relative) L2-errors and the
corresponding rates of convergence.

N 8 16 32 64 128

Whole space L2-error 0.22328 0.14008 0.08261 0.04691 0.02486
rates 0.6726 0.7618 0.8289 0.9038

Sparse grid L2-error 0.48990 0.32978 0.21235 0.12962 0.07438
rates 0.5710 0.6351 0.7121 0.8013

Degrees of freedom Whole space 64 256 1024 4096 16384
Sparse grid 20 48 112 256 576

In figure 3.13 the convergence in the whole and in the sparse space are compared. In the figure
above with respect to h = 2/N , while below we consider the square root of the degrees of freedom.
Again the black lines refer with dots to the sparse grid while the red ones with squares to the
whole space. In the first diagram the dashed green line represent the order h and the dashed
blue the order of hlog(h−1).

52

3.4. Numerical experiments

Figure 3.13: Convergence: whole space vs. sparse grid.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

h

L
2 e

rr
o

r

entire space

sparse grid

h

hlog(h−1)

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

(dof)1/2

L
2 e

rr
o

r

Mass conservation

Also for the forced transport equation with variable coefficient we check the mass conservation.
We consider the same case used to show the convergence. We obtain the following diagrams,
in which for both spaces the order of magnitude is 10−15, which says that also in this case the
method conserves the mass, up to machine precision.

Figure 3.14: Conservation of mass: whole space vs. sparse grid.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−14

t

d
if

fe
r
e
n

c
e
 o

f
m

a
s
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−14

t

d
if

fe
r
e
n

c
e
 o

f
m

a
s
s

53

3.5. An alternative method

3.5 An alternative method

3.5.1 Alternative sparse grid

In this section we consider the sparse grid ZSn in an alternative way, which allows to reduce even
more the size of the system of equations one has to solve.
In this section we will use the notation of the hierarchical One basis functions, but the whole
holds also for Haar basis. We consider the following splitting of the sparse grid space:

ZSn = ⊕
|l|1≤n

Wl = Z [1]
n ⊕ Z [2]

n ⊕ Z [R]
n . (3.27)

where

� Z [1]
n := ⊕

l s.t. l1=0
Wl = {w ∈ L2(Ω) | w ∈ P0(Ωx)⊗ P0(Jj) ∀j}.

� Z [2]
n := ⊕

l s.t. l2=0,l1 6=0
Wl = {w ∈ L2(Ω) | w ∈ P0(Ii)⊗ P0(Ωy) ∀i}.

� Z [R]
n := ZSn \

(
Z

[1]
n ∪ Z [2]

n

)
.

A representation of these subspaces is shown in figure (3.15). Observe that the splitting (3.27)

Figure 3.15: The splitting: Z [1]
5 , Z [2]

5 and Z
[R]
5

allows us to write a function ϕh belonging to ZSn as

ϕh = ϕh[1] + ϕh[2] + ϕh[R], (3.28)

where ϕh[1] ∈ Z
[1]
n , ϕh[2] ∈ Z

[2]
n and ϕh[R] ∈ Z

[R]
n .

54

3.5. An alternative method

Notice that for all subspaces Wl in Z
[1]
n the functions only have jumps in the y-coordinate, and,

likewise the functions in Z
[2]
n only have jumps in the x-coordinate. This implies that, when we

consider functions zh[1] ∈ Z
[1]
n and zh[2] ∈ Z

[2]
n , we have,

r
zh[1]

z

x
= 0

r
zh[2]

z

y
= 0. (3.29)

The idea is to divide the integration in time in two stages: before one computes the numerical
solution considering only the spaces Z [1]

n , Z [2]
n , and with the numerical solution obtained one

solves also the remaining system refering to the space Z [R]
n .

More precisely, we substitute the time-derivative by the forward discretization in (3.10) and then
apply (3.28) to both the terms.
We first recall the forward time-discretization:

(
uh
)
t

=

(
uh
)m+1 −

(
uh
)m

dt
,

where the notation defined in the time integration’s section has been used.
Therefore (3.10) becomes((

uh
)m+1 −

(
uh
)m

dt
, ψh

)
Kij

+
〈

̂a (uh)m, ψh
〉
Jj

+
〈

̂b (uh)m, ψh
〉
Ii

= 0, ∀ψh ∈ Z0
n,

Applying (3.28) to the test function ψh, summing up over all elements and taking into account
(3.29) we have the following system of equations((

uh
)m+1 −

(
uh
)m

dt
, ψh[1]

)
Th

+
〈

̂b (uh)m, ψh[1]

〉
Ih

= 0

((
uh
)m+1 −

(
uh
)m

dt
, ψh[2]

)
Th

+
〈

̂a (uh)m, ψh[2]

〉
Jh

= 0 (3.30)

((
uh
)m+1 −

(
uh
)m

dt
, ψh

)
Th

+
〈

̂a (uh)m, ψh[R]

〉
Jh

+
〈

̂b (uh)m, ψh[R]

〉
Ih

= 0

where the following short hand notation has been used:(
uh, ψh

)
Th

=
∑
i,j

∫
Kij

uhψh dxdy,

〈
âuh, ψh

〉
Jh

= −
∑
i,j

∫
Jj

(
âuh

)
i+ 1

2 ,i

q
ψh

y
i+ 1

2 ,j
dy,

〈
b̂uh, ψh

〉
Ih

= −
∑
i,j

∫
Ii

(
b̂uh
)
i,j+ 1

2

q
ψh

y
i,j+ 1

2
dx.

We can also apply (3.28) to our numerical solution:

uh = uh[1] + uh[2] + uh[R].

55

3.5. An alternative method

This yields


(
uh[1]

)m+1

+
(
uh[2]

)m+1

−
(
uh[1]

)m
−
(
uh[2]

)m
dt

, ψh[1]


Th

+
〈 ̂
b
(
uh[1]

)m
+

̂
b
(
uh[2]

)m
, ψh[1]

〉
Ih

=−
〈 ̂
b
(
uh[R]

)m
, ψh[1]

〉
Ih

(
uh[1]

)m+1

+
(
uh[2]

)m+1

−
(
uh[1]

)m
−
(
uh[2]

)m
dt

, ψh[2]


Th

+
〈 ̂
a
(
uh[1]

)m
+

̂
a
(
uh[2]

)m
, ψh[2]

〉
Jh

=−
〈 ̂
a
(
uh[R]

)m
, ψh[2]

〉
Jh
,

Observe that there are terms that simplify, more precisely

〈 ̂
b
(
uh[2]

)m
, ψh[1]

〉
Ih

= 0 and
〈 ̂
a
(
uh[1]

)m
, ψh[2]

〉
Jh

= 0.

We show now why these two equalities hold.
For the first-one we have

〈
b̂uh[2], ψ

h
[1]

〉
Ih

= −
∑
i,j

∫
Ii

(
b̂uh[2]

)
i,j+ 1

2

q
ψh

y
i,j+ 1

2
dx

=
∑
i,j

∫
Ii

[(
b̂uh[2]

)
i,j+ 1

2

(
ψh[1]

)−
i,j+ 1

2

−
(
b̂uh[2]

)
i,j− 1

2

(
ψh[1]

)+

i,j− 1
2

]
dx

=
∑
i,j

∫
Ii

[(
b̂uh[2]

)
i,j+ 1

2

−
(
b̂uh[2]

)
i,j− 1

2

]
︸ ︷︷ ︸

=0

(
ψh[1]

)
i,j
dx = 0

The same argument applies also for the second term.

Considering this latter simplification, in order to complete the time step, we derive
(
uh[R]

)m+1

by using the already computed
(
uh[1]

)m+1

and
(
uh[2]

)m+1

.

