7. DEFECTIVE BIFURCATIONS:
THE DOUBLE-HOPF CASE

e A double-Hopf bifurcation occurs when, at an equilibrium point, the
Jacobian matrix admits two pairs of complex conjugate, purely imaginary

. 1,1 . 2,2 .
eigenvalues AYY =tio, 1™ =tiw, .

e [f these pairs coincide, i.e. if @, =®,, a 1:1 resonant double-Hopf

bifurcation takes place.
e This kind of bifurcation has already been analyzed for a system admitting

two distinct eigenvectors associated with 4" =4 (i.e. to a system with a
diagonalizable Jacobian matrix). This 1s a non-generic case.

e [n the generic case, just one eigenvector 1s associated with the double

eigenvalue 4" =1 so that the system is defective (i.e. it has a non-

diagonalizable Jacobian matrix).
e Here, the MSM is applied to tackle defective double-Hopf bifurcations.



m A SELF-EXCITED NONLINEAR SYSTEM WITH NON-
SYMMETRIC STIFFNESS AND DAMPING
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m Linear stability of the trivial equilibrium: exact analysis

e Variational equation:
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e FEigenvalue problem:

By letting ox(1) = dxexp(At), 0 y(t) = 0yexp(At), a quadratic eigenvalue

problem follows:
A — uA+w’ 1 ox) (0
c—vA A+’ )\ 0y 0

» When, in particular, 4 =v=0=0:

A+o' 1 6x) (0
0 Z+a* )\65) |0
from which 4 =i® and ﬂém) =—i@, with one eigenvector,

(0x,09)=(1,0) (two eigenvectors (1,£iw,0,0) in the state-space).

» A defective double-Hopf bifurcation occurs at the origin O of the
(4,V,0) -parameter-space (codimension-3)



e Characteristic equations for 4 =A(u,v,0):
AV =+ @0 Y A +@°)+vAi—-0=0
e Boundaries of the stability region:

We look for the locus of the (,V,0) -points at which Re(4)=0. By
requiring A=if, f€ R, two conditions follow:

(8-’ =0, Pl -a*)+v]=0

from which, eliminating IiE

V:i,u\/g

This 1s a codimension-1 manifold in the three-dimensional parameter space.



(i, tiw,)

v =0

Linear stability diagram for defective double-Hopf bifurcations: (a) 3D-view of the critical
manifold; (b)-(d) sections ;@ =1



m Linear stability of the trivial equilibrium: perturbation analysis

The stability analysis of the trivial equilibrium is repeated, as an example, via
evaluation of the eigenvalue sensitivities.

e Rescaling:
(u,v,o) > e(U,v,o)

e Characteristic equation:
AV +@*) —UAAX +@°)+0-vA)]=0

® Series expansion
When € — 0, then 4 — *iw, i@ . A fractional power series expansion must

be used:

A=A+ +el,+& A+



e Perturbation equations:

& (A +w*)=0

£ (A2 + @A A =0

g (A +@)AAA =248 BA + @)+ (A + @) A pu+0 -V
£

A+ @M )AAA, = A A — A4 A BAE+ @) + BAL + @) Au— Ay

e Generating solution:
A, =iw

(the solutions generated by A, =—i@ is obtained by complex conjugation).

o £ order:
trivially satisfied



e solvability at € -order:

4@’

e solvability at £"* _order:

Aty =4 (=i

Two cases arise:

(a) generic perturbation, in which o and v do not vanish simultaneously
(4 #0).

(b) singular perturbation in which o and v vanish (4, =0). € -solvability
1s trivially satisfied!



» generic perturbation:

1 o 1
W2+~ J-o+iov, A =—i +— U,
A 20 & s’ 4"
from which, after reabsorbing €
A% =i+ o timy +l,u —i 63
20 4 8w

not valid closeto 0 =0,v=0.

» singular perturbation:

An ordering violation occurs, since the leading term vanishes. An
integer power expansion would be necessary. Not an efficient
procedure!



» Reconstitution method:

A uniformly valid expression is built up, recombining in a whole all the
solvability conditions:

Aﬂ:ﬂ—ﬂo:81/221+8ﬂ2+83/22.3+~-
AL =el>+28 AN, +-+-

1
=£ —o i) +2" A (=2t = 1) =
4a)2( ) Al S’ 4ﬂ)
e (—o +iav)+ 2AA(=i-Z+ L )]
4@’ S’ 4”

After reabsorbing £, a reconstituted sensitivity equation is obtained:

o
AL+
Aoy’ )

1
A +(—u—i o—iov)=0
(2ﬂ l 4(02( V)
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e Asymptotic expression for the critical manifold
On the critical manifold Re(4) =Re(AA) =0. In order that AA=if:

o}

23 B— =0, v==-2aupf

2
+ —
p 4 4w’

By eliminating g

V= u(i\/g\/H 166(04 +0)= J_ru\/g+0(,u0')

which recovers the exact result to within an error of order O(£”) , not
accounted for in the analysis.
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m Nonlinear, multiple-scale bifurcation analysis

We investigate the dynamics of the nonlinear system around the bifurcation
point.

