
Laurea Magistrale in Ingegneria Matematica 
Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica 

Università degli Studi dell'Aquila 

 

 

UNIVERSITÄT HAMBURG 
UNIVERSITÀ DEGLI STUDI 

DELL’AQUILA 
UNIVERSITAT AUTÒNOMA DE 

BARCELONA 
 
 

Erasmus Mundus Consortium 
MathMods 

 
 

Joint Degree of Master of Science in 
Mathematical Modelling in Engineering: Theory, Numerics, Applications 

 
 

In the framework of the 
Consortium Agreement and Award of a Joint/Multiple Degree 2013-2019 

 
Master’s thesis 

 
The Air Traffic Flow Management Problem under 

Capacity Uncertainty:  
A Robust Optimization Approach 

 
 
 

 
 

Supervisor 
 
 

Candidate 
 

Prof. Stefano Smriglio Miriam Sroková 
 Matricola: 228475 

 
 
 

2014/2015 





To my loving parents Eva and Ladislav, and brother Tomáö.





Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
University. This dissertation is the result of my own work and includes nothing which is
the outcome of work done in collaboration, except where specifically indicated in the text.
This dissertation contains fewer than 65,000 words including appendices, bibliography,
footnotes, tables and equations and has less than 150 figures.

Miriam Sroková
2015





Acknowledgements

I would like to express my sincere gratitude to my research supervisor Prof. Stefano
Smriglio who, as my teacher to start with, introduced me to the fields of Scheduling and
Optimization and later on to the research environment. I am very thankful for having a
chance to work with him in such a supporting atmosphere. I thank him for his patient
guidance, valuable advices and support throughout the development of this thesis.

My special thanks belong to Prof. Bruno Rubino and Prof. Corrado Lattanzio with
Dott. Larivera for all their time spent on coordination of MathMods programme and
making this all possible. I wish to thank all the professors which I have encountered dur-
ing my studies and which have been a great motivation to me, especially Prof. Claudio
Arbib, Prof. Zbyn�k Kubá�ek and Prof. Vladimír Toma.

I owe a lot to all my friends who shared all those great moments of this journey with
me. I am particularly grateful for the assistance and favorable suggestions given by my
friend Masoud Ghaderi Zefreh. A special thanks goes to my “L’Aquila family”, namely
Mariia Dvoriashyna, Diego Pérez and Osvaldo Kim for uncountable BANG! sessions,
dinners, co�ee breaks, trips and laughs which kept me joyful. I wish to thank my
MathMods roommates Ilden Gemil and Milica Tomaöevi� for all the studying sessions
and wonderful conversations, your friendship has been essential and I have learnt a lot
from you. I thank the fellow students of my generation: Yuliia, Lena, Alex, Ali, Nauman,
Masha, Anirudh, C.K., Sudip, Emanuel, Ankan, Sandeep and the rest of MathMods
crew for creating such a stimulating atmosphere and support in both academic and non-
academic ways. Finally, I thank my best friend Veronika Horváthová, which has always
supported me. Big thanks for being there for me.

The studies in MathMods would have been impossible for me without the great sup-
port of my family. I would like to thank my parents for their support and encouragement
throughout my study. Thank you for always providing me with the best of opportunities
and standing by me in tough times. I thank my brother Tomáö for his unconditional
support and love. Without him, this would never be possible. Thank you. �akujem.





Abstract

Air Tra�c Flow Management (ATFM) represents a set of activities performed by cen-
tral authorities in order to reduce air tra�c delays and costs. The purpose of ground
holding policies is to delay departure times of flights if congestion is expected to appear
on their route or landing airport. In this thesis, we study the ATFM problem with un-
certainty in landing capacities of the airports. We investigate the application of robust
and second-stage robust optimization in the nominal formulation of the problem and we
formulate the consequent ATFM problem under capacity uncertainty. We present nu-
merical results of the computational experiments on self-produced data sets. Finally, we
provide an analysis of possible profitability of this approach. The key observations of our
computational results are: a) all the problems were solved in fast computational times;
b) the robust solutions preserve integrality properties; c) while applying a second-stage
model, the costs reduced significantly.

Key words: robust optimization; two-stage robust optimization; air tra�c flow
management; ground holding problem
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Chapter 1

Introduction

Flight delays and cancelations occur on a daily basis. Each one of us has most probably
experienced a late arrival of flight, or missed a flight connection and therefore is aware of
personal consequences. However, while having an impact on social welfare, flight delays
increase substantially costs of the air tra�c industry and therefore have a considerable
impact on the economy. In the United States, flight delays reached an all-time peak in
2007 and induced nationwide costs of over $32,9 billion during that year [35].

Due to the constant growth of the air tra�c and limitations of airport capacities,
optimal scheduling of flights on overcrowded airports has become an important concern
worldwide. Congestion is persistent and arises on an almost daily basis as a consequence
of even minor weather disturbances that cause reductions in nominal capacities [21].
Airlines are scheduling more flights than can be handled by busy airports and imbalances
between demand and capacity result into the propagation of delays in a network of
airports [39]. From the 2014 annual CODA (Central O�ce for Delay Analysis) report,
34,3% of all the flights in the EUROCONTROL Statistical Reference Area were delayed
on arrival, with an average delay time 27,2 minutes per flight [16]. Overall, around 1,5%
of the flights were cancelled in European airspace in 2014. Reactionary delay, caused by
delay which could not be absorbed on subsequent flight legs, remains the largest single
delay group (44.5%) in 2014, followed by delays due to turn round issues (37%) [17]. The
situation is similar in the United States. During last decade, the percentage of delayed
flights range between 18% and 25%, which highlights that approximately one out of four
flights does not arrive on time (Fig. 1.1 Left [39]). Additionally, approximately 2% of
flights are cancelled every year (Fig. 1.1 Right).

One of the solutions to the problem of congested networks of airports is to expand
the capacity of airports in most a�licted regions. Nevertheless, expansions are costly,
complex and controversial. For example, the costs of building Heathrow’s North-west
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Figure 1.1: On-time performance in the U.S. in 2006-2015.
Left: Percentage of delayed flights; Right: Percentage of cancelled flights (Data Source:
Bureau of Transportation Statistics [39]).

runaway and new sixth terminal are estimated to be around £18,6 billion; £4 billion
higher than Heathrow’s own estimate [24]. Another solution is shifting towards the
usage of “wide-body” aircrafts. Those are aircrafts with higher capacity of passengers.
This technique is slowly, but surely becoming a trend in Chinese and Japanese airline
industries. However, the price of this practice is decreasing comfort as well as safety
factors. Therefore, there is an observed need for new solution methodologies, which
would lower the costs of congestions on the airports.

The majority of the total air tra�c delays is caused due to unfavorable weather
conditions. In the United States, the o�cial source of the National Airspace System
(NAS) air tra�c operations and delay data is the Operations Network (OPSNET). The
finalized data is freely accessible to general public 20 days after the end of each month
and can be downloaded from [3]. As indicated in Fig.1.2 (Left), approximately 60-75% of
total delays during the last 15 years are due to weather conditions. Moreover, the average
time of delayed flights because of bad weather conditions is higher than the delay caused
by other reasons. Therefore, while looking at percentage of delayed minutes, a significant
dominance of those caused by weather (around 80%) can be observed (Fig.1.2 Right).
This highlights the importance of incorporating weather induced capacity uncertainty
in current Air Tra�c Flow Management (ATFM) methodologies. The central focus of
this thesis is to address exactly this problem: the problem of the ATFM, specifically
the issue of managing delays due to dynamic weather conditions and minimizing overall
costs. We believe that this can be achieved by proper mathematical framework.

Di�erent measures, at di�erent planning phases, are taken by central authorities
(Eurocontrol in Europe) in order to prevent congestion [40]. Our aim in this work is to
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Figure 1.2: Delays caused by weather in the U.S. during the last 15 years.
Left: Percentage of flights delayed due to weather; Right: Percentage of all minutes
delayed due to weather (Data Source: Bureau of Transportation Statistics [39]).

focus on the planning phase performed on the day of operations, until the departure of
the flight; called tactical planning. During this phase, departure times are assigned to all
the flights, while taking into account local regulations and possible capacity reductions of
airports caused by bad weather conditions. This is performed by ground holding policies.
Their purpose is to delay the departure of a flight (hold it on the ground in the departure
airport), whenever the congestion is expected to appear on its route or landing airport.
These policies are motivated by the fundamental fact that airborne delays are much
costlier than ground delays, because the former include fuel, maintenance, depreciation,
and safety costs [8].

The ground holding problem was firstly formulated in mathematical terms by Odoni
in 1987 [38]. Since then, several models and algorithms have been proposed to handle
di�erent versions of this problem (see [8], [22], [40] or [21]). We provide an overview of
various contributions in Section 3.1. However, dealing with uncertain capacities in the
network of airports is quite new interest of research community. A first attempt to model
the network ATFM problem in a stochastic setting was done by Bertsimas and Gupta
in 2011 [41]. The authors proposed a model of weather-induced uncertain capacity as
well as tractable solution methodologies for the robust and adaptive ATFM problem.
Our work is motivated by their approach of modelling weather-front uncertainty, but we
focus more on the applicability of two-stage robust model and analysis of its profitability.

Optimization a�ected by parameter uncertainty has long been a focus of the math-
ematical programming community [19]. There are primarily two approaches in the
literature to address decision-making under uncertainty, namely, i) Stochastic Program-
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ming; and ii) Robust Optimization [41]. In contrast to stochastic programming, whose
frameworks are generally intractable on large-scale settings, the main advantage of ro-
bust optimization is the tractability of its solutions. The key idea is to capture the
probabilistic properties of the problem by constructing relevant uncertainty sets and
finding an optimal solution, which stays feasible for any realization of the uncertainty
set. In order to fulfill the last property, proposed algorithms are usually dealing with
the “worst-case” objective and therefore produce overly conservative solutions (see [5],
[20], or [6]). While staying protected under any weather realization of the uncertainty
set, the cost of objective may increase significantly and results into unused, but available
runway capacities.

Consequently, there is an alternative paradigm for multi-period decision-making
called adaptive optimization wherein decisions are adapted to capture the progressive in-
formation revealed over time [41]. The approach of implementing the robust frameworks
on a rolling horizon basis captures the dynamic behavior of weather and yet follows the
worst-case nature. Therefore, there is a guaranteed feasibility of produced schedule,
while the costs of objective decrease with high probability. We are focusing on investi-
gation advisability of this approach and possible benefits which it can bring into the air
tra�c industry.

1.1 Contributions and thesis outline

The contribution of this thesis is the development of two-stage robust optimization model
for the nominal formulation of the ATFM problem. The model, which we propose is
addressing capacity uncertainty of airports, which is caused by unfavorable weather
conditions. As already mentioned, the calamitous weather is liable for majority (around
80%) of the total delayed minutes for the last 15 years. Flight delays and cancelations
bring additional costs to the air tra�c industry. Our overall aim therefore is to analyze
possible profitability of the second-stage robust ATFM model. Our approach minimizes
costs of delays and cancelations for all the flights, by allowing changes in schedule on a
rolling horizon basis, while staying feasible for bad weather conditions.

A brief summary of all the chapters is as follows:

• Chapter 2: Mathematical Theory and Background

In Chapter 2 we present a general overview of the mathematical theories used in
our robust ATFM model. The main focus is on the theory of robust optimization
and a historical overview of this concept is included. Furthermore, we introduce
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key definitions and several approaches to model robust problems. Additionally, the
discussion on the influence of various types of uncertainty sets is provided. Also,
the notions of right hand side uncertainty and multistage robust optimization are
described.

• Chapter 3: The Air Tra�c Flow Management Problem

In this chapter, we introduce the mathematical framework of the ATFM problem.
We begin with historical overview of the problem and continue by introducing the
nominal formulation. Later, we describe the set packing formulation coming from
the work of Prof. Smriglio and Prof. Rossi. The key idea of this formulation is that
the set packing problem can be solved by solving the associated stable set problem
on the intersection graph of a {0, 1} matrix A. It gives an advantage of solving a
MIP problem by LP and under some assumptions assures the integrality of decision
variables. Later, we incorporate weather-front induced capacity uncertainty model
into both formulations. We show that the single-stage robust ATFM problem can
be in both cases transformed into the deterministic one, by taking into account the
worst-case values of the right hand side capacity vector. In addition, we propose
a two-stage robust formulation of the ATFM problem in the end of this chapter.

• Chapter 4: Implementation in Practice

In this chapter, numerical results of the computational experiments are presented.
Firstly, the setup of data and scenario configuration are explained. We utilize
twelve data sets of daily flight schedules to present proof-of-concept of the useful-
ness of the mathematical optimization methodologies. The results were obtained
using the open source optimization software GLPK. In order to optimize the com-
putational time and e�ort, the data was preprocessed accordingly in MATLAB.
Later, we report empirical results from the proposed models. The main obser-
vations are: a) all the problems were solved in fast computational times; b) the
robust solutions preserve integrality properties; c) while applying a second-stage
model, the costs reduced significantly.

