Applied Partial Differential Equations (MathMods) Second Midterm Exam: Solution

1: Let $x \in \mathbb{R}^{3}$ and $R>0$ be arbitrary. Since u is harmonic in the whole space \mathbb{R}^{3} it satisfies the mean value property in the ball $B_{R}(x)$. Therefore,

$$
\begin{aligned}
0 \leq|u(x)| & =\left|\frac{3}{4 \pi R^{3}} \int_{B_{R}(x)} u(y) d y\right| \\
& \leq \frac{3}{4 \pi R^{3}} \int_{B_{R}(x)}|u(y)| d y \\
& \leq \frac{3}{4 \pi R^{3}}\left(\int_{B_{R}(x)} d y\right)^{1 / 2}\left(\int_{B_{R}(x)}|u(y)|^{2} d y\right)^{1 / 2} \\
& \leq \frac{3}{4 \pi R^{3}}\left(\frac{4 \pi R^{3}}{3}\right)^{1 / 2}\left(\int_{\mathbb{R}^{3}}|u(y)|^{2} d y\right)^{1 / 2} \\
& =\frac{\sqrt{3 M}}{2 \sqrt{\pi}} \frac{1}{R^{3 / 2}} \longrightarrow 0
\end{aligned}
$$

as $R \rightarrow+\infty$. Therefore $u(x)=0$ for all $x \in \mathbb{R}^{3}$.
2(a): By Green's formula: $\int_{D} \Delta u d x d y=\int_{\partial D} \partial u / \partial n d S$. Therefore.

$$
\int_{D} k d x d y=k \pi a^{2}=\int_{0}^{2 \pi} \cos ^{2} \theta a d \theta=\frac{a}{2} \int_{0}^{2 \pi}(1+\cos 2 \theta) d \theta=\pi a
$$

Hence, $k=1 / a$.
2(b): Using the ansatz:

$$
\begin{gathered}
u=A_{0}(r)+\sum_{n=1}^{\infty} A_{n}(r) \cos (n \theta), \quad u_{r}=A_{0}^{\prime}(r)+\sum_{n=1}^{\infty} A_{n}^{\prime}(r) \cos (n \theta), \quad u_{r r}=A_{0}^{\prime \prime}(r)+\sum_{n=1}^{\infty} A_{n}^{\prime \prime}(r) \cos (n \theta) \\
u_{\theta}=-\sum_{n=1}^{\infty} n A_{n}(r) \sin (n \theta), \quad u_{\theta \theta}=-\sum_{n=1}^{\infty} n^{2} A_{n}(r) \cos (n \theta)
\end{gathered}
$$

Upon substitution,

$$
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=A_{0}^{\prime \prime}(r)+\frac{1}{r} A_{0}^{\prime}(r)+\sum_{n=1}^{\infty}\left(A_{n}^{\prime \prime}(r)+\frac{1}{r} A_{n}^{\prime}(r)-\frac{n^{2}}{r^{2}} A_{n}(r)\right) \cos (n \theta)=\frac{1}{a}
$$

and we obtain a hierarchy of equations:

$$
\begin{aligned}
A_{0}^{\prime \prime}(r)+\frac{1}{r} A_{0}^{\prime}(r) & =\frac{1}{a}, \\
A_{n}^{\prime \prime}(r)+\frac{1}{r} A_{n}^{\prime}(r)-\frac{n^{2}}{r^{2}} A_{n}(r) & =0, \quad n=1,2, \ldots
\end{aligned}
$$

First we solve the equation for A_{0}. Multiply by r so that $r A_{0}^{\prime \prime}+A_{0}^{\prime}=\frac{d}{d r}\left(r A_{0}^{\prime}\right)=\frac{r}{a}$. Thus,

$$
A_{0}^{\prime}(r)=\frac{r}{2 a}+\frac{C_{1}}{r}
$$

Integrating $A_{0}(r)=\frac{r^{2}}{4 a}+C_{1} \log r+C_{2}$, for some constants C_{1}, C_{2}. Since the solution is bounded at $r=0$ we have $C_{1}=0$. Thus:

$$
A_{0}(r)=\frac{r^{2}}{4 a}+C_{2}
$$

Next we solve the equation for $A_{n}: A_{n}^{\prime \prime}+\frac{1}{r} A_{n}^{\prime}-\frac{n^{2}}{r^{2}} A_{n}=0$. Proposing a solution of the form $A_{n}=r^{\alpha}$ we arrive at $r^{\alpha-2}\left(\alpha^{2}-n^{2}\right)=0$, yielding $\alpha= \pm n$. Therefore the solutions have the form

$$
A_{n}(r)=K_{n} r^{n}+\frac{C_{n}}{r^{n}}
$$

with C_{n}, K_{n} constants. Since the solution is bounded at $r=0$ we get $C_{n}=0$. Therefore the solution has the general form:

$$
u(r, \theta)=\frac{r^{2}}{4 a}+C_{2}+\sum_{n=1}^{\infty} K_{n} r^{n} \cos (n \theta)
$$

