0

/1/. Introduction

Let us start with two examples.

A company has a machine which drills holes into printed circuit boards. Since
it produces many of these boards it wants the machine to complete one board as
fast as possible. We cannot optimize the drilling time but we can try to minimize
the time the machine needs to move from one point to another. Usually drilling
machines can move in two directions: the table moves horizontally while the
drilling arm moves vertically. Since both movements can be done simultaneously,
the time needed to adjust the machine from one position to another is proportional
to the maximum of the horizontal and the vertical distance. This is often called
the Loo-distance. (Older machines can only move either horizontally or vertically
at a time; in this case the adjusting time is proportional to the L,-distance, the
sum of the horizontal and the vertical distance.)

An optimum drilling path is given by an ordering of the hole positions
P1, .-, Pn such that Z;:nl d(p;, pix+1) is minimum, where d is the L-distance:
for two points p = (x,y) and p’ = (x’, y’) in the plane we write d(p, p’) :=
max{|x —x’|, |y — y'|}. An order of the holes can be represented by a permutation,
i.e. a bijection 7 : {1,...,n} = {1,...,n}

Which permutation is best of course depends on the hole positions; for each list
of hole positions we have a different problem instance. We say that one instance
of our problem is a list of points in the plane, i.e. the coordinates of the holes to
be drilled. Then the problem can be stated formally as follows:

DRILLING PROBLEM
Instance: A set of points py, ..., p, € R%

Task: Find a permutation = : {l,...,n} — {1,...,n} such that
Z::ll d(pr(), Pr(i+1)) 1S minimum.

We now explain our second example. We have a set of jobs to be done,
each having a specified processing time. Each job can be done by a subset of
the employees, and we assume that all employees who can do a job are equally
efficient. Several employess can contribute to the same job at the same time,
and one employee can contribute to several jobs (but not at the same time). The
objective is to get all jobs done as early as possible.

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Línea

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Cuadro de texto
0

2 1. Introduction

In this model it suffices to prescribe for each employee how long he or she
should work on which job. The order in which the employees carry out their jobs
is not important, since the time when all jobs are done obviously depends only on
the maximum total working time we have assigned to one employee. Hence we
have to solve the following problem:

JoB ASSIGNMENT PROBLEM

Instance: A set of numbers f;,...,t, € R, (the processing times for n
jobs), a number m € N of employees, and a nonempty subset
S; C {1, ..., m} of employees for each jobi € {1, ..., n}.

Task: Find numbers x;; € Ry forall i = 1,...,n and j € §; such
th?‘t_Zjes,- xij =t fori =1,...,n and maxje1,.. .m Zi:jeSi xij is
minimum.

These are two typical problems arising in combinatorial optimization. How to
model a practical problem as an abstract combinatorial optimization problem is
not described in this book; indeed there is no general recipe for this task. Besides
giving a precise formulation of the input and the desired output it is often important
to ignore irrelevant components (e.g. the drilling time which cannot be optimized
or the order in which the employees carry out their jobs).

Of course we are not interested in a solution to a particular drilling problem
or job assignment problem in some company, but rather we are looking for a
way how to solve all problems of these types. We first consider the DRILLING
PRrOBLEM.

1.1 Enumeration

How can a solution to the DRILLING ProBLEM look like? There are infinitely
many instances (finite sets of points in the plane), so we cannot list an optimum
permutation for each instance. Instead, what we look for is an algorithm which,
given an instance, computes an optimum solution. Such an algorithm exists: Given
a set of n points, just try all possible n! orders, and for each compute the L-length
of the corresponding path.

There are different ways of formulating an algorithm, differing mostly in the
level of detail and the formal language they use. We certainly would not accept
the following as an algorithm: “Given a set of n points, find an optimum path and
output it.” It is not specified at all how to find the optimum solution. The above
suggestion to enumerate all possible n! orders is more useful, but still it is not
clear how to enumerate all the orders. Here is one possible way:

We enumerate all n-tuples of numbers 1, ..., n, i.e. all n" vectors of {1,...,
n}". This can be done similarly to counting: we start with (1,...,1,1), (1,...,
1,2) up to (1,..., 1, n) then switch to (1,...,1,2, 1), and so on. At each step
we increment the last entry unless it is already n, in which case we go back to the
last entry that is smaller than n, increment it and set all subsequent entries to 1.