At the end, the system that we have to solve is

56

3.5. An alternative method



(
(uh[1])

m+1
+(uh[2])

m+1−(uh[1])
m−(uh[2])

m

dt , ψh[1]

)
Th

+
〈 ̂
b
(
uh[1]

)m
, ψh[1]

〉
Ih

= −
〈 ̂
b
(
uh[R]

)m
, ψh[1]

〉
Ih(

(uh[1])
m+1

+(uh[2])
m+1−(uh[1])

m−(uh[2])
m

dt , ψh[2]

)
Th

+
〈 ̂
a
(
uh[2]

)m
, ψh[2]

〉
Jh

= −
〈 ̂
a
(
uh[R]

)m
, ψh[2]

〉
Jh(

(uh[R])
m+1−(uh[R])

m

dt , ψh[R]

)
Th

+
〈 ̂
a
(
uh[R]

)m
, ψh[R]

〉
Jh

+
〈 ̂
b
(
uh[R]

)m
, ψh[R]

〉
Ih

= −

〈
̂

a
(
uh[2]

)m+1

, ψh[R]

〉
Jh

−

〈
̂

b
(
uh[1]

)m+1

, ψh[R]

〉
Ih

(3.31)

Observe that in the last equality we have dropped the time derivative of uh[1] and uh[2].

3.5.2 Numerical experiments

In order to check the convergence we performed the same test done for the usual sparse space.

Convergence for constant coefficients

We consider the same two-dimensional transport equation with constant coefficients described
in (3.24) and we obtain the following relative errors.

N 8 16 32 64 128 256

Whole space L2-error 0.53033 0.33178 0.18870 0.10120 0.05320 0.026949
rates 0.6767 0.8141 0.8989 0.9278 0.9812

H.Haar Basis L2-error 0.85731 0.85063 0.63137 0.42160 0.25521 0.14331
rates 0.0113 0.4301 0.5826 0.7242 0.8325

H.One Basis L2-error 1.16168 1.17335 1.00644 0.85008 0.76333 0.71755
rates -0.0144 0.2214 0.2436 0.1553 0.0892

Degrees of freedom Whole space 64 256 1024 4096 16384 65536
Sparse grid 20 48 112 256 576 1280

We note that for the transport equation with constant coefficients the splitting presented in this
section can be used only taking the hierarchical Haar basis. In this case the errors are almost
the same as when we consider the usual sparse space. By using the hierarchical One basis the
numerical solution does not converge (probably because of the fact that we have dropped the
time derivative of uh[1] and uh[2] in the last equality of (3.31)).
We can see it clearly in figure 3.16.

57

3.5. An alternative method

Figure 3.16: Convergence in the alternative sparse space.

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

h

L
2 e

rr
o

r

P0

H.Haar Basis

H.One Basis

h

hlog(h−1)

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

(dof)1/2

L
2 e

rr
o

r

P0

H.Haar Basis

H.One Basis

Convergence for variable coefficients

Finally, we consider the forced transport equation. We only use hierarchical Haar basis here
because the method based on the hierarchical One basis already failed in the case of constant
coefficient. The obtained relative errors are given in the following table.
Notice that they are the same as the one obtained using the usual sparse grid method.

N 8 16 32 64 128

Sparse Alternative L2-error 0.48990 0.32978 0.21235 0.12962 0.07438
rates 0.5710 0.6351 0.7121 0.8013

58

Chapter 4

The Vlasov-Poisson system

4.1 Motivation

The Vlasov-Poisson system is one of the basic models used to describe large ensambles of inter-
acting particles, for this reason it has relevant applications in plasma-physics.
In general, a plasma is a gas of (partially or totally) ionized particles. In fact, by heating up a
gas in a closed domain, some molecules can loose their electrons and this phenomenon produces
charged particles (positive ions or negative electrons).
The Vlasov-Poisson system describes the evolution of a collisionless plasma of charged parti-
cles, that is the description of the evolution of the distribution of the particles when the only
interactions considered important are the, so-called, Coulomb interactions that depend on the
electrostatic field.

We start by describing the one-dimensional Vlasov-Poisson system of equations for which we
mainly refer to [5] and [14].

4.2 The continuous problem

Let f ∈ L1
loc(Ωx × R) to denote the distribution function of charged particles in a plasma. This

function depends on

� the position x ∈ Ωx ⊂ R,

� the velocity v ∈ R,

� the time t ∈ [0,∞).

We consider the one-dimensional Vlasov equation

ft + vfx − Φx(x)fv = 0, ∀(x, v) ∈ Ωx × R and t ∈ [0,∞), (4.1)
f(x, v, 0) = f0(x, v), ∀(x, v) ∈ Ωx × R.

The electrostatic field, E(x, t) := Φx(x, t), is derived from a potential Φ that satisfies the Poisson
equation

−Φxx(x, t) = −Ex(x, t) = ρ(x, t)− 1, (x, v) ∈ Ωx × [0,∞), (4.2)

59

4.2. The continuous problem

in which ρ(x, t) is the charge density defined by

ρ(x, t) =
∫

R
f(x, v, t) dv for all (x, v) ∈ Ωx × [0,∞). (4.3)

Since the plasma should be neutral, we have a further condition of total charge neutrality :∫
Ωx

ρ(x, t)dx =
∫

Ωx

∫
R
f(x, v, t) dvdx = 1 for all t ∈ [0,∞). (4.4)

Boundary conditions
From now on, we consider the physical domain in which the plasma is confined to be Ωx = [0, 1].
We complete the system by imposing periodic boundary conditions on x both for the Vlasov-
and for the Poisson-equation, i.e.

f(0, v, t) = f(1, v, t), for all (x, v) ∈ Ωx × R, t ∈ [0,∞)
Φ(0, t) = Φ(1, t) and (4.5)
E(0, t) = E(1, t), for all t ≥ 0,

In the coordinate v we do not impose boundary conditions but we restrict the study to functions
f which are compactly supported with respect to v. The reason for this restriction are given
in the theorem that follows (given to Copper and Klimax) on the existence and uniqueness of
classical solution of the periodic Vlasov-Poisson system (4.1)-(4.2)-(4.5).

To this end, for a fixed time interval [0, T] for all T > 0, given a distribution function f(x, v, t)
we denote by

Q(t) = 1 + sup{|v| : ∃x ∈ Ωx and τ ∈ [0, t] s.t. f(x, v, τ) 6= 0},

for all t ∈ [0,∞) as a measure of the support of the distribution function.
Then we have

Theorem 4.2.1 (Well-posedness of the continuous 1DVP [19].)
Given f0 ∈ C1(Rx×Rv), 1-periodic in x and compactly supported in v, Q(0) ≤ Q0 with Q0 > 1.
Then the periodic Vlasov-Poisson system (4.1)-(4.2) has a unique classical solution (f,E), that
is 1-periodic in x for all time t ∈ [0, T] for all T > 0.

So, in the rest of this work, we will assume that the initial data f0 satisfies the hypotheses in the
theorem, and thus, the unique classical solution to the periodic VP system (4.1)-(4.2) satisfies
that there exists L > 0 that depends on f0, T and Q0 such that supp(f(t)) ⊆ Ω for all t ∈ [0, T],
where we have defined Ω = Ωx × Ωv, with Ωv = [−L,L].

Remark 1 � Notice that, the one-dimensional Vlasov equation (4.1) is already a two-dimensional
time-dependent equation. This implies that, in the three-dimensional case (Ωx ⊂ R3,
v ∈ R3) we would face a six-dimensional time-dependent problem for which the application
of Sparse grid may help in its numerical solution.

� Observe that the third condition in (4.5) is equivalent to∫ 1

0

(−Ex(x, t)) dx = 0, ∀ t ≥ 0.