From the boundary condition we obtain

$$
\frac{\partial u}{\partial n}_{\mid r=a}=u_{r}(a, \theta)=\frac{1}{2}+\sum_{n=1}^{\infty} K_{n} n a^{n-1} \cos (n \theta)=\frac{1}{2}+\frac{1}{2} \cos (2 \theta)
$$

This implies that $K_{1}=0,2 K_{2} a=1 / 2$ and $K_{n}=0$ for all $n \geq 3$. Therefore the solution is given by

$$
\begin{equation*}
u(r, \theta)=\frac{r^{2}}{4 a}(1+\cos 2 \theta)+C=\frac{r^{2}}{2 a} \cos ^{2} \theta+C \tag{1}
\end{equation*}
$$

where C is an arbitrary constant. We verify that this is a solution by computing:

$$
\Delta u=\frac{2}{a} \cos ^{2} \theta+\frac{1}{a}\left(1-2 \cos ^{2} \theta\right)=\frac{1}{a},
$$

and $(\partial u / \partial n)_{\mid r=a}=u_{r}(a, \theta)=\cos ^{2} \theta$.
2(c): Suppose that v is another solution to the same problem. Then $w=u-v$ is a solution to $\Delta w=0$ in D, and $\partial w / \partial n=0$ at ∂D. By Green's formula we have

$$
0=\int_{D} w \Delta w d x d y=\int_{\partial D} w \frac{\partial w}{\partial n} d s-\int_{D}|\nabla w|^{2} d x d y=-\int_{D}|\nabla w|^{2} d x d y
$$

Therefore $|\nabla w|=0$ in D, which means that w is constant in D. Therefore the solution is unique up to a constant. In view of the form of u (equation (1)) with C arbitrary we conclude that all solutions have the form (1).

3(a): We have two cases: either $x \geq c t>0$ (region I), or $0<x<c t$ (region II). In region I, since $x+c t>x-c t \geq 0$, the solution is given by D'Alembert's formula:

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(y) d y
$$

In the region II, consider a point $P=(x, t)$ such that $0<x<c t$, and draw the characteristic rhomboid $P Q R S$ like in Figure 1. Since $P Q$ is characteristic with $x_{Q}=0$ we have $x=c\left(t-t_{Q}\right)$. Therefore $Q=(0, t-x / c)$, with $t_{Q}=t-x / c>0$. By the boundary condition: $u(Q)=h(t-x / c)$. Now, take $Q R$ characteristic. Thus, since $t_{R}=0$ we have $x_{R}=c t-x>0$, and $R=(c t-x, 0)$. By the initial condition

Figure 1. Characteristic rhomboid $P Q R S$ for P in region II.
$u(R)=f(c t-x)$. In the same fashion, $S=(c t, x / c)=\left(x_{S}, t_{S}\right)$ and since S belongs to region I we have, by D'Alembert's formula:

$$
\begin{aligned}
u(S) & =\frac{1}{2}\left(f\left(x_{S}+c t_{S}\right)+f\left(x_{S}-c t_{S}\right)\right)+\frac{1}{2 c} \int_{x_{S}-c t_{S}}^{x_{S}+c t_{S}} g(y) d y \\
& =\frac{1}{2}(f(x+c t)+f(c t-x))+\frac{1}{2 c} \int_{c t-x}^{c t+x} g(y) d y .
\end{aligned}
$$

By the parallelogram theorem we have: $u(P)=u(Q)+u(S)-u(R)$. Hence,

$$
u(P)=u(x, t)=h(t-x / c)+\frac{1}{2}(f(x+c t)-f(c t-x))+\frac{1}{2 c} \int_{c t-x}^{c t+x} g(y) d y .
$$