• Chapter 5: Future work and conclusions

In this chapter, we conclude and present an overview on contributions of this thesis.
In addition to this, we provide the discussion on directions for future work, which
are as follows:

– Implementation of the set packing robust model
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– Extensions of the formulations

– Computational experiments with real data sets.



Chapter 2

Mathematical Theory and
Background

In this chapter, we introduce mathematical theory, which is crucial for development of
the air tra�c flow management model under capacity uncertainty. We mainly focus on
the theory of robust optimization, which we believe is the proper framework to use in
order to model this problem. We provide a discussion of key definitions and the influence
of various types of uncertainty sets in the robust formulation of the problem. Later, we
focus on robust optimization with right hand side uncertainty and robust optimization
with uncertainty on the left side of constraints. Additionally, we describe the notion
of multistage robust optimization and adaptability, since this framework is going to be
implemented in the model proposed in Chapter 3.

2.1 Optimization under uncertainty
Modelling uncertainty has been studied for a long time and it is considered nowadays
as a crucial problem in the field of optimization [19]. It may not be obvious from the
first sight, but we can say that almost all the optimization problems are influenced by
uncertainty up to some degree. According to the size of the influence and its source we
can categorize these uncertainties into two groups: (a) microscopic uncertainties, and (b)
macroscopic uncertainties. Under microscopic uncertainties we understand uncertainties,
which do not have a big impact on the solution of the problem, such as measurement
errors and numerical errors. On the other hand, in the group of macroscopic uncertainties
are those, which can highly influence behavior of the optimal solution, for instance
forecast errors or disturbances in the environment.

In the current literature, there are two major approaches of modelling optimization
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problems under uncertainty: (a) stochastic optimization, and (b) robust optimization
[41]. In stochastic optimization, the data uncertainty is modelled assuming its stochastic
nature. More specifically, this usually requires the knowledge of exact distribution of the
data and enumeration of scenarios that capture this distribution. A big disadvantage and
challenge of this approach is the fact that the size of the problem increases significantly as
a function of the amount of scenarios. This results in a lot of cases in computationally
expensive problems. On the other hand, in robust optimization, the uncertainty is
modelled in a deterministic way. The main idea is to optimize the problem against the
worst-case scenario by using a min-max objective. Consequently, according to Laguna
[32], there are several advantages in choosing robust optimization instead of stochastic
programming:

• Normally, robust optimization finds a solution very near the optimal solutions for
all scenarios.

• There is no need of knowing the exact probabilistic distribution for each scenario.

• The worst-case scenario will be feasible for the solution and also let this scenario
have a fairly good optimal value.

In our work, we consider the robust optimization as a crucial approach in the develop-
ment of the ATFM model with uncertain capacities. Hence, we introduce the notion of
this framework in the following section.

2.2 Robust optimization

In this section, we firstly focus on introducing the concept of robust optimization. Later,
we provide a historical overview of the development of this notion and we introduce
several approaches to model robust problems. Various researchers from the field of
robust optimization consider the work of Soyster from 1973 [42] as a first introduction
into this subject. He has showed, that even small changes of uncertain parameters in the
optimization problem can give highly infeasible solutions and therefore from a practical
point of view the nominal optimal solution can become completely meaningless. A
solution, which was optimal when only considering one scenario could be, and often is,
infeasible for all other scenarios that can occur. Therefore, Soyster proposed a solution,
which considers all the possible realizations. However, this formulation is considered to
be too conservative and leads in most of the cases to a huge optimality loss.
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Major development hasn’t been seen until the middle of 90s, when various researchers
started to emphasize on this problem. A significant step forward for developing a theory
for robust optimization was taken independently by Ben-Tal and Nemirovski and El-
Ghaoui et al.[13]. In their works, they are dealing with the issue of over-conservatism,
more specifically they propose nonlinear, but convex models with ellipsoidal uncertain-
ties. Although their frameworks give less conservative solutions, the cost of this advan-
tage is hidden in computational di�culty (see in [5]). A lot of work has been done during
the last decade by various researchers focusing mainly on properties of the solutions and
tractability of di�erent formulations.

2.2.1 General definitions
In robust optimization instead of looking for an optimal solution of a nominal determin-
istic problem, we search a solution that will have an acceptable performance under most
realizations of the uncertain inputs of the problem [6]. Usually, no assumptions on the
distribution of uncertain parameters are made, but in cases where such a distribution
is known, it can be applied beneficially. In general it is considered to be a conserva-
tive (worst-case oriented), but practically useful methodology in problems where it is
necessary to satisfy constraints “no matter what”.

Before stating the definition of robust optimization, we define the notion of uncer-
tainty set and describe its potential structures.

Uncertainty set

Uncertainty set is a set of all the possible realizations of a given event. The structure
of an uncertainty set highly influences the existence and tractability of the solution of
robust optimization problem. In the current work in the field of robust optimization the
researchers are mostly dealing with following types of uncertainty sets [36]:

1. Finite uncertainty: � = {Ê1, . . . , Ê
N

}

2. Interval-based uncertainty: � = [Ê1, Ê1] ◊ . . . ◊ [Ê
M

, Ê
M

]

3. Polytopic uncertainty: � = conv {Ê1, . . . , Ê
N

} =
Óq

N

i=1 ⁄
i

Ê
i

; s.t.
q

N

i=1 ⁄
i

= 1; ⁄ ‘ R

N

+
Ô

4. Norm-based uncertainty: � =
Ó
Ê œ R

M :Î Ê ≠ Ê̂ ÎÆ –
Ô

5. Ellipsoidal uncertainty: � =
;

Ê œ R

M :
Ú

q
M

i=1
Ê

2
i

‡

2
i

Æ �
<

6. Constraint-wise uncertainty: � = �1◊. . .◊œ
m

, where œ
i

a�ects only i-th constraint.
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Furthermore, it is important to point out that one uncertainty set can in the same time
belong to several types of those mentioned above. Next, we will provide some important
mathematical definitions coming from the work of Ben-Tal, El Ghaoui and Nemirovski.

Definition 1: ([6]) An uncertain Linear Optimization problem is a collection
;

min
x

Ó
cT x + d : Ax Æ b

Ô<

(c, d, A, b) œ U

of LO problems (instances) min
x

Ó
cT x + d : Ax Æ b

Ô
of common structure (i.e., with

common numbers m of constraints and n of variables) with the data varying in a given
uncertainty set U µ R

(m+1)◊(n+1).
The authors assume that the uncertainty set is parameterized by a perturbation

vector ’ varying in a given perturbation set Z. It is important to remark that in this
formulation all decision variables should be assigned numerical values before the actual
data is known. That means, that the decision maker has to make a decision while the
knowledge of the actual data is given only by uncertainty set U . In addition, all the
constraints in the formulation are “hard” constraints, meaning that non of them can be
violated.

Definition 2: ([6]) A vector x œ R

n is a robust feasible solution to an uncertain
Linear Optimization problem, if it satisfies all realizations of the constraints from the
uncertainty set, that is, Ax Æ b ’ (c, d, A, b) œ U .

Definition 3: ([6]) Given a candidate solution x, the robust value ĉ(x) of the
objective in an uncertain Linear Optimization problem at x is the largest value of the
“true” objective cT x + d over all realizations of the data from the uncertainty set:

ĉ(x) = sup
(c, d, A, b) œ U

Ë
cT x + d

È
.

In other words, in the group of all the feasible solutions of the problem we want to find
the best robust value of the objective function. Next, we provide a definition of robust
counterpart of the uncertain linear optimization problem.

Definition 4: ([6]) The Robust Counterpart of the uncertain Linear Optimization
problem is the optimization problem

min
x

I

ĉ(x) = sup
(c, d, A, b) œ U

Ë
cT x + d

È
: Ax Æ b ’(c, d, A, b) œ U

J

of minimizing the robust value of the objective over all robust feasible solutions to the
uncertain problem. An optimal solution to the Robust Counterpart is called a robust
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optimal solution to an uncertain Linear Optimization problem, and the optimal value
of the Robust Counterpart is called the robust optimal value of the uncertain linear
optimization problem.

Definition 5: An optimal (feasible) solution of an uncertain optimization problem
is robust if it stays optimal (feasible) under any realization of the uncertainty.

As we have already mentioned, robsut optimization has been studied by several re-
searchers and therefore this problem has been approached from di�erent perspectives
with applications in di�erent fields. Next we summarize those, which had most signif-
icant impact for the development of this field and those, which we consider important
for our ATFM model.

2.2.2 The robust formulation of Soyster

Soyster in his work from 1973 [42] proposes a linear optimization model to construct a
solution that is feasible for all the data that belong to a convex set [13]. He formulates
the problem as follows:

maximize c

Õ
x

subject to q
n

j=1 A

j

x
j

Æ b ’A

j

œK, j = 1, . . . , n

x Ø 0.

Suppose that the activity vectors a

j

are only estimates of the true activities; all that
is known with certainty is that the true j ≠ th activity vector lies in a hypersphere
with center at a

j

and radius whose magnitude is fl
j

[42]. Convex uncertainty sets K
j

are defined as K
j

= {a œ R

m s.t. Î a ≠ a

j

ÎÆ fl
j

}. This formulation is also known as
column-wise uncertainty formulation. In addition, Soyster defines a

ij

= sup
A

j

œK

j

(A
ij

)
and shows that the problem is equivalent to the following

maximize c

Õ
x

subject to q
n

j=1 A

j

x
j

Æ b

x Ø 0.

That means, that in order to secure that all the constraints will be fulfilled under any
realization, he takes the maximal possible value for each entry of the matrix and solves
the problem under these “worst-case” constraints. Despite of the feasibility guarantee
for all the uncertainty realizations of the model proposed by Soyster, it produces too
conservative solutions. More precisely, Ben- Tal and Nemnirovski point out in their work
that due to protection of robustness of the solution there is a huge optimality loss (read
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more in [5]).

2.2.3 The robust formulation of Ben-Tal and Nemirovski

In the end of 90s Ben-Tal and Nemirovski have dedicated a lot of work on the develop-
ment of robust optimization frameworks. In the methodology from [5], they introduced
two ways of treating the uncertainty: (a) unknown-but-bounded uncertainty and (b)
random symmetric uncertainty. Additionally, they proposed the following formulation
of robust optimization problem:

maximize c

Õ
x

subject to q
j

a
ij

x
j

+ q
j‘J

i

â
ij

y
ij

+
+�

i

Òq
j‘J

i

â2
ij

z2
ij

Æ b
i

+ ” max [1, |b
i

|] ’i

Ax Æ b

Ex = e

≠y
ij

Æ x
j

≠ z
ij

Æ y
ij

’i, j œJ
i

l Æ x Æ u

y Ø 0.

In this model, Á > 0 represents magnitude a�ecting uncertain coe�cients, the true
values of â

ij

, j œ J
i

belong to interval [a
ij

≠ Á|a
ij

|, a
ij

+ Á|a
ij

|] and x must satisfy the
i≠ th constraint with an error of at most ” max [1, |b

i

|]. Moreover, they provide a bound
of the probability that the i ≠ th constraint is violated by exp {≠�2

i

/2} [5].

2.2.4 The robust formulation of Bertsimas

Bertsimas has done a lot of work in various fields of robust optimization and its appli-
cations (see for example [13], [20], or [23]). In [19] he provides together with Brown and
Caramanis a nice overview of the previous and current research in this field.

To introduce the notion, they consider an optimization problem with objective func-
tion f0(x) and m constraint functions f1, . . . , f

m

with uncertain parameters {Ê

i

} , i =
1, . . . , m. Namely, x œ R

N is a vector of decision variables, f0, f1, . . . , f
m

: R

N æ R

are functions and Ê

i

œ R

k are uncertainty parameters taking values in uncertainty sets
�

i

œ R

k. As we know, the purpose of all constrained optimization problems is to find an
optimal solution to a given objective function fulfilling all of the constraints. In the ro-
bust optimization, we are looking for a minimum cost solution x

ú which is feasible for all
realizations of the uncertainties Ê

i

within �
i

. This leads to mathematical formulation
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given by

minimize f0(x)
subject to f

i

(x, Ê

i

) Æ 0 ’Ê

i

œ �
i

, i = 1, ..., m.
(2.1)

The authors consider the uncertainty sets to be always closed sets and they point out
that intuitively, if some of the �

i

are continuous sets, the problem (2.1) would end up
having an infinite number of constraints. Further, they point out some straightforward
observations, which hold for this statement of the problem:

• The fact, that the objective function is una�ected by parameter uncertainty is
without loss of generality; we may always introduce an auxiliary variable, call it t,
and minimize t subject to the additional constraint max

Ê0œ� f0(x, u0) Æ t [19].

• The assumption of constraint-wise uncertainty set is as well without loss of gener-
ality.

• Moreover, deterministically given constraints (those, which do not include un-
certainties) are included in this model by assuming the corresponding �

i

to be
singletons.

• This problem statement also contains the instances when the decision or distur-
bance vectors are contained in more general vector spaces than R

n or R

k (e.g., S

n

in the case of semidefinite optimization) with the definitions modified accordingly
[20].