60

4.2. The continuous problem

This implies ∫ 1

0

(∫ ∞
−∞

f(x, v, t) dv − 1
)
dx = 0

which is exactly (4.4), i.e., ∫ 1

0

∫ ∞
−∞

f(x, v, t) dvdx = 1. (4.6)

4.2.1 The weak formulation of the Vlasov equation

Notice that the one-dimensional Vlasov equation (4.1) can be seen as a two-dimensional transport
equation (3.1) with non-linear coefficients defined as

a(v) = v and b(x) = −E(x, t).

Therefore, the derivation of the weak formulation is similar to the one carried out in the previous
section.
We multiply (4.1) by a test function

ψ ∈ C∞0 (Ω) = {w ∈ C∞(Ω) and w periodic in x and compact w.r.t v}

and then integrate over Ω.
Because of periodic boundary conditions in x and compact support with respect to v, the bound-
ary terms disappear and the weak formulation reads: Find f such that

(ft, ψ)− (vf, ψx) + (Ef, ψx) = 0, ∀ ψ ∈ C∞0 (Ω).

4.2.2 Properties of the system

L2-conservation

The function f continuous solution of problem (4.1)-(4.2)-(4.5) satisfies the L2-conservation
property, i.e.

d

dt
||f(·, ·, t)||0 = 0 ∀t > 0.

Proof: See the proof of the L2-conservation for the 2D transport equation.

Mass conservation

The function f , continuous solution of the problem (4.1)-(4.2)-(4.5), conserves the total mass,
i.e.

d

dt

∫
Ω

f(x, y, t) dxdv = 0, ∀t > 0.

Proof: See the proof of the Mass conservation for the 2D transport equation.

61

4.3. The discrete Vlasov equation

Energy conservation

The total energy εtot of the Vlasov-Poisson system is the sum of the kinetic (εk) and potential
(εp) energy:

εtot(t) = εk(t) + εp(t),

where

εk(t) =
1
2

∫
Ω

|v|2f(x, v, t) dxdv,

εp(t) =
1
2

∫
Ωx

|E(x, t)|2 dx.

The solution of the Vlasov-Poisson system of equation conserves the total energy, i.e.

d

dt
εtot(t) =

d

dt
[εk(t) + εp(t)]

=
1
2
d

dt

[∫
Ω

|v|2f(x, v, t) dxdv +
∫

Ωx

|E(x, t)|2 dx
]

= 0.

Proof: see [18].

4.3 The discrete Vlasov equation

4.3.1 Notation

We fix n ∈ N and divide the domain

Ω = Ωx × Ωv = [0, 1]× [−L,L],

in a uniform partition

Th = Ih × Jh = {Kij = Ii × Jj}1≤i,j≤2n .

The one-dimensional partitions Ih and Jh are the sets of all intervals

Ii = [xi− 1
2
, xi+ 1

2
], Ji = [vj− 1

2
, vj+ 1

2
] respectively,

and since they are uniform we have

hx = xi+ 1
2
− xi− 1

2
hv = vj+ 1

2
− vj− 1

2
and h = min(hx, hv) for all 1 ≤ i, j ≤ 2n.

We use the same notation defined in (3.5) for the value taken at cell interfaces and the same
definition of the trace operators (3.4). Also the finite element space we consider is the one
used before, i.e.

Z0
n = {z ∈ L2(Ω) : z ∈ Q0(Kij) = P0(Ii)⊗ P0(Jj), 1 ≤ i, j ≤ 2n},

62

4.3. The discrete Vlasov equation

4.3.2 The Discontinuous Galerkin formulation

We let fh(0) = Ph(f0) and since the derivation of the method is close to the one done for the
two-dimensional transport equation we only write the resulting DG-method which turns out to
be:
find fh : [0, Tend]→ Z0

n such that∑
ij

[((
fh
)
t
, ψh

)
Kij

+
〈
v̂fh, ψh

〉
Jj
−
〈
Êhfh, ψh

〉
Ii

]
= 0, ∀ψh ∈ Z0

n, (4.7)

where, in order to ensure stability, the numerical fluxes are defined as

(
v̂fh

)
i+ 1

2

=

{
vfh(x−

i+ 1
2
, v) if v ≥ 0

vfh(x+
i+ 1

2
, v) if v < 0

(
Êhfh

)
j+ 1

2

=

{
Eh(x)fh(x, v−

j+ 1
2
) if Eh(x) ≤ 0

Eh(x)fh(x, v+
j+ 1

2
) if Eh(x) > 0.

(4.8)

Notice that the numerical flux defined on the horizontal edges depends on the sign of Eh(x) which
is the approximation of the electrostatic field, obtained by solving the Poisson equation at each
time-step. We will see in the next section that we use linear polynomials for the approximation
of the electrostatic field, so it can happen that Eh changes of sign in an element. We solve this
issue by projecting the approximation into the space of constant functions: P 0(Eh). Notice that
this is nothing but the average of the function on the observed element.

4.3.3 L2-stability

Let fh : [0, Tend] → Z0
n be the approximation (4.7) of problem (4.1), with the numerical fluxes

as in (4.8). Then

||fh(t)||0,Th ≤ ||fh(0)||0,Th ∀ t ∈ [0, Tend].

Proof: The proof follows exactly the same steps as for the two-dimensional transport equation,
except for the fact that here we have compact support in v instead periodic boundary conditions.

4.3.4 Mass conservation

Let fh : [0, Tend]→ Z0
n be the numerical solution of (4.7) then the following equalities hold∑

i,j

∫
Kij

fh(t) dxdv =
∑
i,j

∫
Kij

fh(0) dxdv =
∑
i,j

∫
Kij

f0 dxdv = 1, ∀t ∈ [0, Tend]. (4.9)

Proof: Here also we remind to the section in the two-dimensional transport equation for the
proof of the first two equalities. The last equalitity follows directly from (4.6).

63

4.4. The Poisson equation

4.4 The Poisson equation

In this section we consider the one-dimensional Poisson equation (4.2) with the periodic boundary
conditions defined by (4.5)

−Φxx(x, t) = ρ(x, t)− 1, for x ∈ Ωx and a fixed t, (4.10)
Φ(0, t) = Φ(1, t) and

Φx(0, t) = Φx(1, t), for all t ≥ 0.

We recall that from the Vlasov-Poisson equation we have

ρ(x, t) =
∫

R
f(x, v, t) dv. (4.11)

Remark 2 � In order to ensure uniqueness of the solution, one has to fix the value of Φ at a
point

Φ(0, t) = 0 ∀ t ≥ 0.

� Observe that what is really needed in the Vlasov-Poisson system is not the approximation
of the potential Φ but the approximation of its derivative Φx (= E(x, t)).
For this reason, the use of a mixed method (such as the Local Discontinuous Galerkin
method) is particularly suitable [8], because one approximates not only Φh but also Eh.

� The variable t is a fixed value here. For this reason, in this section, we will drop it, in order
to keep the expressions clearer.

Considering these remarks and the fact that Ωx = [0, 1], we rewrite (4.10) as the following system
of ordinary differential equations

E(x) = Φx(x), for x ∈ Ωx, (4.12)
−Ex(x) = ρ(x)− 1, for x ∈ Ωx, (4.13)

Φ(0) = Φ(1) and E(0) = E(1). (4.14)

4.4.1 The weak formulation of the Poisson equation

In order to obtain the weak formulation we multiply (4.12) and (4.13) by test functions p and w
∈ C∞per(Ωx) and integrate both equations over Ωx∫

Ωx

Ep dx =
∫

Ωx

Φxp dx,

−
∫

Ωx

Exw dx =
∫

Ωx

(ρ− 1)w dx.

