A Graph Program to Navigate a Route

The application
External data storage
Dijkstra's Minimum Spanning Tree Algorithm

Pseudocode
Source code
Test data
Test results
Conclusions .
TS SAS
=k)

The Application

An undirected graph is well suited to modelling a
set of roads between places for the purpose of
automatically computing the shortest route. In this
application, the vertices will be the names of
towns or cities, and each edge will be a road seg-
ment with a start place and an end place, and a
distance between these 2 places.

External Data Storage 1

To avoid repetitive data entry and to minimise data
entry effort, graph data is stored externally using text
files. One place name is stored directly in each ver-
tex. In order to avoid having to type a long place-
name when details of a road endpoint are entered, the
placename is also stored as a shorter mnemonic form.
So the vertex for London is keyed as LO. Here is an
exerpt from vertices.txt :

[.O London o
OX Oxford P
\g =)

=)

External Data Storage 2

This enables minimisation of the data entry needed for
the road between Oxford and London which can be
stored within edges.txt as the following text record:

OX LO 56

Indicating this road is 56 miles in length. Spaces are
used between columns. This makes it easier if place
names are not allowed embedded spaces. So a place-
name consisting of more than 1 word, e.g. Newcastle

upon Tyne has to be hyphenated as: ==
=~ z f/\
Newcastle-upon-Tyne . o)

Dijkstra's Algorithm 1

This works by selecting a root for a Minimum Spanning Tree
that will be created. A MST identifies a acyclic set of routes
by which every vertex connects to the root using the
shortest path between it and the root node.

The vertices to be scanned are given a starting distance as-
sumed to exist between themselves and the root node of in-
finity in theory, or the maximum value of an integer or float
in practice. The root node is given a distance to itself of
zero. Vertices are then all placed in the set of unscanned
vertices. Until all vertices have been scanned, the next ver-
tex to be scanned is selected by finding the vertex with the

shortest distance to the root. <»>V

Sy

Dijkstra's Algorithm 2

The process of scanning a vertex involves checking the dis-
tance to root of all vertices connected to the scanned vertex
by edges. This can be speeded up if the edge records were
earlier connected to vertex records using adjacency lists
When the distance to root of a connected vertex is checked,
if the value it currently stores as its distance to root, is
greater than the distance to root of the vertex being scanned
plus the edge cost, the distance to root of the connected ver-
tex is reduced to that of the vertex being scanned, plus the
edge cost. Whenever the distance to root of a connected ver-
tex is reduced, the identity of the previous vertex stored as
part of the connected vertex record (i.e. the direction you
have to travel to get from the connected vertex towards the

root vertex) is updated to the identity of the vertex bei .
scanned. SIS >}

Sy

Pseudocode: preparation

For each edge:
Add edge to adjacency list of vertex at from end
Add edge to adjacency list of vertex at to end
For each vertex:
Assign scanned = False
Assign distance to root = infinity
Assign identity of previous vertex as NULL
For root vertex, assign distance to root = zero.

Pseudocode: creation of MST

While unscanned vertices exist:
Extract unscanned vertex with minimum distance to root
as vertex being scanned (VBS)
For each edge of VBS:
DTRVBS = distance to root of vertex being scanned
DTRVOE = distance to root of vertex at other end,
(VOE) of edge
If DTRVOE >= DTRVBS + edge cost:
Assign DTRVOE = DTRVBS + edge cost
Assign previous vertex of VOE as VBS
Assign VBS as scanned = True

+
+
¥
*
+#
*
+
*

M,
*

Source 1: comments

minspan.c

Richard Kay

April 2006

Implements Dijkstra's Minimum Spanning Tree Algorithm
in order to compute and print shortest route between
2 places. To be used together with edges.txt and
vertices.txt which supply detalls of roads

and towns respectively */

format of vertlices.txt
key placename

e.qd.

LD Longon

OX Oxford

format of edges.txt

startkey endkey distance

e.d.