We have already mentioned before some general definitions of robust linear optimization,
its feasible solution and robust counterpart. Now, we will provide a little intuition on
them. We begin by considering a regular constrained linear optimization problem:

minimize c

T

x

subject to Ax Æ b

In ordinary problems, parameters (c, A, b) are known deterministically, that means,
that in general linear optimization problem we would know their exact values. Moreover,
we know, that if the objective function is linear and feasible region is convex, we will
always be able to find an optimal solution to this problem and it will lie on the boundary
of feasible region. Intuitively, if we would change parameters (c, A, b) only a little bit,
we would get another, di�erent feasible set and the previous solution would probably
become infeasible. By its nature then, the solution is not designed to be robust in
perturbations in the feasible set [15].
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Let us investigate now what would happen, if c, A and b would be uncertain. For
doing so, we introduce uncertainty set œ and a new parameter Ê œ œ, which will capture
the uncertainty. Now, we are able to look at the parameters c, A, b as functions of Ê:
c(Ê), A (Ê) , b (Ê) . We assume that œ is a bounded set of all possible outcomes
of uncertainty and it is known a priori. Without loss of generality, we conclude that
parameters c and b are known deterministically, since we can always transform the
problem by for instance adding an additional variable for both objective function and
vector b. We are looking for a solution that will stay feasible for any realization Ê œ �.
Under these assumptions our problem will become:

minimize c

T

x

subject to A(Ê) Æ b ’Ê œ �.

Following lemma was stated by Constantine Caramanis in his PhD work “Adaptable
Optimization: Theory and Algorithms”. It provides an obvious, but important conclu-
sion.

Lemma: ([15]) Let the rows of the matrix A(Ê) be denoted by a

i

(Ê). If A has m

rows, make m copies of �, so that �(i) = �. Then the optimization problem is equivalent
to the following formulation:

min : c

T

x

s.t. : a1(Ê(1))T

x Æ b1 ’Ê

(1) œ �(1)

...
a

m

(Ê(m))T

x Æ b
m

’Ê

(m) œ �(m).

Clearly, a

i

(Ê

i

)T

x Æ b
i

, ’Ê

i

œ œ
i

if and only if max{Ê

i

œœ

i

} a

i

(Ê

i

)T

x Æ b
i

, ’i. As a
consequence we obtain a subproblem of robust optimization problem, or in literature
also called the inner problem of robust optimization:

S

U max a

i

(Ê)T

x

s.t. Ê œ œ

T

V Æ b
i

.

Let us remark, that the complexity and solvability of any robust optimization prob-
lem is determined by the nature of its inner problem [15]. Hence, it is highly convenient
to replace this subproblem by its dual counterpart. The structure of the dual problem
is determined by both the design of the constraints as well as uncertainty set. Therefore
the structure of uncertainty set and the structure of the robust optimization problem
are highly correlated. If we want the robust optimization problem to be solvable, it is
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neccessary to build an inner problem in a solvable form. This condition however requires
a simple geometrical structure of the uncertainty set �. On the contrary, building a too
simple uncertainty set may end up in loosing either robustness or optimality of the so-
lution. To follow we discuss deeper some of the structural properties of uncertainty sets
and robust optimization problems related to those sets.

Ellipsoidal Uncertainty

Ben- Tal and Nemirovski provide in [9] several arguments why it is reasonable to choose
an “ellipsoidal” uncertainty set. They define an ellipsoid in R

k as a set of the form

U =
ÓŸ

(u) | || Qu || Æ 1
Ô

,

where u æ r(u) is an a�ne embedding of certain R

L into R

k and Q is an M ◊ L

matrix.
In addition, they claim that � œ R

m◊n is an ellipsoidal uncertainty set if it fulfills
following conditions:

• � is given as an intersection of finitely many ellipsoids

• � is bounded

• (“Slater condition”) there is at least one matrix A œ � which belongs to the “rela-
tive interior” of every ellipsoid �(r

l

, Q
l

), l = 1, . . . , k :

’l Æ k ÷Ê
l

: A =
Ÿ

l

(Êl) & || Q
l

Ê
l

|| < 1.

[9]

The subproblem of robust optimization problem with ellipsoidal uncertainty yields a
maximization over quadratically defined set. As a consequence, the resulting dual prob-
lem is not linear [15].

Theorem 1: ([9]) The robust counterpart of an uncertain LP problem with general
ellipsoidal uncertainty can be converted to a conic quadratic program.

Curious reader can find the proof of this theorem in the appendix of [9]. Conic
quadratic problems can be solved by polynomial time interior point methods at basically
the same computational complexity as LP problems of similar size [9].
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Polyhedral uncertainty

Polyhedral uncertainty can be viewed as a special case of ellipsoidal uncertainty [9]. The
use of polyhedral uncertainty sets was used with great success in Bertsimas and Sim, as
in the case where the uncertainty a�ects the constraints in an a�ne manner, the dual
to the subproblem is again a linear program [15]. To explain this, the authors consider
the uncertainty sets directly in the parameters of the uncertain matrix A, i.e.:

�
i

= {a

i

: D

i

a

i

Æ d

i

} .

Afterwards they rewrite the problem as:

minimize c

T

x

subject to max{a

i

œ�
i

} a

T

i

x Æ b
i

i = 1, ..., m.

From the theory of duality we know that we can rewrite the dual problem to the inner
problem as:

minimize p

T

i

d

i

subject to p

T

i

D

i

= x

p

i

Ø 0.

Therefore we can formulate the robust optimization problem with polyhedral uncertainty
set as:

minimize c

T

x

subject to p

T

i

d

i

Æ b
i

i = 1, ..., m

p

T

i

D

i

= x i = 1, ..., m

p

i

Ø 0 i = 1, ..., m.

Thus the size of such problems grows polynomially in the size of the nominal problem
and the dimensions of the uncertainty set [19].

Cardinality constrained uncertainty

Bertsimas and Sim [13] in their work from 2002 presented “The New Robust Approach”.
This was a crucial approach in terms of applications of robust optimization into discrete
optimization problems. The main trick is that they consider such a family of polyhedral
uncertainty sets, which controls the amount of uncertain parameters, i.e. parameters
that are allowed to change their nominal values.

We describe their formulation as follows. Let a

Õ
i

x Æ b
i

be the i≠th constraint of the
nominal robust problem, where a

i

represents the i≠th row of the matrix A. For every
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i, i = 1, ..., m they introduce J
i

, the set of coe�cients a
ij

, j œ J
j

that are subject to
parameter uncertainty and take values according to a symmetric distribution with mean
equal to the nominal value a

ij

in the interval [a
ij

≠ â
ij

, a
ij

+ â
ij

] [13]. Let ≈
i

œ [0, |J
i

|] be
a parameter adjusting the robustness. In reality, it doesn’t happen often that all of the
parameters a

ij

, j œ J
i

are going to change. Our goal is to be protected against all cases
that up to Â�

i

Ê of these coe�cients are allowed to change, and one coe�cient a
it

changes
by (�

i

≠Â�
i

Ê)â
it

[13]. In fact the authors consider following nonlinear formulation of the
problem:

maximize c

T

x

subject to q
j

a
ij

x
j

+
+ max{S

i

fi{t

i

}| S

i

™J

i

,|S
i

|=Â�
i

Ê, t

i

œ J

i

§
i

}
Óq

j œ S

i

â
ij

y
j

+ (�
i

≠ Â�
i

Ê)â
it

i

y
t

Ô
Æ b

i

’i

≠y
j

Æ x
j

Æ y
j

’j

l Æ x Æ u

y Ø 0.

(2.2)

Obviously, if ≈
i

= 0 the problem reduces to the nominal form, and if ≈
i

is an integer,
the i≠th constraint will be in the form q

j

a
ij

x
j

+max{S

i

fi{t

i

}| S

i

™J

i

,|S
i

|=Â�
i

Ê}
Óq

j œ S

i

â
ij

y
j

Ô
Æ

b
i

. In addition, if ≈
i

= |J
i

| the formulation will be equivalent to that provided by Soyster.
Relaxing and taking the dual of the inner maximization problem, one can show that the
above is equivalent to the following linear formulation, and therefore is tractable (and,
moreover, is a linear optimization problem) [19].

Theorem: ([13]) Model (2.2) has an equivalent linear formulation as follows:

maximize c

T

x

subject to q
j

a
ij

x
j

+ z
i

�
i

+ q
j œ J

i

p
ij

Æ b
i

’i

z
i

+ p
ij

Ø â
ij

y
j

’i, j œ J
i

≠y
j

Æ x
j

Æ y
j

’j

l
j

Æ x
j

Æ u
j

’j

p
ij

Ø 0 ’i, j œ J
i

y
j

Ø 0 ’j

z
i

Ø 0 ’i.

(2.3)

2.3 Robust discrete optimization

There has been some work done regarding the issue of extending robust otpimization for-
mulations into discrete optimization problems. Kouvelis and Yu [30] proposed a frame-
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work, which minimizes the worst case scenario. Unfortunately, under their approach,
the robust counterpart of many polynomially solvable discrete optimization problems be-
comes NP-hard [11]. Bertsimas and Sim present in their paper [11] a framework, which
extends (2.3) into a discrete setting and they propose and proove its MIP formulation:

maximize c

T

x + z0�0 + q
j œ J0 p0j

subject to q
j

a
ij

x
j

+ z
i

�
i

+ q
j œ J

i

p
ij

Æ b
i

’i

z
i

+ p0j

Ø d
j

y
j

’j œ J0

z
i

+ p
ij

Ø â
ij

y
j

’i ”= 0, j œ J
i

p
ij

Ø 0 ’i, j œ J
i

y
j

Ø 0 ’j

z
i

Ø 0 ’i

≠y
j

Æ x
j

Æ y
j

’j

l
j

Æ x
j

Æ u
j

’j

x
i

œ Z ’i = 1, ..., k.

(2.4)

2.4 Multistage robust optimization
Multistage robust optimization (in literature also adjustable or adaptable robust opti-
mization) is a special approach to model adjustability of the solution under uncertain
data. The main idea is to divide the decision process in multiple stages, under assump-
tion that in some of the real world problems the decision maker is provided by updated
information on uncertainty while the time passes. More specifically, in the beginning, he
gets the first information about the structure of uncertainty set and later he gets a new,
updated information and this can happen multiple times. General assumption is that
in most of the cases the later information is the better one, due to a better awareness
of the situation.

In the previous text we were studying the structure of problems where the decision
is being made only once - single stage (or static) problems. This type of problems
lead to solutions, which are protected over all of the realizations of uncertainty, but
the trade-o� for this is a too high conservatism of an optimal value. If we would take
into account that the decision maker will be provided by another, updated versions of
the uncertainty, we could get a better solution (perhaps at some computational cost).
This gives the possibility to select in the beginning k contingency plans (k œ Z

+) for
the second stage solution, in which all the cases of the realization of uncertainty would
be covered. Then, in the second stage, we can neglect some of those plans or possibly
choose the one, which protects the updated uncertainty set.
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In literature ([15], [41]), the authors distinguish two types of adaptability: (a) com-
plete adaptability and (b) finite adaptability. Completely adjustable problems are such
problems, for which the realization of the uncertainty set is known completely and there-
fore in the second stage the decision maker is provided by the true information. The
completely adaptable formulation is known to be NP-hard to solve in general ([15]).
This, however, is in reality almost never the case. In the later stages of the decision we
are usually able to predict better the future outcome of uncertainty, but we can almost
never say with complete knowledge what is going to happen. There has been some work
done on the topic of finite adaptability and it is known that under some assumptions,
this kind of problems is polynomially solvable.

In the finite k-adaptability problem the decision maker chooses in the second stage
k solutions {y1, . . . , y

k

} which cover all the realizations of uncertainty. Then, after
knowing the realization, he is sure that one of y

i

, i = 1, ..., k is feasible and he chooses
the best one. Bertsimas and Caramanis formulate this second stage robust optimization
problem followingly:

min : c

T

x + max
Ó
d

T

y1, ..., d

T

y

k

Ô

s.t.: A(Ê)x + B(Ê)y1 Ø b ’Ê œ �
or

A(Ê)x + B(Ê)y2 Ø b ’Ê œ �
or
...

or

A(Ê)x + B(Ê)y

k

Ø b ’Ê œ �.

(2.5)

Furthermore, they prove that in case of polyhedral uncertainty set the k-adaptability
problem becomes a k-partition problem, where the decision maker is looking for an
optimal partition of the uncertainty set � into k subsets such that � = �1 fi ... fi �

k

.
The authors provide and prove that the previous formulation is equal to (see section
3.2.1 in [15]):

min
�=�1fi...fi�

k

S

WWWWWWU

min : c

T

x + max
Ó
d

T

y1, ..., d

T

y

k

Ô

s.t.: A(Ê)x + B(Ê)y1 Ø b, ’(A, B) œ �1
...

A(Ê)x + B(Ê)y

k

Ø b, ’(A, B) œ �
k

.

