POISSON EQUATION

BY LI CHEN

Contents

1. Fundamental Solution 1
2. Properties of Harmonic Function 3
2.1. Mean Value theorem 3
2.2. Strong maximum principle 4
2.3. Regularity 5
2.4. Liouville theorem 5
3. Green's Function 6
3.1. Half space problem 7
3.2. problem in a ball 9
4. Maximum Principle 10
5. Variational Problem 11
5.1. Dirichlet principle 11
5.2. Lax-Milgram 13
5.3. Solvability of variational problem 15
6. Energy Estimate 16
7. Problems 17

1. Fundamental Solution

The Poisson's equation in \mathbb{R}^{n} reads

$$
\begin{equation*}
-\Delta u=f \text { in } \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

We will first try to find some special solution formally. Since Laplace operator is radially symmetric, it is natural to find radially symmetric solutions. Assume $u(x)=v(|x|)=v(r)$, where $r=|x|$, then

$$
u_{x_{i}}=v_{r} \frac{\partial r}{\partial x_{i}}=v_{r} \frac{x_{i}}{r}, \quad u_{x_{i} x_{j}}=v_{r r} \frac{x_{i}^{2}}{r^{2}}+v_{r}\left(\frac{1}{r}-\frac{x_{i}^{2}}{r^{3}}\right),
$$

thus

$$
\Delta u=v_{r r}+\frac{n-1}{r} v_{r}=0, \quad \Rightarrow \quad\left(\log v_{r}\right)_{r}=\frac{1-n}{r}, \text { in che case of } v_{r} \neq 0
$$

Consequently, there exist constants C and C^{\prime} such that $v_{r}=C r^{1-n}$ and

$$
v(r)= \begin{cases}C \log r+C^{\prime} & n=2 \\ \frac{C}{r^{n-2}}+C^{\prime} & n \geq 3\end{cases}
$$

Definition 1. Let

$$
\Phi(x)= \begin{cases}-\frac{1}{2 \pi} \log |x| & n=2 \\ \frac{1}{n(n-2) \alpha(n)} \frac{1}{|x|^{n-2}} & n \geq 3\end{cases}
$$

where $\alpha(n)$ is the volumn of n dimension ball. $\Phi(x)$ is called the fundamental solution of Poisson equation.

Properties

(1) $|\nabla \Phi| \leq \frac{C}{|x|^{n-1}},\left|D^{2} \Phi\right| \leq \frac{C}{|x|^{n}}$ for $x \neq 0$.
(2) $\Delta \Phi=0$ for $x \neq 0$ and $\Delta \Phi(x-y)=0$ for $x \neq y, \forall y \in \mathbb{R}^{n}$

Then we are able to represent the solution of Poisson equation by using fundamental solution. More precisely we have the following theorem.

Theorem 1.1. If $f \in C_{0}^{2}\left(\mathbb{R}^{n}\right)$, then $u=\Phi * f$ is a solution of problem (1.1)
Proof. First we prove that $u \in C^{2}\left(\mathbb{R}^{n}\right)$. In fact,

$$
\frac{u\left(x+h e_{i}\right)-u(x)}{h}=\int_{\mathbb{R}^{n}} \Phi(y) \frac{f\left(x+h e_{i}-y\right)-f(x-y)}{h} d y
$$

Since we know that f has compact support and $\frac{\partial f(x-y)}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x+h e_{i}-y\right)-f(x-y)}{h}$, combined with the fact that Φ is locally integrable, we have that, by letting $h \rightarrow 0$,

$$
\frac{\partial u}{\partial x_{i}}=\int_{\mathbb{R}^{n}} \Phi(y) \frac{\partial f}{\partial x_{i}}(x-y) d y
$$

By similar discussions, we have that u is twice differential and

$$
\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=\int_{\mathbb{R}^{n}} \Phi(y) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x-y) d y .
$$

Next we will prove $-\Delta u=f . \forall \varepsilon>0$ small enough,

$$
\begin{aligned}
-\Delta u(x) & =\int_{\mathbb{R}^{n}} \Phi(y) \Delta_{x} f(x-y) d y \\
& =\int_{B_{\varepsilon}(0)} \Phi(y) \Delta_{x} f(x-y) d y+\int_{\mathbb{R}^{n} \backslash B_{\varepsilon}(0)} \Phi(y) \Delta_{x} f(x-y) d y \\
& :=I_{\varepsilon}+J_{\varepsilon} .
\end{aligned}
$$

where

$$
\left|I_{\varepsilon}\right| \leq C\left\|D^{2} f\right\|_{L^{\infty}} \int_{B_{\varepsilon}(0)}|\Phi(y)| d y \leq \begin{cases}C \varepsilon^{2}|\log \varepsilon| & n=2 \\ C \varepsilon^{2} & n \geq 3\end{cases}
$$

Integral by parts for J_{ε},

$$
J_{\varepsilon}=-\int_{\mathbb{R}^{n} \backslash B_{\varepsilon}(0)} \nabla_{y} \Phi(y) \nabla_{y} f(x-y) d y-\int_{\partial B_{\varepsilon}(0)} \Phi(y) \nabla_{y} f(x-y) \cdot \gamma d S_{y}:=K_{\varepsilon}+L_{\varepsilon}
$$

L_{ε} can be estimated by

$$
\left|L_{\varepsilon}\right| \leq\|D f\|_{L^{\infty}} \int_{\partial B_{\varepsilon}(0)}|\Phi(y)| d S_{y} \leq \begin{cases}C \varepsilon|\log \varepsilon| & n=2 \\ C \varepsilon & n \geq 3\end{cases}
$$

K_{ε} contributes the main part of the calculation. When ε goes to 0 , this term practiced like a Delta function applied on f. Due to the fact that $\Delta \Phi(y)=0$ for $y \neq 0$, we have

$$
K_{\varepsilon}=\int_{\mathbb{R}^{n} \backslash B_{\varepsilon}(0)} \Delta \Phi(y) f(x-y) d y+\int_{\partial B_{\varepsilon}(0)} \nabla \Phi \cdot \gamma f(x-y) d S_{y}=\int_{\partial B_{\varepsilon}(0)} \nabla \Phi \cdot \gamma f(x-y) d S_{y}
$$

Now we can calculate that on $\partial B_{\varepsilon}(0)$,

$$
\nabla_{y} \Phi(y) \cdot \gamma=-\frac{1}{n \alpha(n)} \frac{y}{|y|^{n}} \frac{y}{|y|}=-\frac{1}{n \alpha(n) \varepsilon^{n-1}}
$$

Thus we have

$$
K_{\varepsilon}=-\frac{1}{n \alpha(n) \varepsilon^{n-1}} \int_{\partial B_{\varepsilon}(0)} f(x-y) d S_{y}=-\frac{1}{n \alpha(n) \varepsilon^{n-1}} \int_{\partial B_{\varepsilon}(x)} f(y) d S_{y}
$$

Taking $\varepsilon \rightarrow 0$, we know that

$$
K_{\varepsilon} \rightarrow f(x)
$$

Remark 1.1. From the above proof, we understand the constants appeared in definition of fundamental solution.