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

1.1 Enumeration 3

This technique is sometimes called backtracking. The order in which the vectors
of {1, ..., n}" are enumerated is called the lexicographical order:

- Definition 1.1. Let x,y € R" be two vectors. We say that a vector x is lexico-
graphically smaller than y if there exists anindex j € {1, ..., n} such that x; = y;
fori=1,...,j—1and xj <yj.

Knowing how to enumerate all vectors of {1, ..., n}" we can simply check for
each vector whether its entries are pairwise distinct and, if so, whether the path
represented by this vector is shorter than the best path encountered so far.

Since this algorithm enumerates n" vectors it will take at least n” steps (in fact,
even more). This is not best possible. There are only n! permutations of {1, ..., n},
and n! is significantly smaller than n". (By Stirling’s formula n! ~ 27rn§%.) We
shall show how to enumerate all paths in approximately n? - n! steps. Consider the
following algorithm which enumerates all permutations in lexicographical order:

PATH ENUMERATION ALGORITHM
Input: A natural number n > 3. A set {py, ..., pn} of points in the plane.

Output: A permutation 7* : {1,...,n} — {1,...,n} with
cost(mw™*) := Z?_:ll d(Pr~@)s Pri+1)) Minimum.

D Setmx(@i):=iandx*(@):=ifori=1,...,n Seti:=n-1. Initialization
@ Letk:=min({z@)+1,...,n+1}\ {x(),...,7(— D). ot moaaote pumber
3 If k <n then:

Set w(i) := k.

If i = n and cost(w) < cost (™) then set 7* := 7. |Permutation finished. Compute cog

If i < n then set .Tt'(i -+ 1) :==0and i :=1i-4 1. |Permutation not finished. Go forward
Ifx=n-+1thenseti:=i—1.
If i > 1 then go to .

No more available numbers. Go one position backwards

“aey

finds at each step the next possible value of (i) (not using n(1),...,7w (G — 1)).
If there is no more possibility for 7w (i) (i.e. kK = n + 1), then the algorithm
decrements i (backtracking). Otherwise it sets 7 (i) to the new value. If i = n, the
new permutation is evaluated, otherwise the algorithm will try all possible values
for w(i + 1), ..., m(n) and starts by setting w(i + 1) := 0 and incrementing i.

So all permutation vectors (7 (1), ..., w(n)) are generated in lexicographical
order. For example, the first iterations in the case n = 6 are shown below:

alabert
Rectángulo

alabert
Cuadro de texto
Initialization

alabert
Cuadro de texto
k= Next available number
 for position i

alabert
Cuadro de texto
No more available numbers. Go one position backwards

alabert
Cuadro de texto
Permutation finished. Compute cost

alabert
Cuadro de texto
Permutation not finished. Go forward

4 1. Introduction

7:=(1,2,3,4,5,6), i:=
k=6, mw:=(,2,3,4,6,0), i:=6
k=5 m:=(,2,3,4,6,5), cost(mw) < cost(mw™)?
k:=17, [=
k=1, i:=4
k=5 =n:=(1,2,3,505), i:=5
k=4, =m:=(,2,3,540), i:=6
k=6, mw:=(0,2,3,54,6), cost(m) < cost(m™*)?

Since the algorithm compares the cost of each path to 7*, the best path en-
countered so far, it indeed outputs the optimum path. But how many steps will this
algorithm perform? Of course, the answer depends on what we call a single step.
Since we do not want the number of steps to depend on the actual implementation
we ignore constant factors. In any reasonable computer, (D will take at least 2n+1
steps (this many variable assignments are done) and at most cn steps for some
constant ¢. The following common notation is useful for ignoring constant factors:

Definition 1.2. Let f, g : D — R, be two functions. We say that f is O(g) (and
sometimes write f = O(g)) if there exist constants o, B > 0 such that f(x) <
ag(x)+ B forall x € D. If f = O(g) and g = O(f) we also say that f = ©(g)
(and of course g = O(f)). In this case, f and g have the same rate of growth.