The full solution is given by:
$u(x, t)= \begin{cases}\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(y) d y, & 0<c t \leq x, \\ h(t-x / c)+\frac{1}{2}(f(x+c t)-f(c t-x))+\frac{1}{2 c} \int_{c t-x}^{c t+x} g(y) d y, & 0<x<c t .\end{cases}$
$\mathbf{3 (b)}$: The solution (2) is clearly of class C^{1} in the interior of the regions I and II because f, g and h are continuously differentiable functions. To see what happens in the line $x=c t$ we compute:
$u_{x}= \begin{cases}\frac{1}{2}\left(f^{\prime}(x+c t)+f^{\prime}(x-c t)\right)+\frac{1}{2 c}(g(x+c t)-g(x-c t)), & 0<c t<x, \\ -\frac{1}{c} h^{\prime}(t-x / c)+\frac{1}{2}\left(f^{\prime}(x+c t)+f^{\prime}(c t-x)\right)+\frac{1}{2 c}(g(c t+x)+g(c t-x)), & 0<x<c t .\end{cases}$
$u_{t}= \begin{cases}\frac{c}{2}\left(f^{\prime}(x+c t)-f^{\prime}(x-c t)\right)+\frac{1}{2}(g(x+c t)+g(x-c t)), & 0<c t<x, \\ h^{\prime}(t-x / c)+\frac{c}{2}\left(f^{\prime}(x+c t)-f^{\prime}(c t-x)\right)+\frac{1}{2}(g(c t+x)-g(c t-x)), & 0<x<c t .\end{cases}$
We observe that

$$
\frac{1}{2}(f(2 c t)+f(0))+\frac{1}{2 c} \int_{0}^{2 c t} g(y) d y=h(0)+\frac{1}{2}(f(2 c t)-f(0))+\frac{1}{2 c} \int_{0}^{2 c t} g(y) d y,
$$

because $h(0)=f(0)$. Therefore u is continuous at $x=c t$. Moreover, note that
$\frac{1}{2}\left(f^{\prime}(2 c t)+f^{\prime}(0)\right)+\frac{1}{2 c}(g(2 c t)-g(0))=-\frac{1}{c} h^{\prime}(0)+\frac{1}{2}\left(f^{\prime}(2 c t)+f^{\prime}(0)\right)+\frac{1}{2 c}(g(2 c t)+g(0))$
inasmuch as $h^{\prime}(0)=g(0)$. Therefore u_{x} is continuous at $x=c t$. Finally, notice that
$\frac{c}{2}\left(f^{\prime}(2 c t)-f^{\prime}(0)\right)+\frac{1}{2}(g(2 c t)+g(0))=h^{\prime}(0)+\frac{c}{2}\left(f^{\prime}(2 c t)-f^{\prime}(0)\right)+\frac{1}{2}(g(2 c t)-g(0))$, again because $h^{\prime}(0)=g(0)$. Therefore u_{t} is continuous at $x=c t$. We conclude that the solution (2) is of class C^{1} in the domain $x>0$ and $t>0$.

3(c): If $f(x)=x, g(x)=1$ and $h(t)=t$ then $\frac{1}{2}(f(x+c t)+f(x-c t))=x$, $\frac{1}{2}(f(c t+x)-f(c t-x))=x, h(t-x / c)=t-x / c$, and

$$
\frac{1}{2 c} \int_{x-c t}^{x+c t} d y=t, \quad \frac{1}{2 c} \int_{c t-x}^{c t+x} d y=\frac{x}{c} .
$$

Therefore the solution in region I is $u(x, t)=x+t$; in region II it is also $u(x, t)=$ $x+t$, verifying the conclusion in (b).
4: By Kirchhoff's formula and Duhamel principle the solution is given by (in view of $f=0$):

$$
u(x, t)=\frac{1}{4 \pi c^{2} t} \int_{|x-y|=c t} g(y) d S_{y}+\frac{1}{4 \pi} \int_{0}^{t} \frac{1}{c^{2}(t-s)} \int_{|x-y|=c(t-s)} h(y, s) d S_{y} d s
$$

Substituting $g(y)=y_{2}$ and $h(y, s)=s$ we obtain:

$$
\begin{aligned}
\frac{1}{4 \pi c^{2} t} \int_{|x-y|=c t} y_{2} d S_{y} & =\frac{t}{4 \pi} \int_{|\eta|=1} x_{2}+c t \eta_{2} d S_{\eta} \\
& =\frac{t x_{2}}{4 \pi} \int_{|\eta|=1} d S_{\eta}+\frac{c t^{2}}{4 \pi} \int_{|\eta|=1} \eta_{2} d S_{\eta}=t x_{2}
\end{aligned}
$$

