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1. Fundamental Solution

The Poisson’s equation in Rn reads

−∆u = f in Rn. (1.1)

We will first try to find some special solution formally. Since Laplace operator is radially symmet-

ric, it is natural to find radially symmetric solutions. Assume u(x) = v(|x|) = v(r), where r = |x|,
then

uxi = vr
∂r

∂xi
= vr

xi
r
, uxixj = vrr

x2i
r2

+ vr(
1

r
− x2i
r3

),

thus

∆u = vrr +
n− 1

r
vr = 0, ⇒ (log vr)r =

1− n

r
, in che case of vr ̸= 0.

Consequently, there exist constants C and C ′ such that vr = Cr1−n and

v(r) =

 C log r + C ′ n = 2
C

rn−2
+ C ′ n ≥ 3
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Definition 1. Let

Φ(x) =


− 1

2π
log |x| n = 2

1

n(n− 2)α(n)

1

|x|n−2
n ≥ 3

where α(n) is the volumn of n dimension ball. Φ(x) is called the fundamental solution of Poisson

equation.

Properties

(1) |∇Φ| ≤ C

|x|n−1
, |D2Φ| ≤ C

|x|n
for x ̸= 0.

(2) ∆Φ = 0 for x ̸= 0 and ∆Φ(x− y) = 0 for x ̸= y, ∀y ∈ Rn

Then we are able to represent the solution of Poisson equation by using fundamental solution.

More precisely we have the following theorem.

Theorem 1.1. If f ∈ C2
0 (Rn), then u = Φ ∗ f is a solution of problem (1.1)

Proof. First we prove that u ∈ C2(Rn). In fact,

u(x+ hei)− u(x)

h
=

∫
Rn

Φ(y)
f(x+ hei − y)− f(x− y)

h
dy.

Since we know that f has compact support and
∂f(x− y)

∂xi
= lim

h→0

f(x+ hei − y)− f(x− y)

h
, com-

bined with the fact that Φ is locally integrable, we have that, by letting h→ 0,

∂u

∂xi
=

∫
Rn

Φ(y)
∂f

∂xi
(x− y)dy.

By similar discussions, we have that u is twice differential and

∂2u

∂xi∂xj
=

∫
Rn

Φ(y)
∂2f

∂xi∂xj
(x− y)dy.

Next we will prove −∆u = f . ∀ε > 0 small enough,

−∆u(x) =

∫
Rn

Φ(y)∆xf(x− y)dy

=

∫
Bε(0)

Φ(y)∆xf(x− y)dy +

∫
Rn\Bε(0)

Φ(y)∆xf(x− y)dy

:= Iε + Jε.

where

|Iε| ≤ C∥D2f∥L∞

∫
Bε(0)

|Φ(y)|dy ≤
{
Cε2| log ε| n = 2

Cε2 n ≥ 3

Integral by parts for Jε,

Jε = −
∫
Rn\Bε(0)

∇yΦ(y)∇yf(x− y)dy −
∫
∂Bε(0)

Φ(y)∇yf(x− y) · γdSy := Kε + Lε,

Lε can be estimated by

|Lε| ≤ ∥Df∥L∞

∫
∂Bε(0)

|Φ(y)|dSy ≤
{
Cε| log ε| n = 2

Cε n ≥ 3
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Kε contributes the main part of the calculation. When ε goes to 0, this term practiced like a Delta

function applied on f . Due to the fact that ∆Φ(y) = 0 for y ̸= 0, we have

Kε =

∫
Rn\Bε(0)

∆Φ(y)f(x− y)dy +

∫
∂Bε(0)

∇Φ · γf(x− y)dSy =

∫
∂Bε(0)

∇Φ · γf(x− y)dSy

Now we can calculate that on ∂Bε(0),

∇yΦ(y) · γ = − 1

nα(n)

y

|y|n
y

|y|
= − 1

nα(n)εn−1
.

Thus we have

Kε = − 1

nα(n)εn−1

∫
∂Bε(0)

f(x− y)dSy = − 1

nα(n)εn−1

∫
∂Bε(x)

f(y)dSy.

Taking ε→ 0, we know that

Kε → f(x).

�

Remark 1.1. From the above proof, we understand the constants appeared in definition of funda-

mental solution.

By using the same method, we can prove that −∆Φ = δ(x) in the sense of distribution.

Theorem 1.2.

Φ(x, y) = Φ(x− y) =


− 1

2π
log |x− y| n = 2

1

n(n− 2)α(n)

1

|x− y|n−2
n ≥ 3

(1.2)

is a solution of

−∆Φ = δ(x− y)

in the sense of distribution. More precisely, ∀φ ∈ C∞
0 (Rn), it holds

⟨−∆Φ(x− y), φ(x)⟩ = −
∫
Rn

Φ(x− y)∆φ(x)dy = φ(y) = ⟨δ(x− y), φ(x)⟩.

2. Properties of Harmonic Function

Let Ω be an open subset of Rn.

Definition 2. If ∆u = 0 in Ω with u ∈ C2(Ω), then u is called a harmonic function.

