
Chapter 1

Introduction to PDEs

1.1 Basic concepts and Examples

The differential equations are the class of equations involving derivatives of unknown func-
tions. When the unknown function in the equation depends only on a single variable,
the equation involves only the ordinary derivatives of the unknown function, we call it an
ordinary differential eqution, or in short ODE. Quite often, the unknown functions depend
on several independent variables, and the equations involving the partial derivatives of the
unknown functions, then the equations are called the partial differential equations, or in
short PDEs. In this course, the independent variables will always be formed by a time
variable t ≥ 0 and a space variable x ∈ Rn, with n the spatial dimensions. In general, a
PDE of the unknown function u(x1, x2, · · · , xn) takes the form

F (x, u, Du, ux1x1 , ux1x2 , · · · , uxnxn , · · · ) = 0, (1.1)

where x = (x1, x2, · · · , xn), Du = (ux1 , ux2 , · · · , uxn), and F is a function of the indepen-
dent variable x and the unknown function u and finitely many partial derivatives of u. The
equation (1.1) is called m-th order, if the highest order of the derivatives of u in (1.1) is
m. An m-th order PDE of u(x1, x2, · · · , xn) has a general form

F (x, u, Du, D2u, · · · , Dmu) = 0. (1.2)

Examples of Partial differential Equations:

(a) Heat equation ut = uxx

(b) Linear transport eqution ut + cux = 0, c ∈ R

(c) Wave equation utt − c2uxx = 0, c > 0

(d) Burgers’ equation ut + uux = 0

(e) Viscous Burgers’ equation ut + uux = uxx
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(f) Laplace equation uxx + uyy + uzz = 0

We now consider the equation (1.2). In addition to its order, we also classify the
equations by the relations between function F and u, as well as the derivatives of u. When
the dependence of F on u and its derivatives is linear, we say (1.2) is linear, otherwise we
say it is nonlinear. In the above examples, the (d) and (e) are nonlinear while the others
are linear. In the class of nonlinear PDEs, if F is linear with respect to the highest (m-th)
derivatives of u, i.e., the coefficients of the m-th order derivatives of u in (1.2) only depend
on the independent variables x, u, and the derivatives of u up to (m − 1)-th order, we
call the equation is quasi-liner. In the quasi-linear case, if the coefficients of the highest
derivatives of u are functions of independent variable x only, the equation is then called
semi-linear. The general linear PDE of m-th order takes the following form:

P (x, D)u = f(x),

where, P (x, D) is a general m-th order differential operator defined in (1.8) below. The
equation is called homogeneous if f(x) = 0.

We now introduce the concept of solution. Again, consider the equation (1.2), and we
restrict ourself on the domain x ∈ Ω ⊂ Rn. u = φ(x) is a solution of (1.2) on Ω, if φ(x) and
all of its derivatives appears in (1.2) are continuous in Ω, and after substituting it into the
equation, it makes (1.2) an identity. Such a solution, we will refer it as a classical solution.

The following theorem gives an important properties for solutions to a linear PDE.

Theorem 1.1.1 (Principle of superposition) Let u1 and u2 be solutions to a given
homogeneous linear PDE . Then for any constants λ and µ,

λu1 + µu2

is also a solution of that equation.

1.2 Well-posed problems

Just as what happened in ODEs, a PDE, if solvable, often has many solutions. However, as
most equations have their physical or practical backgrounds, some conditions or constraints
are necessary to determine a unique solution to the realistic problem. In general, there are
two classes of “side” conditions: the initial condition and the boundary conditions. Some
problems involve a mixture of initial and boundary conditions, called initial-boundary value
problems.

We first start with the case of evolutionary PDEs, (or in which a time variable is
involved). In this case, the initial conditions often involve the initial value of the unknown
function, and the derivatives up to the next order of the highest time derivatives of the
unknown function. The initial conditions (also called initial data) together with the PDE
form an intial value problem, called Cauchy problem. The following example shows a typical
Cauchy problem for a wave equation in one spatial dimension:
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Example 1.2.1 {
utt − c2uxx = 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x).
(1.3)

When the problem is confined in a given domain, the constraints on the boundary
are often needed for the problem. There are many different kinds of boundary conditions
depending on the realistic applications. In this course, we will mainly discuss three typical
boundary conditions. The first one is to give the value of the unknown function itself at
the boundary of the domain. This type of boundary condition is called Dirichlet condition.
The corresponding boundary value problem is thus called Dirichlet problem. The following
example is a typical Dirichlet problem for a Poisson equation, describing the electronic
field, with u the electronic potential and ρ the electronic density distribution.