Note that the use of the equation sign in this notation is not symmetric. For
example, let D = N, and let f(n) be the number of elementary steps in @ and
g(n) = n (n € N). Clearly we have f = O(g) (in fact f = ©(g)) in this case;
we say that (D) takes O (n) time (or linear time). A single execution of (3 takes a-
constant number of steps (we speak of O(1) time or constant time) except in the
case k < n and i = n; in this case the cost of two paths have to be compared,
which takes O(n) time.

What about @? A naive implementation, checking for each j € {7 (i) +
1,...,n} and each h € {1,...,i — 1} whether j = m(h), takes O((n — 7 (i))i)
steps, which can be as big as ©(n?). A better implementation of) uses an
auxiliary array indexed by 1, ..., n:

@ For j:=1tondoaux(j):=0.
For j:=1toi — 1 do aux(xw(j)) := 1.
Set k :=m (i) + 1.
While k < n and aux(k) =1do k:=k+ 1.

Obviously with this implementation a single execution of 2) takes only O(n)
time. Simple techniques like this are usually not elaborated in this book; we assume
that the reader can find such implementations himself.

Having computed the running time for each single step we now estimate the
total amount of work. Since the number of permutations is n! we only have to
estimate the amount of work which is done between two permutations. The counter
i might move back from n to some index i’ where a new value 7 (i ") < n is found.
Then it moves forward again up to i = n. While the counter i is constant each of @
and (3) is performed once. So the total amount of work between two permutations

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

1.2 Running Time of Algorithms 5

consists of at most 2n times @ and (), i.e. O(n?). So the overall running time of

the PATH ENUMERATION ALGORITHM is O (n’n!).

A One can do slightly better; a more careful analysis shows that the running time
is only O(n - n!) (Exercise 3).

Still the algorithm is too time-consuming if » is large. The problem with the
enumeration of all paths is that the number of paths grows exponentially with the
number of points; already for 20 points there are 20! = 2432902008176640000 ~
2.4 - 10'® different paths and even the fastest computer needs several years to
evaluate all of them. So complete enumeration is impossible even for instances of
moderate size.

The main subject of combinatorial optimization is to find better algorithms for
problems like this. Often one has to find the best element of some finite set of
feasible solutions (in our example: drilling paths or permutations). This set is not
listed explicitly but implicitly depends on the structure of the problem. Therefore
an algorithm must exploit this structure.

In the case of the DRILLING PrROBLEM all information of an instance with n
points is given by 2n coordinates. While the naive algorithm enumerates all n!
paths it might be possible that there is an algorithm which finds the optimum path
much faster, say in n2 computation steps. It is not known whether such an algorithm
exists (though results of Chapter 15 suggest that it is unlikely). Nevertheless there
are much better algorithms than the naive one.

1.2 Running Time of Algorithms

One can give a formal definition of an algorithm, and we shall in fact give one
in Section 15.1. However, such formal models lead to very long and tedious
descriptions as soon as algorithms are a bit more complicated. This is quite similar
to mathematical proofs: Although the concept of a proof can be formalized nobody
uses such a formalism for writing down proofs since they would become very long
and almost unreadable.

Therefore all algorithms in this book are written in an informal language. Still
the level of detail should allow a reader with a little experience to implement the
algorithms on any computer without too much additional effort.

Since we are not interested in constant factors when measuring running times
we do not have to fix a concrete computing model. We count elementary steps,
but we are not really interested in how elementary steps look like. Examples of
elementary steps are variable assignments, random access to a variable whose
index is stored in another variable, conditional jumps (if — then — go to), and
simple arithmetic operations like addition, subtraction, multiplication, division and
comparison of numbers.