2.1. Mean Value theorem.

Theorem 2.1. If u ∈ C2(Ω) is harmonic, then ∀ ball B(x, r) ∈ Ω, it holds that

u(x) =

∫
∂B(x,r)

− udSy =

∫
B(x,r)

− udy. (2.1)

Proof. Let

w(r) =

∫
∂B(x,r)

− u(y)dSy =

∫
∂B(0,1)

− u(x+ rz)dSz
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Then by taking derivative with respect to r, we have

w′(r) =

∫
∂B(0,1)

− ∇u(x+ rz) · zdSz

=

∫
∂B(x,r)

− ∇u(y) · y − x

r
dSy =

r

n|B(x, r)|

∫
B(x,r)

∆u(y)dy = 0,

which implies that w(r) is a constant. Thus we have

w(r) = lim
s→0

w(s) = lim
s→0

∫
∂B(x,s)

− u(y)dSy = u(x).

For the mean value on B(x, r), we know that∫
B(x,r)

u(y)dy =

∫ r

0

(∫
∂B(x,s)

u(y)dSy

)
ds

= u(x)

∫ r

0

nα(n)sn−1ds = α(n)rnu(x),

which is exactly

u(x) =

∫
B(x,r)

− u(y)dy.

�
Theorem 2.2. (Converse to the mean value property) If u ∈ C2(Ω) such that

u(x) =

∫
∂B(x,r)

− u(y)dSy, ∀B(x, r) ⊂ Ω,

Then u is harmonic in Ω i.e. ∆u = 0 in Ω.

Proof. If ∆u ̸≡ 0, there must exist a ball B(x, r) ⊂ Ω such that ∆u > 0 in B(x, r). On the other

hand,

0 = w′(r) =
r

n

∫
B(x,r)

− ∆u(y)dy > 0,

which gives a contradiction. �

2.2. Strong maximum principle.

Theorem 2.3. If u ∈ C2(Ω) ∩ C(Ω̄) is harmonic in Ω, then

(1) maxΩ u = max∂Ω u

(2) If Ω is connected and ∃x0 ∈ Ω such that

u(x0) = max
Ω

u(x),

then u is constant within Ω.

Proof. The first statement is easy, we only prove that second one here. Suppose that ∃x0 ∈ Ω such

that u(x0) = maxΩ u =M , then ∀0 < r < dist(x0, ∂Ω), the mean value property implies that

M = u(x0) =

∫
B(x,r)

− u(y)dy ≤M,

which means that u is constant within B(x0, r), i.e. u ≡M in B(x0, r). Hence the set

UM = {x ∈ Ω|u(x) =M}

is both open and close in Ω. So if Ω is connected, then UM = Ω. �
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Corollary 2.1. If u ∈ C2(Ω) ∩ C(Ω̄) is harmonic and u ≥ 0 on ∂Ω, then u ≥ 0 in Ω.

Corollary 2.2. (Uniqueness) Dirichlet boundary value problem −∆u = f in Ω and u = g on ∂Ω

has at most one C2(Ω) ∩ C(Ω̄) solution.

2.3. Regularity.

Theorem 2.4. If u ∈ C(Ω) satisfies mean value property for all ball B(x, r) in Ω, then u ∈ C∞(Ω)

Remark 2.1. The smoothness up to ∂Ω usually is not true, which depends on the regularity of the

boundary.

Proof. *** The proof of regularity will use mollification, which appeared in the appendix of heat

equation. For those who are interested, please read this proof by yourself. ∀ε > 0, let

Ωε = {x ∈ Ω|dist(x, ∂Ω) > ε}.

Let’s study uε(x) = jε(x) ∗ u(x), by direct calculation and mean value property, we have

uε(x) =

∫
B(x,ε)

1

εn
j(
x− y

ε
)u(y)dy

=
1

εn

∫ ε

0

[
j(
r

ε
)

∫
∂B(x,r)

u(y)dSy

]
dr

=
1

εn
u(x)

∫ ε

0

j(
r

ε
)nα(n)rn−1dr

= u(x)

∫
B(0,ε)

jε(y)dy = u(x).

Thus u(x) = uε(x) ∈ C∞(Ωε), ∀ε > 0. �

2.4. Liouville theorem.

Theorem 2.5. If u : Rn → R is harmonic and bounded, then u is a constant.

Proof. *** The proof will use local regularity estimates for harmonic function which was not talked

about in this course. ∀x0 ∈ Rn, r > 0,

|Du(x0)| ≤
C1

rn+1
∥u∥L1(B(x0,r)) ≤

C1α(n)

r
∥u∥L∞(Rn) → 0, as r → ∞.

Then Du ≡ 0, which implies u is a constant. �

Corollary 2.3. f ∈ C2
0 (Rn), n ≥ 3, then any bounded solution of −∆u = f in Rn has the form

u(x) =

∫
Rn

Φ(x− y)f(y)dy + C.

Proof. First we know that

∫
Rn

Φ(x− y)f(y)dy is a bounded solution since Φ(x) → 0 as |x| → ∞. If

there is another bounded solution ũ, then w = u− ũ is harmonic, thus by Liouville’s theorem, w is

a constant. �
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3. Green’s Function

The main goal is to get the representation formula for the solution of boundary value problem

−∆u = f in Ω (3.1)

u|∂Ω = g

The natural question to ask is that is it possible to have solution formula for this problem? Is our

the fundamental solution useful?