Example 1.2.2 {
∆u = −4πρ(x, y, z), (x, y, z) ∈ Ω ⊂ R3,

u(x, y, z) = φ(x, y, z), (x, y, z) ∈ ∂Ω.
(1.4)

Here ∆ is the well-known Laplace operator. In Rn, it takes the form

∆ =
n∑

i

∂2
i .

The second type is often called the Neumann condition, which assigns the normal derivative
of the unknow function at the boundary. The third type is the Robin condition, which gives
the nontrivial linear combination of the unknown function itself and its normal derivative
at the boundary. The next example shows a Neumann problem of Laplace equation in 3
dimension.

Example 1.2.3 {
∆(um) = 0, (x, y, z) ∈ Ω ⊂ R3,

∇u • ν = φ(x, y, z), (x, y, z) ∈ ∂Ω,

where ν is the outer unit normal to ∂Ω.

The following example is an initial-boundary value problem for heat equation involving
the Robin boundary condition.

Example 1.2.4






ut −∆u = 0, (x, y, z) ∈ Ω ⊂ R3, t > 0,

u− 1
2∇u • ν = φ(x, y, z), (x, y, xz) ∈ ∂Ω, t > 0,

u(x, y, z, 0) = u0(x, y, z), (x, y, z) ∈ Ω.
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As the problems we encounter often arise from real applications, we thus expect each
of our problem is uniquely solvable and the solution continuously depends on the relevant
data. In this case, we say our problem is well-posed. However, it is very delicate to tell
whether a problem is well-posed without any further techniques. The following example is
due to J. Hadamard.

Example 1.2.5 Consider the set of “initial-value” problems in the upper half-plane in R2,
for n = 1, 2, · · · ,





∆u = 0, y > 0,

u(x, 0) = 0, uy(x, 0) =
sin(nx)

n
, x ∈ R,

(1.5)

and {
∆u = 0, y > 0,

u(x, 0) = 0, uy(x, 0) = 0, x ∈ R.
(1.6)

The problem (1.5) has a unique solution

un(x, y) =
1

n2
sinh(ny) sin(nx),

and the problem (1.6) has a unique soluton

u0(x, y) = 0.

We note that, as n →∞, the data of (1.5) tends uniformly to the data of (1.6). However,
one has

lim
n→∞

sup |un(x, y)− u0(x, y)| = ∞, y > 0

for each (x, y). Thus, arbitrarily small changes in the data lead to large changes in the
solution, this is called instability.

1.2.1 Characteristic and initial value problems

We see from last example that the Cauchy problem for a Laplace equation is not well-posed.
This section is devoted to the study of how to set the initial value problem in a proper
way so that the initial data is compatible with the structure of the PDE. The notion of
characteristic plays an essential role in this context.

Let’s consider a rather general linear PDE of order m:

P (x, D)u = g(x), (1.7)

where
P (x, D) =

∑

|α|=m

aα(x)Dα +
∑

α<m

aα(x)Dα + a(x). (1.8)
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Here x = (x0, x1, · · · , xn) ∈ Rn+1, α is a multi-index, α = (α0, α1, · · · , αn), where each
αi is a non-negative integer. |α| =

∑
αi, is the length of α. D = (D0, D1, · · · , Dn) is a

differential operator where Di = ∂
∂xi

, and

Dα =
∂|α|

∂xα0
0 · · · ∂xαn

n

.

We also define xα = xα0
0 · · ·xαn

n . We call

∑

|α|=m

aα(x)Dα

the principal part of the operator P (x, D).
From the principle of superposition, we know that the solutions of (1.7) can be obtained

from a particular solution of (1.7) and a general solution of the following homogeneous
equation:

P (x, D) = 0. (1.9)

Assume that equation (1.9) is defined in a neighborhood of a smooth n-dimensional surface
S given by f(x) = 0. The initial value problem (or, Cauchy problem) for (1.9) consists of
assigning u and its derivatives of order ≤ (m− 1) on S, and it is required to solve (1.9) in
a neighborhood of S. For instance, in Example 1.2.1, the initial surface is S = t = 0, and
the initial conditions are u(x, 0) = φ(x), and ut(x, 0) = ψ(x), and we shall try to solve the
equation

utt − c2uxx = 0

in the upper half plane {t > 0}.
We now proceed to solve (1.9) as follows. First, we shall make proper change of co-

ordinates in a neighborhood of S to distinguish the time-like direction so that we know
in which direction we will solve our problem. This can be done by introducing the new
independent variables y0, y1, · · · , yn , where y1, · · · , yn are independent coordinates on S,
and y0 = f(x); i.e., S corresponds to y0 = 0. Note that u is given on S, all the derivatives
of u with respect to the new variables y1, · · · , yn on S.

