STATIC BIFURCATIONS OF
LOW-DIMENSIONAL
SYSTEMS

Scope:
¢ To study static bifurcations of simple systems, exhibiting behaviors
commonly encountered in more complex systems.
¢ To introduce the concept of imperfections and robustness of a bifurcation.

® To show how the Multiple Scale Method works as a reduction method,

alternative to the Center Manifold Method.



Outline:

1. Codimension-1 static bifurcations
2. Imperfection sensitivity

3. Multiple scale analysis of a sample systems



1. CODIMENSION-1 STATIC BIFURCATIONS

m One-dimensional, one-parameter dynamical system

x=F(x,u) xeR ueR

» Critical equilibrium point (x,)=(0,0):

F(0,0)=0, J:=F.(0,0)=0

» Equation of motion expanded around the critical point:
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m Generic case: fold bifurcation

F,#0 F,#0
At the lower-order, the equation reads:

1
x=F;y+5Fx3x2

or, after a change of variable:
X=p+cx’

The equation describes a fold(or saddle-node) bifurcation. The critical point is
called a turning or limit point; here a catastrophic bifurcation takes place.
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m Non-generic case: bifurcations from a known path

» We introduce, as further assumption, that the system admits the trivial
equilibrium path x1=0 V u (fundamental path), i.e.:

F(0,u)=0 Yy
» By successive differentiations and evaluation at u=0, it follows:
0 _ 0 __ _
Fy=Fy==0
» Equation reduces to:

.1 1 1
xZEFxg x° +8F0 X+ +F, xy+5Fx‘Lﬂ X+ ...
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» We analyze two cases:

(a) Transcritical bifurcation: F, # 0 (non-symmetric systems)

(b) Fork bifurcation F xg =0, F xgx # 0 (symmetric systems)



e Transcritical bifurcation:
F,>0, F,#0
At the lower-order the equation i1s equivalent to:
X=Ux+cx’

Therefore two equilibria exist at the same u: x, =0, x,, =—g/c, which
coalesce at u=0. This 1s called a transcritical bifurcation.
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O Note: An exchange of stability occurs at the bifurcation, between the
fundamental and bifurcated paths.



e Fork bifurcation:
F,>0, F,=0, F, #0
At the lower-order, the equation 1s equivalent to:
X = tx+cx’

One or three equilibria exist at the same u: x, =0V and Xvr = t—H/C for
u/c<0. This 1s a fork bifurcation, super-critical if ¢<0, sub-critical if c>0.

c<0 c>0

QO Note: An exchange of stability occurs at the bifurcation point.



2. IMPERFECTION SENSITIVITY

We assume that the system, additionally, depends on a small imperfection
parameter 1, accounting for uncertainties in modeling, i.e:

x=F(x,u;m) xeR,ueR,neR
By expanding for small # and retaining only the leading-order term:
x=F(x,1;0)+n[F, (0,0,0)+xF,, (0,0;0)+ uF,, (0,0,0)+--]+---
= F (x, 4t)+1F, (0,0;0) +O(nx, 7u)
Therefore, the imperfections just add a constant to the bifurcation equations

of the relevant perfect system.

The perfect bifurcation 1s said:
» structurally stable, if it persists under imperfections;

» structurally unstable, if it does not persist under imperfections.



e Imperfect fold bifurcation:
X=U+cx’+7

» Bifurcation diagram:

By projecting the equilibra x; = i\/ —(4+1)/ ¢ on the (u,x)-plane:

» The bifurcation diagrams relevant to different #’s are all equivalent.
Therefore, the fold bifurcation is structurally stable.



e Imperfect transcritical bifurcation:
X=Ux+cx’ +n

» Bifurcation diagram:
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o The bifurcation diagram exhibits fold bifurcations that, for a suitable
sign of #, reduce the maximum stable value of u (catastrophic
bifurcation).

o The transcritical bifurcation is not structurally stable in a one-parameter
family. Also the fundamental path is destroyed.
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e Imperfect fork bifurcation:

X=Ux+cx +n
» Bifurcation diagram:

c<0 c>0

o The bifurcation diagram exhibits fold bifurcations; therefore, the fork
bifurcation is structurally unstable

o In the sub-critical case, imperfections of both signs reduce the maximum
stable value of .

o In the super-critical case, imperfections have non-catastrophic character.
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4 MULTIPLE SCALE ANALYSIS OF SAMPLE SYSTEMS

When a multi-dimensional system, undergoing a codimension-M static
bifurcation, is considered, a reduction process must be applied, in order to get

an M-dimensional bifurcation equation.

An example of reduction performed by the Center Manifold Method (CMM)

for M=1 was already shown. The same example is now worked out by the

Multiple Scale Method (MSM).

A new example relevant to M=2 1s also shown.