Integration by parts yields ∫
Ωx

Ep dx = −
∫

Ωx

Φpx dx+ [Φ(1)p(1)− Φ(0)p(0)],∫
Ωx

Ewx dx− [E(1)w(1)− E(0)w(0)] =
∫

Ωx

(ρ− 1)w dx.

64

4.4. The Poisson equation

Because of (4.14) and since p, w ∈ C∞per(Ωx), the boundary terms disappear.
Therefore the weak formulation of the system reads: Find (E,Φ) such that∫

Ωx

Ep dx = −
∫

Ωx

Φpx dx,∫
Ωx

Ewx dx =
∫

Ωx

(ρ− 1)w dx, for all p, w ∈ C∞per(Ωx).

4.4.2 The LDG-formulation

First we need to define the partition and the finite element space.
We use the same partition Ih defined for the discretization of the one-dimensional transport
equation.
Thus we fix N > 0 and consider uniform intervals Ii = [xi− 1

2
, xi+ 1

2
] for i = 1, . . . , N with

h = xi+ 1
2
− xi− 1

2
.

The finite element space is the following

V 1
h (Ih) = {w ∈ L2(Ωx) | w ∈ P1(Ii), for all i = 1, . . . , N},

in which we consider the L2-functions which are linear polynomals on any interval of the partition.

In order to obtain the LDG-formulation we substitute E, Φ, p, and w by Eh, Φh, ph, and wh in
the weak formulation defined on an interval Ii.
Reorganizing the terms one obtains∫
Ii

Ehph dx+
∫
Ii

Φh
(
ph
)
x
dx−

[(
Φ̂hph

)
i+ 1

2

−
(

Φ̂hph
)
i− 1

2

]
= 0,

+
∫
Ii

Eh
(
wh
)
x
dx−

[(
Êhwh

)
i+ 1

2

−
(
Êhwh

)
i− 1

2

]
=
∫
Ii

(ρh − 1)w dx, ∀ ph, wh ∈ V 1
h ,

(4.15)

where the discrete density ρh is given by

ρh(x, t) =
∑
j

∫
Jj

fh(x, v, t)dv ∀ x ∈ Ih, ∀t ∈ [0, T]. (4.16)

Here, again, the numerical fluxes appear.
Recalling (3.4) and following [8] we define them as follows

Êh =
{
Eh
}
− C12

q
Eh

y
+ C11

q
Φh

y
,

Φ̂h =
{

Φh
}

+ C12

q
Φh

y
.

For the boundary nodes, due to periodicity we enforce(
Êh
)

1
2

=
(
Êh
)
N+ 1

2

and
(

Φ̂h
)

1
2

=
(

Φ̂h
)
N+ 1

2

.

Finally, we sum up over all elements and rewrite (4.15) in a short hand format

A
(
Eh, ph

)
Ih

+ B
(
Φh, ph

)
Ih

= 0,

C
(
Eh, wh

)
Ih

= A
(
ρh − 1, wh

)
Ih
, ∀ ph, wh ∈ V 1

h , (4.17)

65

4.5. Error analysis for VP-system

where the bilinear form A, B, and C are defined as follows:

A (E, p)Ih =
∑
i

∫
Ii

Ep dx,

B (Φ, p)Ih =
∑
i

∫
Ii

Φpx dx+
∑
i

Φ̂i+ 1
2

JpKi+ 1
2

C (E,w)Ih =
∑
i

∫
Ii

Ewx dx+
∑
i

Êi+ 1
2

JwKi+ 1
2

4.5 Error analysis for VP-system

Theorem 4.5.1 A-priori Error Estimates
Let f ∈ C1((0, T];H1(Ω) ∩ C0

0 (Ω)) with fv ∈ L∞(Ω) be the solution at time t ∈ [0, T] of the
Vlasov-Poisson system (4.1)-(4.2) and let E ∈ C0([0, T];H1(Ih)) be the associated electrostatic
potential. Let fh ∈ C1([0, T];Z0

h) be the DG approximation to f , solution of (4.7)-(4.8).
Let (Eh,Φh) ∈ C0([0, T];V 1

h (Ih) × V 1
h (Ih)) be the LDG approximation to (4.10) solution of

(4.15) with c12 = 1/2 and c11 = ch−1. Then, the following error estimate holds for all t ∈ [0, T]

‖f(t)− fh(t)‖0,Ø ≤ Cerrh1/2 , (4.18)

where Cerr depends on the final time t, the shape regularity of the partition and depends also
on f (and therefore on f0) through the norms

Cerr = Cerr(‖f(t)‖21,Ω, ‖ft(t)‖1,Ω, ‖f(t)‖21,Ω‖fv(t)‖0,∞,Ω, (‖E‖21,Ωx + ‖Φ‖22,Ωx), e‖fv(t)‖0,∞,Ω) .

Proof: The proof can be found in [20].

Corollary 1 In the same hypothesis of Theorem 4.5.1, the following error estimates hold

‖E − Eh‖20,I + c11‖JΦhK‖20,γx ≤ C
2
errh+ Ch2(‖E‖21,Ωx + ‖Φ‖22,Ωx),

where Cerr is the constant of Theorem 4.5.1.

66

4.6. Numerical results

4.6 Numerical results

We consider the following forced Vlasov-Poisson system in Ω = [−4, 4]× [−5, 5]:

ft(x, v, t) + vfx(x, v, t)− E(x, t)fv(x, v, t) = ξ(x, v, t) (x, v) ∈ Ω, (4.19)

−Ex(x, t) = ρ(x, t)−
√
π x ∈ [−4, 4], (4.20)

with periodic boundary condition in x.
The function ξ, defined as

ξ(x, v, t) = sin
(π

2
x+ 2πt

)
e−4v2

[
2π +

vπ

2
+

8v√
π

(
2− cos

(π
2
x+ 2πt

))]
,

is chosen so that the exact solution (f,E) of the problem (4.19)-(4.20) is given by

f(x, v, t) =
(

2− cos
(π

2
x+ 2πt

))
e−4v2

(x, v) ∈ Ω,

E(x, t) =
1√
π

sin
(π

2
x+ 2πt

)
x ∈ [−4, 4].

Observe that this definition of f implies f(x, v, t)|Ωv ' 0 (compact support v).

4.6.1 Convergence

We now study the convergence of the method for different mesh-sizes. We divide each coordinate
in N subintervals for N = 16, 32, 64, 128 and 256.
Since the exact solution (f,E) is 1-periodic in time we performed the computations up to time
Tend = 1. As in the case of transport equations the errors are computed using the discrete
L2-norms.
In the following table the relative errors for f and E are given. For f the errors are computed
using the L2-norm, for E we use the L2-norm and the Q-seminorm.
This latter is defined (see [5]) as

|(E,Φ)|2Q,Th := ||E||0,Ih +
∑
i

c11|JΦKi+ 1
2
|2,

where Φ is the solution of the Poisson problem (4.20) and c11 = 2h−1 is the positive constant
which comes from the LDG method used to solve it.