Let’s start from a formal calculation, ∀x ∈ Ω,

u(x) = ⟨δ(x− y), u(y)⟩ = ⟨−∆yΦ(x, y), u(y)⟩ = −
∫
Ω

∆yΦ(x, y)u(y)dy

=

∫
Ω

Φ(x, y)(−∆yu(y))dy −
∫
∂Ω

∇yΦ(x, y) · γu(y)dSy +

∫
∂Ω

Φ(x, y)∇yu(y) · γdSy.

Then formally, if u|∂Ω = g and −∆u = f , we have

u(x) =

∫
Ω

Φ(x, y)f(y)dy −
∫
∂Ω

∇yΦ(x, y) · γg(y)dSy +

∫
∂Ω

Φ(x, y)∇yu(y) · γdSy.

where the last term is still unknown. We will try to consider another function G(x, y) to replace

the fundamental solution Φ(x, y). And this G(x, y) satisfies

−∆yG(x, y) = δ(y − x)

G(x, y)|y∈∂Ω = 0.

A good candidate of G(x, y) is Φ(x, y) + g(x, y) with g(x, y) satisfies

−∆yg(x, y) = 0

g|∂Ω = −Φ(x, y)|∂Ω

Once we can solve the above problem for g(x, y), we will have the solution representation of (3.1),

u(x) =

∫
Ω

G(x, y)f(y)dy −
∫
∂Ω

∇yG(x, y) · γg(y)dSy.

We will give a proof of the above discussion after the definition.

Definition 3. (Green’s function)

G(x, y) = Φ(x, y) + g(x, y)

is called the Green’s function of (3.1), where g(x, y) ∈ C2(Ω× Ω) is a solution of

−∆yg(x, y) = 0, in Ω

g(x, y)|y∈∂Ω = −Φ(x, y)

Theorem 3.1. Ω is an open subset of Rn, ∂Ω is piecewise smooth, u ∈ C2(Ω)∩C1(Ω), then ∀x ∈ Ω,

u(x) =

∫
Ω

Φ(x, y)(−∆yu(y))dy −
∫
∂Ω

∇yΦ(x, y) · γu(y)dSy +

∫
∂Ω

Φ(x, y)∇yu(y) · γdSy. (3.2)
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Proof. ∀ε > 0 small enough, we have∫
Ω

Φ(x, y)(−∆yu(y))dy = lim
ε→0+

∫
Ω\Bε(x)

Φ(x, y)(−∆yu(y))dy

= lim
ε→0+

∫
Ω\Bε(x)

−∆yΦ(x, y)u(y)dy − lim
ε→0+

∫
∂Ω

(Φ(x, y)∇u(y) · γ −∇Φ(x, y) · γu(y))dSy

− lim
ε→0+

∫
∂B(x,ε)

(Φ(x, y)∇u(y) · γ −∇Φ(x, y) · γu(y))dSy

= 0− lim
ε→0+

∫
∂Ω

(Φ(x, y)∇u(y) · γ −∇Φ(x, y) · γu(y))dSy + u(x).

where we have used facts∣∣∣∣∣
∫
∂B(x,ε)

Φ(x, y)∇u(y) · γdSy

∣∣∣∣∣ ≤ Cε max
∂B(x,ε)

|∇u| → 0,∫
∂B(x,ε)

u(y)∇Φ(x, y) · γdSy =

∫
∂B(x,ε)

− u(y)dSy → u(x).

�

Theorem 3.2. (Green’s function is symmetric with its two variables)

G(x, y) = G(y, x).

We give the main idea of the prove here. The technical point is the same as the proof of the

above theorem. ∀ε > 0 small enough such that B(x, ε)∪B(y, ε) ⊂ Ω, let Ωε = Ω\(B(x, ε)∪B(y, ε)).

Notice that G(x, z) = G(y, z) = 0 on z ∈ ∂Ω,

0 =

∫
Ωε

(G(y, z)∆zG(x, z)−G(x, z)∆zG(y, z))dz

=

∫
∂Ωε

(G(y, z)∇zG(x, z) · γ −G(x, z)∇zG(y, z) · γ)dSz

=

∫
∂B(x,ε)∪∂B(y,ε)

(G(y, z)∇zG(x, z) · γ −G(x, z)∇zG(y, z) · γ)dSz

We just take ∂B(y, ε) as an example, the same discussion for the term on ∂B(x, ε),∣∣∣∣∣
∫
∂B(y,ε)

G(y, z)∇zG(x, z) · γdSz

∣∣∣∣∣ ≤ C(ε+ εn−1) → 0,

−
∫
∂B(y,ε)

G(x, z)∇zG(y, z) · γdSz =

∫
∂B(y,ε)

− G(x, z)dSz + o(εn−1) → −G(x, y).