LD OX 586

indicates road from London to Oxford is 56 miles */

Source 2 : edge typedefs

> <stdio.h=
<string.h=>

> <stdlib.h>
de <limits.h>

typedef struct edge {
int from; /* index of from place in vertices */
int to; /* index of to place in vertices */
int dist; /* distance in miles */

} EDGE;

typedef struct edgelist { /* Linked List of edges */
int edgidx; /* index of edge in edges[] */
struct edgelist *next;

} EDGELIST;

Source 3: vertex and graph types

typedef struct vertex { /* detalls about town */
char key[3]; /* short code e.g. LO for London */
char *place; /* name of town */
int previous; /* index of place closer to root in MST */
int dfr; /¥ distance from root */
int scanned; /* 1 if this vertex has been scanned */
EDGELIST *roads; /* list of connecting roads (edges) */
} VERTEX;

typedef struct graphd { /* graph data structure collection */
VERTEX *vertices; /* array of vertices */
int nvertices; /* no. of vertices in array */
EDGE *edges; /* array of edges */
int nedges; /* no. of edges in array */
} GRAPHD;

Source 4: function prototypes

int countfile(char *fname):
/* counts \n terminated records in file */
vold readedges(char *fname, GRAPHD *gd);
/* reads edges 1nto edges array */
vold readvertices(char *fname, GRAPHD *gd);
/* reads data into vertices array */
void list adjacent (GRAPHD *gd);
/* adds linked list of edges to each vertex */
int get place(char *type,GRAPHD *gd);
/* gets journey endpoint */
void print route(int from,GRAPHD *gd);
/* Prints all place names and distances along route */
int findplace(char *place,GRAPHD *gd):
/* returns 1ndex of place within vertices array */
vold addroad(GRAPHD *gd,int vi,int ei);

/* adds road 1ndex el to adjacency list of vertex index vi */

>

Source 5: more prototypes etc.

void dijkstras mst(int root,GRAPHD *gd);

/* apply Dijkstra's minimum spanning tree algorithm */
int some unscanned(GRAPHD *gd);

/* returns true 1f not all vertices have been scanned */
int closest unscanned(GRAPHD *gd);

/* returns 1ndex of unscanned vertex closest to root */
int end road(int start,int edgidx,GRAPHD *gd);

/* returns index of the other end of a road */

#define VERTFIL "vertices.txt'
#define EDGEFIL "edges.txt’

Source 6: main function

int main(void)/{
GRAPHD qgd; /* set of graph data */
int from, to; /* journey endpoints */
/* read in vertex then edge data */
gd.nvertices=count file(VERTFIL) ;
gd.vertices=(VERTEX*)malloc(gd.nvertices*sizeof (VERTEX));
readvertices(VERTFIL, &gd) ;
gd.nedges=count file(EDGEFIL) ;
gd.edges=(EDGE*)malloc(gd.nedges*sizeof (EDGE)) ;
readedges (EDGEFIL, &ad) ;
/* add adjacency lists to vertices #*/
list adjacent (&gd);
/* get journey start and enpolnts */
from=get place("start"”,&gd);
to=get place("end",&gd);
/¥ create min span tree with root at endpoint */
dijkstras mst(to,&qd);
/¥ print out route details from startpoint */
print route(from,&gd) ;
return ©;

Source 7: count lines In file

int countfile(char *fname){

/¥ counts no. of \n terminated records in file */

int 1ines=0;

char dummy[BUFSIZ];

FILE *fh;

fh=fopen(fname, "r");

if(!1fh){
fprintf(stderr,"countfile: didn't open file");
ex1t(1);

i

while(fgets(dummy,BUFSIZ, fh)) lines++:

fclose(fh);

return lines;

Source 8: read edges

vold readedges(char *fname, GRAPHD *gd){

/* reads edges into edges array */

imt 1=8, 1 Trom, ot

char buff[BUFSIZ],sfrom[30],sto[30],sdist[30];

BILE 2Fh;

fh=fopen(fname, "r");

for(i=0;1i < gd->nedges;i++){
fgets(buff,BUFSIZ, Th) ;
sscanf(buff, "%s%s%s",sfrom,sto,sdist) ;
if(strlen(sfrom)!=2||strlen(sto)!=2] |

strlien(sdist)»>3]| |strlen(sdist)<l){
fprintf(stderr,

"readedges edge %d invalid rec format",1i);
Exit Cl)

