Applied Partial Differential Equations (MathMods) Exercise sheet 6

Laplace and Poisson equations (continued):

- Do the following exercises from Salsa's book [1]: 3.4, 3.5, 3.10, 3.11, 3.15, 3.16.

In addition, do the following exercises:

1. Solve the Laplace equation $\Delta u=u_{x x}+u_{y y}=0$ in the disk $D=$ $\left\{r^{2}=x^{2}+y^{2}<a^{2}\right\}$ with the boundary condition $u=\sin ^{3} \theta$ on $r=a$. (Hint: Use the identity $\sin ^{3} \theta=3 \sin \theta-4 \sin 3 \theta$.)
2. Solve the Laplace equation in the disk $D=\{r<a\}$ with the boundary condition

$$
\frac{\partial u}{\partial r}+\alpha u=f(\theta)
$$

where $\alpha>0$ and f is an arbitrary function. Write the answer in terms of the Fourier coefficients of f.
3. Prove the uniqueness of the solution $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ to the Robin problem

$$
\begin{aligned}
\Delta u=0, & \text { in } \Omega \\
\frac{\partial u}{\partial n}+\alpha u=0, & \text { at } \partial \Omega
\end{aligned}
$$

where $\Omega \subset \mathbb{R}^{d}, d \geq 1$ is an open, bounded set with smooth boundary $\partial \Omega$ and $\alpha>0$ is a positive constant.
4. Solve the Neumann problem in the half-plane in two dimensions: $\Delta u=0$ in $y>0$, with $u_{y}=h(x)$ on $y=0$, and with u bounded as $x^{2}+y^{2} \rightarrow+\infty$. (Hint: Consider the problem satisfied by $v=u_{y}$.)
5 . Let $\Omega \subset \mathbb{R}^{d}$, be open, with $d \geq 2$. Let $u \in C^{2}(\Omega)$, with $x \in \Omega$. Show that

$$
\Delta u(x)=\lim _{r \rightarrow 0^{+}} \frac{2 d}{r^{2}}\left(\frac{1}{\omega_{d}} \int_{|\eta|=1} u(x+r \eta) d S_{\eta}-u(x)\right) .
$$

This formula yields another proof of the mean value property for harmonic functions. (Hint: Consider the Taylor expansion of second order of u around the point x. Verify that $\int_{|\eta|=1} \eta_{j} d S_{\eta}=0$, for each $1 \leq j \leq d$, and that $\int_{|\eta|=1} \eta_{j} \eta_{k} d S_{\eta}=0$, if $j \neq k$. Compute $\int_{|\eta|=1} \eta_{j}^{2} d S_{\eta}$ for every $1 \leq j \leq d$.)
6. Let $B_{1}=\left\{x \in \mathbb{R}^{d}:|x|<1\right\}$ be the unit ball with center at the origin. Show that there exists a positive constant $C>0$, depending only on the dimension $d \geq 2$, such that

$$
\max _{B_{1}}|u| \leq C\left(\max _{B_{1}}|f|+\max _{\partial B_{1}}|g|\right)
$$

where $f \in C\left(\overline{B_{1}}\right), g \in C\left(\partial B_{1}\right)$, and u is the solution to

$$
\begin{aligned}
\Delta u & =f, & \text { in } B_{1}, \\
u & =g, & \text { at } \partial B_{1} .
\end{aligned}
$$

(Hint: Use Poisson's formula for the ball.)

References

[1] S. Salsa, Partial differential equations in action. From modelling to theory, Universitext, Springer-Verlag Italia, Milan, 2008.