By using the same method, we can prove that $-\Delta \Phi=\delta(x)$ in the sense of distribution.
Theorem 1.2.

$$
\Phi(x, y)=\Phi(x-y)= \begin{cases}-\frac{1}{2 \pi} \log |x-y| & n=2 \tag{1.2}\\ \frac{1}{n(n-2) \alpha(n)} \frac{1}{|x-y|^{n-2}} & n \geq 3\end{cases}
$$

is a solution of

$$
-\Delta \Phi=\delta(x-y)
$$

in the sense of distribution. More precisely, $\forall \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, it holds

$$
\langle-\Delta \Phi(x-y), \varphi(x)\rangle=-\int_{\mathbb{R}^{n}} \Phi(x-y) \Delta \varphi(x) d y=\varphi(y)=\langle\delta(x-y), \varphi(x)\rangle
$$

2. Properties of Harmonic Function

Let Ω be an open subset of \mathbb{R}^{n}.
Definition 2. If $\Delta u=0$ in Ω with $u \in C^{2}(\Omega)$, then u is called a harmonic function.

2.1. Mean Value theorem.

Theorem 2.1. If $u \in C^{2}(\Omega)$ is harmonic, then \forall ball $B(x, r) \in \Omega$, it holds that

$$
\begin{equation*}
u(x)=f_{\partial B(x, r)} u d S_{y}=f_{B(x, r)} u d y \tag{2.1}
\end{equation*}
$$

Proof. Let

$$
w(r)=f_{\partial B(x, r)} u(y) d S_{y}=f_{\partial B(0,1)} u(x+r z) d S_{z}
$$

Then by taking derivative with respect to r, we have

$$
\begin{aligned}
& w^{\prime}(r)=\int_{\partial B(0,1)} \nabla u(x+r z) \cdot z d S_{z} \\
= & f_{\partial B(x, r)} \nabla u(y) \cdot \frac{y-x}{r} d S_{y}=\frac{r}{n|B(x, r)|} \int_{B(x, r)} \Delta u(y) d y=0,
\end{aligned}
$$

which implies that $w(r)$ is a constant. Thus we have

$$
w(r)=\lim _{s \rightarrow 0} w(s)=\lim _{s \rightarrow 0} \int_{\partial B(x, s)} u(y) d S_{y}=u(x)
$$

For the mean value on $B(x, r)$, we know that

$$
\begin{aligned}
& \int_{B(x, r)} u(y) d y=\int_{0}^{r}\left(\int_{\partial B(x, s)} u(y) d S_{y}\right) d s \\
= & u(x) \int_{0}^{r} n \alpha(n) s^{n-1} d s=\alpha(n) r^{n} u(x),
\end{aligned}
$$

which is exactly

$$
u(x)=f_{B(x, r)} u(y) d y
$$

Theorem 2.2. (Converse to the mean value property) If $u \in C^{2}(\Omega)$ such that

$$
u(x)=\int_{\partial B(x, r)} u(y) d S_{y}, \quad \forall B(x, r) \subset \Omega
$$

Then u is harmonic in Ω i.e. $\Delta u=0$ in Ω.
Proof. If $\Delta u \not \equiv 0$, there must exist a ball $B(x, r) \subset \Omega$ such that $\Delta u>0$ in $B(x, r)$. On the other hand,

$$
0=w^{\prime}(r)=\frac{r}{n} \int_{B(x, r)} \Delta u(y) d y>0
$$

which gives a contradiction.

2.2. Strong maximum principle.

Theorem 2.3. If $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is harmonic in Ω, then
(1) $\max _{\Omega} u=\max _{\partial \Omega} u$
(2) If Ω is connected and $\exists x_{0} \in \Omega$ such that

$$
u\left(x_{0}\right)=\max _{\Omega} u(x)
$$

then u is constant within Ω.
Proof. The first statement is easy, we only prove that second one here. Suppose that $\exists x_{0} \in \Omega$ such that $u\left(x_{0}\right)=\max _{\Omega} u=M$, then $\forall 0<r<\operatorname{dist}\left(x_{0}, \partial \Omega\right)$, the mean value property implies that

$$
M=u\left(x_{0}\right)=\int_{B(x, r)} u(y) d y \leq M
$$

which means that u is constant within $B\left(x_{0}, r\right)$, i.e. $u \equiv M$ in $B\left(x_{0}, r\right)$. Hence the set

$$
U_{M}=\{x \in \Omega \mid u(x)=M\}
$$

is both open and close in Ω. So if Ω is connected, then $U_{M}=\Omega$.

Corollary 2.1. If $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is harmonic and $u \geq 0$ on $\partial \Omega$, then $u \geq 0$ in Ω.
Corollary 2.2. (Uniqueness) Dirichlet boundary value problem $-\Delta u=f$ in Ω and $u=g$ on $\partial \Omega$ has at most one $C^{2}(\Omega) \cap C(\bar{\Omega})$ solution.

2.3. Regularity.

Theorem 2.4. If $u \in C(\Omega)$ satisfies mean value property for all ball $B(x, r)$ in Ω, then $u \in C^{\infty}(\Omega)$
Remark 2.1. The smoothness up to $\partial \Omega$ usually is not true, which depends on the regularity of the boundary.

Proof. ${ }^{* * *}$ The proof of regularity will use mollification, which appeared in the appendix of heat equation. For those who are interested, please read this proof by yourself. $\forall \varepsilon>0$, let

$$
\Omega_{\varepsilon}=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>\varepsilon\}
$$

Let's study $u_{\varepsilon}(x)=j_{\varepsilon}(x) * u(x)$, by direct calculation and mean value property, we have

$$
\begin{aligned}
u_{\varepsilon}(x) & =\int_{B(x, \varepsilon)} \frac{1}{\varepsilon^{n}} j\left(\frac{x-y}{\varepsilon}\right) u(y) d y \\
& =\frac{1}{\varepsilon^{n}} \int_{0}^{\varepsilon}\left[j\left(\frac{r}{\varepsilon}\right) \int_{\partial B(x, r)} u(y) d S_{y}\right] d r \\
& =\frac{1}{\varepsilon^{n}} u(x) \int_{0}^{\varepsilon} j\left(\frac{r}{\varepsilon}\right) n \alpha(n) r^{n-1} d r \\
& =u(x) \int_{B(0, \varepsilon)} j_{\varepsilon}(y) d y=u(x) .
\end{aligned}
$$

Thus $u(x)=u_{\varepsilon}(x) \in C^{\infty}\left(\Omega_{\varepsilon}\right), \forall \varepsilon>0$.

2.4. Liouville theorem.

Theorem 2.5. If $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is harmonic and bounded, then u is a constant.
Proof. ${ }^{* * *}$ The proof will use local regularity estimates for harmonic function which was not talked about in this course. $\forall x_{0} \in R^{n}, r>0$,

$$
\left|D u\left(x_{0}\right)\right| \leq \frac{C_{1}}{r^{n+1}}\|u\|_{L^{1}\left(B\left(x_{0}, r\right)\right)} \leq \frac{C_{1} \alpha(n)}{r}\|u\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \rightarrow 0, \text { as } r \rightarrow \infty
$$

Then $D u \equiv 0$, which implies u is a constant.
Corollary 2.3. $f \in C_{0}^{2}\left(\mathbb{R}^{n}\right), n \geq 3$, then any bounded solution of $-\Delta u=f$ in \mathbb{R}^{n} has the form

$$
u(x)=\int_{\mathbb{R}^{n}} \Phi(x-y) f(y) d y+C
$$

Proof. First we know that $\int_{\mathbb{R}^{n}} \Phi(x-y) f(y) d y$ is a bounded solution since $\Phi(x) \rightarrow 0$ as $|x| \rightarrow \infty$. If there is another bounded solution \tilde{u}, then $w=u-\tilde{u}$ is harmonic, thus by Liouville's theorem, w is a constant.