An algorithm consists of a set of valid inputs and a sequence of instructions
each of which can be composed of elementary steps, such that for each valid input
the computation of the algorithm is a uniquely defined finite series of elementary
steps which produces a certain output. Usually we are not satisfied with finite

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

6 1. Introduction

computation but rather want a good upper bound on the number of elementary
steps performed:

Definition 1.3. Let A be an algorithm which accepts inputs from a set X, and
let f : X — Ry. If there exists a constant @« > 0 such that A terminates its
computation after at most a.f (x) elementary steps (including arithmetic operations)
Jor each input x € X, then we say that A runs in O(f) time. We also say that the
running time (or the time complexity) of A is O(f).

The input to an algorithm usually consists of a list of numbers. If all these
numbers are integers, we can code them in binary representation, using O (log(ja|+
2)) bits for storing an integer a. Rational numbers can be stored by coding the
numerator and the denominator separately. The input size of an instance with
rational data is the total number of bits needed for the binary representation.

Definition 1.4. An algorithm with rational input is said to run in polynomial
time if there is an integer k such that it runs in O (n*) time, where n is the input
size, and all numbers in intermediate computations can be stored with O(n*) bits.

An algorithm with arbitrary input is said to run in strongly polynomial time
if there is an integer k such that it runs in O(n*) time for any input consisting of
n numbers and it runs in polynomial time for rational input. In the case k = 1 we
have a linear-time algorithm.

Note that the running time might be different for several instances of the
same size (this was not the case with the PATH ENUMERATION ALGORITHM). We
consider the worst-case running time, i.e. the function f : N — N where f(n)
is the maximum running time of an instance with input size n, and say that the
running time of such an algorithm is O(f(n)). For some algorithms we do not
know the rate of growth of f but only have an upper bound.

The worst-case running time might be a pessimistic measure if the worst case
occurs rarely. In some cases an average-case running time with some probabilistic
model might be appropriate, but we shall not consider this.

If A is an algorithm which for each input x € X computes the output f(x) € Y,
then we say that A computes f : X — Y. If a function is computed by some
polynomial-time algorithm, it is said to be computable in polynomial time.

Polynomial-time algorithms are sometimes called “good” or “efficient”. This
concept was introduced by Cobham [1964] and Edmonds [1965]. Table 1.1 moti-
vates this by showing hypothetical running times of algorithms with various time
complexities. For various input sizes n we show the running time of algorithms
that take 100n log n, 1012, n, n!°€" 2" and n! elementary steps; we assume that
one elementary step takes one nanosecond. As always in this book, log denotes
the logarithm with basis 2.

As Table 1.1 shows, polynomial-time algorithms are faster for large enough
instances. The table also illustrates that constant factors of moderate size are not
very important when considering the asymptotic growth of the running time.

Table 1.2 shows the maximum input sizes solvable within one hour with the
above six hypothetical algorithms. In (a) we again assume that one elementary step

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

Alabert
Rectángulo

1.2 Running Time of Algorithms 7

Table 1.1.
| n | 100nlogn | 10n? | n* | nloer | 2" | n! |

10 3 us 1 pus 3 us 2 us 1 us 4 ms
20 9 us 4 us 36 us 420 us 1 ms 76 years
30 15 us 9 us 148 us 20 ms Is| 810 y.
40 21 us 16 us 404 us 340 ms 1100 s
50 28 us 25 us 884 us 4s 13 days
60 35 pus 36 us 2 ms 325 37 years
80 50 us 64 us 5 ms 1075s | 4107 y.
100 66 us 100 pus 10 ms 5hours | 4-108 y.
200 153 us 400 pus 113 ms 12 years
500 448 us | 2.5 ms 35| 5-100y.
1000 1 ms 10 ms 32s | 3-108y.
10* 13 ms 1s | 28hours
10° 166 ms 100 s | 10 years
106 2s | 3 hours 3169 y.
107 23 s | 12 days 107 y.
108 266 s 3 years | 3-1010y.
1010 9 hours | 3-10%y.
1012 46 days | 3-10% y.

takes one nanosecond, (b) shows the corresponding figures for a ten times faster
machine. Polynomial-time algorithms can handle larger instances in reasonable
time. Moreover, even a speedup by a factor of 10 of the computers does not in-
crease the size of solvable instances significantly for exponential-time algorithms,
but it does for polynomial-time algorithms.