By chain rule, we have, for α = (α1, · · · , αn), |α| = m,

Dαu =
∂αu

∂xα0
0 · · · ∂xαn

n

=
∂mu

∂ym
0

(
∂y0

∂x0

)α0

· · ·
(

∂y0

∂xn

)αn

+ · · · ,

where the last dots represent derivatives of u with respect to y0 of orders < m, together
with derivatives of u with respect to yi, i = 1, · · · , n, and are thus all known quatities. The
equation (1.9) becomes

∑

|α|=m

aα(x)

(
∂y0

∂x0

)α0

· · ·
(

∂y0

∂xn

)αn ∂mu

∂ym
0

+ · · · , (1.10)
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where the dots are quantities known on S. Now it is clear that, if we want to solve this

equation for
∂mu

∂ym
0

, it is necessary and sufficient that

∑

|α|=m

aα(x)

(
∂y0

∂x0

)α0

· · ·
(

∂y0

∂xn

)αn

)= 0,

or equivalently, that

∑

|α|=m

aα(x)(∇f(x))α =
∑

|α|=m

aα(x)

(
∂f(x)

∂x0

)α0

· · ·
(

∂f(x)

∂xn

)αn

)= 0,∀x ∈ S. (1.11)

When (1.11) fails to hold, the initial-value problem would be unreasonable, and in this case
we say S is a characteristic surface of P (x, D). Formally, we have the following defintion.

Definition 1.2.6 The surface S = {x : f(x) = 0} is said to be characteristic at a point
p ∈ S for the operator P (x, D) defined in (1.8) if

∑

|α|=m

aα(x)(∇f(x))α|x=p = 0.

S is a characteristic surface for P (x, D) if it is characteristic at each point of S. The
equation ∑

|α|=m

aα(x)σα = 0, (1.12)

with σ = (σ0, σ1, · · · , σn), is called the characteristic equation for the operator P (x, D) in
(1.8).

By these terms, we know that a surface S is characteristic at p ∈ S, for the operator
(1.8), provided that the normal vector to S at p satisfies the characteristic equation (1.12).
We remark that if f(x) = 0 is a characteristic surface for the operator (1.8), (1.11) shows
that the differential equation (1.9) imposes an additional restrictions on the data; namely,
the known quantities, denoted by dots in (1.11) must vanish. Similar statement can be
made to the equation (1.7).

In the following, we assume σ is a unit normal vector given at a point of S, i.e.,

n∑

k=0

σ2
k = 1. (1.13)

Now, we discuss several examples.

Example 1.2.7 The 3-dimensional wave equation:

ux0x0 −
3∑

k=1

uxkxk
= 0.
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(Here, one usually denotes x0 as t) The characteristic equation is

σ2
0 −

3∑

k=1

σ2
k = 0,

which together with (1.13) gives σ0 = ± 1√
2
. Therefore, a surface is characteristic for the

3-D wave equation if and only if its normal makes an angle of π
4 with respect to the x0 axis.

Example 1.2.8 Consider the (n + 1)-dimensional Laplace equation
n∑

k=0

uxkxk
= 0.

Here the characteristic equation reads
n∑

k=0

σ2
k = 0

which is incompatible with (1.13). Therefore, there are no (real) characteristics for Laplace
equation.

Example 1.2.9 Consider the following first-order linear equation

a(x, y)ux + b(x, y)uy = c(x, y)u + d(x, y).

The characteristic equation is
aσ0 + bσ1 = 0.

Solving this together with (1.13) gives

(σ0, σ1) = ± 1√
a2 + b2

(b,−a).

Therefore, the characteristic curves are solutions of the following system
{

ẋ = a(x, y)

ẏ = b(x, y).

This example is very useful in the next Chapter.