3. Green's Function

The main goal is to get the representation formula for the solution of boundary value problem

$$
\begin{align*}
-\Delta u=f \quad \text { in } \Omega \tag{3.1}\\
\left.u\right|_{\partial \Omega}=g
\end{align*}
$$

The natural question to ask is that is it possible to have solution formula for this problem? Is our the fundamental solution useful?

Let's start from a formal calculation, $\forall x \in \Omega$,

$$
\begin{aligned}
u(x) & =\langle\delta(x-y), u(y)\rangle=\left\langle-\Delta_{y} \Phi(x, y), u(y)\right\rangle=-\int_{\Omega} \Delta_{y} \Phi(x, y) u(y) d y \\
& =\int_{\Omega} \Phi(x, y)\left(-\Delta_{y} u(y)\right) d y-\int_{\partial \Omega} \nabla_{y} \Phi(x, y) \cdot \gamma u(y) d S_{y}+\int_{\partial \Omega} \Phi(x, y) \nabla_{y} u(y) \cdot \gamma d S_{y} .
\end{aligned}
$$

Then formally, if $\left.u\right|_{\partial \Omega}=g$ and $-\Delta u=f$, we have

$$
u(x)=\int_{\Omega} \Phi(x, y) f(y) d y-\int_{\partial \Omega} \nabla_{y} \Phi(x, y) \cdot \gamma g(y) d S_{y}+\int_{\partial \Omega} \Phi(x, y) \nabla_{y} u(y) \cdot \gamma d S_{y}
$$

where the last term is still unknown. We will try to consider another function $G(x, y)$ to replace the fundamental solution $\Phi(x, y)$. And this $G(x, y)$ satisfies

$$
\begin{array}{r}
-\Delta_{y} G(x, y)=\delta(y-x) \\
\left.G(x, y)\right|_{y \in \partial \Omega}=0 .
\end{array}
$$

A good candidate of $G(x, y)$ is $\Phi(x, y)+g(x, y)$ with $g(x, y)$ satisfies

$$
\begin{array}{r}
-\Delta_{y} g(x, y)=0 \\
\left.g\right|_{\partial \Omega}=-\left.\Phi(x, y)\right|_{\partial \Omega}
\end{array}
$$

Once we can solve the above problem for $g(x, y)$, we will have the solution representation of (3.1),

$$
u(x)=\int_{\Omega} G(x, y) f(y) d y-\int_{\partial \Omega} \nabla_{y} G(x, y) \cdot \gamma g(y) d S_{y}
$$

We will give a proof of the above discussion after the definition.
Definition 3. (Green's function)

$$
G(x, y)=\Phi(x, y)+g(x, y)
$$

is called the Green's function of (3.1), where $g(x, y) \in C^{2}(\Omega \times \Omega)$ is a solution of

$$
\begin{array}{r}
-\Delta_{y} g(x, y)=0, \quad \text { in } \Omega \\
\left.g(x, y)\right|_{y \in \partial \Omega}=-\Phi(x, y)
\end{array}
$$

Theorem 3.1. Ω is an open subset of $\mathbb{R}^{n}, \partial \Omega$ is piecewise smooth, $u \in C^{2}(\Omega) \cap C^{1}(\Omega)$, then $\forall x \in \Omega$,

$$
\begin{equation*}
u(x)=\int_{\Omega} \Phi(x, y)\left(-\Delta_{y} u(y)\right) d y-\int_{\partial \Omega} \nabla_{y} \Phi(x, y) \cdot \gamma u(y) d S_{y}+\int_{\partial \Omega} \Phi(x, y) \nabla_{y} u(y) \cdot \gamma d S_{y} \tag{3.2}
\end{equation*}
$$

Proof. $\forall \varepsilon>0$ small enough, we have

$$
\begin{aligned}
& \int_{\Omega} \Phi(x, y)\left(-\Delta_{y} u(y)\right) d y=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega \backslash B_{\varepsilon}(x)} \Phi(x, y)\left(-\Delta_{y} u(y)\right) d y \\
= & \lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega \backslash B_{\varepsilon}(x)}-\Delta_{y} \Phi(x, y) u(y) d y-\lim _{\varepsilon \rightarrow 0^{+}} \int_{\partial \Omega}(\Phi(x, y) \nabla u(y) \cdot \gamma-\nabla \Phi(x, y) \cdot \gamma u(y)) d S_{y} \\
& -\lim _{\varepsilon \rightarrow 0^{+}} \int_{\partial B(x, \varepsilon)}(\Phi(x, y) \nabla u(y) \cdot \gamma-\nabla \Phi(x, y) \cdot \gamma u(y)) d S_{y} \\
= & 0-\lim _{\varepsilon \rightarrow 0^{+}} \int_{\partial \Omega}(\Phi(x, y) \nabla u(y) \cdot \gamma-\nabla \Phi(x, y) \cdot \gamma u(y)) d S_{y}+u(x) .
\end{aligned}
$$

where we have used facts

$$
\begin{aligned}
\left|\int_{\partial B(x, \varepsilon)} \Phi(x, y) \nabla u(y) \cdot \gamma d S_{y}\right| & \leq C \varepsilon \max _{\partial B(x, \varepsilon)}|\nabla u| \rightarrow 0 \\
\int_{\partial B(x, \varepsilon)} u(y) \nabla \Phi(x, y) \cdot \gamma d S_{y} & =\int_{\partial B(x, \varepsilon)} u(y) d S_{y} \rightarrow u(x)
\end{aligned}
$$

Theorem 3.2. (Green's function is symmetric with its two variables)

$$
G(x, y)=G(y, x)
$$

We give the main idea of the prove here. The technical point is the same as the proof of the above theorem. $\forall \varepsilon>0$ small enough such that $B(x, \varepsilon) \cup B(y, \varepsilon) \subset \Omega$, let $\Omega_{\varepsilon}=\Omega \backslash(B(x, \varepsilon) \cup B(y, \varepsilon))$. Notice that $G(x, z)=G(y, z)=0$ on $z \in \partial \Omega$,

$$
\begin{aligned}
0 & =\int_{\Omega_{\varepsilon}}\left(G(y, z) \Delta_{z} G(x, z)-G(x, z) \Delta_{z} G(y, z)\right) d z \\
& =\int_{\partial \Omega_{\varepsilon}}\left(G(y, z) \nabla_{z} G(x, z) \cdot \gamma-G(x, z) \nabla_{z} G(y, z) \cdot \gamma\right) d S_{z} \\
& =\int_{\partial B(x, \varepsilon) \cup \partial B(y, \varepsilon)}\left(G(y, z) \nabla_{z} G(x, z) \cdot \gamma-G(x, z) \nabla_{z} G(y, z) \cdot \gamma\right) d S_{z}
\end{aligned}
$$

We just take $\partial B(y, \varepsilon)$ as an example, the same discussion for the term on $\partial B(x, \varepsilon)$,

$$
\begin{aligned}
& \left|\int_{\partial B(y, \varepsilon)} G(y, z) \nabla_{z} G(x, z) \cdot \gamma d S_{z}\right| \leq C\left(\varepsilon+\varepsilon^{n-1}\right) \rightarrow 0 \\
& -\int_{\partial B(y, \varepsilon)} G(x, z) \nabla_{z} G(y, z) \cdot \gamma d S_{z}=\int_{\partial B(y, \varepsilon)} G(x, z) d S_{z}+o\left(\varepsilon^{n-1}\right) \rightarrow-G(x, y) .
\end{aligned}
$$

3.1. Half space problem. The half space we study here is $\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}$.
$\forall x=\left(x_{1}, \cdots, x_{n-1}, x_{n}\right) \in \mathbb{R}_{+}^{n}$, we call $\tilde{x}=\left(x_{1}, \cdots, x_{n-1},-x_{n}\right)$ is x 's reflection in the plane $\left\{x_{n}=0\right\}$.