Table 1.2.

l 1007 logn 10n? | n*5 | nlen | 2" | nl

(@ | 1.19-10° 60000 | 3868 87 | 41 | 15
(b) | 10.8-10° | 189737 | 7468 104 | 45 | 16

(Strongly) polynomial-time algorithms, if possible linear-time algorithms, are
what we look for. There are some problems where it is known that no polynomial-
time algorithm exists, and there are problems for which no algorithm exists at all.
(For example, a problem which can be solved in finite time but not in polynomial
time is to decide whether a so-called regular expression defines the empty set; see
Aho, Hopcroft and Ullman [1974]. A problem for which there exists no algorithm
at all, the HALTING PROBLEM, is discussed in Exercise 1 of Chapter 15.)

However, almost all problems considered in this book belong to the follow-
ing two classes. For the problems of the first class we have a polynomial-time

alabert
Línea

alabert
Rectángulo

Alabert
Rectángulo

8 1. Introduction

algorithm. For each problem of the second class it is an open question whether a
polynomial-time algorithm exists. However, we know that if one of these prob-
lems has a polynomial-time algorithm, then all problems of this class do. A precise
formulation and a proof of this statement will be given in Chapter 15.

The JoB ASSIGNMENT PROBLEM belongs to the first class, the DRILLING ProB-
LEM belongs to the second class.

These two classes of problems divide this book roughly into two parts.
We first deal with tractable problems for which polynomial-time algorithms are
known. Then, starting with Chapter 15, we discuss hard problems. Although no
polynomial-time algorithms are known, there are often much better methods than
complete enumeration. Moreover, for many problems (including the DRILLING
PrOBLEM), one can find approximate solutions within a certain percentage of the
optimum in polynomial time.

1.3 Linear Optimization Problems

We now consider our second example given initially, the JoB ASSIGNMENT PRroB-
LEM, and briefly address some central topics which will be discussed in later
chapters.

The JoB AssIGNMENT PROBLEM is quite different to the DRILLING PROBLEM
since there are infinitely many feasible solutions for each instance (except for
trivial cases). We can reformulate the problem by introducing a variable T for the
time when all jobs are done:

min T
s.t. Xij = (iefl,...,n}
2 Ly
xij = 0 Gefl,...,n}, jeS)
> ox = T Gell,...,m)
irjes;
The numbers #; and the sets S; (i = 1,..., n) are given, the variables x;; and

T are what we look for. Such an optimization problem with a linear objective
function and linear constraints is called a linear program. The set of feasible
solutions of (1.1), a so-called polyhedron, is easily seen to be convex, and one
can prove that there always exists an optimum solution which is one of the finitely
many extreme points of this set. Therefore a linear program can, theoretically, also
be solved by complete enumeration. But there are much better ways as we shall
see later.

Although there are several algorithms for solving linear programs in general,
such general techniques are usually less efficient than special algorithms exploiting
the structure of the problem. In our case it is convenient to model the sets S;,
i =1,...,n, by a graph. For each job i and for each employee j we have a

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

1.4 Sorting 9

point (called vertex), and we connect employee j with job i by an edge if he or she
can contribute to this job (i.e. if j € S;). Graphs are a fundamental combinatorial
~ structure; many combinatorial optimization problems are described most naturally
in terms of graph theory.

Suppose for a moment that the processing time of each job is one hour, and
we ask whether we can finish all jobs within one hour. So we look for numbers x;;
(ief{l,...,n}, je€S;)suchthat 0 <x;; <1foralliandjand Zi:jes,- xi; =1
for i = 1,...,n. One can show that if such a solution exists, then in fact an
integral solution exists, i.e. all x;; are either 0 or 1. This is equivalent to assigning
each job to one employee, such that no employee has to do more than one job.
In the language of graph theory we then look for a matching covering all jobs.
The problem of finding optimal matchings is one of the best known combinatorial
optimization problems.