12



m A two-dimensional system, undergoing a simple divergence bifurcation

We consider the system already analyzed, with an imperfection # added:
().C]_|:,U O}(x]_l_ xy+cx’+n
y 0 —-1|\y bx’

(x,y) > (ex,€y), U—EU, N—EN

e Rescaling:

The equations become:

Y 2 o s el
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® Series expansions:

(x(t;e)] :(xo(to,tl,tz,---)] +g(xl(to,t1,t2,---)]+82(xz(to,tl,tz,--ﬁ}rm
y&;€) ) \y,(t,.t,t,,+) Vi(lostysty,e0) Yy (Fosti5ty5 )

i:d0+8d1+82 dytoo, dy =010, =g

d?

¢ Perturbation equations:

80:{d0x0=0

dy yo+¥,=0

&' ,{d() x, =—d,x, +x,y,
dy ¥, + ¥, =—d1y0+bx§

22 .{do x, =—d,x, —d,x, +(x,y, + X, y,) + X, +cx3 +7n
d,y,+y,=—d,y, —d,y, +2bx,x,
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e (Generating solution:

{xo =a(t,t,)
y, =k(t,,1,)e"

By 1gnoring transient motions, the steady contribution only 1s retained:

O Note: the passive variable y does not enter the generating solution.
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® c-order:

» equations:
d,x, =—da
dyy +y, =ba’

> elimination of secular terms:

da=0
» solution:
By omitting the complementary solutions:
x, =0
y, =ba’

QO Note: the link between passive and active coordinates 1s established at
this order.



2
® ¢ -order:
» equations:

{do X, =—d,a+pa+b+c)a’ +7
dyy,+y,=0

> elimination of secular terms:

d,a=pa+b+c)a’ +n

e By coming back to the original, not rescaled, variables, through:
ga—a, EU—>u, €n—-n, £d,—D
the bifurcation equation follows:
a=pua+b+c)a’ +n

This coincides with that furnished by the CMM, with the imperfection added.
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m A three-dimensional system, undergoing a double divergence bifurcation

We show as to apply the MSM to a multiple divergence bifurcation, referring

to a M=2 case. The system 1s a direct generalization of the previous one, 1.e.:

u 0 07(x) [xz+ex'+7
0 v O|lyl|+|yz+e,y’ +7
0 0 -1z bx*+b,y’

N . .
|l

Here, J admits the (semi-simple) double eigenvalue 4=0 at p.=(u.,v.)=(0,0).
In the CMM view, X, =(x,y),X,  =(2).
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e Rescaling:
After the rescaling (x,y,2) — (EX,Ey-€2), 4 — E UV —=EV-N = ETN the
equations read:

: - . 3
X 0 0 O |x Xz HUX+cx +7]
yl=|0 0 0| yl+e yzZ +& | vy+e,y +n
) 10 0 —1]{z bx’ +b,y’ 0
® Series expansions:
x(t;g) Xo(to,tl,tz,"') xl(t()atptza"') Xz(fo,fl,f2,°")
2
Y(&E) |=| Yo(lostystyseo) | HE| Y (s, ) |HET| Yo (Fg, 11505, 0) |+
Z(t;g) Z()(toatlatza”') Zl(to,tl,tz,"') Zz(toatlatza'”)

i:d0+8d1+82 dyt-oo, dy=09/0n, 1=€Y,

d?
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¢ Perturbation equations:

(d, x,=0
g’ :9d,y,=0
dy 2o+ 2,=0

d, x, =—d,x, +x,2,
do = _dly() T Yy <o

2 2
\do z,+z,=—d,z,+bx, +b,y,

)

( . 3
d, x, =—d,x, —dx, +(x,z, +x,2,) + Ux, +c,x, +1

E A d() y2 :_d2y0 _dlyl +(y1Z() + y0Z1)+VyO +C2y3 +77
d, z, +z, =—d,z, —d,z, +2b,x,x, +2b,y,y,

\

20



e Generating solution:

e c-order:
» equations:

> Secular terms:

> solution;

X, =a,(t,,t,)

yO :az(tlatz)

J\

2

da =0, da,=0

-

x, =0
17 =0

2 2
7, =ba; +b,a,

<o =
d, x, =—dq,
1d, y, =—d,a,
. 2 2
\do z,+z,=ba; +b,a
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2
® ¢ -order:
» equations:

d, x, =—d,a, + ua, + (b, + C1)a13 + b2a1a22 +7

2 3
d, y, =—d,a, +va, +ba;a, +(b, +c,)a, +1n

.

d,z,+2z,=0

\

> elimination of secular terms:

d,a, = ya, + (b, + C1)a13 + b2a1a22 +7n

d,a, =va, + blalza2 + (b, + cz)a;3 +7

® Bifurcation equations:

a, =a U+, +cl)al2 +b2a22]+77

a, = az[V+b1a12 + (b, +cz)a22]+77
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e Steady-state solutions for the perfect (#=0) system::
(T) : a=0,a,=0, V(u,v) (Trivial)

(M,): al2 >0,a,=0 (Mono-modal)
(M,): a,=0,a;>0 (Mono-modal)
(B,): a’>0, a>>0 (Bi-modal)

Solutions (M), (M»),(B) exist only in a sector of the (u,v)-parameter plane. In
some sectors more solution can be in competition.
»Example:

23