3.1. Half space problem. The half space we study here is Rn
+ = {x = (x1, · · · , xn) ∈ Rn|xn > 0}.

∀x = (x1, · · · , xn−1, xn) ∈ Rn
+, we call x̃ = (x1, · · · , xn−1,−xn) is x’s reflection in the plane

{xn = 0}.
We study the following boundary value problem

−∆u = f, in Rn
+.

u|∂Rn
+
= g,
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Our goal here is to find Green’s function G(x, y) of this problem and write the solution by using

formula

u(x) =

∫
Ω

G(x, y)f(y)dy −
∫
∂Ω

∇yG(x, y) · γg(y)dSy.

∀x ∈ Rn
+, the Green’s function should be a solution of

−∆yG = δ(y − x) y ∈ Rn
+

G|y∈∂Rn
+
= 0.

The the Green’s function of half space problem is easy to obtain, i.e.

G(x, y) = Φ(x, y)− Φ(x̃, y), x, y ∈ Rn
+, x ̸= y.

Then
∂G

∂yn
(x, y) =

∂Φ

∂yn
(y − x)− ∂Φ

∂yn
(y − x̃) =

−1

nα(n)

(yn − xn
|y − x|n

− yn + xn
|y − x̃|n

)
.

Therefore, ∀y ∈ ∂Rn
+,

∂G

∂γ
(x, y) = − ∂G

∂yn
(x, y) = − 2xn

nα(n)

1

|x− y|n
.

Then the solution of boundary value problem can be represented by

u(x) =
2xn
nα(n)

∫
∂Rn

+

g(y)

|x− y|n
dy, ∀x ∈ Rn

+.

which is called the Poisson formula of half space problem.

The function

K(x, y) :=
2xn
nα(n)

1

|x− y|n
, x ∈ Rn

+, y ∈ ∂Rn
+

is called the Poisson kernel for Rn
+.

Theorem 3.3. Assume g ∈ C(Rn−1) ∩ L∞(Rn−1), u is defined by the Poisson formula. Then

u ∈ C∞(Rn
+) ∩ L∞(Rn

+), −∆u = 0 in Rn
+ and ∀x0 ∈ ∂Rn

+,

lim
x∈Rn

+,x→x0
u(x) = g(x0).

Proof. −∆u = 0 is easy to check. Notice that ∀x ∈ Rn
+,∫

∂Rn
+

K(x, y)dy = 1.

Since ∀x ̸= y, K(x, y) is a smooth function in x, we know directly that u ∈ C∞(Rn
+) and

∆u(x) =

∫
∂Rn

+

∆xK(x, y)g(y)dy = 0, ∀x ∈ Rn
+.

For boundary condition, ∀x0 ∈ ∂Rn
+, ∀ε > 0, choose δ > 0 small enough such that ∀y ∈ ∂Rn

+ and

|y − x0| < δ, we have

|g(y)− g(x0)| < ε.
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Then ∀x ∈ Rn
+ and |x− x0| < δ/2, we have

|u(x)− g(x0)| =
∣∣∣ ∫

∂Rn
+

K(x, y)(g(y)− g(x0))
∣∣∣

≤
∫
∂Rn

+∩B(x0,δ)

K(x, y)|g(y)− g(x0)|dy +
∫
∂Rn

+\B(x0,δ)

K(x, y)|g(y)− g(x0)|dy

≤ ε+ 2∥g∥L∞

∫
∂Rn

+\B(x0,δ)

K(x, y)dy

≤ 2n+2∥g∥L∞xn
nα(n)

∫
∂Rn

+\B(x0,δ)

1

|y − x0|n
dy → 0, as xn → 0 + .

�

3.2. problem in a ball. We will give an exact formula for the Green’s function in a ball.

∀x ∈ Bn(0, 1). We need that G(x, y) = 0, ∀y ∈ ∂Bn(0, 1). Let x̃ be the inversion of x, i.e.

x̃ =
x

|x|2
, thus

|x̃− y| · |x| = |x− y|, ∀y ∈ ∂Bn(0, 1)

and

G(x, y) = Φ(|x− y|)− Φ(|y − x|) = Φ(|y − x|)− Φ(|x| · |y − x̃|), ∀y ∈ ∂Bn(0, 1)

Since Φ is the fundamental solution,

−∆yΦ(|x| · |y − x̃|) = 0, ∀y ̸= x̃.

As a consequence,

G(x, y) = Φ(|y − x|)− Φ(|x| · |y − x̃|), ∀y ∈ Bn(0, 1),

is called the Green’s function on Bn(0, 1).

Now we will give the Poisson’s formula for Bn(0, r).

−∆u = 0, in Bn(0, 1)

u|∂B(0,1) = h.

By Green’s formula we have the solution is

u(x) = −
∫
∂B(0,1)

h(y)∇G(x, y) · γdSy.

We will explicitly calculate this formula.

∇yΦ(y − x) = − 1

nα(n)

y − x

|x− y|n

∇yΦ(|x|(y −
x

|x|2
)) = − 1

nα(n)
∇y

1

|x|n−2|y − x
|x|2 |n−2

=
−1

nα(n)

1

|x|n−2

y − x
|x|2

|y − x
|x|2 |n

=
−1

nα(n)

y|x|2 − x

[|x|(y − x
|x|2 )]

n

=
−1

nα(n)

y|x|2 − x

|x− y|n
,
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Where we have used the fact y ∈ ∂B(0, 1), |x| · |y − x
|x|2 | = |x− y|.