1.3 Classifications of second order semilinear PDEs

In this section, we further discuss the types of PDEs, for which the different types of
equations often require different methods to resolve. As the decisive coefficients of quisa-
linear PDEs depend on solutions, we will discuss semi-linear equations. Roughly speaking,
the classifications of the semi-linear PDEs depend on how informations propagate. If
the information carried by solution propagates at a finite speed, we call it hyperbolic; if
the information propagates at an infinite speed, we call it parabolic; if there is no (real)
speed for the information to travel with, we call it elliptic. From the knowledge in the
previous section, we know the latter often links to the problem without reasonable time-
like direction, or the problem is static.
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1.3.1 Equations with several variables

To be precise, for n ≥ 2, we will now discuss only the second order semi-linear PDEs of
the following form

n∑

i,j=1

aij(x)uxixj + F (x, u, Du) = 0, (1.14)

where, x = (x1, x2, · · · , xn) ∈ Ω with Ω an open subset in Rn, aij = aji as we expect
uxixj = uxjxi . The linear principal part of this equation at a fixed point p ∈ Ω is

n∑

i,j=1

aij(p)uxixj(p), (1.15)

which corresponds to a quadratic form

n∑

i,j=1

aij(p)ξiξi = 0, ∀ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn (1.16)

This is the left hand side of the characteristic equation of (1.14). By linear algebra, we
know that the numbers of positive, negative and zero (real) eigenvalues of the matrix
A = (aij(p)) is invariant under the transformation of the form P T AP for any invertible
n× n matrix P . there is an orthogonal matrix O such that

OT AO = diag{λ1, · · · , λn}, (1.17)

and the transformation ξ = Oy changes the quadratic form into diagonal form

Q(y) =
n∑

i=1

λiy
2
i . (1.18)

The way to transform Q(ξ) into its diagonal form is not unique. Upon re-scalings, we see
there is an invertible matrix U such that the transformation ξ = Uy changes Q(ξ) into its
standard form

Q(y) =
n∑

i=1

χiy
2
i . (1.19)

Here, χi = 1, −1, or 0. (By Shur’s lemma of linear algebra, we know that the numbers of
positive, negative and zero (real) eigenvalues of the matrix A = (aij(p)) is invariant under
the transformation of the form P T AP for any invertible n× n matrix P . ) If we fix such
a U , the transformation

y = P T x

will transfer the equation (1.14) into its standard form:

n∑

i=1

χiuxixi + · · · = 0, (1.20)
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where the dots terms contain at most first order derivatives.
Now, we are able to give a precise classification for (1.14):

Definition 1.3.1 For (1.14) we have the following classifications:

• If all the eigenvalues of A have the same sign( all positive or all negative), we say
(1.14) is elliptic at p.

• If A has zero eigenvalues, we call (1.14) parabolic at p.

• If (n − 1) eigenvalues of A have the same sign different from the other one, we say
(1.14) is hyperbolic at p. If both the number of positive eigenvalues and the number
of negative eigenvalues of A are greater than 1, and A had no zero eigenvalue, we
call (1.14) super hyperbolic.

Example 1.3.2 The following equation is super hyperbolic:

ux1x1 + ux2x2 − ux3x3 − ux4x4 = 0.

If the equation (1.14) is elliptic (or parabolic, or hyperbolic respectively) at each point
in Ω, we say (1.14) is elliptic (or parabolic, or hyperbolic respectively). If (1.14) is of
different types on different points of Ω, we call (1.14) of mixed type.

Example 1.3.3 Tricomi equation

yuxx + uyy = 0,

is of mixed type on any region including points on the x-axis.

Unfortunately, when the independent variables are more than 2, there are examples
showing that no matter how small the region Ω is, there does not exist a single change of
variables such that the equation (1.14) is transfered into a single type. However, for only
two independent variables, under mild conditions on the coefficients of the equation, it is
possible to make a change of variables such that the equation (1.13) was of the same type
on the whole region Ω (very small sometime).

