Applied Partial Differential Equations (MathMods) Exercise sheet 6

Laplace and Poisson equations (continued):

• Do the following exercises from Salsa's book [1]: **3.4**, **3.5**, **3.10**, **3.11**, **3.15**, **3.16**.

In addition, do the following exercises:

- 1. Solve the Laplace equation $\Delta u = u_{xx} + u_{yy} = 0$ in the disk $D = \{r^2 = x^2 + y^2 < a^2\}$ with the boundary condition $u = \sin^3 \theta$ on r = a. (*Hint:* Use the identity $\sin^3 \theta = 3 \sin \theta 4 \sin 3\theta$.)
- 2. Solve the Laplace equation in the disk $D = \{r < a\}$ with the boundary condition

$$\frac{\partial u}{\partial r} + \alpha u = f(\theta),$$

where $\alpha > 0$ and f is an arbitrary function. Write the answer in terms of the Fourier coefficients of f.

3. Prove the uniqueness of the solution $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ to the Robin problem

$$\Delta u = 0, \quad \text{in } \Omega,$$
$$\frac{\partial u}{\partial n} + \alpha u = 0, \quad \text{at } \partial \Omega,$$

where $\Omega \subset \mathbb{R}^d$, $d \ge 1$ is an open, bounded set with smooth boundary $\partial \Omega$ and $\alpha > 0$ is a positive constant.

- 4. Solve the Neumann problem in the half-plane in two dimensions: $\Delta u = 0$ in y > 0, with $u_y = h(x)$ on y = 0, and with u bounded as $x^2 + y^2 \to +\infty$. (*Hint*: Consider the problem satisfied by $v = u_y$.)
- 5. Let $\Omega \subset \mathbb{R}^d$, be open, with $d \ge 2$. Let $u \in C^2(\Omega)$, with $x \in \Omega$. Show that

$$\Delta u(x) = \lim_{r \to 0^+} \frac{2d}{r^2} \left(\frac{1}{\omega_d} \int_{|\eta|=1} u(x+r\eta) \, dS_\eta - u(x) \right).$$

This formula yields another proof of the mean value property for harmonic functions. (*Hint:* Consider the Taylor expansion of second order of u around the point x. Verify that $\int_{|\eta|=1} \eta_j dS_{\eta} = 0$, for each $1 \leq j \leq d$, and that $\int_{|\eta|=1} \eta_j \eta_k dS_{\eta} = 0$, if $j \neq k$. Compute $\int_{|\eta|=1} \eta_j^2 dS_{\eta}$ for every $1 \leq j \leq d$.)

6. Let $B_1 = \{x \in \mathbb{R}^d : |x| < 1\}$ be the unit ball with center at the origin. Show that there exists a positive constant C > 0, depending only on the dimension $d \ge 2$, such that

$$\max_{B_1} |u| \le C \left(\max_{B_1} |f| + \max_{\partial B_1} |g| \right),$$

where $f \in C(\overline{B_1}), g \in C(\partial B_1)$, and u is the solution to

 $\Delta u = f, \quad \text{in } B_1, \\ u = g, \quad \text{at } \partial B_1.$

(*Hint:* Use Poisson's formula for the ball.)

References

[1] S. SALSA, *Partial differential equations in action. From modelling to theory*, Universitext, Springer-Verlag Italia, Milan, 2008.