We study the following boundary value problem

$$
\begin{aligned}
-\Delta u & =f, \quad \text { in } \mathbb{R}_{+}^{n} \\
\left.u\right|_{\partial \mathbb{R}_{+}^{n}} & =g
\end{aligned}
$$

Our goal here is to find Green's function $G(x, y)$ of this problem and write the solution by using formula

$$
u(x)=\int_{\Omega} G(x, y) f(y) d y-\int_{\partial \Omega} \nabla_{y} G(x, y) \cdot \gamma g(y) d S_{y}
$$

$\forall x \in \mathbb{R}_{+}^{n}$, the Green's function should be a solution of

$$
\begin{gathered}
-\Delta_{y} G=\delta(y-x) \quad y \in \mathbb{R}_{+}^{n} \\
\left.G\right|_{y \in \partial \mathbb{R}_{+}^{n}}=0 .
\end{gathered}
$$

The the Green's function of half space problem is easy to obtain, i.e.

$$
G(x, y)=\Phi(x, y)-\Phi(\tilde{x}, y), \quad x, y \in \mathbb{R}_{+}^{n}, x \neq y
$$

Then

$$
\frac{\partial G}{\partial y_{n}}(x, y)=\frac{\partial \Phi}{\partial y_{n}}(y-x)-\frac{\partial \Phi}{\partial y_{n}}(y-\tilde{x})=\frac{-1}{n \alpha(n)}\left(\frac{y_{n}-x_{n}}{|y-x|^{n}}-\frac{y_{n}+x_{n}}{|y-\tilde{x}|^{n}}\right)
$$

Therefore, $\forall y \in \partial \mathbb{R}_{+}^{n}$,

$$
\frac{\partial G}{\partial \gamma}(x, y)=-\frac{\partial G}{\partial y_{n}}(x, y)=-\frac{2 x_{n}}{n \alpha(n)} \frac{1}{|x-y|^{n}}
$$

Then the solution of boundary value problem can be represented by

$$
u(x)=\frac{2 x_{n}}{n \alpha(n)} \int_{\partial \mathbb{R}_{+}^{n}} \frac{g(y)}{|x-y|^{n}} d y, \quad \forall x \in \mathbb{R}_{+}^{n}
$$

which is called the Poisson formula of half space problem.
The function

$$
K(x, y):=\frac{2 x_{n}}{n \alpha(n)} \frac{1}{|x-y|^{n}}, \quad x \in R_{+}^{n}, y \in \partial \mathbb{R}_{+}^{n}
$$

is called the Poisson kernel for \mathbb{R}_{+}^{n}.
Theorem 3.3. Assume $g \in C\left(\mathbb{R}^{n-1}\right) \cap L^{\infty}\left(\mathbb{R}^{n-1}\right)$, u is defined by the Poisson formula. Then $u \in C^{\infty}\left(\mathbb{R}_{+}^{n}\right) \cap L^{\infty}\left(\mathbb{R}_{+}^{n}\right),-\Delta u=0$ in \mathbb{R}_{+}^{n} and $\forall x^{0} \in \partial \mathbb{R}_{+}^{n}$,

$$
\lim _{x \in \mathbb{R}_{+}^{n}, x \rightarrow x^{0}} u(x)=g\left(x^{0}\right) .
$$

Proof. $-\Delta u=0$ is easy to check. Notice that $\forall x \in \mathbb{R}_{+}^{n}$,

$$
\int_{\partial \mathbb{R}_{+}^{n}} K(x, y) d y=1
$$

Since $\forall x \neq y, K(x, y)$ is a smooth function in x, we know directly that $u \in C^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ and

$$
\Delta u(x)=\int_{\partial \mathbb{R}_{+}^{n}} \Delta_{x} K(x, y) g(y) d y=0, \quad \forall x \in \mathbb{R}_{+}^{n}
$$

For boundary condition, $\forall x_{0} \in \partial \mathbb{R}_{+}^{n}, \forall \varepsilon>0$, choose $\delta>0$ small enough such that $\forall y \in \partial \mathbb{R}_{+}^{n}$ and $\left|y-x^{0}\right|<\delta$, we have

$$
\left|g(y)-g\left(x^{0}\right)\right|<\varepsilon
$$

Then $\forall x \in \mathbb{R}_{+}^{n}$ and $\left|x-x^{0}\right|<\delta / 2$, we have

$$
\begin{aligned}
& \left|u(x)-g\left(x_{0}\right)\right|=\left|\int_{\partial \mathbb{R}_{+}^{n}} K(x, y)\left(g(y)-g\left(x^{0}\right)\right)\right| \\
\leq & \int_{\partial \mathbb{R}_{+}^{n} \cap B\left(x^{0}, \delta\right)} K(x, y)\left|g(y)-g\left(x^{0}\right)\right| d y+\int_{\partial \mathbb{R}_{+}^{n} \backslash B\left(x^{0}, \delta\right)} K(x, y)\left|g(y)-g\left(x^{0}\right)\right| d y \\
\leq & \varepsilon+2\|g\|_{L^{\infty}} \int_{\partial \mathbb{R}_{+}^{n} \backslash B\left(x^{0}, \delta\right)} K(x, y) d y \\
\leq & \frac{2^{n+2}\|g\|_{L^{\infty} x_{n}}}{n \alpha(n)} \int_{\partial \mathbb{R}_{+}^{n} \backslash B\left(x^{0}, \delta\right)} \frac{1}{\left|y-x^{0}\right|^{n}} d y \rightarrow 0, \quad \text { as } x_{n} \rightarrow 0+
\end{aligned}
$$

3.2. problem in a ball. We will give an exact formula for the Green's function in a ball. $\forall x \in B^{n}(0,1)$. We need that $G(x, y)=0, \forall y \in \partial B^{n}(0,1)$. Let \tilde{x} be the inversion of x, i.e. $\tilde{x}=\frac{x}{|x|^{2}}$, thus

$$
|\tilde{x}-y| \cdot|x|=|x-y|, \quad \forall y \in \partial B^{n}(0,1)
$$

and

$$
G(x, y)=\Phi(|x-y|)-\Phi(|y-x|)=\Phi(|y-x|)-\Phi(|x| \cdot|y-\tilde{x}|), \quad \forall y \in \partial B^{n}(0,1)
$$

Since Φ is the fundamental solution,

$$
-\Delta_{y} \Phi(|x| \cdot|y-\tilde{x}|)=0, \quad \forall y \neq \tilde{x}
$$

As a consequence,

$$
G(x, y)=\Phi(|y-x|)-\Phi(|x| \cdot|y-\tilde{x}|), \quad \forall y \in B^{n}(0,1)
$$

is called the Green's function on $B^{n}(0,1)$.
Now we will give the Poisson's formula for $B^{n}(0, r)$.