1.3.2 The case of two variables

Consider the semi-linear PDE of the second order with independent variables x and y

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = F (x, y, u, ux, uy), (1.21)

where F , a, b and c are smooth functions with respect to their arguments. We also assume
that a, b and c are not all zero at any point on the working region Ω. According to the
classifications in last sub-section, equation (1.21) is classified as the sign of the following
determinant:

d := detA =

∣∣∣∣

(
a(x, y) b(x, y)
b(x, y) c(x, y)

)∣∣∣∣ = a(x, y)c(x, y)− b2(x, y). (1.22)

We then have the following cases:
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• If d > 0, equation (1.21) is elliptic. A typical example of elliptic equations is the
Laplace equation

uxx + uyy = 0,

where d = 1.

• If d < 0, equation (1.21) is hyperbolic. A typical example of hyperbolic equation is
the wave equation

utt − c2uxx = 0, c > 0,

where d = −c2.

• If d = 0 and this matrix A is not identically zero, the equation (1.21) is parabolic. A
typical example of parabolic equation is the Heat equation

ut − αuyy = 0, α > 0.

We now describe how to transfer (1.21) into standard form. The linear principal part
of (1.21) is

L0u = auxx + 2buxy + cuyy. (1.23)

For (x, y) ∈ Ω, and any invertible smooth change of variables

ξ = ξ(x, y), η = η(x, y),
∂(ξ, η)

∂(x, y)
)= 0, (1.24)

it is easy to compute that the linear principal part of (1.21) becomes

L0u = a∗uξξ + 2b∗uξη + c∗uηη, (1.25)

where 




a∗ = aξ2
x + 2bξxξy + cξ2

y

b∗ = aξxηx + b(ξxηy + ξyηx) + cξyηy

c∗ = aη2
x + 2bηxηy + cη2

y .

(1.26)

Of course, we require the second order differentiability of ξ and η. It is now clear that if
a∗ = c∗ = 0 and b∗ )= 0, the equation (1.25) is of hyperbolic type, and it has a simple form

L0u = 2b∗uξη,

which is called second standard form of hyperbolic equations. In this case, we know that
ξ and η are solutions to the following equation

aφ2
x + 2bφxφy + cφ2

y = 0. (1.27)

This is exact the characteristic equation of L0. φ(x, y) = constant defines implicitly a
family of curves on xy-plane as y = y(x) (or, x = x(y) if necessary), which satisfies the
following ODE

a(
dy

dx
)2 − 2b

dy

dx
+ c = 0. (1.28)
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We note that (1.27) is a fully nonlinear PDE for φ while (1.28) is an (nonlinear) ODE
which is easier to solve. As long as ‖∇φ‖ )= 0, these two equations are equivalent in the
sense that φ(x, y) = constant is an implicit solution to (1.28).

From the theory of classification in last sub-section and (1.27)–(1.28), we see that
(1.28) will not give any real nontrivial solution to (1.27) in the elliptic region. While in the
hyperbolic region, (1.28) gives two distinct families of real characteristic curves. Finally,
in the parabolic set of points, (1.28) gives only one family of real characteristic curves.

We now show how to utilize the characteristic curves to transfer (1.21) into standard
form. We will do so case by case.

First of all, assume that d < 0 in Ω, so (1.21) is hyperbolic. We solve (1.28) to obtain
two distinct families of characteristic directions

dy

dx
=

b ±
√

b2 − ac

a
. (1.29)

Integrating them, we find two families of characteristic curves

φ1(x, y) = c1, φ2(x, y) = c2.

When φ2
ix + φ2

iy )= 0 for i = 1, 2, (1.29) implies that

∂(φ1, φ2)

∂(x, y)
)= 0.

Therefore, after the change of variables

ξ = φ1(x, y), η = φ2(x, y),

one obtains (1.25) with a∗ = c∗ = 0 and b∗ )= 0. (1.21) becomes

uξη + F̃ (ξ, η, u, uξ, uη) = 0,

which, after a further change of variables into s and t such that

ξ =
1

2
(s + t), η =

1

2
(s− t),

becomes the standard form

uss − utt + F1(s, t, u, us, ut) = 0,

for some smooth F1.
Secondly, we assume that d > 0 so that (1.21) is elliptic. We know that it is impossible

to obtain real-valued characteristic curves from (1.28). However, we are able to solve (1.28)
for a complex-valued solution

φ(x, y) = φ1(x, y) + iφ2(x, y) = constant,
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where φ1 and φ2 are real functions, and i =
√
−1 is the imaginary unit. It is not hard to

show that if φx and φy don’t vanish at the same time, the following transformation

ξ = φ1(x, y), η = φ2(x, y),

satisfies
∂(φ1, φ2)

∂(x, y)
)= 0.