∇yG(x, y) · γ|∂B(0,1) =
−1

nα(n)

( y − x

|x− y|n
− y|x|2 − x

|x− y|n
)
· y

∣∣∣
y∈∂B(0,1)

=
−1

nα(n)

|y|2 − x · y − |y|2|x|2 + x · y
|x− y|n

∣∣∣
|y|=1

=
−1

nα(n)

|y|2(1− |x|2)
|x− y|n

∣∣∣
|y|=1

=
−1

nα(n)

1− |x|2

|x− y|n

Thus the solution formula is

u(x) =
1− |x|2

nα(n)

∫
∂B(0,1)

h(y)

|x− y|n
dSy.

For problems on B(0, r), by doing scaling ũ(x) = u(rx), h̃(x) = h(rx), we will have the Poisson’s

formula

u(x) =
r2 − |x|2

nα(n)r

∫
∂B(0,r)

h(y)

|x− y|n
dSy, ∀x ∈ B(0, r). (3.3)

We call
r2 − |x|2

nα(n)r

1

|x− y|n
the Poisson’s kernel for B(0, r).

Theorem 3.4. If h ∈ C(∂B), then u ∈ C∞(B), −∆u = 0 and lim
x→x0

u(x) = h(x0), ∀x0 ∈ ∂B.

4. Maximum Principle

For more general equations. Let Ω be a bounded open subset of Rn.

Lu = −∆u+ c(x)u = f, in Ω

Theorem 4.1. (Weak maximum principle) Let 0 ≤ c(x) ≤ c̄ in Ω, if u ∈ C2(Ω)∩C(Ω̄) and Lu ≤ 0

in Ω, then

sup
Ω
u(x) ≤ sup

∂Ω
u+(x),

where u+(x) = max{u(x), 0}.

Proof. Assume Lu < 0 in Ω. If ∃x0 ∈ Ω such that

0 ≤ u(x0) = max
Ω

u,

then

−∆u|x0 + c(x0)u(x0) ≥ 0,

which is a contradiction.

If Lu ≤ 0 in Ω, we introduce an auxiliary function

w(x) = u(x) + εeax1

where a is to be determined later, then we can choose a such that −a2 + c̄ < 0, and

Lw = Lu+ εeax1(−a2 + c(x)) < 0.

Our above discussion applies sup
Ω
w ≤ sup

∂Ω
w+, then the results hold by taking ε→ 0.

�
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Remark 4.1. If c ≡ 0, then sup
∂Ω

u+ in the theorem can be replaced by sup
∂Ω

u.

Remark 4.2. If Lu ≥ 0, then inf
Ω
u ≥ inf

∂Ω
(−u−).

We will consider the problem

−∆u = f, in Ω

u = φ on ∂Ω (4.1)

Theorem 4.2. If u ∈ C2(Ω) ∩ C(Ω̄) is a solution of (4.1), then

max
Ω

|u| ≤ Φ+ CF,

where Φ = max
∂Ω

|φ|, F = sup
Ω

|f |, C ∼ n, diamΩ.

Proof. Without loss of generality, let x = 0 ∈ Ω, let

w(x) = ±u+
F

2n
(d2 − |x|2) + Φ,

then

−∆w = ±f + F ≥ 0, w|∂Ω ≥ Φ± φ ≥ 0.

By comparison principle, we have w ≥ 0 in Ω̄, which implies

max
Ω

|u| ≤ Φ+
F

2n
d2.

�

5. Variational Problem

We show in this part that the boundary value problem of Poisson equation is equivalent to a

variational problem. Namely

−∆u = f in Ω (5.1)

u = g on ∂Ω

is equivalent to the following problem in some sense,

J(u) = min
v∈Mg

J(v) (5.2)

J(v) =
1

2

∫
Ω

|∇v|2dx−
∫
Ω

fvdx

Mg = {v ∈ C1(Ω̄)|v = g on ∂Ω}.

5.1. Dirichlet principle.

Theorem 5.1. (Dirichlet principle) Assume u ∈ C2(Ω) ∩ C1(Ω̄), then u is a solution of (5.1) if

and only if u is a solution of (5.2).

Proof. “⇒”. ∀v ∈Mg, we choose u− v as test function in (5.1),∫
Ω

−∆u(u− v) =

∫
Ω

f(u− v).

Integral by parts with boundary condition u− v = 0 on ∂Ω shows∫
Ω

∇u · ∇(u− v) =

∫
Ω

f(u− v).
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Equivalently,∫
Ω

|∇u|2 −
∫
Ω

fu =

∫
Ω

∇u · ∇v −
∫
Ω

fv ≤ 1

2

∫
Ω

|∇u|2 + 1

2

∫
Ω

|∇v|2 −
∫
Ω

fv.

Then we have
1

2

∫
Ω

|∇u|2 −
∫
Ω

fu ≤ 1

2

∫
Ω

|∇v|2 −
∫
Ω

fv

which implies directly that

I(u) ≤ I(v), ∀v ∈Mg.