$$
\begin{aligned}
-\Delta u & =0, \quad \text { in } B^{n}(0,1) \\
\left.u\right|_{\partial B(0,1)} & =h .
\end{aligned}
$$

By Green's formula we have the solution is

$$
u(x)=-\int_{\partial B(0,1)} h(y) \nabla G(x, y) \cdot \gamma d S_{y}
$$

We will explicitly calculate this formula.

$$
\begin{aligned}
\nabla_{y} \Phi(y-x) & =-\frac{1}{n \alpha(n)} \frac{y-x}{|x-y|^{n}} \\
\nabla_{y} \Phi\left(|x|\left(y-\frac{x}{|x|^{2}}\right)\right) & =-\frac{1}{n \alpha(n)} \nabla_{y} \frac{1}{|x|^{n-2}\left|y-\frac{x}{|x|^{2}}\right|^{n-2}} \\
& =\frac{-1}{n \alpha(n)} \frac{1}{|x|^{n-2}} \frac{y-\frac{x}{|x|^{2}}}{\left\lvert\, y-\frac{x}{|x|^{2}}{ }^{n}\right.}=\frac{-1}{n \alpha(n)} \frac{y|x|^{2}-x}{\left[|x|\left(y-\frac{x}{|x|^{2}}\right)\right]^{n}} \\
& =\frac{-1}{n \alpha(n)} \frac{y|x|^{2}-x}{|x-y|^{n}}
\end{aligned}
$$

Where we have used the fact $y \in \partial B(0,1),|x| \cdot\left|y-\frac{x}{|x|^{2}}\right|=|x-y|$.

$$
\begin{aligned}
\left.\nabla_{y} G(x, y) \cdot \gamma\right|_{\partial B(0,1)} & =\left.\frac{-1}{n \alpha(n)}\left(\frac{y-x}{|x-y|^{n}}-\frac{y|x|^{2}-x}{|x-y|^{n}}\right) \cdot y\right|_{y \in \partial B(0,1)} \\
& =\left.\frac{-1}{n \alpha(n)} \frac{|y|^{2}-x \cdot y-|y|^{2}|x|^{2}+x \cdot y}{|x-y|^{n}}\right|_{|y|=1} \\
& =\left.\frac{-1}{n \alpha(n)} \frac{|y|^{2}\left(1-|x|^{2}\right)}{|x-y|^{n}}\right|_{|y|=1}=\frac{-1}{n \alpha(n)} \frac{1-|x|^{2}}{|x-y|^{n}}
\end{aligned}
$$

Thus the solution formula is

$$
u(x)=\frac{1-|x|^{2}}{n \alpha(n)} \int_{\partial B(0,1)} \frac{h(y)}{|x-y|^{n}} d S_{y}
$$

For problems on $B(0, r)$, by doing scaling $\tilde{u}(x)=u(r x), \tilde{h}(x)=h(r x)$, we will have the Poisson's formula

$$
\begin{equation*}
u(x)=\frac{r^{2}-|x|^{2}}{n \alpha(n) r} \int_{\partial B(0, r)} \frac{h(y)}{|x-y|^{n}} d S_{y}, \quad \forall x \in B(0, r) \tag{3.3}
\end{equation*}
$$

We call

$$
\frac{r^{2}-|x|^{2}}{n \alpha(n) r} \frac{1}{|x-y|^{n}}
$$

the Poisson's kernel for $B(0, r)$.
Theorem 3.4. If $h \in C(\partial B)$, then $u \in C^{\infty}(B),-\Delta u=0$ and $\lim _{x \rightarrow x^{0}} u(x)=h\left(x^{0}\right), \forall x^{0} \in \partial B$.

4. Maximum Principle

For more general equations. Let Ω be a bounded open subset of \mathbb{R}^{n}.

$$
L u=-\Delta u+c(x) u=f, \text { in } \Omega
$$

Theorem 4.1. (Weak maximum principle) Let $0 \leq c(x) \leq \bar{c}$ in Ω, if $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and Lu ≤ 0 in Ω, then

$$
\sup _{\Omega} u(x) \leq \sup _{\partial \Omega} u^{+}(x),
$$

where $u^{+}(x)=\max \{u(x), 0\}$.
Proof. Assume $L u<0$ in Ω. If $\exists x_{0} \in \Omega$ such that

$$
0 \leq u\left(x_{0}\right)=\max _{\Omega} u
$$

then

$$
-\left.\Delta u\right|_{x_{0}}+c\left(x_{0}\right) u\left(x_{0}\right) \geq 0
$$

which is a contradiction.
If $L u \leq 0$ in Ω, we introduce an auxiliary function

$$
w(x)=u(x)+\varepsilon e^{a x_{1}}
$$

where a is to be determined later, then we can choose a such that $-a^{2}+\bar{c}<0$, and

$$
L w=L u+\varepsilon e^{a x_{1}}\left(-a^{2}+c(x)\right)<0 .
$$

Our above discussion applies $\sup _{\Omega} w \leq \sup _{\partial \Omega} w^{+}$, then the results hold by taking $\varepsilon \rightarrow 0$.

Remark 4.1. If $c \equiv 0$, then $\sup _{\partial \Omega} u^{+}$in the theorem can be replaced by $\sup _{\partial \Omega} u$.
Remark 4.2. If $L u \geq 0$, then $\inf _{\Omega} u \geq \inf _{\partial \Omega}\left(-u^{-}\right)$.
We will consider the problem

$$
\begin{array}{rc}
-\Delta u=f, & \text { in } \Omega \\
u=\varphi & \text { on } \partial \Omega \tag{4.1}
\end{array}
$$

Theorem 4.2. If $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is a solution of (4.1), then

$$
\max _{\Omega}|u| \leq \Phi+C F
$$

where $\Phi=\max _{\partial \Omega}|\varphi|, F=\sup _{\Omega}|f|, C \sim n$, $\operatorname{diam} \Omega$.
Proof. Without loss of generality, let $x=0 \in \Omega$, let

$$
w(x)= \pm u+\frac{F}{2 n}\left(d^{2}-|x|^{2}\right)+\Phi
$$

then

$$
-\Delta w= \pm f+F \geq 0,\left.\quad w\right|_{\partial \Omega} \geq \Phi \pm \varphi \geq 0
$$

By comparison principle, we have $w \geq 0$ in $\bar{\Omega}$, which implies

$$
\max _{\Omega}|u| \leq \Phi+\frac{F}{2 n} d^{2}
$$

5. Variational Problem

We show in this part that the boundary value problem of Poisson equation is equivalent to a variational problem. Namely

$$
\begin{array}{rc}
-\Delta u=f & \text { in } \Omega \tag{5.1}\\
u=g \quad & \text { on } \partial \Omega
\end{array}
$$

is equivalent to the following problem in some sense,

$$
\begin{align*}
& J(u)=\min _{v \in M_{g}} J(v) \tag{5.2}\\
& J(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} f v d x \\
& M_{g}=\left\{v \in C^{1}(\bar{\Omega}) \mid v=g \text { on } \partial \Omega\right\} .
\end{align*}
$$

5.1. Dirichlet principle.

Theorem 5.1. (Dirichlet principle) Assume $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$, then u is a solution of (5.1) if and only if u is a solution of (5.2).