because $\int_{|\eta|=1} \eta_{2} d S_{\eta}=0$ (odd function integrated in a symmetric domain; you can verify this in cartesian coordinates or in spherical coordinates ${ }^{1}$). Also,
$\frac{1}{4 \pi} \int_{0}^{t} \frac{1}{c^{2}(t-s)} \int_{|x-y|=c(t-s)} s d S_{y} d s=\frac{1}{4 \pi} \int_{0}^{t} s(t-s) \int_{|\eta|=1} d S_{\eta} d s=\int_{0}^{t} s(t-s) d s=\frac{t^{3}}{6}$.
The solution is:

$$
\begin{equation*}
u(x, t)=t x_{2}+\frac{t^{3}}{6} \tag{3}
\end{equation*}
$$

It clearly satisfies the initial conditions: $u(x, 0)=0$ and $u_{t}(x, 0)=x_{2}$. It solves the equation because $\Delta u=0$ and $u_{t t}=t$.
5: The solution is given by D'Alembert's formula:

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(y) d y
$$

Since f and g have compact support, they (and all their derivatives) are zero outside an interval $|x| \leq R$. Therefore, for any fixed $t>0$ the solution also has

[^0]compact support in the x variable. Actually, if $|x|>R+c t$ for fixed $t>0$, then u, u_{x} and u_{t} are zero. Then we compute the derivative of the total energy:
\[

$$
\begin{aligned}
\frac{d E(t)}{d t} & =\frac{1}{2} \frac{d}{d t} \int_{-\infty}^{+\infty} u_{t}^{2}+c^{2} u_{x}^{2} d x=\int_{-\infty}^{+\infty} u_{t} u_{t t}+c^{2} u_{x} u_{x t} d x \\
& =c^{2} \int_{-\infty}^{+\infty} u_{t} u_{x x} d x+\left.c^{2}\left(u_{x} u_{t}\right)\right|_{x=-\infty} ^{x=+\infty}-c^{2} \int_{-\infty}^{+\infty} u_{t} u_{x x} d x \\
& =\left.c^{2}\left(u_{x} u_{t}\right)\right|_{x=-\infty} ^{x=+\infty}=0
\end{aligned}
$$
\]

after integrating by parts and in view that u_{t} and u_{x} have compact support for each $t>0$ fixed. This shows that the energy is conserved:

$$
E(t)=E(0)
$$

for all $t \geq 0$. To show the equipartition of energy we have by D'Alembert's formula that

$$
\begin{aligned}
& u_{x}=\frac{1}{2}\left(f^{\prime}(x+c t)+f^{\prime}(x-c t)\right)+\frac{1}{2 c}(g(x+c t)-g(x-c t)), \\
& u_{t}=\frac{c}{2}\left(f^{\prime}(x+c t)-f^{\prime}(x-c t)\right)+\frac{1}{2}(g(x+c t)+g(x-c t))
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
u_{t}^{2}-c^{2} u_{x}^{2} & =\left(u_{t}+c u_{x}\right)\left(u_{t}-c u_{x}\right) \\
& =\left(c f^{\prime}(x+c t)+g(x+c t)\right)\left(-c f^{\prime}(x-c t)+g(x-c t)\right)
\end{aligned}
$$

Now, since f^{\prime} and g have support in $|x| \leq R$, then taking either $|x-c t|>R$ or $|x+c t|>R$ we have $f^{\prime}=0$ and $g=0$. Then, taking t sufficiently large, more precisely $t>T:=R / c$, we have that for each fixed $x \in \mathbb{R}$, either $|x-c t|>R$ or $|x+c t|>R$. Indeed: if $x \geq 0$ then $t>T=R / c \geq(R-x) / c$ and thus $|x+c t| \geq x+c t>R$. On the other hand, if $x<0$ then $t>T=R / c \geq(R+x) / c$, yielding $|x-c t| \geq x-c t>R$. Thus, for all times greater than $T=R / c$ we have $u_{t}^{2}=c^{2} u_{x}^{2}$. This implies the equipartition of energy:

$$
E_{\operatorname{cin}}(t)=\frac{1}{2} \int_{-\infty}^{+\infty} u_{t}^{2} d x=E_{\mathrm{pot}}(t)=\frac{1}{2} \int_{-\infty}^{+\infty} c^{2} u_{x}^{2} d x
$$

for all times $t>T$.

[^0]: ${ }^{1}$ For example, in spherical coordinates $\int_{|\eta|=1} \eta_{2} d S_{\eta}=\int_{0}^{\pi} \int_{0}^{2 \pi} \sin ^{2} \phi \sin \theta d \theta d \phi=0$.