“⇐” ∀v ∈ M0, we have u+ εv ∈ Mg. Let j(ε) = J(u+ εv), since u is a solution of (5.2), we know

that j′(ε)|ε=0 = 0, more precisely,

d

dε

[∫
Ω

1

2
|∇(u+ εv)|2 −

∫
Ω

f(u+ εv)

]
ε=0

=

∫
Ω

∇(u+ εv)|ε=0 · ∇v −
∫
Ω

fv =

∫
Ω

∇u · ∇v −
∫
Ω

fv =

∫
Ω

(−∆u− f)v.

These holds true for any v ∈ C1
0 (Ω̄). Thus u is a solution of (5.2).

�

−∆u = f in Ω is called the Euler-Lagrange equation of variational problem (5.2).

In the 19th century, it is thought that variational problem always has a solution. But Weierstrass

said sometimes the infimum couldn’t be achieved by a function in the function set. Here is an

example,

Example 1. (Weierstrass) Variational problem. Let M = {φ(x) ∈ C[0, 1]|φ′(x) is continuous

except finite discontinuity point of the first kind, and φ(0) = 1, φ(1) = 0}. The functional is

F (φ) =

∫ 1

0

[1 + (φ′)2]
1
4 dx.

It is obvious that min
φ∈M

(φ) = 1. In fact, we only need to prove ∀δ > 0, ∃φδ ∈M such that

I(φδ) ≤ 1 + δ,

where we can choose

φδ =

{
1
δ2 (δ

2 − x) 0 ≤ x ≤ δ2

0 δ2 < x ≤ 1

On the other hand, we couldn’t find any φ ∈ M such that I(φ) = 1. Otherwise, φ′ = 0 a.e., then

φ ≡ C, which contradicts with φ(0) = 1, φ(1) = 0.

Another fact is that even the boundary value problem (5.1) has a solution in C2(Ω) ∩ C(Ω̄), it
may not be obtained by solving the variational problem (5.2). Here is an example by Hadamard,

Example 2. Ω = B(0, 1), f ≡ 0, φ(θ) =

∞∑
n=1

sinn4θ

n2
∈ C(∂Ω), 0 ≤ θ ≤ 2π.

We know that (5.1) has a unique solution u0 ∈ C(Ω̄) ∩ C2(Ω) with expression

u0(ρ, θ) =
∞∑

n=1

sinn4θ

n2
ρn

4

.

On the other hand we can prove that

J(u0) = +∞.
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In fact,

J(u0) = lim
r→1−

∫ ∫
ρ≤r

|∇u0|2dxdy = lim
r→1−

∫ ∫
ρ≤r

[(∂u0
∂ρ

)2

+
1

ρ2

(∂u0
∂θ

)2]
ρdρdθ

= lim
r→1−

2π

∫ r

0

∞∑
n=1

n4ρ2n
4−1dρ = lim

r→1−
π

∞∑
n=1

r2n
4

= +∞.

We call H1(Ω) the Sobolev spaces such that

H1(Ω) = {u|u,Du ∈ L2(Ω)}

with norm and inner product

∥u∥H1 = ∥u∥L2 + ∥∇u∥L2 , ⟨u, v⟩H1 =

∫
Ω

uv +

∫
Ω

∇u · ∇v.

H1 is a Hilbert space. H1
0 (Ω) is the subspace of H1(Ω), the completion of C∞

0 (Ω) with H1 norm.

For bounded Ω with uniform cone condition, H1(Ω) is compactly embedded in L2(Ω).

(−∆)−1 with homogenous Dirichlet boundary condition is a compact operator in L2(Ω), since

(−∆)−1 : L2(Ω) → H1(Ω) ↪→↪→ L2(Ω).

Definition 4. If ∃u ∈ H1
0 (Ω) such that

J(u) = min
v∈H1

0

(1
2

∫
Ω

|∇v|2 −
∫
Ω

fv
)

we call u is a solution of (5.2).

Definition 5. If ∃u ∈ H1
0 such that ∀v ∈ H1

0 (Ω),∫
Ω

∇u · ∇v =

∫
Ω

fv,

then we call u a weak solution of (5.1)

Theorem 5.2. If u ∈ H1
0 (Ω), then u is a weak solution of (5.1) if and only if u is a solution of

(5.2).

The proof of this theorem is left to readers.

5.2. Lax-Milgram. We first list the Lax-Milgram theorem from functional analysis, then prove

the existence of weak solution of (5.1).

Theorem 5.3 (Lax-Milgram theorem). H is a Hilbert space, assume a(u, v) is a bi-linear mapping

from H to R, satisfies
• Bounded. ∃M ≥ 0 such that |a(u, v)| ≤M∥u∥ · ∥v∥, ∀u, v ∈ H.

• Coercive. ∃δ > 0 such that a(u, u) ≥ δ∥u∥2, ∀u ∈ H.

Then for any bounded linear functional F (v) on H, there exists a unique u ∈ H such that

F (v) = a(u, v), ∀v ∈ H.

and

∥u∥ ≤ 1

δ
∥F∥.
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Proof. For any fixed u ∈ H, Riesz representation theorem implies that ∃Au ∈ H such that

a(u, v) = (Au, v), ∀v ∈ H.