We review the basics of graph theory and linear programming in Chapters 2
and 3. In Chapter 4 we prove that linear programs can be solved in polynomial
time;<and in Chapter 5 we discuss integral polyhedra. In the subsequent chapters
we discus e classical combinatorial optimization problems in detail.

But not by the Simplex Method

1.4 Sorting

Let us conclude this chapter by considering a special case of the DRILLING PROB-
LEM where all holes to be drilled are on one horizontal line. So we are given just
one coordinate for each point p;, i = 1,...,n. Then a solution to the drilling
problem is easy, all we have to do is sort the points by their coordinates: the drill
will just move from left to right. Although there are still n! permutations, it is
clear that we do not have to consider all of them to find the optimum drilling
path, i.e. the sorted list. It is very easy to sort # numbers in nondecreasing order
in O(n?) time.

To sort n numbers in O(nlogn) time requires a little more skill. There are
several algorithms accomplishing this; we present the well-known MERGE-SORT
ALGORITHM. It proceeds as follows. First the list is divided into two sublists of
approximately equal size. Then each sublist is sorted (this is done recursively by
the same algorithm). Finally the two sorted sublists are merged together. This
general strategy, often called “divide and conquer”, can be used quite often. See
e.g. Section 17.1 for another example.

We did not discuss recursive algorithms so far. In fact, it is not necessary to
discuss them, since any recursive algorithm can be transformed into a sequential
algorithm without increasing the running time. But some algorithms are easier to
formulate (and implement) using recursion, so we shall use recursion when it is
convenient.

alabert
Rectángulo

alabert
Rectángulo

alabert
Cuadro de texto
But not by the Simplex Method

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

10 1. Introduction

MERGE-SORT ALGORITHM
A list ay, .

A permutation 7 : {1, ...,n} = {1,..., n} such that a,) < a4
foralli=1,...,n—1.

Input: .., a, of real numbers.

Output:

D If n =1 then set 7(1) := 1 and stop (return 7).
@

Setm := | %].
Let o :=MERGE-SORT(ay, ..., ay).
Let 0 :=MERGE-SORT(@p+1, - . -, Gn).
@ Setk:=1,1:=1.
While k <mand [<n —m do:
If a4y < amioqy thenset w(k+1— 1) :=p(k) and k :==k + 1
elsesetm(k+Il—1):=m+o()and !l :=1+1.
While k <m do: Setn(k+1—1):=pk) and k : =k + 1.
While/ <n—-mdo: Setn(tk+1—1)=m+o()and] :=141.

As an example, consider the list “69,32,56,75,43,99,28”. The algorithm first
splits this list into two, “69,32,56” and “75,43,99,28” and recursively sorts each
of the two sublists. We get the permutations p = (2,3,1) and o0 = (4,2, 1,3)
corresponding to the sorted lists “32,56,69” and “28,43,75,99”. Now these lists
are merged as shown below:

k=1, [:=1
p(1)=2, o(l)=4, ayq =32, asq =28, nn(l):=7, l:=2
e(l)=2, o@)=2, a,q) =32, asz =43, n2):=2, k=2
p2)=3, o0@2)=2, a,p =56, asp =43, 73 :=5, l:=3
p2)=3, o@B)=1, a,p =56, a3 =75 n@:=3, k:=3
p(3) =1 o@B)=1 a,;=69, a3 =75 =) :=1, k 4
o(3) =1, as3y =15, m(6):=4, | =
o(4) =3, ao4) = 99, n(7):=6, l:=5

Theorem 1.5. T7he MERGE-SORT ALGORITHM works correctly and runs in
O(nlogn) time.

Proof: The correctness is obvious. We denote by T'(n) the running time (number
of steps) needed for instances consisting of n numbers and observe that 7(1) = 1
and T'(n) = T(15]) +T([51) +3n+ 6. (The constants in the term 3n + 6 depend
on how exactly a computation step is defined; but they do not really matter.)