® Rescaling:
By introducing the rescaling:

1/2

(u,v,0) > e(W,v,o), (x,y)—>&(x,y)

the equations read:

[k’j_{wz lj[xj_i_ —Ux—b(y—x)(y— x)’ —c(y— x)’ _[Oj
y 0 o )\y ox—vi+b(y—x)(y—x) +c(y—x) 0
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e Fractional series expansions:

(x(t;g)j _ [xo(to,tl,...)j+81/2(xl(to,tl,...))+8£x2(to,t1,...))+83/2[x3(t0,t1,...)j_l_m
y(5;€) Yoltostys o) Yty ty500) Yo (tgsty5+0) AN D)
where 7, = €2 (k=0,1,--). By applying the chain rule:

1/2

i:d0+g d+ed,+&"”d+-

dz
d2
Frcie d;+2&"%d,d,+e(d;+2d,d,)+2&"*(d,d,+d,d,)+-
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e Perturbation equations:

[ 12 2
. .<d0x0+a) Xyt Yy, =0
d; y,+@’y, =0

\

. d; x, +@’x, +y, =-2d,d, x,

dg V1 +w2)’1 =-2d,d, y,
(d2 x, +@*x, +y, =—(d*+2d,d,)x, —2d,d, x +ud, x,
+b1x§ do X0 +bo(yo _xo)z(do Yo _do x0)+c(y0 _Xo)3

d(z) Vs +6()2y2 = _(d12+2d0 d,)y,—2d,d, y—ox,+vd, x,

+b2y§ do Yo +_bo(yo _xo)z(do Yo _do xo) _C(yO _x0)3

(continue)
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(A2 x, + @’ x, + vy, ==2(d, d,+d, d,)x, —(d>+2d,d,)x, —2d, d, x,
+u(d, x, +d, x,)
+b1[x§ d, x, +d, x,)+2x,x,d, x,]
+b0{(yo _xo)z[(dl(yo _x())+d()(y1 _x1)]
+ 2()70 _xo)(y1 _x1)do(yo _x())]
32 . +3c(y0—x0)2(y1—x1)
d(z) Vs +a)2y3 =-2(d,d;+d,d,)y, —(d12+ 2d,d,)y, —2d,d, y,
+v(d, x, +d, x,)
+b2[y§(d1 Yo +do YD) +2y,y,dg vl
_bo{(yo _xo)z[(dq(yO _xo) +do(y1 _x1)]
+2(y() _xo)(y1 _x1)d0(y0 _x())]
_3C(yo _xo)z()ﬁ —X)

oooooo
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e (Generating solution:

The generating equation admits the general solution:

r

[ l i
Xo = A(fl,fz,fg,"')€M°+%B(tl,t2,t3,---)toewt°'+c.c

\yo — B(tl,tz,t3,'")eiwto‘l‘C.C.

with (A, B)e C. To eliminate secular terms, B =0 must be taken; therefore:
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® Higher-order equations:

They are, at any order, of the following type:

(12 2 _ iket,
dyx, +@°x, +y, = Z fne "t
k=13,

d; y,; +a)2yj — Z g e +c.c.
\ k=13,

with (f,.,g ;)€ C constant on the ¢, -scale.

e Higher-order solutions:

Solutions are harmonic and polynomial-harmonic. By 1gnoring these latter
(secular terms), we let:

(xj’ y]) = Z(),e]ka 5\7jk)eik6m0 + C.C.
k
from which an algebraic problem follows:
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a)z(l—kz)fcjk +y, =1
wz(l_kz)j}jk = 8 jk

» if k #1( non-resonant forcing terms) the equation are non-singular and
therefore they admit an unique solution:

()Ac I S 1
Jk (1—/(2)(()2 (1_k2)2w4
3
5 = 8k
Jk (l_kZ)a)Z

\

» If k =1( resonant forcing terms), the equations are singular, and
therefore call for a compatibility (or solvability) condition:

i1~ 0
If this holds, they admit infinite solutions:
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x,=C
A vCeC

yjlzfjl

However, since Cexp(iar,) +c.c. repeats the generating solution, C =0

1s taken:
fcﬂ =0
5\}1'1 — fj
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1/2
e & " -order:

» equations:

d; x, +’x, +y, =-2iwd, Ae'+c.c.