Proof. " \Rightarrow ". $\forall v \in M_{g}$, we choose $u-v$ as test function in (5.1),

$$
\int_{\Omega}-\Delta u(u-v)=\int_{\Omega} f(u-v)
$$

Integral by parts with boundary condition $u-v=0$ on $\partial \Omega$ shows

$$
\int_{\Omega} \nabla u \cdot \nabla(u-v)=\int_{\Omega} f(u-v)
$$

Equivalently,

$$
\int_{\Omega}|\nabla u|^{2}-\int_{\Omega} f u=\int_{\Omega} \nabla u \cdot \nabla v-\int_{\Omega} f v \leq \frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{1}{2} \int_{\Omega}|\nabla v|^{2}-\int_{\Omega} f v .
$$

Then we have

$$
\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} f u \leq \frac{1}{2} \int_{\Omega}|\nabla v|^{2}-\int_{\Omega} f v
$$

which implies directly that

$$
I(u) \leq I(v), \quad \forall v \in M_{g}
$$

" $\Leftarrow " \forall v \in M_{0}$, we have $u+\varepsilon v \in M_{g}$. Let $j(\varepsilon)=J(u+\varepsilon v)$, since u is a solution of (5.2), we know that $\left.j^{\prime}(\varepsilon)\right|_{\varepsilon=0}=0$, more precisely,

$$
\begin{aligned}
& \frac{d}{d \varepsilon}\left[\int_{\Omega} \frac{1}{2}|\nabla(u+\varepsilon v)|^{2}-\int_{\Omega} f(u+\varepsilon v)\right]_{\varepsilon=0} \\
= & \left.\int_{\Omega} \nabla(u+\varepsilon v)\right|_{\varepsilon=0} \cdot \nabla v-\int_{\Omega} f v=\int_{\Omega} \nabla u \cdot \nabla v-\int_{\Omega} f v=\int_{\Omega}(-\Delta u-f) v .
\end{aligned}
$$

These holds true for any $v \in C_{0}^{1}(\bar{\Omega})$. Thus u is a solution of (5.2).
$-\Delta u=f$ in Ω is called the Euler-Lagrange equation of variational problem (5.2).
In the 19th century, it is thought that variational problem always has a solution. But Weierstrass said sometimes the infimum couldn't be achieved by a function in the function set. Here is an example,

Example 1. (Weierstrass) Variational problem. Let $M=\left\{\varphi(x) \in C[0,1] \mid \varphi^{\prime}(x)\right.$ is continuous except finite discontinuity point of the first kind, and $\varphi(0)=1, \varphi(1)=0\}$. The functional is

$$
F(\varphi)=\int_{0}^{1}\left[1+\left(\varphi^{\prime}\right)^{2}\right]^{\frac{1}{4}} d x
$$

It is obvious that $\min _{\varphi \in M}(\varphi)=1$. In fact, we only need to prove $\forall \delta>0, \exists \varphi_{\delta} \in M$ such that

$$
I\left(\varphi_{\delta}\right) \leq 1+\delta
$$

where we can choose

$$
\varphi_{\delta}= \begin{cases}\frac{1}{\delta^{2}}\left(\delta^{2}-x\right) & 0 \leq x \leq \delta^{2} \\ 0 & \delta^{2}<x \leq 1\end{cases}
$$

On the other hand, we couldn't find any $\varphi \in M$ such that $I(\varphi)=1$. Otherwise, $\varphi^{\prime}=0$ a.e., then $\varphi \equiv C$, which contradicts with $\varphi(0)=1, \varphi(1)=0$.

Another fact is that even the boundary value problem (5.1) has a solution in $C^{2}(\Omega) \cap C(\bar{\Omega})$, it may not be obtained by solving the variational problem (5.2). Here is an example by Hadamard,

Example 2. $\Omega=B(0,1), f \equiv 0, \varphi(\theta)=\sum_{n=1}^{\infty} \frac{\sin n^{4} \theta}{n^{2}} \in C(\partial \Omega), 0 \leq \theta \leq 2 \pi$.
We know that (5.1) has a unique solution $u_{0} \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ with expression

$$
u_{0}(\rho, \theta)=\sum_{n=1}^{\infty} \frac{\sin n^{4} \theta}{n^{2}} \rho^{n^{4}}
$$

On the other hand we can prove that

$$
J\left(u_{0}\right)=+\infty
$$

In fact,

$$
\begin{aligned}
J\left(u_{0}\right) & =\lim _{r \rightarrow 1-} \iint_{\rho \leq r}\left|\nabla u_{0}\right|^{2} d x d y=\lim _{r \rightarrow 1-} \iint_{\rho \leq r}\left[\left(\frac{\partial u_{0}}{\partial \rho}\right)^{2}+\frac{1}{\rho^{2}}\left(\frac{\partial u_{0}}{\partial \theta}\right)^{2}\right] \rho d \rho d \theta \\
& =\lim _{r \rightarrow 1-} 2 \pi \int_{0}^{r} \sum_{n=1}^{\infty} n^{4} \rho^{2 n^{4}-1} d \rho=\lim _{r \rightarrow 1-} \pi \sum_{n=1}^{\infty} r^{2 n^{4}}=+\infty
\end{aligned}
$$

We call $H^{1}(\Omega)$ the Sobolev spaces such that

$$
H^{1}(\Omega)=\left\{u \mid u, D u \in L^{2}(\Omega)\right\}
$$

with norm and inner product

$$
\|u\|_{H^{1}}=\|u\|_{L^{2}}+\|\nabla u\|_{L^{2}}, \quad\langle u, v\rangle_{H^{1}}=\int_{\Omega} u v+\int_{\Omega} \nabla u \cdot \nabla v
$$

H^{1} is a Hilbert space. $H_{0}^{1}(\Omega)$ is the subspace of $H^{1}(\Omega)$, the completion of $C_{0}^{\infty}(\Omega)$ with H^{1} norm.
For bounded Ω with uniform cone condition, $H^{1}(\Omega)$ is compactly embedded in $L^{2}(\Omega)$.
$(-\Delta)^{-1}$ with homogenous Dirichlet boundary condition is a compact operator in $L^{2}(\Omega)$, since

$$
(-\Delta)^{-1}: L^{2}(\Omega) \rightarrow H^{1}(\Omega) \hookrightarrow \hookrightarrow L^{2}(\Omega)
$$

Definition 4. If $\exists u \in H_{0}^{1}(\Omega)$ such that

$$
J(u)=\min _{v \in H_{0}^{1}}\left(\frac{1}{2} \int_{\Omega}|\nabla v|^{2}-\int_{\Omega} f v\right)
$$

we call u is a solution of (5.2).
Definition 5. If $\exists u \in H_{0}^{1}$ such that $\forall v \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} f v
$$

then we call u a weak solution of (5.1)
Theorem 5.2. If $u \in H_{0}^{1}(\Omega)$, then u is a weak solution of (5.1) if and only if u is a solution of (5.2).

The proof of this theorem is left to readers.
5.2. Lax-Milgram. We first list the Lax-Milgram theorem from functional analysis, then prove the existence of weak solution of (5.1).

Theorem 5.3 (Lax-Milgram theorem). H is a Hilbert space, assume a (u, v) is a bi-linear mapping from H to \mathbb{R}, satisfies

- Bounded. $\exists M \geq 0$ such that $|a(u, v)| \leq M\|u\| \cdot\|v\|, \forall u, v \in H$.
- Coercive. $\exists \delta>0$ such that $a(u, u) \geq \delta\|u\|^{2}, \forall u \in H$.