T

XXXXXXV

Additionally, the authors propose a bilinear optimization formulation to compute an
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optimal 2-adaptabillity value (k = 2) and the optimal two contingency plans �1, �2.
However, we will focus more on di�erent approach of modeling adaptability of robust
problems - a�ne policies. This is mainly due to future application of a�ne policies (in
literature also called Linear Decision Rules) to our ATFM model. The other reason is
that in most of the practical cases the adjustable robust counterpart is computationally
intractable. This di�culty can be addressed by restricting the adjustable variables to
be a�ne functions of the uncertain data [7].

2.4.1 A�ne Policies

Ben- Tal et al. distinguish in their work [7] two types of variables: (a) ”here and how”
and (b) ”wait and see”. “Here and how” variables are those for which any knowledge of
the realization of the uncertainty does not give extra value in the decision process. In
the majority of real-world optimization problems only some of the variables belong to
the first class. In contrast, “wait and see” variables are those, which can be made after
some part of uncertainty is released and therefore they can adjust themselves to the new
situation. Variables belonging to the group (a) are also called non-adjustable variables
and those belonging to (b) adjustable variables.

We divide the vector of decision variables x into two sub-vectors x = (uT , v

T )T ,
where u represents non-adjustable and v adjustable variables. Then, according to for-
mulation of Ben-Tal [7], adjustable robust counterpart becomes:

min
(s,u,v)

Y
]

[s : cT

Q

a u

v

R

b Æ s, Au + Bv Æ b

Z
^

\
[A,B,b,c]œ œ

.

The authors follow by assuming the uncertainty set to be a�nely parametrized by a
“vector of perturbations” ›, which belongs to a nonempty convex compact perturbation
set, so that

� =
I

[A, B, b] =
Ë
A0, B0, b0

È
+

Tÿ

t=1
›

t

Ë
At, Bt, bt

ÈJ

.

This assumption allows them to provide a restriction on the adjustable variables to be
a�ne functions of › (for more explanation see in [7]):

v = v(›) = v

0 +
Tÿ

t=1
›

t

v

t

.
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Hence, the adaptive problem with a�ne recourse enforced a priori becomes:

min
u,v

0
,vt

Ó
c

T

u + max
›

t

œ� d

T (v

0 + q
T

t=1 ›

t

v

t

)
Ô

subject to Au + B(v0 + q
T

t=1 ›
t

v

t

) Æ b ’A, B, , b, › œ œ.

Furthermore, they provide a broad discussion on computational tractability of various
cases of perturbation sets (see [7]).

Bertsimas and Maes show that a two-stage adaptive optimization problem with a�ne
recourse can be converted to a single deterministic linear program [10] . For our future
work, it is important to remark, that linear decision rules are optimal only in very
rare occasions. In fact the main motivation for the use of linear decision rules is its
tractability. In reality, it is not always possible to compute the optimal solution by
any other approach, and therefore having a tool computing fairly good approximation
is crucial.

Now, we would like to focus on a class of problems for which the uncertainty occurs
only on the right hand side of constraints. This class is called right hand side uncertainty
problems.

2.5 Right hand side uncertainty

Many real world optimization problems contain uncertainties in the right hand side of the
constraints (for example uncertainties in capacities, demand). Firstly, let us discuss the
single stage (static) robust optimization problem with right hand side (RHS) uncertainty,
that is:

minimize c

T

x

subject to A

i

x Æ b

i

(Ê) ’Ê œ �, i = 1, ..., m.

If � is a bounded set, then intuitively for every row i we can find b̂
i

= min b
i

(Ê) and
clearly, the previous formulation is equal to:

minimize c

T

x

subject to A

i

x Æ b̂
i

i = 1, ..., m.

A lot of work on 2-stage robust linear programming with right hand side uncertainty
has been done by Minoux and is presented in [37]. Here he discusses complexity results
and applications of this framework into real-world problems. He defines a class of linear
problems with “Finite Pollynomially Bounded Uncertainty Set” (FPBU) and proves the
following proposition:
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Proposition: ([37]) All problem instances in R ≠ LP ≠ RHSU ≠ FPBU are poly-
nomially solvable.

Here R stays for robust, intuitively LP means linear programming and RHSU stands
for right hand side uncertainty. Proof of this proposition can be found in [37]. From the
perspective of application, it is important to point out that FPBU includes the class of
problems for which the cardinality of their uncertainty sets is bounded by some K and
therefore this set of problems is polynomially solvable under R ≠ LP ≠ RHS as well.



Chapter 3

The Air Tra�c Flow Management
Problem

During last decades, the air tra�c industry has been growing continuously and hence
the air system’s infrastructure has been under a constant pressure. Congestion phenom-
ena are persistent and arise almost on a daily basis as a consequence of bad weather
conditions which cause sudden capacity reductions [18]. Most of the delays are created
by imbalancies between demand and capacity resulting from airlines scheduling more
flights than available capacity at busy airports and by the propagation of delays in a
network of airports [29]. In Europe, around 34% of all the flights were delayed on arrival
and additional 1,5% was cancelled in 2014 [16]. The situation is similar in the United
States, where flight delays reached an all-time peak in 2007 and induced nationwide
costs of over $32,9 billion during that year [35]. Therefore, there is an evident need for
solution methodologies, which would decrease the costs of congestions on the airports.

Suppose that a flight f is flying from a place A to B and it is scheduled to land in
B at time t. If the decision maker at the time of its departure knows, that the landing
capacities will be violated in airport B at t, meaning that there will be no landing spot
for f in B at t, it is cheaper to hold f in A and wait until a free landing spot in B at
some t+k appears. This procedure is called Ground Holding and it has been studied by
several researchers over past decades. The ground holding policies are nowadays widely
used in order to minimize the costs of congestions and airborne delays, since it is much
safer and cheaper to hold an aircraft on the ground than in the airspace. The main
di�culty of this problem is to assign ground delays optimally.
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3.1 History and overview of the problem
The air tra�c flow management problem has been studied for almost three decades. A
pioneer work on this topic was presented by Odoni in 1987 (see [38]). His main idea was
to develop a real time flights scheduling model in order to minimize congestion costs in
the air tra�c industry. The concept of this work was essential for the models, which
were developed afterwards. Through the continuous development of air transportation
industry, di�erent versions of ATFM problem have been studied and di�erent types of
models have been proposed.

Firstly, Terrab and Odoni [43] were dealing with the Single-Airport Ground-Holding
Problem (SAGHP) as the simplest methodology, proposing an optimal schedule for the
airport while taking into account limitations of possible landing and departing operations
for every unit of time. Strategies coming from models of Odoni and Bianco (see [14]
and [33]) were applied at some Italian airports. Notable research on SAGHP has been
conducted by the Institute of Flight Guidance for Airports in Germany (see [44]) and
Bianco et al. in [31]. Ho�man and Ball proposed deterministic formulations, which have
been e�ciently implemented in the USA [28]. In most of these SAGHP approaches,
arrival and departures are treated as independent variables [4]. That means, that the
number of flights assigned to take o� does not depend on the number of flights, which
are assigned to arrive in the same time period, which does not describe reality and can
result in very conservative solutions. Another disadvantage of these models is that the
capacities are assumed to be deterministically known in advance. In reality, this is not
always true due to the number of possible unpredictable events, which may result in
capacity reductions.

Subsequently, the Multiple-Airport Ground-Holding Problem (MAGHP) in the air
tra�c industry started to be discussed. In 1993, Vranas, Bertsimas and Odoni for-
mulated and studied problem of assigning ground-holding delays optimally in general
network of airports [8]. They presented several integer programming formulations of
the problem, which minimize the total delay cost of all flights in the network. Also,
they consider the departure and arrival capacities of airports as deterministic functions
of time and space. Further, the sectors of the airspace are assumed to have unlimited
capacities, meaning that no routings of the flights are considered. Moreover, they take
into account successive flights performed by the same aircraft and they are allowing
canellations of flights, in a way that there are no upper bounds on the delay, nor on
ground holding.

As a crucial point in the development of ATFM is considered the work of Bertsimas
and Stock from 1994, in which they presented the model with the possibility of rerouting



3.2 The nominal formulation 25

flights [12]. They divided the airspace into sectors and took into account the capacities
of all sectors individually. If the available capacity of a sector of airspace is violated,
a flight which was assigned to fly through this sector may be rerouted, thus a di�erent
flight path may be assigned to it in order to reach its destination (see in[12]). The main
di�erence in this model arises from the interpretation of decision variables wj

ft

which are
equal to 1 if the flight f arrives to sector j by the time t. The authors managed to solve
large scale, realistic size problems with competitive results.

However, due to di�erent nature of European airspace comparing to the U.S., refor-
mulation of this problem should be considered while applying in Europe. In contrast
with the U.S., congestions may occur in the airspace as well and therefore sector ca-
pacities have to be taken into account. The en route sector capacity constraints, in
turn, generate complex interactions among tra�c flows [34]. In 2007, Lulli and Odoni
proposed the model, which illustrates the complex nature of European ATFM, taking
into account combinations of ground and airborne holding (see [34]).

Bertsimas, Lulli and Odoni present a new integer programming approach for the
ATFM in [18]. They propose a model that covers all the phases of each flight (take o�,
rerouting, landing), taking into account successive flights and the possibility of cancel-
lations. The core of their idea is to propose an objective function minimizing the sum
of ground and air delay costs in such a way, that the ground holding is prioritized over
the air holding. Moreover, they solve problems of size comparable to real situations in
the American airspace in short computational times (see Computational Experience in
[18]).

In our work, we formulate a simple version of the ground holding problem and after-
wards we propose its extensions. Our purpose is to discuss the possibility of applying
the robust optimization frameworks to the ATFM problem formulations and to analyze
the profitability of the new robust model.

3.2 The nominal formulation

In this section, we introduce the formulation of the air tra�c flow scheduling problem
with deterministic landing capacities of the airports. We assume, that the schedule is
made only once, in the beginning, and no further changes are allowed. Also, without the
loss of generality, we take into account only the case of congestions on arrival airports.

The structure of our model comes from the work of prof. Smriglio and prof. Rossi.
Firstly, they propose the nominal formulation of the ATFM problem and after that,
they investigate a set packing formulation of the ground holding problem and design a
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branch-and-cut algorithm to solve the problem in high congestion scenarios, i.e., when
lack of capacity induces flights cancellation (see in [40]).

Let us consider a set of airports K = {1, . . . , K} and a set of flights F = {1, . . . , F}.
We suppose, that each flight will be performed according to a planned timetable. Fur-
thermore, we consider an ordered set of time periods T = {1, . . . , T}. Each time period
represents 15 minutes long time interval. For the nominal formulation of the model, we
consider the following input data:

h
i

œ K = the departure airport of flight i œ F
k

i

œ K = the arrival airport of flight i œ F
d

i

œ T = the scheduled departure time of flight i œ F
r

i

œ T = the scheduled arrival time of flight i œ F
R

k

(t) = the capacity of airport k œ K at time t œ T
A

i

œ Z+= the maximum allowed ground delay for flight i œ F
c

i

= cancelation cost of flight i œ F
w

i

= delay cost per unit time period for flight i œ F
”

i

= maximum delay allowed for i to land such that j = succ(i) is not delayed.
Next, we define a set of time periods in which flight i can be assigned to land as

Ti = {t œ T : ri Æ t Æ ri + Ai},

and a set of flights assigned to land at airport k as

F(k) = {i œ F , s.t. k = k
i

} .

Under the maximum ground delay we understand the maximum number of time periods
which flight i œ F can be hold on the ground. Without the loss of generality, we assume
that the congestion may occure only on the arrival airports. The flight times r

i

≠d
i

, i œ F
are fixed quantities and all the delays occur only on the ground [40].

The capacity R
k

(t) of airport k œ K at time t œ T represents the maximum number
of aircrafts which can be assigned to land at time t œ T . We assume, that R

k

(t) is a
fixed number for every k œ K , t œ T . Finally, we suppose that cancellations of flights
are allowed and in practice cancellation costs always dominate the delay costs, i.e., for
every i œ F , c

i

∫ A
i

w
i

[40].

Pair of successive flights

When a flight j œ F is performed after flight i œ F and by the same aircraft, flights
i, j œ F are said to be connected and we denote j = succ(i) [40]. Set F Õ µ F is a set of
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all flights that have a successor. For a pair of connected flights i, j œ F , such that i œ
F Õ, j = succ(i), and a pair of time periods tÕ œ Ti , tÕÕ œ Tj we have: tÕÕ≠tÕ = r

j

≠r
i

≠”
i

≠1.
We denote landing times tÕ and tÕÕ as coupled landing times for a pair of flights (i, j).

Decision variables

The decision variables specify if the flight i œ F is assigned to arrive at time slot t œ Ti .
If this is the case, then the decision variable is set to 1: y

it

= 1. Otherwise, we set
y

it

= 0.

Objective function

The objective is to minimize delay and cancellation costs:

min
ÿ

iœF

Q

a

Q

a1 ≠
ÿ

tœTi

y
it

R

b (c
i

+ w
i

r
i

) + w
i

Q

a
ÿ

tœTi

ty
it

≠ r
i

R

b

R

b .

Constraints

1. Capacity constraints for the arrivals at the airport k at time t:

ÿ

iœF(k)
y

it

Æ R
k

(t) ’k œ K, ’t œ T .