Substituting ξ + iη into (1.27), separating the real and imaginary part, one discovers
a∗ = c∗ )= 0 and b∗ = 0. Therefore, (1.21) takes the following standard form

uξξ + uηη + G(ξ, η, u, uξ, uη) = 0,

for some smooth function G.
Finally, we assume that d = 0 and thus (1.21) is parabolic. It is clear that ac = b2, and

one can assume a > 0 and c > 0 without loss of the generality since b )= 0. From (1.28) we
obtain

dy

dx
=

√
c

a
.

Solve this equation, we have the family φ(x, y) = c3. Since ‖∇ξ‖ )= 0, ξ = φ(x, y) )≡
constant. Choose appropriate η = η(x, y) such that

∂(ξ, η)

∂(x, y)
)= 0.

For instance, if η = x, one has
∂(ξ, η)

∂(x, y)
= −ξy )= 0.

Otherwise, if ξy = 0, equation (1.27) implies ξx = 0, therefore ξ ≡ constant, a contradic-
tion. For some isolated points where ξy = 0, one choose Ω to exclude these points.

Now, under such a transformation, (1.21) becomes standard form

uηη + G1(ξ, η, u, uξ, uη) = 0

for some smooth function G1.
In the following, we show some examples.

Example 1.3.4 Discuss the type of the following equation

uxx + yuyy = 0 (1.30)

and change it into standard form.
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Solution: We compute d = y. Therefore, this equation is elliptic in upper half plane
y > 0, is hyperbolic in lower half-plane y < 0, and is parabolic on x-axis. The ODE
associate to the characteristic equation is

(
dy

dx
)2 + y = 0.

Case 1: When y = 0, one substitute y = 0 into (1.30), one gets the standard form

uxx = 0.

The characteristic curve in this case is the integral curve of
dy

dx
= 0, and that is x-axis

since y = 0.
Case 2: In the hyperbolic region where y < 0, we solve the ODE and found

ξ = x + 2
√
−y = c1, η = x− 2

√
−y = c2,

and thus the transformation

ξ = x + 2
√
−y, η = x− 2

√
−y,

transfers, with some standard calculations, into standard form

uξη +
1

2(ξ − η)
(uξ − uη) = 0, y < 0.

The characteristic curves in this case are two branches of the parabola y = −1
4(x − C)2,

where C is an arbitrary constant. The one with positive slope is corresponding to ξ =
constant while the one with negative slope is corresponding to η = constant. Both branches
are tangent to x-axis.

Case 3: In the elliptic region y > 0, the ODE will become a pair of conjugate complex
equations

dy

dx
± i
√

y = 0.

Solving the one with plus sign (you can choose either one), we obtain

x− 2i
√

y = c.

The real and imaginary parts are

ξ = x, η = 2
√

y,

which is our desired transformation. After some calculations, we arrive at

uξξ + uηη −
1

η
uη = 0, y > 0.
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Example 1.3.5 Discuss the type of the following equation

yuxx + (x + y)uxy + xuyy = 0, (1.31)

and find the general solution when x )= y.

Solution: To solve the problem, we first compute

d = xy − 1

4
(x + y)2 = −1

4
(x− y)2 ≤ 0.

Therefore, when x = y, the equation(1.31) is parabolic; when x )= y, the equation (1.31) is
hyperbolic. In the latter case, we substitute the parameters into (1.28) to find either

dy

dx
= 1

or
dy

dx
=

x

y
.

Therefore, the two families of characteristic curves are

y − x = c1, and y2 − x2 = c2.

Which tells us, if we perform the transformation

ξ = y − x, η = y2 − x2,

the Jacobian satisfies
∂(ξ, η)

∂(x, y)
= 2(x− y) )= 0

in hyperbolic region. Furthermore, the equation (1.31) takes the second standard form

uξη +
1

ξ
uη = 0,

which is equivalent to
(ξuη)ξ = 0.

Now, we integrate the above equation with respect to ξ,

ξuη = f(η),

where f is any integrable function. Therefore,

u =
1

ξ

∫
f(η) dη + g(ξ)

= g(y − x) +
1

y − x
h(y2 − x2),

where g and h are C2 functions. This formula gives the general solution of (1.31) on the
hyperbolic region where x )= y.
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1.4 Problems

Problem 1. For the following equations, identify which are linear, semi-linear, quasi-liner,
or fully nonlinear, and their orders.