Then for any bounded linear functional $F(v)$ on H, there exists a unique $u \in H$ such that

$$
F(v)=a(u, v), \quad \forall v \in H
$$

and

$$
\|u\| \leq \frac{1}{\delta}\|F\|
$$

Proof. For any fixed $u \in H$, Riesz representation theorem implies that $\exists A u \in H$ such that

$$
a(u, v)=(A u, v), \quad \forall v \in H
$$

The linearity of $A u$ in u is obvious due to the fact that $a(u, v)$ is linear in u. Furthermore,

$$
(A u, v) \leq M\|u\| \cdot\|v\|, \quad \Rightarrow \quad\|A u\| \leq M\|u\|
$$

Coercivity gives that $\forall u \in H$,

$$
\delta\|u\|^{2} \leq a(u, u)=(A u, u) \leq\|A u\| \cdot\|u\|, \quad \Rightarrow \quad\|A u\| \geq \delta\|u\|
$$

Thus A^{-1} exists. We claim that $R(A)=H$.
First $R(A)$ is closed. In fact, choose any Cauchy sequence $\left\{A u_{k}\right\}$ in $R(A)$, then $\lim _{k \rightarrow \infty} A u_{k}=v$. By coercivity, we have

$$
\delta\left\|u_{k}-u_{l}\right\| \leq\left\|A u_{k}-A u_{l}\right\|
$$

which means $\left\{u_{k}\right\}$ is also a Cauchy sequence in $H . \exists u \in H$ such that

$$
\lim _{k \rightarrow \infty} u_{k}=u
$$

Thus

$$
A u=\lim _{k \rightarrow \infty} A u_{k}=v
$$

If $R(A) \neq H, \exists w \neq 0$ in H such that

$$
(A u, w)=0, \quad \forall u \in H
$$

which contradicts with coercivity if we choose $w=u$. Thus $R(A)=H$.
For any linear functional $F(v)$ on H, by Riesz representation theorem, we have a unique $w \in H$ s.t.

$$
F(v)=(w, v)
$$

Let $u=A^{-1} w$, we have

$$
\|u\| \leq\left\|A^{-1}\right\| \cdot\|w\| \leq \frac{1}{\delta}\|F\|
$$

and

$$
F(v)=(A u, v)
$$

Theorem 5.4. For $f \in L^{2}(\Omega)$, there exists a solution $u \in H_{0}^{1}(\Omega)$ of (5.1).
Proof. Let the bilinear functional defined by

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v
$$

Then it is coercive

$$
a(u, u) \geq\|\nabla u\|_{L^{2}}^{2} \geq C\|u\|_{H^{1}}^{2}
$$

Lax-Milgram theorem implies that $\forall f \in L^{2}(\Omega)$, there exists a unique $u \in H_{0}^{1}(\Omega)$ such that

$$
a(u, v)=\langle f, v\rangle, \quad \forall v \in H_{0}^{1}(\Omega)
$$

5.3. Solvability of variational problem. ${ }^{* * *}$ Our goal in this subsection is to prove the unique solvability of variational problem (5.2).

Theorem 5.5. Solution of (5.2) in $H_{0}^{1}(\Omega)$ is unique.
Proof. Let $u_{1}, u_{2} \in H_{0}^{1}(\Omega)$ are two solutions of (5.2), i.e.

$$
J\left(u_{1}\right)=J\left(u_{2}\right)=m=\inf _{v \in H_{0}^{1}(\Omega)} J(v)
$$

then

$$
0=\frac{1}{2} \int_{\Omega}\left|\nabla u_{1}\right|^{2}-\frac{1}{2} \int_{\Omega}\left|\nabla u_{2}\right|^{2}-\int_{\Omega}\left(u_{1}-u_{2}\right) f
$$

Notice that fact

$$
\left|\frac{\nabla\left(u_{1}-u_{2}\right)}{2}\right|^{2}+\left|\frac{\nabla\left(u_{1}+u_{2}\right)}{2}\right|^{2}=\frac{1}{2}\left|\nabla u_{1}\right|^{2}+\frac{1}{2}\left|\nabla u_{2}\right|^{2}
$$

we have

$$
\begin{aligned}
\int_{\Omega}\left|\frac{\nabla\left(u_{1}-u_{2}\right)}{2}\right|^{2}= & \int_{\Omega} \frac{1}{2}\left|\nabla u_{1}\right|^{2}+\int_{\Omega} \frac{1}{2}\left|\nabla u_{2}\right|^{2}-\int_{\Omega}\left|\frac{\nabla\left(u_{1}+u_{2}\right)}{2}\right|^{2} \\
& -\int_{\Omega} u_{1} f-\int_{\Omega} u_{2} f+2 \int_{\Omega} \frac{u_{1}+u_{2}}{2} f \\
= & J\left(u_{1}\right)+J\left(u_{2}\right)-2 J\left(\frac{u_{1}+u_{2}}{2}\right) \leq 0
\end{aligned}
$$

which implies that

$$
\left\|\nabla\left(u_{1}-u_{2}\right)\right\|_{L^{2}}=0
$$

Poincare inequality gives

$$
\left\|u_{1}-u_{2}\right\|_{L^{2}}=0 \Rightarrow u_{1}=u_{2} \text { a.e. in } \Omega
$$

Lemma 5.1. (Friedrich inequality for $H_{0}^{1}(\Omega)$)

$$
\|u\|_{L^{2}(\Omega)} \leq 2 d\|\nabla u\|_{L^{2}(\Omega)}
$$

where $d=\operatorname{diam} \Omega$.
Proof. Let $u \in C_{0}^{1}(\Omega)$, without loss of generality assume

$$
\Omega \subset\left\{x \mid 0 \leq x_{i} \leq 2 d, 1 \leq i \leq n\right\}=\bar{Q}
$$

Let $\tilde{u}=\left\{\begin{array}{ll}u & x \in \bar{\Omega} \\ 0 & x \in \bar{Q} \backslash \bar{\Omega}\end{array}\right.$. It is obvious that $\tilde{u} \in C_{*}^{1}(\bar{Q})$, piecewise C^{1} function, and

$$
\left.\tilde{u}\right|_{\partial \bar{Q}}=0 .
$$

By Newton-Leibnitz formula

$$
\tilde{u}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\int_{0}^{x_{1}} \frac{\partial \tilde{u}}{\partial x_{1}} d x_{1}
$$

then

$$
\tilde{u}^{2}=\left(\int_{0}^{x_{1}} \frac{\partial \tilde{u}}{\partial x_{1}} d x_{1}\right)^{2} \leq x_{1} \int_{0}^{x_{1}}\left(\frac{\partial \tilde{u}}{\partial x_{1}}\right)^{2} d x_{1} \leq 2 d \int_{0}^{2 d}\left|\frac{\partial \tilde{u}}{\partial x_{1}}\right|^{2} d x_{1}
$$

Integration in Q gives

$$
\int_{Q} \tilde{u}^{2} d x \leq 2 d \int_{Q} \int_{0}^{2 d}\left|\frac{\partial \tilde{u}}{\partial x_{1}}\right|^{2} d x_{1} d x \leq 4 d^{2} \int_{Q}|\nabla \tilde{u}|^{2} d x
$$