The linearity of Au in u is obvious due to the fact that a(u, v) is linear in u. Furthermore,

(Au, v) ≤M∥u∥ · ∥v∥, ⇒ ∥Au∥ ≤M∥u∥.

Coercivity gives that ∀u ∈ H,

δ∥u∥2 ≤ a(u, u) = (Au, u) ≤ ∥Au∥ · ∥u∥, ⇒ ∥Au∥ ≥ δ∥u∥.

Thus A−1 exists. We claim that R(A) = H.

First R(A) is closed. In fact, choose any Cauchy sequence {Auk} in R(A), then limk→∞Auk = v.

By coercivity, we have

δ∥uk − ul∥ ≤ ∥Auk −Aul∥,

which means {uk} is also a Cauchy sequence in H. ∃u ∈ H such that

lim
k→∞

uk = u.

Thus

Au = lim
k→∞

Auk = v.

If R(A) ̸= H, ∃w ̸= 0 in H such that

(Au,w) = 0, ∀u ∈ H,

which contradicts with coercivity if we choose w = u. Thus R(A) = H.

For any linear functional F (v) on H, by Riesz representation theorem, we have a unique w ∈ H

s.t.

F (v) = (w, v).

Let u = A−1w, we have

∥u∥ ≤ ∥A−1∥ · ∥w∥ ≤ 1

δ
∥F∥

and

F (v) = (Au, v).

�

Theorem 5.4. For f ∈ L2(Ω), there exists a solution u ∈ H1
0 (Ω) of (5.1).

Proof. Let the bilinear functional defined by

a(u, v) =

∫
Ω

∇u · ∇v.

Then it is coercive

a(u, u) ≥ ∥∇u∥2L2 ≥ C∥u∥2H1 .

Lax-Milgram theorem implies that ∀f ∈ L2(Ω), there exists a unique u ∈ H1
0 (Ω) such that

a(u, v) = ⟨f, v⟩, ∀v ∈ H1
0 (Ω).

�
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5.3. Solvability of variational problem. *** Our goal in this subsection is to prove the unique

solvability of variational problem (5.2).

Theorem 5.5. Solution of (5.2) in H1
0 (Ω) is unique.

Proof. Let u1, u2 ∈ H1
0 (Ω) are two solutions of (5.2), i.e.

J(u1) = J(u2) = m = inf
v∈H1

0 (Ω)
J(v),

then

0 =
1

2

∫
Ω

|∇u1|2 −
1

2

∫
Ω

|∇u2|2 −
∫
Ω

(u1 − u2)f.

Notice that fact ∣∣∣∣∇(u1 − u2)

2

∣∣∣∣2 + ∣∣∣∣∇(u1 + u2)

2

∣∣∣∣2 =
1

2
|∇u1|2 +

1

2
|∇u2|2,

we have ∫
Ω

∣∣∣∣∇(u1 − u2)

2

∣∣∣∣2 =

∫
Ω

1

2
|∇u1|2 +

∫
Ω

1

2
|∇u2|2 −

∫
Ω

∣∣∣∣∇(u1 + u2)

2

∣∣∣∣2
−
∫
Ω

u1f −
∫
Ω

u2f + 2

∫
Ω

u1 + u2
2

f

= J(u1) + J(u2)− 2J(
u1 + u2

2
) ≤ 0

which implies that

∥∇(u1 − u2)∥L2 = 0.

Poincare inequality gives

∥u1 − u2∥L2 = 0 ⇒ u1 = u2 a.e. in Ω.

�

Lemma 5.1. (Friedrich inequality for H1
0 (Ω))

∥u∥L2(Ω) ≤ 2d∥∇u∥L2(Ω),

where d = diamΩ.

Proof. Let u ∈ C1
0 (Ω), without loss of generality assume

Ω ⊂ {x|0 ≤ xi ≤ 2d, 1 ≤ i ≤ n} = Q̄.

Let ũ =

{
u x ∈ Ω̄

0 x ∈ Q̄\Ω̄ . It is obvious that ũ ∈ C1
∗(Q̄), piecewise C1 function, and

ũ|∂Q̄ = 0.

By Newton-Leibnitz formula

ũ(x1, x2, · · · , xn) =
∫ x1

0

∂ũ

∂x1
dx1,

then

ũ2 =
(∫ x1

0

∂ũ

∂x1
dx1

)2

≤ x1

∫ x1

0

( ∂ũ

∂x1

)2

dx1 ≤ 2d

∫ 2d

0

∣∣∣∣ ∂ũ∂x1
∣∣∣∣2 dx1.
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Integration in Q gives ∫
Q

ũ2dx ≤ 2d

∫
Q

∫ 2d

0

∣∣∣∣ ∂ũ∂x1
∣∣∣∣2 dx1dx ≤ 4d2

∫
Q

|∇ũ|2dx.

Thus we arrive at

∥u∥L2(Ω) ≤ 2d∥∇u∥L2(Ω).