N 16 32 64 128 256

Whole space

L2-error for f 0.2546935 0.2204524 0.1375240 0.0773834 0.0412853
rates 0.2083 0.6808 0.8296 0.9064

L2-error for E 0.1898788 0.1065016 0.0558869 0.0286738 0.0145184
rates 0.8342 0.9303 0.9628 0.9818

Q-error for E 0.2039074 0.1098290 0.05671024 0.0288789 0.0145697
rates 0.8371 0.9397 0.9701 0.9870

Sparse grid

L2-error for f 0.4100648 0.3853896 0.2960314 0.1850251 0.1077873
rates 0.0895 0.3806 0.6780 0.7795

L2-error for E 0.1165185 0.2508481 0.1913409 0.0841518 0.0420354
rates -1.1063 0.3907 1.1851 1.001

Q-error for E 0.1422369 0.2530979 0.1916933 0.0842347 0.0420542
rates -0.8314 0.4009 1.1863 1.002

67

4.6. Numerical results

In the next figures the obtained results are displayed. First, the relative errors for the distribution
function f are given (4.1), then (4.2) and (4.3) are the ones concerning the electrostatic field E,
in the L2-norm and Q-seminorm respectively. For all cases, in the figure above, the number of
intervals N is the reference on the x-axis, while in the figure below the reference is the square-
root of the degrees of freedom.
In all diagrams the red lines (with squares) refer to the relative errors when the whole space is
considered, while the pink lines (with circles) refers to the ones obtained with the sparse grid.
The dashed black lines refer to the order h1/2, the dotted blue lines to the order hlog(h−1) and
the dotted green ones to the order h.

Figure 4.1: Convergence: whole vs. sparse space. Error: ||f−f
h||0,Th

||f ||0,Th

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

N

L
2 e

rr
o

r

L2 error for f with P0

L2 error for f with Sparse grid

h

hlog(h−1)

h1/2

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

(dof)1/2

L
2 e

rr
o

r

L2 error for f with P0

L2 error for f with Sparse grid

68

4.6. Numerical results

Figure 4.2: Convergence: whole vs. sparse space. Error: ||E−E
h||0,Th

||E||0,Th

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

N

L
2 e

rr
o

r

L2 error for E with P0

L2 error for E with Sparse grid

h

hlog(h−1)

h1/2

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

(dof)1/2

L
2 e

rr
o

r

L2 error for E with P0

L2 error for E with Sparse grid

69

4.6. Numerical results

Figure 4.3: Convergence: whole vs. sparse space. Error: |(E−E
h,Φ−Φh)|Q,Th
|(E,Φ)|Q,Th

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

N

Q
 e

rr
o

r

Q error for E with P0

Q error for E with Sparse grid

h

hlog(h−1)

h1/2

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

(dof)1/2

Q
 e

rr
o

r

Q error for E with P0

Q error for E with Sparse grid

Note that the first mesh-size we consider here is the one that divides each coordinate in 16
intervals. This implies hx = 0.5 which is a large mesh-size. This is probably the reason why the
errors concerning the numerical solution of the electrostatic field Eh behaves in a strange way
in this case.

70

4.6. Numerical results

4.6.2 Mass conservation

We study the conservation of the total mass also for the Vlasov-Poisson system. Using the same
data as in the convergence analysis in a uniform grid 64 × 64, we observe that also in this case
the magnitude of the difference of mass between the initial condition and any future time is of
the order of 10−15 (see figure 4.4), which indicates that we have mass conservation.

Figure 4.4: Conservation of mass: whole space vs. sparse grid.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

6

8

10
x 10

−15

t

d
if

fe
r
e
n

c
e
 o

f
m

a
s
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−15

t

d
if

fe
r
e
n

c
e
 o

f
m

a
s
s

4.6.3 Energy conservation

We study the conservation of the discrete total energy of the Vlasov-Poisson system.
First let us introduce the discrete energies that arise at this stage of the analysis.
We have

· discrete kinetic energy εdk(t) =
1
2

∑
i,j

∫
Kij

|v|2fh(x, v, t) dxdv,

· discrete potential energy εdp(t) =
1
2

∑
i

∫
Ii

|Eh(x, t)|2 dx+ c11

∑
i

q
Φh(x, t)

y2

i+ 1
2
,

· discrete total energy εdtot(t) = εdk(t) + εdp(t).

We observe the difference between the initial total energy εtot(0) and the discrete total energy
computed at any following time-step t

∆εdtot
(t) =

|εdtot(0)− εdtot(t)|
εdtot(0)

.

These differences are shown in figure (4.5), left for the whole space, right for the sparse grid.

71

4.6. Numerical results

Figure 4.5: Energy conservation in a 64× 64 grid.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

t

d
if

fe
re

n
ce

 o
f

E
n

er
g

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t

d
if

fe
re

n
ce

 o
f

E
n

er
g

y

We observe that the orders of magnitude are 10−2 for the whole space and 10−1 for the sparse
grid. Thus, in both cases, the energy is not conserved.

72

Chapter 5

Appendix - The implementation

This chapter is dedicated to the implementation of the methods presented in this work. We refer
to previous chapters for the missing definitions.
Before entering into details, we want to highlight the main difficulties that we faced in the
implementation. In the two-dimensional case, it has not been easy to implement an algorithm
to create the needed matrices when hierarchical basis functions were used. The main issue is the
fact that the supports of these functions (usually) encompass many elements Kij . This causes
some complications in the assembly of the needed matrices, especially in the treatment of the
interelement boundaries.
We also noticed that, because of our implementation of the flux-matrices, in the case when
a hierarchical basis is used, we need to choose the boundaries of the observed domain Ω to be
rational. This requirement comes from the fact that for fine meshes (h ≤ 2−5) our implementation
fails in selecting the element’s boundaries that give a contribution to the flux-matrices when
irrational boundaries are chosen.

5.1 One dimension

5.1.1 Transport equation with standard basis

We denote by ū = (ū1, . . . , ūN)T the vector of the coefficients with respect to the standard basis
(2.10),

uh(x) =
∑
i

ūiχi(x),

then (2.9) becomes the following linear system

MS (ū)t + FluxS ū = 0, (5.1)

where the mass-matrix is MS = hI, with I the N ×N identity matrix.
The flux-matrix FluxS depends on the value of a:

73

5.1. One dimension

� if a > 0,

FluxS =


1 −1

−1
. . .
.

−1 1


� if a < 0,

FluxS =


−1 1

.
. . . 1

1 −1

 .

5.1.2 Transport equation with hierarchical basis

In the following we use hierarchical One basis functions φl,i for the space-discretization of our
problem.
The same calculation could be carried out with θl,i instead.

Using this basis we can expand uh as follows

uh(x, t) =
n∑
l=0

2l−1∑
i=1

αl,i(t)φl,i(x), i odd.

We substitute uh in (2.9) and so for all k = 1 . . . , 2n,∫
Ik

(
uh
)
t
ψhdx+

[
min(a, 0)(uhk+1 − uhk) + max(a, 0)(uhk − uhk−1)

]
ψh =

=
∑
l

∑
i

(αl,i(t))t

∫
Ik

φl,k(xk)ψh(xk) dx

+
∑
l

∑
i

min(a, 0)αl,i(t) [φl,i(xk+1)− φl,i(xk)]ψh(xk)

+
∑
l

∑
i

max(a, 0)αl,i(t) [φl,i(xk)− φl,i(xk−1)]ψh(xk) = 0,

for all ψh ∈ ⊕
l≤n

Wl.

We obtain, again, a system of equations:

MH (ā)t + FluxH ā = 0,

where

� MH is the mass-matrix.

� FluxH is the flux-matrix.

� ā = (α0,1, . . . , αn,2n−1)T is the vector of the coefficients.

74

5.1. One dimension

5.1.3 Time integration

By taking into account the results of the previous section and using the explicit Euler method
we have, first

w̄1 = w̄0 − dt
[
M−1Flux

]
w̄0,

and, for any m > 0,

w̄m+1 = w̄m − dt
[
M−1Flux

]
w̄m,

which can be rewritten as

M w̄m+1 = [M− dt Flux] w̄m,

where (M,Flux, w̄) is equal to, either (MS,FluxS, ū) or (MH,FluxH, ā) depending on which
basis is used.

Remark 3 � Notice that w̄0 are the coefficients of the given initial data.

