6. DEFECTIVE BIFURCATIONS: THE DOUBLE-ZERO
CASE

e If the Jacobian matrix 1s not-diagonalizable, an incomplete set of critical
eigenvectors exist. The bifurcation is said to be defective.

e For example: if 4=0 is a double root, just one real eigenvector exists; if
A=xiwis a double root, just one pair of complex conjugate eigenvectors
exists.

e The basis for the state-space must be completed by generalized eigenvectors.
e Defective bifurcations require using special multiple scale algorithms, in

which fractional power expansions of both state-variables and time-scales
must be used.



EXAMPLE: THE VAN DER POL-DUFFING OSCILLATOR
UNDERGOING DOUBLE-ZERO BIFURCATION

X—UX—VX+bx’x+cx’ =0

e Characteristic equation of the Jacobian matrix at the trivial equilibrium
position:

A —Au-v=0

e Linear stability diagram:
»positive V -half-axis: A,= v
»negative V -half-axis A, =% |V|
»whole 4 -axis: 4, =0,u

» A double-zero bifurcation takes place at the origin of the (4,V) -plane as
a degenerate Hopf bifurcation, whose critical frequency approaches zero.
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Linear stability diagram for the Van der Pol-Duffing oscillator, undergoing a double-zero
bifurcation

0 Note: The double-zero bifurcation 0° is not a double-divergence (0,0)
bifurcation! It occurs at the intersection of a divergence and a Hopf
manifold. It is a static-dynamic interaction phenomenon.

0 Note: While in the (0,*i®) case the Hopf boundary exists on both sides

of the divergence boundary, in the 0% case it dies at the intersection.



EXAMPLE: A THREE-DIMENSIONAL DYNAMICAL SYSTEM
UNDERGOING DOUBLE-ZERO BIFURCATION

We couple the Van der Pol-Duffing oscillator with a (stable) visco-elastic,
non-inertial device:

56—,u)'c—Vx+bx25c—cl(y—x)3 =0
y+ky+c,(y—x)' =0 k>0

® Rescaling:

1/2

(U, v) > (&,ev), (x,y) > 7°(x,y)

from which:
{)’é+8[—,Lt5c—l/x+bx25c—cl(y—x)3] =0

)'1+ky+€cz(y—x)3 =0



m Failure of the integer power expansion
We will show that integer power expansions do not work for defective
system.

e Standard series expansions:
xX(; € X, (t,,t,,t,,"*) x,(t,,t,t,, ) X, (t,,t,t,, )

(( >j:(0012 ]_'_8(1012 ]"‘82(2012 T
y(t;€) Yoty 11515, +7) Nttt 0) Yo (g, 115550 0)
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%=d0+gd1+82d2+---, %=d§+2£dodl+£2(df+2d0d2)+---

where , == €t, and d, =9/, .



¢ Perturbation equations:

80‘{ d(z)xozo
d, y, +ky,=0

{ d; x, =-2d,d, x, +ud, x, +vx, —bx; d, x,+c,(y, — x,)’
€ .

dy y, +ky, =—d, y, —¢c,(y, _xo)3

e General solution of the zero-order equations:
—k
Xo = alt, by, ) +1.8 (1,1, ), ¥y =&, (t,t,,-)e "

To avoid secular terms, we take g,(,%,,--) =0; since y(¥) decays, we take
g,(t,t,,---) =0, Therefore, the generating solution is:

X,=a, y,=0



® £ -order equation:

2 _ . 3
d, x, =va—ca

3
d, y, +ky, =c,a
e £ -order solution:

x1=(Va—c1a3)tO+f(tl,f2) = limx, =o0
1 [es)

00—

Secular terms cannot be removed !!! The asymptotic expansions break down.



m Employing fractional power expansions

We adopt (fractional) powers series expansions of € 2 for the variables:
[x(t;é')] _ (xo(to,tl,..-)]_l_gm (xl(to’tl’”')]_i_g[xz(foatp”‘)]
y(t’g) yo(t(ptla'“) yl(t()atla"') yz(t()atp'”)
432 £x3(t0’t1"")]+82 £x4(to’t1a“')j+
y3(t()7t17°”) y4(t09t17'“)
and fractional time-scales:

I, =1,1, =€1/21‘,l‘2 = &1 ,1, :83/21‘, 1, — %t

Chain rule:

d

i d,+e”d+ed,+e?d,+e°d,+-
d2

e =d;+2&"*d, d,+e(d;+2d,d,)+2e"*(d,d,+d,d,)+&(d5+2d,d,+2d,d;) +-



¢ Perturbation equations:
o [ dix, =0
dy ¥y +hy, =0
n | dix=-2d,d, x,
dg v +hy ==d, yy
. d2 X, =—(d2+2d0d2)x0—2d0 d, x, +ud, x0+Vx0—bx02 d, xo+cl(yo—xo)3
} { dy v, +ky, ==d, ¥, =, (3 = %))’
d(z) x, =-2(d,d;+d, d,)x, —(d;+2d,d,)x, —2d,d, x, + x(d, x, +d, x,) +Vx,
—b[x;(d, x, +d, x,)+2x,x,d, x, 14 3¢, (y, — x,)° (¥, — X,)
dy v, +ky, ==d; y—d, ¥ —d, ¥, =36, (0 = x%) (3 = X))
dé x, =-2(d,d,+d, d,+d})x, —2(d,d,+d, d,)x, —(d’+2d,d,)x, —2d, d, x,
+u(d, x,+d, x, +d, x,) +vx,

3/2

tn

- —b[(d, x, +d, x, +d, x,)x. +2(d, x, +d, x,)x,x, +(d, x,)x +2d, x,%,%,]
| #3002 (0 =) +36, (3 = %) (3~ x)’

do ¥y +hky, =—d, y,—dy ¥, —d, y—d,

L 36,00 %) (3, = %) =36, (g — X)) — X))’




e Generating solution:

1/2
e & " -order:

»equations:

> secular terms: absent

> solution:

x, =0, y =0
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e & -order:

»equations:

2 2 3
d,x,=—d;a+va—ca

3
d, y, +ky, =c,a
> elimination of secular terms:

d’a=—ca’ +va
> solution:

C
— 2 3

k
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3/2
e & " -order:

»equations:
d; x,=-2d,d,a+(u—-ba’)d, a

C,

d, y, +ky, :—3;612 d,a

» elimination of secular terms:
2d,d,a=(u—ba’)d,a

> solution:

x =0, y, =—3%a2 d, a
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2 .
e £ -order equation:

»equations:

-

e

d;x, =—d;

\do v, +ky, = NRT
» elimination of the secular terms:

C) Cz

d2a+2d d,a=(u~- ba’ )d,a+3——= P
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e Reconstitution method and parameter reabsorbing:

2
%a =" d,+ed,+&*d,+e7°d, +
t
=[ed’+2£"%d, d,+€°(d5+2d,d,) +]a
= e(—c,a* +va) +e(u—-ba* )€ d, a+ed, a+ ) +36 T2a -

C,C, s
lza +...

==&(—c,a’ +va)+e(u—ba’)a+3¢€’

where all the approximations are consistent with the order of the analysis. By
multiplying by €' and using €"°a —>a, &(u,v) — (K,v), the bifurcation

equation follows:

C,Cy

d—pa—va+ba’a+ca’ -3 a’ =0
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® Motion of the original system:

x(t)=a(t), y(t)= %a(rf —%a(r)za(r)

Q Note: The MSM filters the fast dynamic. In the double-zero bifurcation, no
fast dynamics occurs, since the frequency involved, i, is close to zero.

a Note: If the contribution of the passive coordinate y 1s neglected, the
bifurcation equation reduces to the Van der Pol-Duffing equation:

d—Ma—va+ba’a+ca =0
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m Steady solutions

¢ Fixed points:
The equilibrium positions of the original system are the fixed points
a = a, = const of the bifurcation equation (y neglected):

(T): a, =0, V(u,v)
(B): v=ca,, Yu
where:

® (7) 1s the trivial equilibrium, existing on the whole parameter-plane;

® (B) 1s the buckled (non-trivial) equilibrium;

e The two solutions intersect along the (4 -axis. The static bifurcation is a
pitchfork; if ¢, >0 it is super-critical, (i.e. (B) exists when v >0); if
¢, <01t is sub-critical, (i.e. (B) exists when v <0).
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e Stability of the 7-solution s governed by:

od—pda—voa=0
(already discussed).

e Stability of the B-solution is governed by :
dd+(ba, — u)oa+(3c,a, —v)da=0
1.e.:

Si+(Zv— )i+ 2v8a=0
C

1

»the B-solution cannot undergo further static bifurcations.

»the B-solution suffers a dynamic bifurcation, when:

y=Gy
b

1.e. along a straight line 7, from the origin..
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e Numerical integrations

z(t) o

:MMM . A mmmmmm

N s

Motions around: (a) a stable 7-cycle (u# =.01,v =-.01)and ) un unstable B-cycle
(t=0.045,v=0.0D; b=1,¢, =2

® For the system considered:
» The limit cycles bifurcating from the 7- solutions are super-critical and

stable; they are symmetric.
» The limit cycles bifurcating from the B- solutions are sub-critical and

unstable; they are non-symmetric.
» The unstable B-cycles live in a narrow region. At 7, they collide with the
trivial equilibrium point and disappear (homoclinic bifurcation).
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