If u ∈ H1
0 (Ω), we can choose {um}∞m=1 ⊂ C1

0 (Ω) such that

∥um − u∥H1 → 0, m→ ∞,

and

∥um∥L2 ≤ 2d∥∇um∥L2 ,

our result can be obtained by taking m→ ∞. �

Theorem 5.6. (Existence) f ∈ L2(Ω), then (5.2) has a solution u ∈ H1
0 (Ω).

Proof. First we prove that J(u) has a lower bound. In fact, by Hölder and Friedrich inequality,

J(v) =
1

2
∥∇v∥2L2 −

∫
Ω

fv ≥ 1

2
∥∇v∥2L2 −

1

4
∥∇v∥2L2 − C∥f∥2L2 ≥ −C(d)∥f∥2L2 .

Let

m = inf
v∈H1

0 (Ω)
J(v).

Let {vk}∞k=1 ⊂ H1
0 (Ω) be a minimizing sequence such that

J(vk) ≤ m+
1

k
.

We want to prove that {vk} is a Cauchy sequence in H1(Ω), by using similar discussions to the

uniqueness proof, for k, l → ∞,∥∥∥∥∇ (vk − vl)

2

∥∥∥∥2
L2

= J(vk) + J(vl)− 2J(
vk + vl

2
) ≤ m+

1

k
+m+

1

l
− 2m ≤ 1

k
+

1

l
→ 0.

Then there must ∃u ∈ H1
0 (Ω) such that

vk → u in H1(Ω).

Taking limit in the energy, we have J(vk) → J(u) and J(u) = m.

�

6. Energy Estimate

Energy methods for Poisson equation is easy. I will not talk about it here. But leave it as an

exercise. The energy estimate also shows that −∆u = f in Ω and u = h on ∂Ω has at most one

solution in C2(Ω) ∩ C1(Ω̄).



POISSON EQUATION 17

7. Problems

(1) Try to derive energy estimates for Dirichlet problem of Possion equation.

(2) Modify the proof of the mean value formulas to show for n ≥ 3 that

u(0) = −
∫
∂B(0,r)

gdS +
1

n(n− 2)α(n)

∫
B(0,r)

(
1

|x|n−2
− 1

rn−2

)
fdx,

provided

{
−△u = f x ∈ B(0, r)

u = g x ∈ ∂B(0, r)
.

(3) We say v ∈ C2(Ω̄) is subharmonic if −△v ≤ 0 in Ω.

(a) Prove for subharmonic v that

v(x) ≤ −
∫
B(x,r)

vdy, for all B(x, r) ⊂ Ω.

(b) Prove that therefore maxΩ̄ v = max∂Ω v.

(c) Let ϕ : R → R be smooth and convex. Assume u is harmonic and v := ϕ(u). Prove v

is subharmonic.

(d) Prove v := |Du|2 is subharmonic, whenever u is harmonic.

(4) Let B+(R) = {(x, y) : x2+y2 < R2, y > 0}, try to find the Green’s function of the following

problem 
−△u = f(x, y), (x, y) ∈ B+(R),

u|∂B+(R)∩{y>0} = φ(x, y),

uy|y=0 = ψ(x, 0), −R ≤ x ≤ R.

Furthermore, give the representation formula of solution.

(5) Ω is a bounded open subset of Rn, u(x) is a classical solution of{
−△u+ c(x)u = f(x), x ∈ Ω,

(∇u · γ + α(x)u)|Γ1
= φ1, u|Γ2

= φ2

where Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅, Γ2 ̸= ∅.
If c(x) ≥ 0, α(x) ≥ α0 > 0, try to prove the following estimate,

max
Ω

|u(x)| ≤ C(α0, diamΩ)
[
sup
Ω

|f |+ sup
Γ1

|φ1|+ sup
Γ2

|φ2|
]
.

(6) Try to get the Euler-Lagrange equation of the following variational problem

J(u) = min
v∈M0

J(v), with M0 = {u ∈ C2(Ω) ∩ C1(Ω̄) : u|∂Ω = 0},

(a) J(v) =

∫
Ω

(
1

p
|∇v|p − fv)dx, p > 1

(b) J(v) =

∫
Ω

(
1

2m
|∇vm|2 − fv)dx, m > 0

(c) j(v) =

∫
Ω

(
√

1 + |∇v|2dx+ vp)dx, p > 1

(7) If u ∈ H1
0 (Ω) is a weak solution of

−△u+ u = f,

prove that u is a solution of variational problem

J(u) = min
v∈H1

0 (Ω)
J(v),
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where J(v) =
1

2

∫
Ω
|∇v|2dx+

1

2

∫
Ω
v2dx−

∫
Ω
fvdx.

(8) Assume f ∈ L2(Ω), φ ∈ H1(Ω), c(x) ≥ 0 and c(x) ∈ C(Ω̄), prove that variational problem

J(u) = min
v∈Mφ

J(v)

has a unique solution in Mφ = {u ∈ H1(Ω) : u− φ ∈ H1
0 (Ω)}, where

J(v) =
1

2

∫
Ω

(|∇v|2 + c(x)v2 − fv)dx.

Furthermore, show that the solution of variational problem is a weak solution of

−△u+ c(x)u = f in Ω, u = φ on ∂Ω.
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