We claim that this yields 7(n) < 12nlogn + 1. Since this is trivial for n = 1
we proceed by induction. For n > 2, assuming that the inequality is true for
l,...,n—1, we get

Tn) < 12 L%J log (—i—n) +1+12 [g] log(%—n) F1+3n+6

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

Exercises 11

= 12n(logn+1—1log3)+3n+8
13
< 12nlogn-—-—2—n+3n+8 < 12nlogn + 1,

because log3 > -3%. O

Of course the algorithm works for sorting the elements of any totally ordered
set, assuming that we can compare any two elements in constant time. Can there be
a faster, a linear-time algorithm? Suppose that the only way we can get information
on the unknown order is to compare two elements. Then we can show that any
algorithm needs at least ®(nlogn) comparisons in the worst case. The outcome
of a comparison can be regarded as a zero or one; the outcome of all comparisons
an algorithm does is a 0-1-string (a sequence of zeros and ones). Note that two
different orders in the input of the algorithm must lead to two different 0-1-strings
(otherwise the algorithm could not distinguish between the two orders). For an
input of n elements there are n! possible orders, so there must be n! different 0-
1-strings corresponding to the computation. Since the number of 0-1-strings with
length less than |2 log%| is 2liles] — 1 < 25les = (3) < n! we conclude
that the maximum length of the 0-1-strings, and hence of the computation, must
be at least 5 log 5 = ®(nlogn).

In the above sense, the running time of the MERGE-SORT ALGORITHM is optimal
up to a constant factor. However, there is an algorithm for sorting integers (or
sorting strings lexicographically) whose running time is linear in the input size;
see Exercise 6.

Lower bounds like the one above are known only for very few problems (except
trivial linear bounds). Often a restriction on the set of operations is necessary to
derive a superlinear lower bound.

See Wikipedia: Sorting algorithm

Exercises

o] — 1. Prove that log(n!) = ®(nlogn).
[oo]
— 2. Prove that nlogn = O(n'*) for any € > 0.

3. Show that the running time of the PaATH ENUMERATION ALGORITHM is
O(n-n!).

4. Suppose we have an algorithm whose running time is @ (n(t + n'/*)), where
n is the input length and ¢ is a positive parameter we can choose arbitrarily.
How should ¢ be chosen (depending on n) such that the running time (as a
function of n) has a minimum rate of growth?

5. Let s, t be binary strings, both of length m. We say that s is lexicographically
smaller than ¢ if there exists an index j € {1,...,m} such that 5; = ¢; for
i=1,...,j—1ands; <. Now given n strings of length m, we want to
sort them lexicographically. Prove that there is a linear-time algorithm for this
problem (i.e. one with running time O (nm)).

Hint: Group the strings according to the first bit and sort each group.

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Línea

alabert
Cuadro de texto
See Wikipedia: Sorting algorithm

Alabert
Cuadro de texto
DO

Alabert
Cuadro de texto
DO

12 1. Introduction

6. Describe an algorithm which sorts a list of natural numbers a;, . . ., a, in linear
time; i.e. which finds a permutation w with a,¢) < ape+n (i =1,...,n=1)
and runs in O(log(a; + 1) + --- + log(a, + 1)) time.

Hint: First sort the strings encoding the numbers according to their length.
Then apply the algorithm of Exercise 5.

Note: The algorithm discussed in this and the previous exercise is often called
radix sorting.

References

General Literature:

Knuth, D.E. [1968]: The Art of Computer Programming; Vol. 1. Addison-Wesley, Reading
1968 (3rd edition: 1997)

Cited References:

Aho, A.V., Hopcroft, J.E., and Ullman, J.D. [1974]: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading 1974

Cobham, A. [1964]: The intrinsic computational difficulty of functions. Proceedings of the
1964 Congress for Logic Methodology and Philosophy of Science (Y. Bar-Hillel, ed.),
North-Holland, Amsterdam 1964, pp. 24-30

Edmonds, J. [1965]: Paths, trees, and flowers. Canadian Journal of Mathematics 17 (1965),
449-467

Alabert
Cuadro de texto
Think