}

ifrom=findplace(sfrom,gd);
ito=findplace(sto,qd) ;
if(ifrome@||ito<@){
fprintf(stderr, "readedges unconnected edge %d",1i);
exit(1);
}
gd-=edges([i].from=1ifrom;
gd->edges([i].to=1ito;
gd->edges|[1l] .dist=atol(sdist);
}
fclose(fTh);

Source 9: read vertices

volid readvertices(char *fname, GRAPHD *gd){
/* reads data into vertices array */
char buff[BUFSIZ],key[20],town[BUFSIZ];
int 1i;
Ll B fhe
fh=fopen(fname, "r");
for(i=0;1i < gd-=nvertices;i++){
fgets(buff,BUFSIZ, Th);
sscanf (buff, "%s%s",key, town) ;
if(strilen(key)!=2||strlen(town)>60){
fprintf{stderr,
"readvertices vertex %d invalid rec format",i);
exit(1);
}
strcpy(gd->vertices[i].key, key);
gd->vertices[i].place=(char*)malloc(strien(town)+1);
strcpy(gd-=vertices[i].place,town) ;
/* initial sentinels for vertex */
gd->vertices[i].previous=-1;
gd->vertices[1i].dfr=INT_MAX; /* from limits.h */
gd->vertices(i].scanned=06; /* not yet scanned */
gd->vertices[i]. roads=NULL;

}
fclose(fh);

Source 10: adjacency listing

void list adjacent (GRAPHD *gd){

/* adds list of edges to each vertex */

int i,fpi,tpi; /* from and to place indices */

for(i=0;1 < gd->nedges;i++){
fpl=gd->edges[1l].from;
tpl=qd->edges([1].to;
gddroad(gd, fpl,1);
gddroad(gd,tpl,1);

}

vold addroad(GRAPHD *gd,int vi,int ei){

/* adds road index el to road linked 1list for vertex index vi */
EDGELIST *el; /* pointer to LL node */
el=(EDGELIST*)malloc(sizeof (EDGELIST)): /#* space for LL node #*/
el ->next=gd->vertices([vi].roads; /* link into start of list */
el->edglidx=el;
gd->vertices([vl].roads=el;

Source 11: prompt for route end

int get place(char *type,GRAPHD *gd){
/* gets a journey endpoint */
char buff[BUFSIZ];
int lenstr,vidx;
do {
printf("input key or name for %s place\n",type);
fgets(buff,BUFSIZ,stdin);
/* chop \n */
lenstr=strlen(buff);
if(buff[lenstr- l]——'xn]{
buff[lenstr-1]
lenstr--;
}
vidx=findplace(buff,ad);
} while(vidx < 0);
return vidx;

Source 12: finding utility functions

int findplace(char *place,GRAPHD *gd){
/¥ return 1ndex of place within vertices array.
* Finds either place name or key */
int i;
for(i=0;1 < gd-=nvertices;i++){
if(strcmp(place,gd-=vertices([i] .place)==0)
return 1;
if(strcmp(place,gd-=vertices[i] .key)==0)
return 1;

}

return -1;

}

int end road(int start,int edgidx,GRAPHD *gd){
/* returns index of other end of road */
if(gd-=edges[edgidx].from == start)
return gd-=edges|[edgidx].to;
else
return gd-=>edges|[edgidx].from;

Source : 13 Dijkstra’'s Algorithm

void dijkstras mst(int root,GRAPHD *gd){
/* Dijkstras algorithm to make
¥ Minimum Spanning Tree */
int 1,disti,dist oe,other end;
EDGELIST *el;
gd->vertices[root].dfr=0; /* root at zero dist from itself */
gd->vertices[root].previous=-1; /* nowhere closer to itself */
while(some unscanned(gd)){
1=closest unscanned(gd);
gd->vertices[i].scanned=1; /* in set of scanned vertices */
disti=gd-=vertices[i].dfr;
el=gd->vertices[i].roads;
while(el){ /* check all edges from closest #*/
other end=end road(1i,el->edgidx,qgd);
dist oe=gd->vertices[other end].dfr;
if(dist oe > disti + gd->edges|el->edgidx].dist){
/* update shorter route to other end */
gd->vertices[other end].dfr =
distl + gd-»edges|el->edgidx].dist;
gd->vertices[other end].previous = 1i;