� Obsere that the method requires the matrix M to be inverted. When standard or hierar-
chical Haar basis functions are used, this won’t be an issue since M is a diagonal matrix.
On the other hand when we use hierarchical One basis functions M is not diagonal anymore
but still symmetric and positive definite. For these cases a Cholesky-decomposition is used:

M = RRT,

this computation is done once for all at the beginning.
Then, at each time step, we have to solve two systems

R z = [M− dt Flux] w̄n,

RT w̄n+1 = z.

5.1.4 The LDG-implementation

The basis functions

Since Eh and Φh ∈ P1(Ii) ∀i, we use first order Lagrange basis functions on each element.
On the reference element Ī = [0, 1] these are defined as

ϕ̄1(x̄) = 1− x̄,
ϕ̄2(x̄) = x̄, for all x̄ ∈ [0, 1].

We can define the basis functions for an arbitrary element Ii using the affine map

x(x̄) := xi− 1
2

+ hxx̄,

where x(x̄) ∈ Ii, x̄ ∈ Ī and h = xi+ 1
2
− xi− 1

2
.

Then, for k = 1, 2, the basis functions on the element Ii will look like

ϕik(x(x̄)) =

{
ϕ̄k(x̄), if x̄ ∈ Ī ,
0, else.

(5.2)

75

5.1. One dimension

We show the basis function in the element Ii in figure 5.1, while in figure 5.2 the basis functions
for N = 8 are shown.

Figure 5.1: Basis functions on the element Ii

x
i−1/2

x
i+1/2

φ
1

i φ
2

i

I
i

Figure 5.2: Basis functions on the partition with N = 8

0 1

x

So the approximated solutions Eh, Φh can be expressed in term of the basis functions

Eh(x) =
N∑
i=1

2∑
k=1

βikϕ
i
k(x) and Φh(x) =

N∑
i=1

2∑
k=1

ωikϕ
i
k(x).

The different parts

We describe the implementation of the different bilinear forms in (4.17):

76

5.1. One dimension

� A is nothing but the usual mass-matrix, which turns out to be block-diagonal since for any
interval Ii

Eh(x) =
2∑
k=1

βikϕ
i
k(x), ∀x ∈ Ii.

The two dimensional block that refers to the interval Ii is given by∫
Ii

Ehϕij dx =
∫
Ii

(
2∑
k=1

βikϕ
i
k

)
ϕij dx =

2∑
k=1

βik

∫
Ii

ϕikϕ
i
j dx︸ ︷︷ ︸

(Mloc)jk

.

The local mass-matrix is a 2× 2 matrix whose entries are obtained solving

(Mloc)jk =
∫
Ii

ϕikϕ
i
j dx =

∫
Ī

ϕ̄kϕ̄jh dx̄ = h

∫
Ī

ϕ̄kϕ̄j dx̄.

� In B and C there is a common term: the gradient-matrix.
This has also a block-structure and we describe the implementation of the one in B: for
the interval Ii we have∫

Ii

Eh
(
ϕij
)
x
dx =

∫
Ii

(
2∑
k=1

βikϕ
i
k

)(
ϕij
)
x
dx =

2∑
k=1

βik

∫
Ii

ϕik
(
ϕij
)
x
dx︸ ︷︷ ︸

(Gloc)jk

.

Therefore, similarly to the local mass-matrix, we can compute the local gradient-matrix as
follows

(Gloc)jk =
∫
Ii

ϕik(ϕij)x dx =
∫
Ī

ϕ̄kh
−1 (ϕ̄j)x h dx̄ =

∫
Ī

ϕ̄k (ϕ̄j)x dx̄.

� Notice that for B and C we also have to take into account the contribution of the numerical
fluxes.
For the constants c11 and c12 we follow [5], thus we take c12 = 1/2 and c11 = 2h−1. This
choice implies

Êh =
{
Eh
}
− 1

2
q
Eh

y
+

2
h

q
Φh

y
=
(
Eh
)−

+
2
h

q
Φh

y
,

Φ̂h =
{

Φh
}

+
1
2

q
Φh

y
=
(
Φh
)+
.

Considering B, this implies that, for an element Ii, we also have to consider the contribution
given by(

Φhph
)
i+ 1

2
−
(
Φhph

)
i− 1

2
=
(
Φh
)+
i+ 1

2

(
ph
)−
i+ 1

2
−
(
Φh
)+
i− 1

2

(
ph
)+
i− 1

2
(see (4.15)).

Notice that by taking ph = ϕi1 we have(
ph
)−
i+ 1

2
= 0 and

(
ph
)+
i− 1

2
= 1,

77

5.1. One dimension

and, on the other hand, ph = ϕi2 implies(
ph
)−
i+ 1

2
= 1 and

(
ph
)+
i− 1

2
= 1.

Furthermore, observe that this also implies(
Φh
)+
i+ 1

2
= ωi+1

1 ϕi+1
1 (xi+ 1

2
) and

(
Φh
)+
i− 1

2
= ωi1ϕ

i
1(xi− 1

2
).

Therefore (
Φhph

)
i+ 1

2
−
(
Φhph

)
i− 1

2
= ωi+1

1 ϕi+1
1 ϕi2|x=x

i+ 1
2
− ωi1ϕi1ϕi1|x=x

i− 1
2
.

Next, we observe the contribution of the flux’s term of the bilinear form C in the element
Ii.
Proceeding as above we have(
Êhwh

)
i+ 1

2

−
(
Êhwh

)
i− 1

2

+
2
h

(q
Φh

y
wh
)
i+ 1

2
− 2
h

(q
Φh

y
wh
)
i− 1

2

=
(
Êh
)−
i+ 1

2

(
wh
)−
i+ 1

2
−
(
Êh
)−
i− 1

2

(
wh
)+
i− 1

2
+

2
h

q
Φh

y
i+ 1

2

(
wh
)−
i+ 1

2
− 2
h

q
Φh

y
i− 1

2

(
wh
)+
i− 1

2

=βi2ϕ
i
2ϕ

i
2|x=x

i+ 1
2
− βi−1

2 ϕi−1
2 ϕi1|x=x

i− 1
2

+
2
h

q
Φh

y
i+ 1

2
ϕi2(xi+ 1

2
)− 2

h

q
Φh

y
i− 1

2
ϕi1(xi− 1

2
)

(5.3)

After having created and assembled all these parts, the following linear system remains to be
solved

A x = b,

in which

� x = (β, ω)T , with β = (β1, . . . , β2N) and ω = (ω1, . . . , ω2N).

� A belongs to R4N×4N and has the following structure:

A =
[

M Gup

Gdown D

]
where M respresents the global mass matrix, Gup and Gdown are the sum of the global
gradient matrices and the contribution given by the flux’s terms

(
Φh
)+ and

(
Eh
)− respec-

tively, while D is the square matrix filled with the contribution of the part related to the
jumps

(q
Φh

y)
that appears in (5.3).

� The right hand-side is b = (0, . . . , 0, ρ1, . . . , ρ2N)T ∈ R4N , where for any i = 1, . . . , N,
ρ2i−1 and ρ2i are the following integrals

ρ2i−1 =
∫
Ii

(ρh − 1)ϕi1(x) dx and ρ2i =
∫
Ii

(ρh − 1)ϕi2(x) dx.

The function ρh is the discrete charge density given by (4.16).

78

5.2. Two dimensions

5.2 Two dimensions

5.2.1 Transport equation with standard basis

In two dimensions we need to order the elements of our partition.
We start by the element at the buttom-left corner and we number all elements along the x-
coordinate. Once the N .th element in the buttom-right corner is reached, we go up one line and
we start again numbering from the left. In this way, the (N + 1).th element results to be the
one above the first one and we end with the

(
N2
).th element in the top-right corner (see also

figure 5.3).