Thus we arrive at

$$
\|u\|_{L^{2}(\Omega)} \leq 2 d\|\nabla u\|_{L^{2}(\Omega)}
$$

If $u \in H_{0}^{1}(\Omega)$, we can choose $\left\{u_{m}\right\}_{m=1}^{\infty} \subset C_{0}^{1}(\Omega)$ such that

$$
\left\|u_{m}-u\right\|_{H^{1}} \rightarrow 0, \quad m \rightarrow \infty
$$

and

$$
\left\|u_{m}\right\|_{L^{2}} \leq 2 d\left\|\nabla u_{m}\right\|_{L^{2}}
$$

our result can be obtained by taking $m \rightarrow \infty$.
Theorem 5.6. (Existence) $f \in L^{2}(\Omega)$, then (5.2) has a solution $u \in H_{0}^{1}(\Omega)$.
Proof. First we prove that $J(u)$ has a lower bound. In fact, by Hölder and Friedrich inequality,

$$
J(v)=\frac{1}{2}\|\nabla v\|_{L^{2}}^{2}-\int_{\Omega} f v \geq \frac{1}{2}\|\nabla v\|_{L^{2}}^{2}-\frac{1}{4}\|\nabla v\|_{L^{2}}^{2}-C\|f\|_{L^{2}}^{2} \geq-C(d)\|f\|_{L^{2}}^{2} .
$$

Let

$$
m=\inf _{v \in H_{0}^{1}(\Omega)} J(v)
$$

Let $\left\{v_{k}\right\}_{k=1}^{\infty} \subset H_{0}^{1}(\Omega)$ be a minimizing sequence such that

$$
J\left(v_{k}\right) \leq m+\frac{1}{k}
$$

We want to prove that $\left\{v_{k}\right\}$ is a Cauchy sequence in $H^{1}(\Omega)$, by using similar discussions to the uniqueness proof, for $k, l \rightarrow \infty$,

$$
\left\|\nabla \frac{\left(v_{k}-v_{l}\right)}{2}\right\|_{L^{2}}^{2}=J\left(v_{k}\right)+J\left(v_{l}\right)-2 J\left(\frac{v_{k}+v_{l}}{2}\right) \leq m+\frac{1}{k}+m+\frac{1}{l}-2 m \leq \frac{1}{k}+\frac{1}{l} \rightarrow 0
$$

Then there must $\exists u \in H_{0}^{1}(\Omega)$ such that

$$
v_{k} \rightarrow u \quad \text { in } H^{1}(\Omega)
$$

Taking limit in the energy, we have $J\left(v_{k}\right) \rightarrow J(u)$ and $J(u)=m$.

6. Energy Estimate

Energy methods for Poisson equation is easy. I will not talk about it here. But leave it as an exercise. The energy estimate also shows that $-\Delta u=f$ in Ω and $u=h$ on $\partial \Omega$ has at most one solution in $C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$.

7. Problems

(1) Try to derive energy estimates for Dirichlet problem of Possion equation.
(2) Modify the proof of the mean value formulas to show for $n \geq 3$ that

$$
u(0)=f_{\partial B(0, r)} g d S+\frac{1}{n(n-2) \alpha(n)} \int_{B(0, r)}\left(\frac{1}{|x|^{n-2}}-\frac{1}{r^{n-2}}\right) f d x
$$

provided $\left\{\begin{array}{ll}-\triangle u=f & x \in B(0, r) \\ u=g & x \in \partial B(0, r)\end{array}\right.$.
(3) We say $v \in C^{2}(\bar{\Omega})$ is subharmonic if $-\Delta v \leq 0$ in Ω.
(a) Prove for subharmonic v that

$$
v(x) \leq f_{B(x, r)} v d y, \quad \text { for all } B(x, r) \subset \Omega
$$

(b) Prove that therefore $\max _{\bar{\Omega}} v=\max _{\partial \Omega} v$.
(c) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and convex. Assume u is harmonic and $v:=\phi(u)$. Prove v is subharmonic.
(d) Prove $v:=|D u|^{2}$ is subharmonic, whenever u is harmonic.
(4) Let $B^{+}(R)=\left\{(x, y): x^{2}+y^{2}<R^{2}, y>0\right\}$, try to find the Green's function of the following problem

$$
\begin{cases}-\triangle u=f(x, y), & (x, y) \in B^{+}(R), \\ \left.u\right|_{\partial B^{+}(R) \cap\{y>0\}}=\varphi(x, y), & \\ \left.u_{y}\right|_{y=0}=\psi(x, 0), & -R \leq x \leq R .\end{cases}
$$

Furthermore, give the representation formula of solution.
(5) Ω is a bounded open subset of $\mathbb{R}^{n}, u(x)$ is a classical solution of

$$
\begin{cases}-\Delta u+c(x) u=f(x), & x \in \Omega \\ \left.(\nabla u \cdot \gamma+\alpha(x) u)\right|_{\Gamma_{1}}=\varphi_{1}, & \left.u\right|_{\Gamma_{2}}=\varphi_{2}\end{cases}
$$

where $\Gamma_{1} \cup \Gamma_{2}=\partial \Omega, \Gamma_{1} \cap \Gamma_{2}=\emptyset, \Gamma_{2} \neq \emptyset$.
If $c(x) \geq 0, \alpha(x) \geq \alpha_{0}>0$, try to prove the following estimate,

$$
\max _{\Omega}|u(x)| \leq C\left(\alpha_{0}, \operatorname{diam} \Omega\right)\left[\sup _{\Omega}|f|+\sup _{\Gamma_{1}}\left|\varphi_{1}\right|+\sup _{\Gamma_{2}}\left|\varphi_{2}\right|\right]
$$

(6) Try to get the Euler-Lagrange equation of the following variational problem

$$
J(u)=\min _{v \in M_{0}} J(v), \text { with } M_{0}=\left\{u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega}):\left.u\right|_{\partial \Omega}=0\right\}
$$

(a) $J(v)=\int_{\Omega}\left(\frac{1}{p}|\nabla v|^{p}-f v\right) d x, p>1$
(b) $J(v)=\int_{\Omega}\left(\frac{1}{2 m}\left|\nabla v^{m}\right|^{2}-f v\right) d x, m>0$
(c) $j(v)=\int_{\Omega}\left(\sqrt{1+|\nabla v|^{2}} d x+v^{p}\right) d x, p>1$
(7) If $u \in H_{0}^{1}(\Omega)$ is a weak solution of

$$
-\triangle u+u=f
$$

prove that u is a solution of variational problem

$$
J(u)=\min _{v \in H_{0}^{1}(\Omega)} J(v)
$$

where $J(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x+\frac{1}{2} \int_{\Omega} v^{2} d x-\int_{\Omega} f v d x$.
(8) Assume $f \in L^{2}(\Omega), \varphi \in H^{1}(\Omega), c(x) \geq 0$ and $c(x) \in C(\bar{\Omega})$, prove that variational problem

$$
J(u)=\min _{v \in M_{\varphi}} J(v)
$$

has a unique solution in $M_{\varphi}=\left\{u \in H^{1}(\Omega): u-\varphi \in H_{0}^{1}(\Omega)\right\}$, where

$$
J(v)=\frac{1}{2} \int_{\Omega}\left(|\nabla v|^{2}+c(x) v^{2}-f v\right) d x
$$

Furthermore, show that the solution of variational problem is a weak solution of

$$
-\triangle u+c(x) u=f \text { in } \Omega, \quad u=\varphi \text { on } \partial \Omega
$$

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China

E-mail address: lchen@math.tsinghua.edu.cn

