Applied Partial Differential Equations (MathMods)

Exercise sheet 2

Fully nonlinear first order equations:

- Do the following exercises from Salsa's book [1]: 4.18, 4.19, 4.20.

In addition, do the following exercises:

1. Solve the equation

$$
x u_{x}+y u_{y}+u_{x} u_{y}-u=0
$$

with initial condition $u(x,-x)=1$.
2. For the equation

$$
u_{y}=u_{x}^{3}
$$

find the solution for $u(x, 0)=2 x^{3 / 2}\left(\right.$ Answer: $2 x^{3 / 2}(1-27 y)^{-1 / 2}$.)
3. Find a solution to the equation

$$
u=x u_{x}+y u_{y}+\frac{1}{2}\left(u_{x}^{2}+u_{y}^{2}\right)
$$

with initial condition $u(x, 0)=\frac{1}{2}\left(1-x^{2}\right)$.
4. Find the solution to the following initial-value problem

$$
\begin{aligned}
u_{t}+u u_{x} & =1 \\
u(x, 0) & =-\frac{1}{2} x .
\end{aligned}
$$

Find the characteristic curves (draw a picture) and give an explicit formula for the solution. Does your solution exist for all $(x, t) \in$ $\mathbb{R} \times[0,+\infty) ?$ Why or why not?

Conservation laws:

- Do the following exercises from Salsa's book [1]: 4.5, 4.6, 4.9.

In addition, do the following exercises:
5. Consider Burgers' equation

$$
\begin{equation*}
u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0 \tag{1}
\end{equation*}
$$

with initial condition

$$
u_{0}(x)= \begin{cases}u_{R}, & x>0 \tag{2}\\ u_{L}, & x<0\end{cases}
$$

where $u_{L}<u_{R}$. Show that

$$
u(x, t)= \begin{cases}u_{L}, & x<s_{m} t \\ u_{m}, & s_{m} t \leq x \leq u_{m} t \\ x / t, & u_{m} t \leq x \leq u_{R} t \\ u_{R}, & x>u_{R} t \\ 1\end{cases}
$$

is a weak solution to the problem for any value u_{m} satisfying $u_{L} \leq$ $u_{m} \leq u_{R}$ and where $s_{m}:=\frac{1}{2}\left(u_{L}+u_{m}\right)$. Draw the characteristics and draw a scheme of the solution. Find a class of solutions with three discontinuities.
6. For the same Burgers' equation (1), solve the initial value problem with initial condition $u(x, 0)=x$. Does the solution exist for all times? Why or why not?

References

[1] S. Salsa, Partial differential equations in action. From modelling to theory, Universitext, Springer-Verlag Italia, Milan, 2008.