2. Each flight i is assigned to land at most at one time slot t:

ÿ

tœTi

y
it

Æ 1 ’i œ F .

3. Connectivity between flights:

ÿ

tØt

Õ
y

it

+
ÿ

tÆt

ÕÕ
y

jt

Æ 1,

’i œ F Õ, j = succ(i) and tÕ, tÕÕcoupled for(i, j).

4. Finally, we present the integrality constraints:

y
it

œ {0, 1} ’i œ F , ’t œ T .
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3.2.1 Size of the nominal formulation

The size of the nominal formulation given above depends on the number of flights,
airports and time periods. Let us denote by F a set of all the flights considered in
our problem and by F Õ a subset of all the flights, for which successive flight exists.
Furthermore, K stands for the set of all the airports and T the set of all the time
periods considered. Indeed, it is possible to bound the number of variables of the nominal
problem by

|K| ◊ max
kœK

|F(k)| ◊ max
fœF

|T
i

|.

Additionally, the number of constraints can be upper bounded by

|K| ◊ |T | + |F| ◊ max
fœF

|T
i

| + |F Õ| ◊ max
fœF

|T
i

|.

Let us show how this would look like in reality. We consider 30 000 flights, which
represents a number of flights flying across European airspace on a typical summer day
[25]. According to [1], there are currently 153 large airports in Europe. Those are
the airports, which operate international, as well as domestic flights daily. From the
interpretation of our problem, large airports are those we are interested in, since they
are main victims of congestions. For example, for the busiest airport in Europe, London-
Heathrow Airport, there were in average 1290 scheduled flights per day in 2014. Since we
have divided time into a set of time slots, where each slot represents 15 minutes interval,
to one day correspond 96 time slots. By allowing each flight to be delayed at most by
2 hours, we set max

fœF |T
i

| = 8. Therefore, for a regular day in European airspace an
upper bound for variables of our nominal problem would be:

153 ◊ 1 290 ◊ 8 = 1 578 960.

Moreover, assuming that one third of all the flights have successors, the number of
constraints for a regular summer day in European airspace would be upper bounded by:

153 ◊ 96 + 30 000 ◊ 8 + 10 000 ◊ 8=14 688+240 000+80 000=334 688.

3.3 The set packing formulation
In this section, we will derive the set packing formulation of the nominal problem, which
was presented in the work of Prof. Smriglio and Prof. Rossi [40]. Let us firstly remind
the objective of the set packing problem. Given a finite set V and a list of subsets of
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V called V Õ, the set packing problem investigates whether some k elements of V Õ are
pairwise disjoint, that is, no two of them share an element.

Our aim is now to reformulate the ground holding problem described above as a
general set packing problem, namely min

Ó
cT x : Ax Æ 1, x œ {0, 1}n

Ô
, where A is a

m ◊ n binary matrix. In order to do so, for each airport and for each time slot (k, t) œ
K◊T we create a set of arrival slots S

kt

=
Ó
S1

k,t

, . . . , SR

k

(t)
k,t

Ô
, that is a set of R

k

(t) single
capacity arrival slots. For example, if an airport k

i

is able to accommodate 8 flights at
time t

i

, S
k

i

t

i

=
Ó
S1

k

i

,t

i

, . . . , S8
k

i

,t

i

Ô
. Under this assumption, we are able to reformulate the

nominal problem followingly.

Objective function

Let Ï be the set of all capacity slots S
k,t

of all the airports k œ K for each of the times
t œ T , namely let Ï = t

kœK,tœT S
k,t

. Then the objective becomes:

min
ÿ

iœF

Q

a

Q

a1 ≠
ÿ

tœTi ,sœS

k

i

t

x
is

R

b (c
i

+ w
i

r
i

) + w
i

Q

a
ÿ

tœTi ,sœS

k

i

t

tx
is

≠ r
i

R

b

R

b .

Constraints

1. For each of the capacity slots must hold that at most one flight can land on it:

ÿ

iœF
x

is

Æ 1 ’s œ Ï.

2. Each flight i can land at most once:

ÿ

tœTi ,sœS

k

i

t

x
is

Æ 1 ’i œ F .

3. Connectivity between flights:

ÿ

tØt

Õ
,sœS

k

i

t

x
is

+
ÿ

tÆt

ÕÕ
,qœS

k

j

t

x
jq

Æ 1,

’i œ F Õ, j = succ(i) and tÕ, tÕÕcoupled for(i, j).

4. Integrality constraints:

x
is

œ {0, 1} ’i œ F , ’s œ Ï.
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3.3.1 Combinatorial properties

To follow we discuss the combinatorial properties of this formulation. The set packing
model can be solved by solving the associated stable set problem on the intersection
graph of {0, 1} matrix A [40]. This means to find a set of pairwise nonadjacent vertices
of maximum weight in a graph G(V, E). If all weights of vertices V are equal to one, the
problem reduces to maximum cardinality stable set problem. Each decision variable x

is

corresponds to a pair (i, s) œ (F ◊ Ï) and can be represented as a node v œ V
I

, where
G

I

= (V
I

, E
I

) is an intersection graph (more explanation provided in [40]).

Let us illustrate the behavior of this model formulation on an example. We consider
a small airport k and 4 flights, which are supposed to land during next 45 minutes.
Through first 15 minutes, the airport is able to handle 2 arriving flights and therefore
for t = 1 we have two capacity slots S1

k1, S2
k1. However, the airport is able to handle

only one arriving flight per every 15 minutes afterwards. Due to this we create only 1
capacity slot for t2 and t3, those are S1

k2 and S1
k3. The problem is now to optimally assign

each flight to land on one of the possible landing slots, such that the ground holding
costs are minimized. Due to the constraints of our model, the sum of all rows has to be
less or equal to one and the same has to hold for columns. More of the properties of the
graph induced by our model can be found in [40].

Q

cccccccca

V (S1
k1) V (S2

k1) V (S1
k2) V (S1

k3)
V (1) 0 1 0 0
V (2) 1 0 0 0
V (3) 0 0 0 1
V (4) 0 0 1 0

R

ddddddddb

The set packing model can be extended to more complicated versions of GHP (see
in extensions of [40] ). It gives an advantage of solving a MIP problem by LP and under
some assumptions assures the integrality of decision variables. It was shown, that the
rank inequalities reduce the integrality gap also in large instances, however, for classical
scenarios, the set packing model remains e�cient. The set packing model was applied
and solved for instances of the size of real-world problems in [40]. It outperformed other
previously known GHP algorithms and reduced the infeasibility of solutions (cancellation
of flights).
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3.4 The ATFM under capacity uncertainty

In the previously mentioned ATFM models we consider the landing capacities of airports
as functions of time only. We suppose that for every time period t ‘ T and every airport
k ‘ K there exists a deterministically given value R

k

(t) representing the capacity of a
given airport at time t. However, in reality this not always the case. Usually, when
the schedule is being made, one can not exactly estimate the future capacity values
and therefore the values R

k

(t) are only estimates. If the estimates are too optimistic,
that means considering higher landing capacities than the real ones, we would have
to face airborne delays of flights close on arrival. Costs of such delays are usually
much higher than for delays caused by ground-holds. In contrast, a pessimistic estimate
results in avoidable ground delays for some flights and the subsequent propagated delays
to connecting flights [27]. To follow we will study the ATFM problem with uncertain
capacities. We model the weather-front induced landing capacities and propose a robust
optimization formulation of ATFM problem.

3.4.1 Delays

According to Aviation System Performance Metrics (ASPM), main factors causing de-
lays of flights are carrier delays, weather delays, NAS delays, security delays and late
aircraft delays [26]. The data on on-time performance of flights in the American Na-
tional Airspace (ANA) are provided by Federal Aviation Administration (FAA) and are
freely accessible at [3]. Carrier delay is usually caused by the control of the air carrier.
Security delays are caused for example by the evacuation of the terminal or re-boarding
of the aircraft. NAS delays are delays that are within the control of the American Na-
tional Airspace System. Late aircraft delays are delays caused by late arrival of the same
aircraft at previous airport.

In the U.S., most of the delays in the airspace during the last 15 years were caused
by extreme or hazardous weather conditions (Fig. 3.1). Let us remind, that more than
60% of yearly delays are those caused by weather. Furthermore, an evident seasonal
pattern can be seen between the time of the year and the number of delays (Fig. 3.2).
The amount of delays increases during the summer months due to the higher number of
flights in this period, which causes bigger congestions on the airports. Also, the changes
in weather occur more often in summer and are generally harder to predict than during
the rest of the year.

Following the previous facts, we consider necessary to study the ATFM problem
with impact of unpredictable weather conditions. We believe that this can be done by
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Figure 3.1: Average time of flight delay by cause in the U.S. (Data Source: OPSNET
[3]).

Figure 3.2: Seasonal pattern of delays in the U.S. (Data Source: OPSNET [3]).
The red dots represent monthwise average delays over the past 5 years.
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implementing robust optimization frameworks described in Chapter 2 into the discrete
models, which have been proposed previously in this chapter.

3.5 Modelling the capacity uncertainty
Following the previous findings, the main influence on the uncertainty in capacities of
the landing slots comes from the uncertainty in weather. For practical reasons, it is
important to model this uncertainty by only small number of parameters. We will
model now the weather uncertainty and describe its relation with capacity reductions.

3.5.1 Defining parameters
Imagine that it is a typical summer day and the storm is expected to occur in the area of
an airport K at some time in the afternoon. Let us suppose that in the morning, when
the schedule for the day is being produced, we get the information that the storm will
arrive between 17:00 and 19:00. For us this information would mean that the capacity
slots of airport K would be reduced by some number at some time between 17:00 and
19:00. Naturally thinking we assume, that the stronger the storm is, the more reduction
of capacities we can expect. This means, that in order to better predict the capacity
reductions, we would like to know how strong the storm would be. Also, it is important
for us to know how long will the storm be. If it is a short one, let’s say 8 min, we can
assume that the capacities will be violated only at one of the time slots (since each t

i

‘ T

represents 15 min). But if the storm takes longer time, i.e. 40 min, the reduction will
a�ect more slots (in this case 40 min correspond to 3 time slots).

Mathematically speaking, after previous assumptions we can derive the key param-
eters a�ecting the weather induced capacity uncertainty:

1. Time of arrival T
a

of weather front

2. Duration d of weather front

3. Capacity reduction –.

Thus, T
a

œ {T
min

, ..., T
max

}, where T
min

represents the first possible time when the
weather front could occure and T

max

stands for the last possible time slot, when the
weather-front can start acting. Note, that if the weather-front arrives at T

max

, the
capacity reduction will occure until T

e

= T
max

+ d, where d œ {d
min

, ..., d
max

} and

T
e

œ {T
min

+ d
min

, ..., T
max

+ d
max

} .
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Capacity reduction – represents the portion of reduced slots. Now, we can rewrite the
capacity vector of airport k with the weather front realization at timeslot t

a

, duration d

and capacity reduction – followingly (for easier notation we skip the index k):

R(t) = {R(t1), ..., R(t
a≠1), –R(t

a

), ..., –R(t
a+d

), R(t
a+d+1), ..., R(t

n

)} ,

that is

R(t
i

) =

Y
_]

_[

R(t
i

), i œ T - {T
a

, ..., T
b

}

–R(t
i

), i œ {T
a

, ..., T
b

} .

Since we are in the discrete setting, we assume that – is always given such that –R(t
i

)
is an integer.

Example: Suppose that the capacity R
k

(t) of airport k is during the whole time
equal to 25, that is R

k

(t) = 25 ’t. Considering T = 4, T
a

œ {2, 3} , d œ {1, 2} and
– œ {0, 2, 1} we get the following set of possible realizations of uncertainty:

œ = {(25, 20, 25, 25), (25, 20, 20, 25), (25, 0, 25, 25), (25, 0, 0, 25), (25, 25, 20, 25),
(25, 25, 20, 20), (25, 25, 0, 25), (25, 25, 0, 0)}.

3.5.2 Characterization of the uncertainty set

Fom Chapter 2 we know, that in order to computationally solve the problem, it is
necessary to characterize the uncertainty set given by described parameters. We present
the characterization of uncertainty set coming from [27]. He firstly derives the polyhedral
description of conv(�

–

), showing that P
–

= conv(�
–

min

). Next, he proves the relation of
conv(�)=conv(�

–

) and concludes with the statement P
–

min

= conv(�). These findings
are extremely important for the derivation of our model and therefore next we present
a deeper explanation.

He begins with introducing auxiliary variables for every t œ {T
min

, ..., T
max

+ d
min

}:

y
t

=

Y
_]

_[

1, if capacity drops by time t

0 otherwise.

z
t

=

Y
_]

_[

1, if capacity revives by time t

0 otherwise.