Figure 5.3: The numbering of the elements

1 2 N

N+1

N
2

Then, similarly to the one dimensional case we can write our system of equations in the following
matrix-formulation

M ∂tū + (Fluxa + Fluxb) ū = 0,

where we have:

� The mass-matrix M = hxhy I, with I the identity.

� The flux-matrix that depends on a: Fluxa.

� The flux-matrix that depends on b: Fluxb.

� The vector of the coefficients: ū = (ū1, . . . , ūN2)T .

Remark 4 In order to build both flux-matrices one needs to know the connections among
the elements. To this end we construct two connectivity-matrices:

79

5.2. Two dimensions

connEW = [N, 2 ; connSN = [(N-1)*N+1, N+1 ;
1, 3 ; (N-1)*N+2, N+2 ;
2, 4 ; (N-1)*N+3, N+3 ;
...] ...]

In these matrices each row corresponds to the respective element and the values in the
columns represent its neighbours:

– In connEW (East-West) the first column indicates the left-neighbours and the second
one the right-neighbours.

– In connSN (South-North) the first column indicates the below-neighbours and the
second one the upper-neighbours.

Then for the k.th element Kij , depending on the sign of a(yj) and b(xi), the contribution of
the respective integral has to appear in the entry of the fluxes matrices which corresponds
to the correct neighbour:
Assuming a(yj) = 1 and b(xi) = −1 we would have

FluxA(connEW(i,1),k) = hy FluxB(connEW(j+1,2),k) = hx
FluxA(connEW(i-1,1),k) = -hy FluxB(connEW(j,2),k) = -hx

5.2.2 Transport equation with hierarchical basis

In general, when a hierarchical basis is used, the implementation of a method becomes more
complicated. The main difference with respect to the usual standard basis is the fact that in the
support of a hierarchical basis function there could be more than one element.

To solve this issue we build structures (matrices) in which we define connections among elements,
edges and each hierarchical basis function. Once all these structures exist, they are used to im-
plement the matrices (mass, fluxes,...) that arise from the discretized problem. Let us see how
this process is carried out.

Using the hierarchical One basis we can write the numerical solution as

uh(x, y, t) =
∑
l

∑
i

αl,i(t)φl,i(x, y), for all l s.t. |l|∞ ≤ n and i1, i2 odd,

Then the substitution of this expression in (3.10) yields the following

80

5.2. Two dimensions

∫
Kij

(
uh
)
t
ψhij dx +

∫
Jj

[
min(a, 0)(uhi+1,j − uhij) + max(a, 0)(uhij − uhi−1,j)

]
ψhij dy

+
∫
Ii

[
min(b, 0)(uhi,j+1 − uhij) + max(b, 0)(uhij − uhi,j−1)

]
ψhij dx

=
∑
l

∑
i

(αl,i(t))t

∫
Kij

φl,i(xi, yj)ψhij dxdy

+
∑
l

∑
i

min(a, 0)αl,i(t)
∫
Jj

[φl,i(xi+1, yj)− φl,i(xi, yj)]ψhij dy

+
∑
l

∑
i

max(a, 0)αl,i(t)
∫
Jj

[
φl,i(xi,yj)− φl,i(xi−1, yj)

]
ψhij dy

+
∑
l

∑
i

min(b, 0)αl,i(t)
∫
Ii

[φl,i(xi, yj+1)− φl,i(xi, yj)]ψhij dx

+
∑
l

∑
i

max(b, 0)αl,i(t)
∫
Ii

[φl,i(xi, yj)− φl,i(xiyj−1)]ψhij dx = 0,

for all ψh ∈ ⊕
l≤n

Wl.

This yields again a system of equations of the form:

M ∂tā + (Fluxa + Fluxb) ā = 0,

where, always the same components appear:

� The mass- and fluxes-matrices M, Fluxa and Fluxb.

� The vector of the coefficients ā = (α(0,0),(1,1), . . . , α(n,n),(2n−1,2n−1))T .

Observe that also here, when the hierarchical One basis is used, M is not diagonal.

Next, we present the programs which have been implemented in order to build these matrices:

� GridPoints :
This program creates a matrix in which the grid points associated to each hierarchical basis
function are defined.
The output (xOrd) is a matrix with N2 rows (the number of hierarchical basis functions)
and four columns. For any row, the first column indicates the x-coordinates, the second
one the y-coordinate, the third one the level in x (l1) and the forth the level in y (l2) of
the corresponding function.

xOrd = [x_01, y_01, 0, 0 ;
x_11, y_01, 1, 0 ;
x_21, y_01, 2, 0 ;
x_22, y_01, 2, 0 ;

...]

81

5.2. Two dimensions

� EdgesX/Y :
These two programs create matrices which indicate the elements shared by any edge of the
partition: EdgesX refers to the vertical edges, while EdgesY to the horizontal ones. The
numbering of the edges is showed in figure 5.4.

Figure 5.4: The numbering of the edges

1 2 3 N N+1

N+2 N+3

N
2
+N−1 N

2
+N

1

2

3

N

N+1

N+2

N+3

N
2
+N−1

N
2
+N

� ElSupport :
Notice that, the number of hierarchical basis functions in a fixed subspace Wl increases as
the level increases. Since the supports of the functions in a subspace are non-overlapping,
in each subspace, any element has at most one basis function in which it is different from
zero. Therefore it is worthed to know in advance in which basis function’s support does
any element is.

This program creates two matrices of N2 rows (number of elements) and (n+ 1)2 columns
(number of subspaces Wl, recall |l|∞ ≤ n): SupportEl and Value.
In each row of the first matrix, there are the indices1hierarchical basis functions in which the
corresponding element is non-zero. In each row of the second matrix, there are the values
taken by the corresponding element when it’s evaluated by a hierarchical basis function.

� JumpSupportX/Y :
The same as for the elements happens with the edges.
With these two programs one creates the matrices that contain the indices of the functions
and the values of the jumps for which the edge corresponding to the row is non-zero.
Therefore the matrices have N2 +N rows (number of edges) and (n+1)2 columns (number
of subspaces).

With these structures the assembly of the mass- and fluxes-matrices simplifies:

� To build the mass-matrix we use the data given by ElSupport: for each element we know
which functions are involved (SupportEl) and also the value taken by the functions Value.
In this way, for any element, the update of the entries of M is done by a loop over all
elements.

� The construction of Fluxa and Fluxb is similar.
Observe that, by summing up over all elements the weak formulation (3.10) can be rewritten

1the two-dimensional indices has to be reorganized in a linear ordering (f.e. lexicographical order).

82

5.2. Two dimensions

as follows: ((
uh
)
t
, ψh

)
Th

+
〈
âuh, ψ

〉
Jh

+
〈
b̂uh, ψ

〉
Ih

= 0,

in which the notations used mean the following:((
uh
)
t
, ψh

)
Th

=
∑
i,j

((
uh
)
t
, ψh

)
Kij

,

〈
âuh, ψ

〉
Jh

=
∑
i,j

∫
Jj

âuhi+ 1
2 ,y

JψKi+ 1
2 ,y

dy,

〈
b̂uh, ψ

〉
Ih

=
∑
i,j

∫
Ii

b̂uhx,j+ 1
2
JψKx,j+ 1

2
dx.

Thus, we can implement the fluxes matrices by considering loops over vertical (for Fluxa)
and horizontal edges (for Fluxb).
Thanks to EdgesX/Y we know exactly which elements are shared by any edge, thus, by
checking the sign of a(y) (or b(x)) we know exactly which element we have to consider for
the numerical fluxes. Furthermore, by looking at JumpSupportX/Y we also know the basis
functions that have a non-zero jump on any edge and their corresponding values. Thus,
with a loop over all edges, at each step the right entries of the matrices are updated.