@ty =0

» solvability condition:
automatically satisfied

> solution:

x, =0
y, ==2iwd, Ae"" +c.c.

whiled; A remains undetermined at this order.
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® c-order:
» equations:

where:

|

far
821

H

{dé X, +@W’x, +y,=fo, €+ f,, e’ +c.c.

U
—0 +ioV

2 2 it Jiot,
dyy, +@°y, =g, e "+ g, "+cc.

]A+

—3c—iw(b,+b)) ,- (2w 1)
_ AA- d, A- d A
3c+iwb, 0 4@’

I _ —c—iw(b, +b,) A
2, c+iwb,

» solvability condition:

By requiring &,, =0, it follows:

& A=

1

0)2

[(—0 +i@v)A+(B3c+iwb,)A’A]
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> solution:

By substituting d’ A, f>; is updated as follows:

fo = 4;2 {[(c—iov+4iw’ 1)A

—3(1+4w*)c+iwb, +4iw’ (b, +b)]A*A—S8iw’ d, A)

and the solution reads:

e

1

= [c(8w® —1) —ib,@+8ia’ (b, +b)]A’ e +c.c.

1y, = 41 —{(0—iov+4i0’ 1) A—[3(1+ 4@ )c +iwb, + 4iw’ (b, +b,)]A* A
Q
8iw d, Ayen— D g3 on

0,
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3/2
e & " -order:
» equations:

(d2 x, + 0’x, + y, = NRT
Y, @y, =2i{[4a)3u+a)v—ia+2a)b0
)
< 8w’ (2b, +b,)+3ic(1+4w*)|AAd, A

Hb,w— 4w’ (2b, +b,) +3ic(1+4w°)]A*d, A
~-16w’d, d, A+4iw d’ A}e+c.c.+ NRT
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» solvability condition:

The resonant terms contain d; A. By expressing it as d, (d12 A) and using
the e-order compatibility, it 1s expressed as:

d’ A=——[(-o+iwv)d, A+2QBc+iwb,)AAd, A+ (3c+iwb,)A>d, A]

w2
The € -order compatibility then supplies:

1

3

did, A= (Qao’u-io)d, A+[6ic(1+20%)— 4w’ (2b, + b )]AAd, A

+[3ic(1+2w*) - 2> (2b, + b,)]A* d, A}
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e Reconstitution:

2
(:1;24 =(ed;+2£"%d, d,+--)A

By reabsorbing the perturbation parameter, a second-order complex
bifurcation equation follows:

A=

[(—o +iwV)A+(Bc+iwb,)A*A]

(()2

_|_

(e’ u—-io)A

0)3
H6ic(1+20°) — 4@* (2b, +b)|AAA +[3ic(1 + 20°) — 2° (2b, + b, )]A*A}

which is equivalent to a four-dimensional system in real variables.
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e Real form of the bifurcation equation:

Using the polar form A(¢) := a(t)e”/ 2, it follows:

» three RAME:
a=u
quU=- 42;2 a+ %,uau + P ay + ay’+ 1632)2 a’ —%(2190 +b)a’u— 1632)3 (1+20))a’y
\ag'ﬂ = ﬁa — 423 au — 2uw+%,uaw+ 160(() a’+ 1692)3 (1+2w0*)a’u —%(Zbo +b)a’y
» one phase equation: |
b=y

with a the real amplitude, u i1ts velocity and y the instantaneous
frequency correction, 1.e. Q(f) =w+Wy(t).
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® Response:

\

( Sw” —1
x=a(t)cos[P(r)]|+
() cos[DP(7)] YT

ca’(t) cos[3D(1)]

1

+ 256(()3 [bo —8w (bo +b1)]a (t) Sln[3CI)(t))] L.

y = [20a(t) + <L — pw)a(r)

+H2way (t) + —[—b + (b +b)]a’ (t)]}sin[P(¢)]

o
+ 2
4

b
’ 3P g’
~a’ (1) cos[3P(1)] 6o

320

where ®(r) =@t +6(t) is the total phase.
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m Steady solutions and their stability

The steady motions are the fixed points (a,u,¥) =(a,,0,¥,) of the
bifurcation equations. They are solutions of:

-

3c 3c

16w’

a[—6+6w+w2+
] 4 4"’ T
bO

16w

(1+2w*)a’y,1=0

2
a, —

v 1 , 1 5
al|l—+— + a. ——(2b,+b,)a =0
| s[4a) 2ﬂWs s 8( 0 1) SWS]
» Trivial solution a; =0,V y,,V(l,v,0): equilibrium of the original
system.
» Non-trivial solutions (a,,¥,): periodic motions of amplitude ¢» and
frequency Q, =@+, . By eliminating ¥», a cubic equation in a; is

obtained, so that from zero to three (non-trivial) real solutions exist in
each point of the parameter space.
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® Periodic motion:

