APPLIED PARTIAL DIFFERENTIAL EQUATIONS

MIDTERM EXAM
31 OCTOBER 2011

Duration (total): 90 minutes.
Family and first name: \qquad

Problem 1. Wave equation

$$
\begin{equation*}
u_{t t}-4 u_{x x}=0 \tag{0.1}
\end{equation*}
$$

(1) Derive D'Alembert formula with initial data

$$
\left.u\right|_{t=0}=\cos x,\left.\quad u_{t}\right|_{t=0}=x^{2}
$$

and for $x \in(0,+\infty)$ solve the half line problem of (0.1) with given data

$$
\left.u_{x}\right|_{x=0}=0, \quad t>0
$$

(2) $x \in(0,1), t>0$, using separation of variable solve the initial boundary value problem of (0.1) with given data

$$
\begin{aligned}
\left.u\right|_{t=0}=x^{2}-2 x, & \left.u_{t}\right|_{t=0}=0, \\
\left.u\right|_{x=0}=\left.u_{x}\right|_{x=1}=0, & t>0 .
\end{aligned}
$$

Problem 2. Find the unique weak entropy solution of the following Cauchy problem

$$
\begin{gathered}
u_{t}+(q(u))_{x}=0, \quad x \in \mathbb{R} \\
\left.u\right|_{t=0}=g(x)
\end{gathered}
$$

with

$$
q(u)=2-u^{2}, \quad g(x)= \begin{cases}0 & x \leq 0 \\ 1 & 0<x<1 \\ 2 & x \geq 1\end{cases}
$$

Draw the characteristic lines in (x, t) space and draw the graph of solution at $t=1$ in (x, u) space.