• (a) utt −∆u = 0;

• (b) ut + uxxxx = 0;

• (c) div(|Du|p−2Du) = 0;

• (d) div

(
Du

(1 + |Du|2)

)
= 0;

• (e) ut + divF (u) = 0, F : R → Rn;

• (f) ut −∆(uγ) = 0;

• (g) ut −∆u = f(u);

• (h)

{
ut + u · Du−∆u + Dp = 0,

divu = 0; u ∈ R3, x ∈ R3
;

• (i) ut + divF (u) = 0, F : Rn → Rn×n.

Problem 2. Let Ω = {(x, y) : 0 < x < 1, 0 < y < 1}, and consider the following boundary
value problem 





uxx − uyy = 0, (x, y) ∈ Ω,

u(x, 0) = f1(x), u(x, 1) = f2(x),

u(0, y) = g1(y), u(1, y) = g2(y).

where f1, f2, g1 and g2 are given functions. Is this problem well-posed?

Problem 3. Find the type of the following equation

3uxx − 2uxy + 2uyy − 2uyz + 3uzz + 5uy − ux + 10u = 0.

Transfer it into its standard form.

Problem 4. Identify the types of the following equations:

• (a) xuxx + 2yuxy + yuyy = 0;

• (b) uxx + (x− y)3uyy = 0;

• (c) yuxx + (x + y)uxy + xuyy = 0;
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• (d) sin(x)uxx − 2 cos(x)uxy − (1 + sin(x))uyy = 0;

• (e) ezuxy − uxx = log(x2 + y2 + z2 + 1).

• (f) 7uxx − 10uxy − 22uyz + 7uyy − 16uxz − 5uzz = 0.

Problem 5. Transfer the following equations into standard form.

• (a) x2uxx + 2xyuxy + y2uyy = 0;

• (b) uxx + xyuyy = 0;

• (c) uxx − 2 cos(x)uxy − (3 + sin2(x))uyy − yuy = 0;

• (d) y2uxx − e
√

2xxuxy + ux = 0, x > 0.

Problem 6. Determine the type of Tricomi equation

uxx + xuyy = 0,

and then transfer it into standard form.

Problem 7. Transfer the following equation

uxx + yuyy +
1

2
uy = 0

into standard form. Find the general solution.

Problem 8. Show that for any second order hyperbolic or elliptic PDEs with two variables
and constant coefficients, one can always combine the change of variables (1.24) and the
the following transformation of unknown function

u = v exp(λξ + µη)

to obtain a form of
vξξ ± vηη + cv = f.

Problem 9. Based on the problem 8, classify the following equations and transfer them
into a standard form without first order derivatives.

• (a) uxx + 4uxy + 3uyy + 3ux − uy + 2u = 0;

• (b) uxx + 2uxy + uyy + 5ux + 3uy + u = 0;

• (c) uxx − 6uxy + 12uyy + 4ux − u = sin(xy).



1.4. PROBLEMS 21

Problem 10. Make the change of unknown function u = v + w with v the new unknown
functions, such that the following problems have homogeneous boundary conditions. Where
(a) has Neumann boundary condition, (b) has Dirichlet boundary condition, while (c) has
one Neumann condition and one Robin condition.

(a)






utt − c2uxx = 0, 0 < x < +∞, t > 0,

ux(0, t) = g(t), t ≥ 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x < +∞;

(b)






utt − c2uxx = 0, 0 < x < l, t > 0,

u(0, t) = µ(t), u(l, t) = ν(t), t ≥ 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x < l;

(c)






utt − c2uxx = 0, 0 < x < l, t > 0,

−ux(0, t) = µ(t), ux(l, t) + u(l, t) = ν(t), t ≥ 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x < l.

Problem 11. Determine w such that the change of unknown function u = vw changes
the equation

ut − uxx + aux + bu = f(x, t)

into

vt − vxx = f1(x, t).

Problem 12. Assume u is a solution of the heat equation

ut − a2uxx = 0,

with the form
u(x, t) = ũ(

x√
t
).

Derive the ODE for ũ, and then solve the following problem






ut − a2uxx = 0, 0 < x < +∞, t > 0,

u(0, t) = 0, t ≥ 0,

u(x, 0) = u0, 0 ≤ x < +∞,

where u0 is a constant.