-

+

N

+

\

1

o)

4

C

2

x=ap,cos[P,(®)]+ YT

256’

vV 1
=(——-Uw)a,+{2wa ¥y, +—[—
Y (40) Hw)a, +{200,Y, a)[32

2

Sw”* —1
0)4

ca;, cos[3D,(1)]

[b, — 8" (b, +b))]a’ sin[3® , (1))]+-

S b +%(bo +b)]a3 ]} sin[®, (1)]

a, — %c(l + 4(02)a2,] cos[®,(7)]

a;, cos[3®, (1)]+ o a,cos[2® ,(¢)]sin[P ,(1)]+--
16w

where @, (1) =(w+y,)t+6,.
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e Stability of the steady solutions:

> Trivial solution:

Since ¥r is undetermined, it is convenient to resort to the variation of
the complex bifurcation equation:

1
4qy’

1

2

SA-

Qw1 —ic)dA+— (0 —iwv)SA=0

By letting 0A(t) = SA exp(A 1), its associated eigenvalue problem reads:

1

A —
4ay’

Qo' u—ioc)A+

~(0—iwv)=0
0,

Since this coincides with the reconstituted sensitivity equation, A=AA .
Hence, the trivial solution loses stability on the critical manifold, where

Re(AA) =0. Here, one ore more P-solutions bifurcate.

QO Note: Multiple Scale analysis includes sensitivity analysis.
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» Non-trivial solutions.
The variation of the real bifurcation equations reads:

oa oa
ou |=J,| ou
oy oy

where:
J,=0, J,=1 J;=0,
1
J,, :@{%[w—wp (1+20")]a, +4lo(y, - )+ 4y,0’],

1
6@’

1
Top =140 =302, +b)all,J,, = 1 [<3c(1+20%)a) +4(0 +8@'y, )a, ],

Jy = e {4V +2auy ) +3[b, — (2b, + b)Y la,,
p
1 1
Iy = [9c(1+20")a; — 4o +8&'y ), J,, :§[4ﬂ—(2b0+bl)a§,]

P

Stability is governed by the eigenvalues of Jp.
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m Parametric analysis

The bifurcation diagram would require plotting ¢p and/or ¥», versus the
bifurcation parameters (£,V,0) . Three- or bi-dimensional sections are built-
up. Three systems analyzed:

» (S1) system: no damping and hardening elastic coupling,
by=1,b=0,c=1,0=1.

» (S2) system: large damping and hardening elastic coupling,
by=1,b=10,c=1,0=1.

» (S3) system: large damping and softening elastic coupling,
b,=1,b,=10,c=-5,0=1
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e System (S1):
» Sub-critical bifurcation
» All the surface branches are unstable.

0.10

045 \

010

(©)
Bifurcation diagrams for defective double-Hopf bifurcations, b, =L b, =0,c=1,w=1; (a)v =0,
(b) v=0.05, (¢) 0=0.03 (—stable, --- unstable)
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e System (S2):
» Folding of the surfaces; multivalued responses.
» Most of the surface branches are unstable. Lower, multivalued
responses are stable, up-to turning points 7.

Bifurcation diagrams for defective double-Hopf bifurcations, b, =1, 5, =10,c =1, =1; (a)
V=0, () v=0.03, (c) 0=0.08 (—stable, --- unstable)
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e Numerical integrations for system (S2)

Response at point A of the previous figure.

|||||||||||||||

55 N MHMMMM 2
wl

(a) (b)
Numerical time-histories in the over-critical bifurcation region: (a) amplitude, (b) original

configuration variables; b, =1, b, =10,c=l,@=1; v=0,0=0.08, £ =0.05




e System (S3):
» Super-critical bifurcation; multivalued responses.
» Branches originating from the lower (upper) part of the critical
manifold are stable (unstable).
» Occurence of Hopf bifurcations (at H,K): quasi-periodic motions arise.

(c) (d)

Bifurcation diagrams for defective double-Hopf bifurcations, &, =1, b, =10,c =-5,@ =1 (a)
v=0, () v=0.03,(c) 0=0.05, (d) 0=-0.05, (e) #=0.10 (—stable, --- unstable)
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e Numerical integrations for system (S3)

af al
030 - L
[ 03

0.2

0.1

Numerical time-histories close to point A of previous figure; initial conditions:
a(0)=0.2846, u(0) =0 and (a) ¥ (0)=-0.27 (b) w(0)=-0.25; b,=1,b,=10,c =-5,0=1;
v =0.03,0=0.05, £ =0.30,