Obviously, y
t

= 1 if t œ {T
max

, ..., T
max

+ d
max

}, z
t

= 0 if t œ {T
min

, ..., T
min

+ d
min

≠ 1}
and z

t

= 1 for t œ {T
max

+ d
max

}.
Furthermore, Gupta provides a mathematical description of an uncertainty set for
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particular realization of – followingly [27]:

�
–

= {b œ Z

m
+ | b

t

= C(1 ≠ y
t

) + –Cy
t

+ (1 ≠ –)Cz
t

, ’t œ {T
min

, ..., T
max

+ d
max

} ;

b
t

= C, ’t œ T ≠ {T
min

, ..., T
max

+ d
max

} ;

y
t

Æ y
t+1; z

t

Æ z
t+1; z

t

Æ y
t

;

y
T

max

= 1; z
T

min

+d

min

≠1 = 0; z
T

max

+d

max

= 1; y
t,

z
t

œ {0, 1}}.

Additionally, he claims that after replacing y
t,

z
t

œ {0, 1} by 0 Æ y
t

, z
t

Æ 1 we obtain
the description of conv(�

–

) and in the case where – is chosen in a way that –C is an
integer, then conv(�

–

) is exactly a polyhedron;

conv(�
–

) = P
–

.

The proof can be seen in [27].
Let – œ {–

min,

..., –
max

}. We can describe the whole uncertainty set as:

� =
1
fi

–œ{–

min

,..., –

max

}�–

2
.

Moreover, since

fi
–œ{–

min

,..., –

max

}conv(�
–

) ™ conv
1
fi

–œ{–

min

,..., –

max

}(�–

)
2

= conv(�),

and due to additional assumptions (see the proof of Theorem 4. in [27]),

conv(�) = conv(�
–

min

).

Under assumptions mentioned above, the author concludes with following theorem:
Theorem: ([27])

P
–

min

= conv(�).

3.6 Robust formulation of the ATFM problem

In this section, we propose formulations of the air tra�c flow management problem under
capacity uncertainty. We firstly derive a single-stage robust model from the nominal
formulation. Using nominal formulation allows us to formulate the uncertainty by the
right hand side robust approach. After that we propose a two-stage robust model. The
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main di�erence of these two models is in the number of decisions which are being made.
In the single-stage robust model, we suppose that the decision maker makes the decision
only once, in the beginning and this is in the morning when the schedule is produced.
This model does not allow any further changes in the schedule. On the contrary, in the
two-stage robust model the decision maker is expected to get an updated information of
the landing capacities and he is allowed to change a schedule accordingly. This will be
explained in details later in this section. Finally, we propose a single stage robust model
of the set-packing ATFM formulation, where the capacity uncertainty is moved from the
right-hand side vector inside the matrix of constraints. We show that it is equivalent to
the deterministic formulation if assuming the worst-case capacity reductions.

3.6.1 Single-stage robust ATFM model

In the section 3.2 we proposed the nominal formulation of the ATFM problem in which
several constraint functions are presented, including capacity constraints. In this model,
the capacities for each airport k œ K at each time period t œ T are considered to be
deterministically given. However, as we have already described before, this is not always
in reality the case. We will now apply the knowledge from Chapter 2 and reformulate
this model into single-stage robust optimization problem.

Note, that we can understand the deterministic capacities R
k

(t) from the nomi-
nal formulation as a vector defining capacities in the space of airports and time, thus
R

k

(t) œ R

|T |◊|K|. This vector appears on the right-hand side of the capacity constraints.
Following the framework of previous section, we want to introduce the uncertainty in
this vector of capacities, and therefore we can claim that the uncertainty of this model
will occure only on the right-hand side vector of the capacity constraints of the nominal
formulation.

In the end of section 3.5.1 we showed on a small example how an uncertainty set
would look like for one airport when a capacity reduction is expected during four time
periods, but without the knowledge of the exact time of arrival, duration and strength of
weather realization. Following this example, we can similarly compose the uncertainty
set � for the whole vector R

k

(t) œ R

|T |◊|K|. Setting n = |T
a

|◊ |–|◊ |d| and m = |K|◊ |T |
the uncertainty set � will be composed as follows:

� = {(Ê1,1, ..., Ê1,m

), (Ê2,1, ..., Ê2,m

), ..., (Ê
n,1, ..., Ê

n,m

)} .

In the case where only one airport is taken into account, Ê1,1 would represent the first
realization of uncertainty at first time period, Ê2,m

the second realization of uncertainty
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at m≠th time period and so on.

The main purpose of the robust optimization is to find a solution, which stays feasible
for any realization of uncertainty. In our model, we are looking for a solution, which
would satisfy the constraint

ÿ

iœF(k)
y

it

Æ R
k

(t) ’k œ K, ’t œ T , R
k

(t) œ � . (3.1)

Due to the worst case nature of robust optimization, we define the vector Rú
k

(t) as:

Rú
k

(t) = min {R
k

(t) : R
k

(t) œ �} .

Naturally it follows then, that if q
iœF(k) y

it

Æ Rú
k

(t) is satisfied for ’k œ K, ’t œ T ,
then (3.1) is fulfilled. To follow, for any uncertainty set � describing the right hand side
capacity uncertainty from the nominal formulation of ATFM, the single-stage robust
ATFM formulation becomes:

min q
iœF ((1 ≠ q

tœTi y
it

) (c
i

+ w
i

r
i

) + w
i

(q
tœTi ty

it

≠ r
i

))
q

iœF(k) y
it

Æ Rú
k

(t) ’k œ K, ’t œ T
q

tœTi y
it

Æ 1 ’i œ F
q

tØt

Õ y
it

+ q
tÆt

ÕÕ y
jt

Æ 1 ’i œ F Õ, j = succ(i); tÕ, tÕÕcoupled
y

it
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As a consequence, the proposed single-stage robust ATFM model is expected to be
e�ciently solvable in practice. However, the trade-o� between the feasibility and value
of the cost function is expected to be high due to the worst-case nature of the proposed
formulation.

3.6.2 Single-stage robust ATFM set packing model

Following the framework of previous section, we can implement the uncertainty of ca-
pacities into the ATFM set packing formulation and solve this problem with the robust
approach. This means finding the solution, which would stay feasible regardless the
outcome of the uncertainty set. We propose now three approaches how to impose un-
certainty in the set packing formulation.
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Initializing the size of the set of capacity slots

First approach is to define the uncertainty set of capacities R
k

(t) œ � in the beginning
and finding Rú

k

(t) = min {R
k

(t) : R
k

(t) œ �}. After Rú
k

(t) is known for every k œ K and
t œ T , we are able to construct the set of landing slots such that S
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=
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Now, following the assumptions from section 3.3, we formulate the set-packing model
followingly:
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(3.2)

Approach by imposing an additional variable

Let us investigate now the case where we firstly consider the set packing formulation
of deterministically given capacities and we embed robust approach by cancelling the
landing slots in it. This is possible due to the fact that we do not expect the increase
of capacities, the uncertainty is e�ecting only in decreasing the number of landing slots.
Let us explain this on a small example.

Example: Suppose that there are three flights (f1, f2, f3) landing at the same
airport k. All of them should land at time t1 and only flights f2, f3 are allowed to be
delayed, meaning that the flight f1 has to land at t1. However, the capacity of airport k

at t1 is only 2, from which we conclude, that at least one of the flights will be assigned to
land at t2 at some cost. Formulating this with a set packing approach gives us a {0, 1}
matrix A, where a

i,j

is set to 1 if flight i can land at time t and slot s:

a
i,j

= 1 if j œ (
t≠1ÿ

l=1
s(l) + 1,

tÿ

l=1
s(l) +

Diÿ

l=t+1
(s(l)),

where D
i

represents the maximum allowed delay for flight i. We get the max stable set
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problem:

max x1
1,1 + x1

2,1 + x1
3,1 + x2

1,1 + x2
2,1 + x2

3,1 + x1
1,2 + x1

2,2 + x1
3,2 + x2

1,2 + x2
2,2 + x2

3,2
x1

2,1 + x2
2,1 + x1

2,2 + x2
2,2 Æ 1

x1
3,1 + x2

3,1 + x1
3,2 + x2

3,2 Æ 1
x1

1,1 + x1
2,1 + x1

3,1 Æ 1
x2

1,1 + x2
2,1 + x2

3,1 Æ 1
x1

2,2 + x1
3,2 Æ 1

x2
2,2 + x2

3,2 Æ 1
x1

1,1 + x2
1,1 Æ 1.

Considering the case where some of the landing slots may be cancelled due to unfavorable
weather conditions, we propose to introduce for every airport k, time slot t and landing
slot s a new variable ys

k,t

followingly:

ys

k,t

=

Y
_]

_[

0 if the slot s of airport k at time t is cancelled
1 otherwise

.

Note, that if the capacity of an airport is reduced by a scalar h, it means that h slots
become not available anymore, and we consider the set of those h slots to be the same
for every flight (the set of the same slots). We have to do so in order to prevent the
assumption on the size of capacity. If we would consider di�erent groups of slots for each
flight to be cancelled, it could happen that the actual capacity of an airport at some
time is lower than the one used in our formulation. Therefore without loss of generality,
if h slots are to be cancelled at time t, we always consider the last h slots of time t. For
example, if one of the two slots at time t1 would be canceled in our previous example,
it would be the slot t2

1. And if so, by introducing ys

k,t

as previously described, we would
set y2

k,t1 = 0. Since this landing spot does not exist anymore, none of the flights can be
assigned to land on it. We introduce additional constraint:

x2
i,t1 Æ y2

k,t1 ’i œ F assigned to land at k,

This shrinks our set of feasible solutions, making the first flight to land at t1 and second
and third at t2. Moreover, if one more of the slots would be cancelled, one of the flights
would have to be cancelled as well. Therefore this problem would have a feasible solution
only if the cancellation of flights is allowed.
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Let us derive this formulation for a general setting. With this approach we transfer
the uncertainty from the vector of capacities into a new variable ys

k,t

. For doing so, we
construct a mapping from R

k

(t) œ œ to ys

k,t

(R
k,t

) and add following constraints to the
nominal set packing formulation:

xs

i,t

Æ ys

k,t

(R
k

(t)) ’i œ F assigned to land at k, ’t œ T , ’s œ Ï and ’R
k

(t) œ �
ys

kt

œ {0, 1} ’k œ K, ’tœ T, ’s œ Ï.

There is a direct dependence between the size of S
k,t

and the capacity R
k

(t). In the
weather induced uncertainty case, when the exact capacity is not known, we construct
the set of capacity slots of our set packing formulation by using the deterministic capacity
R

k

(t) and we expect some of them to be cancelled according to the behavior of the
uncertainty set. This cancellation is explained by the variable ys

k,t

(R
k

(t))œ {0, 1}. This
means, that if we expect a violation on capacity in airport k at time t, we create a set of
possible realizations on capacity reduction. If for example at most 5 slots are expected to
be violated then at most last 5 variables ys

k,t

will be set to 0 and previous ys

k,t

will be set
to 1. If we want to be protected in our formulation against all the possible realizations,
we have to consider the worst case realization of weather front. In this case it means to
consider the cancellation of 5 slots and therefore

1
ys

k,t

, ys≠1
k,t

, ys≠2
k,t

, ys≠3
k,t

, ys≠4
k,t

2
= (0, 0, 0, 0, 0) .

Applying the worst-case concept of robust optimization, we can rewrite the first
constraint as:

xs

i,t

Æ min
R

k

(t)œ�
ys

k,t

(R
k

(t)) ’i ‘ F assigned to land at k, ’t œ T , ’s œ Ï.

Therefore using again the notation from 3.6.1, where Rú
k

(t) = min {R
k

(t) : R
k

(t) œ �}
we characterize:

ys

k,t
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Y
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1 if s œ
Ë
1, Rú

k,t

È

0 if s œ (Rú
k,t

, R
k,t

].

Since xs

i,t

Æ ys

k,t

, the decision variables for which xs

i,t

, s œ (Rú
k,t

, R
k,t

] are forced to be 0
and therefore none of the flights can be assigned to land at xs

i,t

, s œ (Rú
k,t

, R
k,t

]. Due to
this and other assumptions stated in this section we conclude that this approach yields
the same formulation as (3.2).
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Budget of uncertainty approach

In this section we apply the budget of uncertainty approach of Bertsimas and Sim (see
more in 2.2.5) to the set packing ATFM model and we show, that this approach yields
again the same formulation as (3.2). Following the framework of the authors we introduce
for every row i of matrix A a new parameter �

i

which controls the number of entries
which are expected to be violated as follows:

�
i

(t) = q
T

i

(R
k

(t) ≠ R
k

(t, Ê)) ’ i œ F , ’ Ê œ �
�

i

œ N

.

Let us remind that Ti = {t œ T : ri Æ t Æ ri + Di} represents a set of time slots in which
a flight i can be assigned to land (with some possible costs of delay). Applying again
the worst-case nature of robust optimization we get:

�
i

(t) = q
T

i

(R
k

(t) ≠ Rú
k

(t)) ’ i œ F
�

i

œ N

.

From this clearly follows that for every flight i we expect exactly �
i

landing slots to be
violated. Due to the fact that the decision maker is able to find Rú

k

(t) and without loss
of generality he cancels last �

i

landing slots for every t (for explanation see previous
section) we expect that there exists a deterministic formulation of this approach. We
introduce a set of possible landing slots for a flight i which is supposed to land at the
airport k as

S(T
i

) =
Y
]

[s : |s| =
ÿ

t œ T
i

|s
k

(t) ≠ �
i

(t)|, ’ t œ T : ri Æ t Æ ri + Di

Z
^

\ .

