
Applied Partial Differential Equations (MathMods)
Exercise sheet 4

The heat equation:

• Do the following exercises from Salsa’s book [1]: 2.1, 2.2, 2.3, 2.8, 2.12,
2.14, 2.18.

In addition, do the following exercises:

1. Solve the heat equation in Rd with convection:

ut −∆u+ c · ∇u = 0,

where x ∈ Rd, t > 0, c = (c1, . . . cd)
> 6= 0 is a constant vector, and with

initial condition u(x, 0) = g(x). (Hint: Find an appropriate change of
variables that transforms the equation into the heat equation. Apply the
formula for the global Cauchy problem seen during the lecture.)

2. Supposing that u ∈ C2(Rd × (0,+∞)) is a solution to the heat equation

ut −∆u = 0, x ∈ Rd, t > 0.

(a) Show that uλ(x, t) = u(λx, λ2t) is also a solution to the heat equation
for each λ ∈ R.

(b) Use (a) to prove that

v(x, y) = x · ∇u+ 2tut,

is also a solution.
2. Let

g(x) =

{
1, x > 0,

0, x < 0.

Show that the solution to

ut − uxx = 0, x ∈ R, t > 0,

u(x, 0) = g(x), x ∈ R,

is given by

u(x, t) =
1

2

(
1 + φ(x/

√
4t )
)
,

where

φ(s) =
2√
π

∫ s

0

e−t
2

dt.

The function φ is called the error function.
3. Solve the one-dimensional heat equation

ut − uxx = 0,

for x > 0 and t > 0, with initial condition u(x, 0) = g(x), g bounded,
such that g(0) = 0, and with boundary condition u(0, t) = 0 for all t > 0.
(Hint: Consider the odd extension of g to the whole real line, given by
g(x) = −g(−x), for x < 0. With this new initial condition apply the
solution to the global Cauchy problem that we proved in the lecture. Be
careful with the boundary condition.)
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4. Assuming that each of the functions u1(y, t), . . . , ud(y, t), with d ≥ 2, is
a solution to the one-dimensional heat equation, ut = uyy, show that the
function

v(x, t) =

d∏
j=1

uj(xj , t),

is a solution to the heat equation in dimension d, that is, vt −∆v = 0.
5. Let ε > 0. Let u ∈ C2(R× (0,+∞)), with u > 0, be a solution to

ut − εuxx = 0, x ∈ R, t > 0.

Prove that

v(x, t) = −2εux
u

satisfies the viscous Burgers equation:

vt + vvx = εvxx,

for x ∈ R, t > 0. This transformation is known as the Hopf-Cole transfor-
mation. It is remarkable because it transforms a nonlinear equation into a
linear one.

6. Let Ω ⊂ Rd be open, bounded with smooth boundary ∂Ω. Let u ∈ C1(Ω×
(0, T )), with fixed T > 0 be a solution to

ut −∆u = 0, en Ω× (0, T ),

which, in addition, satisfies the boundary condition: u = 0 in Γ1 ⊂ ∂Ω for
all t ∈ (0, T ); and, ∂u/∂n = ∇u · n̂ = 0 in Γ2 ⊂ ∂Ω, with ∂Ω = Γ1 ∪ Γ2.
Show that

ρ(t) = ‖u(t)‖L2(Ω) =

∫
Ω

u(x, t)2 dx,

is a non-increasing function of t ∈ (0, T ).
7. Let Ω ⊂ Rd be bounded, open with smooth boundary. Let T > 0, and

ΩT = Ω × (0, T ], ΓT = ΩT \ΩT . Show that if u ∈ C2(ΩT ) ∩ C(ΓT ) is a
solution to the heat equation in ΩT then

min
ΓT

u ≤ u(x, t) ≤ max
ΓT

u,

for all (x, t) ∈ ΩT .
8. Let Ω ⊂ Rd be an open, bounded set with smooth boundary ∂Ω. Prove

that if there is a solution u ∈ C2(Ω̄ × [0, T )) with fixed T > 0, to the
non-homogeneous heat equation with initial and Neumann conditions,

ut −∆u = h(x, t), x ∈ Ω, T > t > 0,

u(x, 0) = f(x), x ∈ Ω,

∇u · n̂ =
∂u

∂n
= g(t), x ∈ ∂Ω, T > t > 0,

then it is unique. (Hint : You may apply the energy method.)
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