Remark 5 (The implementation of the Vlasov-Poisson system)

The spatial discretization we use is almost the same. Here, we just want to point out the changes
one has to do to adapt the code to the new problem. In fact, to pass from the two-dimensional
transport equation (3.1) to the one-dimensional Vlasov equation (4.1) with the respective initial
data and boundary conditions only two small changes are needed:

1. We do not have periodic boundary condition in v but compact support instead, so we change
the matrix EdgesV by setting to zero the element’s neighbours that refer to boundary edges.

2. In the time integration, we have to compute at any time step the electrostatic field Eh and
then compute the corresponding flux matrix, checking whether Eh is negative or positive
in any interval Ii.
This check is done by taking the average of the approximations of Eh on the interval Ii,
i.e.

Ehi =
Eh(xi− 1

2
) + Eh(xi+ 1

2
)

2
,

where by Ehi we denote the value of Eh that refers to the interval Ii. Observe that this is
nothing but a projection on the space of constant functions.

83

5.2. Two dimensions

5.2.3 Alternative method

For this case, in order to write the matrix formulation of the system we want to solve, we use a
different notation for the hierarchical basis function:
We denote by {φ[1]

i }, {φ
[2]
j } and {φ[R]

k } the set of basis2 of Z [1]
n , Z [2]

n and Z
[R]
n respectively.

Furthermore, we let

ā[s] =
(
α

[s]
1 , . . . , α

[s]

|Z[s]
n |

)
for s = {1, 2, R}

to be the vectors of the coefficients, such that

uh[1] =
∑
i

α
[1]
i φ

[1]
i , uh[2] =

∑
j

α
[2]
j φ

[2]
j and uh[R] =

∑
k

α
[R]
k φ

[R]
k .

Then the system can be written as

M1

(
ān+1

[1] , ān+1
[2]

)T
= [M1 − dt Flux1L]

(
ān[1], ā

n
[2]

)T
+ dt Flux1R

(
ān[R]

)T
,

M2

(
ān+1

[R]

)T
= [M2 − dt Flux2L]

(
ān[R]

)T
+ dt Flux2R

(
ān+1

[1] , ān+1
[2]

)T
,

where again mass- and fluxes-matrices appear.

2 Here, again, we use the framework of the hierarchical One basis, but the same holds also for the hierarchical
Haar basis.

84

References

[1] H.J. Bungartz, M. Griebel, ”Sparse grids”, Acta Numerica, 13:147-269, 2004.

[2] D. Pflüger, ”Spatially Adaptive Sparse Grids for High-Dimensional Problems”, Ph.D thesis,
Technischen Universität München, 2010.

[3] H.J. Bungartz, T. Dornseifer, ”Sparse Grids: Recent Developments For Elliptic Partial
Differential Equations”, TUM-I9702, SFB-Bericht Nr. 342/02/97 A, 1997.

[4] R.A. Adams, ”Sobolev Spaces”, Pure and Applied Mathematics, Academic Press [A sub-
sidiary of Harcourt Brace Jovanovich, Publishers], New York-San Francisco-London, 1975.

[5] B. Ayuso, J.A. Carrillo, C.W. Shu, ”Discontinuous Galerkin methods for the one-
dimensional Vlasov-Poisson system”, Kinetic and Related Models, Volume 4, Number 4,
2011.

[6] S. Hajian, ”An energy preserving discontinuous Galerkin method for Vlasov-Poisson sys-
tem”, M.Sc thesis, Universitat Autónoma de Barcelona, 2011.

[7] B. Cockburn, ”Discontinuous Galerkin Methods”, School of Mathematics, University of
Minnesota, 2003.

[8] P. Castillo, B. Cockburn, I. Perugia, D. Schötzau, ”An a priori analysis of the local discon-
tinuous Galerkin method for elliptic problems”, SIAM J. Numer. Anal., Vol. 38, No. 5, pp.
1676–1706, 2000

[9] L.C. Evans, ”Partial Differential Equations”, Graduate Studies in Mathematics, Volume 19,
American Mathematical Society, 1998.

[10] A. Quarteroni, R. Sacco, F. Saleri, ”Numerical Mathematics”, Texts in Applied Mathemat-
ics, Springer, 2000.

[11] C.W. Shu, ”Discontinuous Galerkin Methods: General Approach and Stability”, Division of
Applied Mathematics, Brown University Providence, USA.

[12] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, ”Unified analysis of discontinuous
Galerkin Methods for elliptic problems”, SIAM J. Numer. Anal., Vol. 39, No. 5, pp.
1749–1779, 2002.

[13] S.R. Groot, W.A. van Leeuwen, Ch.G. van Weert, ”Relativistic Kinetic Theory (Princi-
ple and applications)”, North-Holland publishing company, Amsterdam-New York-Oxford,
1980.

85

REFERENCES

[14] S. Wollmann, E. Ozizmir, ”Numerical approximations of the one-dimensional Vlasov-
Poisson system with periodic boundary conditions”, SIAM J. Numer. Anal., Vol. 33, No.
4, pp. 1377–1409, 1996.

[15] C. Villani, ”A review of mathematical topics in collisional kinetic theory”, Handbook of
Mathematical Fluid Dynamics (Vol. 1), Elsevier Science, 2002.

[16] J.B. Goodman, R.J. Leveque, ”On the Accuracy of Stable Schemes for 2D Scalar Conser-
vation Laws”, Mathematics of Computation, Vol. 45, No. 171, pp. 15-21, American Mathe-
matical Society, 1985.

[17] C.W. Shu, ”Numerical Methods for Hyperbolic Conservation Laws”, Lecture notes
(semester I), Division of Applied Mathematics, Brown University Providence, USA, 2006.

[18] J. Dolbeault, ”An introduction to kinetic equations: the Vlasov-Poisson system and the
Boltzmann equation”, Current developments in partial differential equations (Temuco, 1999),
Discrete Contin. Dyn. Syst., 8(2) (2002), pp. 361–380.

[19] J. Cooper, Klimas, ”Vlasov-Maxwell and Vlasov-Poisson equations as models of a one-
dimensional electron plasma”, Phys. Fluids - The Physics of Fluids, Vol. 26, 1983.

[20] B. Ayuso de Dios, S. Castelanelli, ”Application of sparse gird techniques to DG-
approximations”, (Work in preparation).

86

	Introduction
	Motivation
	Function spaces and basic notations

	Transport equation - 1D case
	The weak formulation
	Notations for the discrete formulation
	The Discontinous Galerkin formulation
	Implementation - Basis functions
	Standard basis
	Two sets of hierarchical basis

	Time integration
	Numerical experiments
	Standard basis
	Hierarchical basis

	Transport equation - 2D case
	Continuous problem
	The weak formulation
	Properties of the system

	Notations for the discrete formulation
	The Discontinuous Galerkin formulation
	L2-stability
	Mass conservation
	Implementation - Basis functions
	Sparse grid

	Numerical experiments
	Approximations on the sparse grid spaces
	2D Transport equation

	An alternative method
	Alternative sparse grid
	Numerical experiments

	The Vlasov-Poisson system
	Motivation
	The continuous problem
	The weak formulation of the Vlasov equation
	Properties of the system

	The discrete Vlasov equation
	Notation
	The Discontinuous Galerkin formulation
	L2-stability
	Mass conservation

	The Poisson equation
	The weak formulation of the Poisson equation
	The LDG-formulation

	Error analysis for VP-system
	Numerical results
	Convergence
	Mass conservation
	Energy conservation

	Appendix - The implementation
	One dimension
	Transport equation with standard basis
	Transport equation with hierarchical basis
	Time integration
	The LDG-implementation

	Two dimensions
	Transport equation with standard basis
	Transport equation with hierarchical basis
	Alternative method

