
A Graph Program to Navigate a Route

● The application
● External data storage
● Dijkstra's Minimum Spanning Tree Algorithm
● Pseudocode
● Source code
● Test data
● Test results
● Conclusions

The Application

An undirected graph is well suited to modelling a
set of roads between places for the purpose of
automatically computing the shortest route. In this
application, the vertices will be the names of
towns or cities, and each edge will be a road seg-
ment with a start place and an end place, and a
distance between these 2 places.

External Data Storage 1

To avoid repetitive data entry and to minimise data
entry effort, graph data is stored externally using text
files. One place name is stored directly in each ver-
tex. In order to avoid having to type a long place-
name when details of a road endpoint are entered, the
placename is also stored as a shorter mnemonic form.
So the vertex for London is keyed as LO. Here is an
exerpt from vertices.txt :

LO London
OX Oxford

External Data Storage 2

This enables minimisation of the data entry needed for
the road between Oxford and London which can be
stored within edges.txt as the following text record:

OX LO 56

Indicating this road is 56 miles in length. Spaces are
used between columns. This makes it easier if place
names are not allowed embedded spaces. So a place-
name consisting of more than 1 word, e.g. Newcastle
upon Tyne has to be hyphenated as:

 Newcastle-upon-Tyne .

Dijkstra's Algorithm 1

This works by selecting a root for a Minimum Spanning Tree
that will be created. A MST identifies a acyclic set of routes
by which every vertex connects to the root using the
shortest path between it and the root node.

The vertices to be scanned are given a starting distance as-
sumed to exist between themselves and the root node of in-
finity in theory, or the maximum value of an integer or float
in practice. The root node is given a distance to itself of
zero. Vertices are then all placed in the set of unscanned
vertices. Until all vertices have been scanned, the next ver-
tex to be scanned is selected by finding the vertex with the
shortest distance to the root.

Dijkstra's Algorithm 2
The process of scanning a vertex involves checking the dis-

tance to root of all vertices connected to the scanned vertex
by edges. This can be speeded up if the edge records were
earlier connected to vertex records using adjacency lists
When the distance to root of a connected vertex is checked,
if the value it currently stores as its distance to root, is
greater than the distance to root of the vertex being scanned
plus the edge cost, the distance to root of the connected ver-
tex is reduced to that of the vertex being scanned, plus the
edge cost. Whenever the distance to root of a connected ver-
tex is reduced, the identity of the previous vertex stored as
part of the connected vertex record (i.e. the direction you
have to travel to get from the connected vertex towards the
root vertex) is updated to the identity of the vertex being
scanned.

Pseudocode: preparation

For each edge:
Add edge to adjacency list of vertex at from end
Add edge to adjacency list of vertex at to end

For each vertex:
Assign scanned = False
Assign distance to root = infinity
Assign identity of previous vertex as NULL

For root vertex, assign distance to root = zero.

Pseudocode: creation of MST

While unscanned vertices exist:
Extract unscanned vertex with minimum distance to root

as vertex being scanned (VBS)
For each edge of VBS:

DTRVBS = distance to root of vertex being scanned
DTRVOE = distance to root of vertex at other end,
 (VOE) of edge
If DTRVOE >= DTRVBS + edge cost:

Assign DTRVOE = DTRVBS + edge cost
Assign previous vertex of VOE as VBS

Assign VBS as scanned = True

Source 1: comments

Source 2 : edge typedefs

Source 3: vertex and graph types

Source 4: function prototypes

Source 5: more prototypes etc.

Source 6: main function

Source 7: count lines in file

Source 8: read edges

Source 9: read vertices

Source 10: adjacency listing

Source 11: prompt for route end

Source 12: finding utility functions

Source : 13 Dijkstra's Algorithm

Source 14: Dijkstra utility functions

Source 15: outputting the route

Test Data
Files vertices.txt and edges.txt were created using a text editor.

Details for 55 towns and 93 roads in mainland Britain were
input. Some distances were taken from a UK road map and
some were guessed. 10 lines from each file are shown.

AB Aberdeen
AW Aberystwyth
BK Birkenhead
BI Birmingham
BG Brighton
BR Bristol
CM Cambridge
CA Cardiff
CL Carlisle
CN Carmarthen

PE PL 77
PL EX 44
PL TO 29
TO EX 17
EX PE 110
EX BR 84
EX SA 90
EX SO 109
SA SO 23
SO WN 15

Test Results:
Plymouth to

Aberdeen

input key or name for start place
Plymouth
input key or name for end place
Aberdeen
At: Plymouth. Miles to go: 698
At: Exeter. Miles to go: 654
At: Bristol. Miles to go: 570
At: Gloucester. Miles to go: 535
At: Cheltenham. Miles to go: 523
At: Worcester. Miles to go: 488
At: Birmingham. Miles to go: 458
At: Manchester. Miles to go: 369
At: Leeds. Miles to go: 325
At: Newcastle-upon-Tyne. Miles to go: 231
At: Edinburgh. Miles to go: 125
At: Aberdeen. Miles to go: 0

Test Results:
Margate to
Holyhead

input key or name for start place
Margate
input key or name for end place
Holyhead
At: Margate. Miles to go: 396
At: Dover. Miles to go: 374
At: London. Miles to go: 295
At: Reading. Miles to go: 260
At: Swindon. Miles to go: 220
At: Gloucester. Miles to go: 185
At: Hereford. Miles to go: 140
At: Shrewsbury. Miles to go: 104
At: Holyhead. Miles to go: 0

Test Results:
Hastings to
Birkenhead

input key or name for start place
Hastings
input key or name for end place
Birkenhead
At: Hastings. Miles to go: 316
At: Brighton. Miles to go: 281
At: London. Miles to go: 222
At: Milton-Keynes. Miles to go: 162
At: Coventry. Miles to go: 125
At: Birmingham. Miles to go: 103
At: Chester. Miles to go: 37
At: Birkenhead. Miles to go: 0

Conclusions

This program solves a moderately complex problem. Design of
the program required a study of graph theory and the selec-
tion of a standard graph algorithm.

The internal data was designed around the algorithm to minim-
ise programming complexity. The external data was designed
to minimise data entry input and errors.

The processing was divided into many small functions each of
which could perform a well-contained task. Writing smaller
functions around well-designed data is much easier than at-
tempting to debug large functions written to process poorly
structured data.

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