We characterize each entry of matrix A as follows:

a
i,j

= 1 for i œ F , j œ S(T
i

),
a

i,j

= 0 otherwise .

Now clearly, a
i,j

stays 1 only for those slots, which are not cancelled and becomes 0 for
those which are expected to be cancelled in the worst-case scenario of predicted weather-
front. This leads the decision variables, which are representing cancelled landing slots to
be set to 0. Following from previous assumptions we claim that this reformulation of the
set packing ATFM under capacity uncertainty leads again to the exact same formulation
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as 3.2).
To conclude this section, we see that the only di�erence between the deterministic

and the robust single stage formulations is in the evaluation of the uncertainty set and
finding the minimal value for every airport at every time slot. Since the deterministic
versions of the models are e�ciently solvable, we expect the single-stage robust models
to be e�ciently solvable as well. Moreover, we expect similar computational times, since
the only extra time has to be dedicated for finding Rú

k

(t), which is generally not hard.
However, since we are optimizing against the worst case scenario, we expect the value of
the objective function to be higher than for deterministic cases. In general, the trade-
o� between the optimality and robustness in the single-stage robust approach is very
high. Therefore, we consider reasonable to introduce a model where this trade-o� would
become more promising. This may be achieved by investigating a robust model of ATFM
in which the schedule can be updated according to the current weather conditions. Hence
we introduce next a two-stage robust ATFM formulation.

3.6.3 Two-stage robust ATFM model

Let us suppose that the schedule is produced in the morning and it can be updated
later during the day. In reality, the closer we are to the realization of weather, the more
better we are able to predict its behavior. This gives an advantage of more precise future
knowledge of the uncertain parameters T

a

, d, –, which would most probably result into
a smaller size of uncertainty set in later stage. As well, if we didn’t know the exact time
of the capacity reduction and in the time of the second-stage decision we know, that it
has already happened, the decision maker can cancel the uncertainty vectors concerning
this particular reduction from the future uncertainty set. Mathematically we can handle
this by second-stage robust optimization approach.

The weather uncertainty will generate the capacity uncertainty set, where the re-
sulting capacities will be highly correlated. This comes from the following observations.
If the predicted weather front appears, but moves more quickly or more slowly than
forecasted, the modification of the whole capacity vector is highly correlated, since it
will cause a change in capacities in several subsequent time slots and airports. The
decision maker is then able in the second stage to update the information according to
the current situation and to choose the optimal schedule.

Let us divide decision variables into two vectors depending on the time. In reality,
we are able to predict the weather with quite good accuracy for next couple of hours.
Therefore, for producing a schedule for one day we can without loss of generality divide
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the decision variables followingly:

u = y
i,t

t œ {1, ..., 39}
v(Ê) = y

i,t

t œ {40, ..., 96} .

We consider decision variables u as non-adjustable variables describing the schedule for
next 10 hours. Variables from v are adjustable variables and they produce the schedule
for the later stage. We can reformulate then the objective function as follows:

Obj
adapt

= min
u,v(Ê)
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The constraints of the two-stage adaptive ATFM model will become then:

q
iœF(k)(u + v(Ê)) Æ Rú

k

(t) ’k œ K, ’t œ T , ’Ê œ �
q

tœTi (u + v(Ê)) Æ 1 ’i œ F , ’Ê œ �
q
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Õ(u + v(Ê)) + q
tÆt

ÕÕ(u + v(Ê)) Æ 1 ’i œ F Õ, j = succ(i); tÕ, tÕÕcoupled, ’Ê œ �
u, v(Ê) œ {0, 1} ’i œ F , ’t œ T , ’Ê œ �.





Chapter 4

Implementation in Practice

In this chapter, numerical results of the solution approaches introduced previously will
be presented. Firstly, the setup of data will be explained. Twelve data sets have been
generated in a way that each of them describes the real situation, which can occur in
the European airspace during a typical summer day. The nominal ATFM optimization
problem was implemented and solved using the open source software GLPK. In order to
optimize the computational time and e�ort, the data was preprocessed accordingly using
MATLAB. Later on, we show the obtained results of single-stage and two-stage robust
optimization ATFM problems and we compare their performance towards the deter-
ministic solutions. The main focus is taken on evaluating the profitability of two-stage
robust ATFM model. We compare the costs of second-stage optimal solutions, where
one of the weather scenarios was fixed in the second stage, and the costs of deterministic
solutions under the realization of the same weather scenario. To conclude this study,
we show that in cases of high congestion and very unfavorable weather realization, the
results of the second-stage robust optimization formulation outperforms those coming
from deterministic and single-stage robust formulations.

4.1 Data setup
We utilize twelve data sets of daily flight schedules to present proof-of-concept of the
usefulness of the optimization methodologies proposed in the previous chapter. The
created sets of data follow the distribution of the real flight delays situations of European
airspace. Generated data are describing days when high congestion occurs on the airports
and follow the collection of real facts. On a typical July day, there are around 30 000
flights across European airspace [25]. There are currently 153 large airports in Europe
[1]. In order to represent a typical summer situation on a smaller scale, we create a set
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of 10 airports and to each of them we assign a number of flights which are supposed to
land on it that day. For datasets 1 to 4, 1820 flights are considered, for datasets 5 to 9
it is 1800 flights and 1780 flights for the rest. This gives us an advantage to study the
problem under di�erent realizations of congestion.

The capacity values used for all the airports are chosen to be at the “infeasibility
border” during peak hours, i.e. their small perturbation on the conservative side may
lead to infeasibility of the overall problem. Firstly, we consider the landing capacities
as deterministically given values which di�er only as a function of airports. The process
of obtaining weather-front induced capacities for the robust formulation of the problem
will be explained in the next section. Each of the airports has di�erent size and thus
di�erent amount of flights should be assigned to land on each of them. Airports 1 and
2 are the biggest ones and hence approximately 15% of flights are assigned to both of
them. Next, airports 3, 4 and 5 are middle sized, and consequently 12%, 11% and 9%
of flights are scheduled to land there. Finally, 8% of flights are landing at airports 6, 7,
8, and 7% are assigned to last two airports 9 and 10. The average distribution of flights
as a function of airport is represented by histogram on the left side of Figure 4.1.

Figure 4.1: Average flight tra�c of all the data sets.
Left: Flight tra�c as a function of airport; Right: and a function of time.

The average distribution of flights as a function of landing time for our data sets can
be seen on Fig. 4.1 (Right). We assume, that between midnight and 8 AM only a little
part of the flights are scheduled to land and the congestion starts to occur afterwards
[29]. The actual distribution of flights over time for each data set is shown on Figure
4.2.

The flights are not allowed to be delayed for more than three hours and the maximum
allowed delay times are randomly distributed between 8 and 12 time slots. The average
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Figure 4.2: Distribution of flights over time for each data set.

price of a delay per one time slot is set to be 480. Since cancelation cost is usually much
higher than delay cost [40], without the loss of generality we set the cancelation cost for
each flight i ‘ F to be (D

i

+ 2) ú dCost
i

ú 5, where D represents maximum allowed delay
and dCost is cost of delay per time slot. Moreover, for every data set we assume 20%
of all the flights to have a successor and we generate the set of pairs of successive flights
as well as the set of time-coupled combinations.

To solve the robust and deterministic models, we use an open source software GLPK,
the GNU Linear Programming Kit. It is a software package intended for solving large-
scale linear and mixed integer programming problems. GLPK uses the branch-and-
bound algorithm together with Gomory’s mixed integer cuts for (mixed) integer problems
[2]. In order to optimize the computational time and e�ort, we preprocessed the data
accordingly in MATLAB. The outline of the code solving the nominal ATFM problem
can be find in the appendix.

After performing a set of computational experiments, we wish to answer following
questions:

1. Are the running times convenient for practical implementation?

2. What is the price of robustness of the single-stage formulation?

3. How di�erent are the robust single-stage and two-stage solutions?

4. Is the performance of second-stage solution better than the deterministic case with
incorporating actual weather scenario?
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4.2 Scenario configuration
In this section, we explain how the data to test di�erent scenarios and approaches were
created and implemented in the GLPK optimization model. The experiment was run
on Mac Book Air 2013, OS X 10.9.3., with processor 1.3 GHz Intel Core i5 and RAM 4
GB 1600 MHz DDR3. GLPK was called from the terminal.

4.2.1 Weather scenarios

In order to test the behavior of robust models, two weather scenarios were generated
for each data set and studied separately. Each of them can have di�erent realizations,
meaning that the arrival time, duration or strength can have di�erent values. For exam-
ple, considering that we know, that there will be a storm a�ecting the airspace around
airports 1 and 4 at some time between 3 PM and 5 PM, we create a set of all possible
realizations of this storm. The time of arrival, duration and the strength of each weather-
front are randomly generated from appropriate intervals and represent the situations,
which can possibly occur on a typical summer day. Following the theory developed in
Chapter 3, each weather-front results in the reduction of landing capacities during its
realization. Hence, the uncertainty set of weather-front induced landing capacities was
created for each data set and each weather scenario.

4.2.2 Single-stage robust optimization

The purpose of robust optimization is to find an optimal solution, which will stay feasible
under any realization of uncertainty set (see Chapter 2). To fulfill this requirement,
the minimum landing capacity for every airport and every time slot is found among
all the weather realizations (for explanation see Chapter 3). Consequently, a set of
“worst-case” landing capacities is obtained and considered as a deterministic input for
the optimization model. For the weather scenario 1 the worst-case capacity reduction
corresponds to 7% of deterministic capacities and 9,74% for weather scenario 2. The
results of this approach are shown and discussed in the Section 4.3.

4.2.3 Two-stage robust optimization

While implementing the two-stage robust problem, we allow the possibility of updating
the schedule during the day. We want to study the impact of this approach on the overall
cost of the problem and we desire to show, that the total cost decreases, if further changes
in schedule are allowed to be implemented accordingly during the day. We allow the
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decision maker to change the schedule at 10 AM under assumption, that he is provided
by a new, updated information about possible weather realizations occurring later that
day. However, while changing the schedule, he is not allowed to reschedule (hold on
the ground) those flights, which are currently already in the air. This is protected by
imposing an additional constraint to the problem formulation.

The adaptive solutions were implemented on a rolling horizon basis. We firstly com-
pute the single-stage decisions of the robust problem. Subsequently, we fix the scenario
from the uncertainty set and use this in the second stage as the actual capacity pro-
file. These scenarios are then assumed as capacity profiles which certainly materialized.
Namely, for weather scenario 1 we fix the capacity profiles corresponding to the reduc-
tion of 5,4% and 3,7% of deterministic cases. For weather scenario 2 we fix in the second
stage capacity profiles corresponding to 7,8% and 4,7% reductions of deterministic ca-
pacities. We then re-optimize the second stage decisions under the input of this fixed
capacity profile for all the scenarios and data sets. The analysis of results is presented
in Section 4.3.

4.2.4 Computing the cost of deterministic solution with fixed
weather realization

In order to illustrate the situation in the airspace when one of the weather scenarios arise
but the schedule was produced with deterministic capacities, we perform the following
experiment. We produce a schedule for a given data set with deterministic capacities.
Subsequently, we fix the scenario, which actually materialized and we compute the cost
of the deviation of the deterministic schedule. Since the capacities have decreased,
following the deterministic schedule, some of the flights have to be held in the air until
the next landing spot becomes available. This is computed by comparing the vectors
of assigned flights and actual (decreased) capacities. If the capacity of an airport k at
some time t became lower than the amount of flights which were assigned to land on
it, the algorithm finds next possible empty landing spot and assign the flight to it. As
a result, it returns the number of deviations (number of flights which couldn’t land as
scheduled). For each of those, the amount of time which it had to be hold in the air as
well as the airborne costs were computed. This was done in two ways.

Firstly, we assume, that the controllers are not re-assigning the landing spots to
flights optimally, but randomly. This can happen in reality, when a big congestion
occurs unpredictably or when the controllers are not allowed to change the planned
landing slots, for example due to the competition of the air industry. In this case, the
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Figure 4.3: Cost of delay as a function of time.
Left: stepwise approximation of exponential behavior; Right: constant cost.

airborne costs increase as a function of time, meaning the longer is an aircraft hold
in the air, the more costly becomes an additional delay [17]. For simpler computation
we approximate this exponential behavior by a step function (Fig. 4.3 Left). In the
second case (Fig. 4.3 Right), more sophisticated re-assigning of flights by controllers is
taken into account. If a flight can not land as scheduled and the waiting time for the
next available landing spot is too long, controller would optimally choose another flight
landing later on and hold that one in the air so the one scheduled previously would land
on its spot. By doing so on a rolling horizon basis, the air holding costs decrease (see
next section) while naturally, the safety stays preserved.