}

el=el->next;

Source 14: Dijkstra utility functions

int some unscanned(GRAPHD *gd) {
S*¥ returns true if not all vertices have been scanned */
int 1i;
for(i=0;i < gd-=nvertices;i++){
if(!gd->vertices[i].scannad)
¥ found an unscanned vertex */
return 1;

¥ no unscanned vertex found */
return ©;

i

int closest unscanned(GRAFPHD *gd) {
¥ oreturns index of unscanned vertex closest to root */
int i,mindist=INT MAX,nearest=-1;
for(i=0;i < gd->nvertices;i++){
if(! gd-=vertices[i].scanned &&
gd->vertices[i].dfr<=mindist){
mindist=gd-=vertices[i] .dfr;
Nearest=1,;
t
t

return nearest;

Source 15: outputting the route

lvoid print route(int from,GRAPHD *gd){
| /* Prints all place names and distances along route */
do {
if(gd->vertices[from].dfr==INT MAX ||
gd->vertices[from].previous<i){
fprintf(stderr,
wrint _rodte: Uncannected yertex');
exlt(1);
}
printf("At: %s. Miles to go: %d\n’,
gd->vertices[from].place,
gd-»vertices|[from].dfr);
from=gd->vertices[from].previous;
} while(gd-=>vertices[from].dfr);
/* finally print destination,i.e. root of MST */
printf("At: %s. Miles to go: %di\n",
gd->vertices[from].place,
gd->vertices|[from].dfr);

Test Data

Files vertices.txt and edges.txt were created using a text editor.
Details for 55 towns and 93 roads in mainland Britain were
input. Some distances were taken from a UK road map and
some were guessed. 10 lines from each file are shown.

AB Aberdeen
AW Aberystwyth
BK Birkenhead
Bl Birmingham
BG Brighton

BR Bristol

CM Cambridge
CA Cardiff

CL Carlisle

CN Carmarthen

PE PL 77
PL EX 44

PL TO 29

TO EX 17

EX PE 110

EX BR 84

EX SA 90

EX SO 109

SA SO 23 g
SOWN15 ZREso=

input key or name for start place

Plymouth

input key or name for end place Test Results:
Aberdeen Plymouth to
At: Plymouth. Miles to go: 698

At:
At:
At:
At:
At:
At:
At:
At:
At:
At:
At:

Exeter. Miles to go: 654 Aberdeen

Bristol. Miles to go: 570

Gloucester. Miles to go: 535
Cheltenham. Miles to go: 523
Worcester. Miles to go: 488
Birmingham. Miles to go: 458
Manchester. Miles to go: 369

Leeds. Miles to go: 325
Newcastle-upon-Tyne. Miles to go: 231

Edinburgh. Miles to go: 125 ===
Aberdeen. Miles to go: 0 S f’;
NN

input key or name for start place
Margate

input key or name for end place
Holyhead

At:
At:
At:
At:
At:
At:
At:
At:
At:

Margate. Miles to go: 396
Dover. Miles to go: 374
London. Miles to go: 295
Reading. Miles to go: 260
Swindon. Miles to go: 220
Gloucester. Miles to go: 185
Hereford. Miles to go: 140
Shrewsbury. Miles to go: 104
Holyhead. Miles to go: 0

Test Results:
Margate to
Holyhead

input key or name for start place
Hastings

input key or name for end place
Birkenhead

At:
At:
At:
At:
At:
At:
At:
At:

Hastings. Miles to go: 316
Brighton. Miles to go: 281
London. Miles to go: 222
Milton-Keynes. Miles to go: 162
Coventry. Miles to go: 125
Birmingham. Miles to go: 103
Chester. Miles to go: 37
Birkenhead. Miles to go: 0

Test Results:
Hastings to
Birkenhead

Conclusions

This program solves a moderately complex problem. Design of
the program required a study of graph theory and the selec-
tion of a standard graph algorithm.

The internal data was designed around the algorithm to minim-
ise programming complexity. The external data was designed
to minimise data entry input and errors.

The processing was divided into many small functions each of
which could perform a well-contained task. Writing smaller
functions around well-designed data is much easier than at-
tempting to debug large functions written to process poorly
structured data. e

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

