Applied Partial Differential Equations (MathMods)
Exercise sheet 4

The heat equation:

e Do the following exercises from Salsa’s book [1]: 2.1, 2.2, 2.3, 2.8, 2.12,
2.14, 2.18.

In addition, do the following exercises:
1. Solve the heat equation in R?® with convection:
ug — Au+c-Vu =0,
where z € R%, ¢t > 0, ¢ = (c1,...¢q)" # 0 is a constant vector, and with
initial condition w(x,0) = g(z). (Hint: Find an appropriate change of
variables that transforms the equation into the heat equation. Apply the

formula for the global Cauchy problem seen during the lecture.)
2. Supposing that u € C%(R? x (0, +00)) is a solution to the heat equation

uy — Au =0, zeR t>0.

(a) Show that uy(x,t) = u(Az, \%t) is also a solution to the heat equation
for each A € R.
(b) Use (a) to prove that

v(z,y) =z - Vu + 2tuy,

is also a solution.
2. Let

1, x>0,
9() = {O, z < 0.
Show that the solution to
Up — Uge = 0, r€eR, t>0,
u(z,0) = g(x), =z €R,
is given by

u(z,t) = % (1 + ¢($/\/Zt)) ’

o(s) = % /OS et dt.

The function ¢ is called the error function.
3. Solve the one-dimensional heat equation

where

Ut — Ugy = 07

for x > 0 and t > 0, with initial condition u(x,0) = g(z), g bounded,
such that g(0) = 0, and with boundary condition u(0,¢) = 0 for all ¢ > 0.
(Hint: Consider the odd extension of g to the whole real line, given by
g(x) = —g(—x), for x < 0. With this new initial condition apply the
solution to the global Cauchy problem that we proved in the lecture. Be
careful with the boundary condition.)
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4. Assuming that each of the functions us(y,t),...,uq(y,t), with d > 2, is
a solution to the one-dimensional heat equation, u; = u,,, show that the
function

d
U(Q?, t) = H Uj(SUj, t)a
j=1
is a solution to the heat equation in dimension d, that is, vy — Av = 0.
5. Let € > 0. Let u € C%(R x (0, +0o0)), with u > 0, be a solution to
Up — €Ugy = 0, r€eR, t>0.

Prove that
2€u,

v(x,t) =
satisfies the viscous Burgers equation:

Ut + VU = €Vgy,
for x € R, t > 0. This transformation is known as the Hopf-Cole transfor-
mation. It is remarkable because it transforms a nonlinear equation into a
linear one.

6. Let Q C R? be open, bounded with smooth boundary 9. Let u € C*(Q x
(0,T)), with fixed T' > 0 be a solution to

ug — Au = 0, en() x (0,7,
which, in addition, satisfies the boundary condition: © = 0 in I'; C 99 for
all t € (0,7); and, Ou/On = Vu -7 = 0in Ty C 99, with 9Q = T'y UT,.
Show that

p(t) = l[u()) 2y = / u(, t)? dx,

is a non-increasing function of ¢ € (0, 7).

7. Let Q ¢ R? be bounded, open with smooth boundary. Let T > 0, and
Qr = O x (O,T], I'r = Qp \QT Show that if u € CQ(QT) N C(FT) is a
solution to the heat equation in Q7 then

minu < u(z,t) < maxu,
FT I—‘T

for all (x,t) € Qp.

8. Let Q ¢ R? be an open, bounded set with smooth boundary 9€2. Prove
that if there is a solution u € C?(2 x [0,T)) with fixed T > 0, to the
non-homogeneous heat equation with initial and Neumann conditions,

uy — Au = h(z,t), z€Q,T>t>0,
U($,O):f(1'), z €,
0
Vu-ﬁ:—uzg(t), e, T>t>0,
on
then it is unique. (Hint: You may apply the energy method.)
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