4.3 Analysis of results
In this section, analysis of results coming from our computational experiments is pre-
sented. Table 4.1 shows the performance of single-stage robust model for two di�erent
weather scenarios. To clarify proposed theoretical expectations, robust solutions have
higher costs in all of the cases. Moreover, comparing the values of scenario 1 and sce-
nario 2, the higher the capacity reduction, higher becomes the cost of optimal solution.
Furthermore, even while considering the fact that our instances are of much smaller size
than real situations, the running times are still promising for practical implementation.

In order to study the characteristics of robust schedules, we define a new quantity-
schedule deviation. It is computed for each solution as an amount of time slots, which
were delayed altogether for all the flights. This quantity governs the price of robustness
in that the higher the schedule deviation, higher is the value of optimal cost for the
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Table 4.1: Computational experience with single-stage robust model comparing to de-
terministic cases.
Weather scenario 1 corresponds to 7% capacity reduction of deterministic case, scenario
2 corresponds to 9,7% reduction.

robust solutions (Figure 4.4 Left). Also, an approximately linear relationship can be seen
between the schedule deviation and values of objective costs (represented by the green
best linear fit line). The value of correlation coe�cient between these two quantities
is for our experiments 0,87, which implies statistical significance and proves theoretical
results developed earlier in our work.

To provide a better picture of the price of robustness, we fix a particular realization
of uncertainty set and use this to compute new deterministic costs. This represents in
reality the situation when schedule was produced with deterministic approach whereas
weather-front occurred during the day. Since not all of the flights were able to land as
scheduled, some of them had to be hold in the air. We propose two ways of comput-
ing new deterministic costs describing this situation in Section 4.2.4. The realizations
which have been fixed in our experiment correspond to 5,4% capacity reduction for costs
coming from scenario 1, and 7,8% for scenario 2. Meanwhile the first way gives higher
deterministic costs than robust objective values in most of the cases, the second way
behave oppositely (Fig. 4.4 Right). The green line plots the new deterministic costs
and divides the graph into two sections. The results on the left side of this line have
higher robust cost than new deterministic cost and therefore in those cases, it is more
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Figure 4.4: Characteristics of robust solutions.
Left: Price of robustness as a function of schedule deviation. Right: Price of robustness
as a function of new deterministic cost with fixed weather realization for both cases.

favorable (cost wise) to produce schedules with deterministic approach. For the results
on the right side, the opposite is accurate. If – is the capacity reduction for a particular
realization of weather uncertainty, then the fixed realizations correspond in both cases
to approximately –

average

≠–

min

2 . Since these realizations are on the conservative side of
the uncertainty set and the price of robustness is high in a lot of cases, we conclude
that the single-stage robust approach is costly in general. However, in the cases of high
congestion and unfavorable weather realization it produces better results and therefore
leads to reduction of costs (Figure 4.4 Right).

As expected from theoretical perspective, second-stage solutions give better results
in terms of cost value of objective (Table 4.2). The adaptive (second-stage) solutions
were implemented on a rolling horizon basis. Firstly, the robust worst-case solution
was computed. Afterwards, two realizations of uncertainty set were fixed (those corre-
sponding approximately to –

average

≠–

min

2 and –
average

) and used together with first-stage
decision variables as an input for second-stage re-optimization (read more in Section
4.2.3). Here we want to remark, that the decision maker is in reality able to choose
the uncertainty realization according to an updated information. We chose those two
to represent the reality in a following way: a) the first one is on the conservative side,
b) the second one is the average capacity reduction. In the case of a), the realization
was fairly close to the worst-case and the solution remains optimal for approximately
75% of all the possible realizations. For the case b), the solution stays feasible under
the “better” half of uncertainty set. This experiment was done for both of the weather
scenarios and all the data sets (Table 4.2). Since it is unlikely that the exact worst-case
realization reveals in reality, we consider this approach to be more realistic for practical
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implementation.
To begin with analysis of second-stage solutions, firstly the objective costs were com-

pared to single-stage robust costs. The values of objective were improved and in some of
the cases by over 50% (Fig. 4.5). As expected, solutions for second realization produce
lower values of objective and therefore are less costly. Also, for the more congested
situations we get a higher value of cost reduction. Furthermore, there is again an ap-
proximately linear relationship between the schedule deviation and objective costs, with
coe�cient of correlation equal to 0,93 (Fig. 4.6 Left). In terms of running times, the
second-stage model is approximately two times more expensive than the single-stage
(Fig. 4.6 Right). This is due to the fact, that in order to produce adaptive solution, we
firstly compute the single-stage solution and re-optimize this later on.

Figure 4.5: Percentual cost reduction.
Percentual cost reduction of second-stage solutions compared to first-stage solutions;
Left: for weather scenario 1; and Right: weather scenario 2. Dashed lines plot the
values of median (blue for realization 1 and red for realization 2).

In order to provide a better understanding of the real situation, we compare the price
of adaptive solutions to the price of the deterministic ones. The new deterministic cost is
obtained by fixing the same weather realization and following the previously mentioned
approach (see Section 4.2.4). Figure 4.7 depicts the di�erent natures of two proposed
approaches. While there is an approximate linear relation between number of flights,
which couldn’t land as scheduled and new deterministic costs given by approach two,
approach one follows an exponential trend (Fig. 4.7).

Let us remind the consequences of using the deterministic schedule in situations,
when unfavorable weather-front occurs. Following the regulations, the lower the visibility
or the higher the wind, distances of aircrafts in the airspace have to increase (due to
safety reasons). This naturally results into lower sector and landing capacities, for every
time slot concerning such a setting. Consequently, it happens, that some of the flights



54 Implementation in Practice

Figure 4.6: Characteristics of adaptive solutions.
Left: Price of robustness as a function of schedule deviation for adaptive problems.
Right: Ratio of adaptive and robust computation times.

can not land at their scheduled times, because either the airport, or the sectors around
the airport are not able to accommodate the same amount of aircrafts as regurarly.
Therefore, those planes have to be hold in the air and wait, until the next available
landing spot occurs. Since the costs of air holding of aircrafts are significantly higher
than ground-holding [8], this may result into extremely high price. Especially in the
cases of high congestion, when there are a lot of flights scheduled to land during the
same time and the capacity of airport is violated by a big factor. We have previously
proposed two ways of computing the costs of such a situation (see Section 4.2.4). The
first approach has an exponential behavior, meaning that the air-holding costs increase
exponentially by time. This may in reality happen when the controllers don’t have time
(or tools) to re-optimize the congested scenario and they deal with such a situation “as it
comes”. On the other hand, the second approach takes into account that the controllers
may be able to handle the congested scenario “optimally”.

To follow the theoretical background of our work, the second-stage solutions are
protected against all the possible realizations of weather, which are better than the
realization used in re-optimization. Therefore in reality, using the second-stage robust
optimization approach for producing schedules should avoid the described situation.
However, since robust methodologies give overly pessimistic results in general, we want
to study the profitability of this approach. To do so, the objective costs of second-
stage robust solutions are compared to deterministic costs with the same fixed weather
realization (referred as “new deterministic costs”). This is done for all the data sets, by
fixing two weather realizations for every scenario (one corresponding to –

average

≠–

min

2 and
second one to –

average

) and computed for both new deterministic cost approaches.
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Figure 4.7: New deterministic cost.
Cost of deterministic solutions with fixed weather scenario as a function of number of
flights, which couldn’t land as scheduled. Blue points represent the values for which the
cost was computed by the first approach, red by second approach.

The main result of our experiment is the observation, that for most of the cases,
second-stage robust solutions give better results than the new deterministic costs com-
puted by approach one (Fig. 4.8 Left). Mainly, if the actual weather realization belongs
to the conservative side of the uncertainty set, the second-stage solutions produce lower
costs. Additionally, if the worst-case weather scenario causes high capacity reduction,
then it is more likely, that even if the average capacity reduction materialized, second-
stage model will still produce results of lower costs than the new deterministic (pink
points in Fig. 4.8 Left). However, if the re-optimization is taken in the congested sce-
nario, it is in most of the cases of lower price to use the deterministic approach than
second-stage robust (Fig. 4.8 Right). This can be explained followingly. While comput-
ing the second stage solution, we re-schedule the flights only once (in the second-stage)
and we stay protected against all the possible realizations of new uncertainty set. On
the contrary, approach two of computing the new deterministic costs allows controllers
to re-optimize flights constantly. The longer is the aircraft hold in the air, the higher
priority to land it gets in the re-optimization. That means, that in order to keep the
overall costs low, controller is allowed to let the flights with higher priority to land and
hold the new ones in the air. By this approach, the number of delayed flights increases,
but the air-holding costs won’t capture the exponential growth.

To conclude the experiment, we analyze the percentual reduction of costs, which
is given by second-stage solutions. Since in reality controllers are usually not able to
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Figure 4.8: Price of second-stage solutions.
Left: Price of second-stage adaptive solutions compared to new deterministic costs
computed by approach 1. Right: Price of second-stage adaptive solutions compared to
new deterministic costs computed by approach 2.

assign flights to land optimally in the congested scenario (due to the competition of air
industry), the analysis was done by comparison of results towards the new deterministic
costs computed by approach one. The results were computed for all the data sets,
weather scenarios and both weather realizations. The following findings were observed:

• The cost of objective improved in average by 22% (Fig. 4.9)

• The total cost decreased in 75% of all the cases (Fig. 4.9)

• Moreover, if the actual weather realization comes from the conservative side of
uncertainty set, there is a significant cost reduction (Fig. 4.10):

– by 55,7% in average for weather scenario one

– by 37,8% in average for weather scenario two.

While choosing the fixed weather realization as the one corresponding to the average
value of capacity reduction, the value of cost reduction decreased. Namely, for the
weather scenario 1, the cost is in average 15,4% worse than the new deterministic. This
in reality means, that in this case it would be cheaper to hold the aircrafts in the air.
However, by doing so, the protection over other possible realizations of uncertainty set
is lost. In the case of higher capacity reduction (weather scenario 2), the second-stage
solution remains profitable even for the fixed realization being the average one. While
still staying protected under the optimistic half of the uncertainty set, it reduces the
costs by 10% in average.
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Extensive empirical results were presented and discussed in this chapter. They proved
theoretical expectations and showed the possibility of their implementation in practice.
The results highlight the utility of robust and adaptive solutions. We showed, that under
some assumptions, the second-stage robust model leads to significant cost reduction
in our computational experiments. Using this knowledge in practice could benefit to
profitability of the air tra�c industry.

Figure 4.9: Percentual cost reduction of second-stage solutions.
Dashed red line showes the mean value.

Figure 4.10: Percentual cost reduction of second-stage solutions.
Cost reduction of second-stage solutions compared to new deterministic cost computed
by first approach; Left: for weather scenario 1; and Right: for weather scenario 2.



58 Implementation in Practice

Table 4.2: Computational experience with second-stage robust model.
Single-stage solutions for weather scenario 1 (upper) and scenario 2 (lower) compared
to second-stage solutions. For scenario 1, realization 1 corresponds to 5,4% capacity
reduction of deterministic case and realization 2 corresponds to 3,7% reduction. For
scenario 2, realization 1 corresponds to 7,8% capacity reduction of deterministic case
and realization 2 corresponds to 4,7% reduction.



Chapter 5

Conclusion

The problem of assigning optimal and accurate schedules to flights has been long studied
by research community. Hence development of integrated, safe and reliable models has
become an ambitious and challenging task. Due to enormous impact of the air tra�c
industry on social welfare and worldwide economy, this issue has to be addressed. We
summarize now the overall contributions of our work and point out directions for future
research.

5.1 Thesis summary
Our aim in this thesis was to address the problem of the Air Tra�c Flow Management,
specifically the task of developing optimal schedules, managing flight delays due to dy-
namic weather conditions and minimizing overall costs. In doing so, we applied the
robust optimization framework into the deterministic formulation of the ground hold-
ing problem. Our overall aspiration was to show and analyze the profitability of the
second-stage robust ATFM model, which allows the changes in schedule on a rolling
horizon basis. Our work consists of three key parts: presenting the mathematical the-
ory, incorporating weather-front induced capacities in the formulation of the problem,
and computational implementation.

• Mathematical theory

As a crucial starting point of our work, we have presented mathematical theory of
robust optimization. Robust optimization is a framework of addressing uncertainty in
optimization problems in a tractable way. One way of dealing with its overly pessimistic
solutions is a multi-stage decision-making approach in which the decisions are produced
over time and can be adapted to capture the behavior of uncertainty. We introduced
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the notion of two-stage robust optimization with right hand side uncertainty, which we
later implemented in our model.

• Problem formulation

We have introduced two formulations of the ATFM problem, which consider determin-
istic capacities of the airports. In order to deal with capacity uncertainty, we proposed
a way to model an uncertain weather-front propagation. Afterwards, a robust approach
is utilized in the deterministic models and a two-stage robust formulation of the ATFM
problem with uncertain capacities of arrival airports is proposed. Also, we have showed
that the resulting model is just another deterministic instance.

• Computational implementation

The proposed methodologies were implemented and solved e�ciently using MATLAB
and GLPK. In order to present proof-of-concept of the usefulness of the optimization
methodologies, twelve data sets of daily flight schedules were created accordingly. Re-
ported empirical results from all the experiments based on the proposed models showed
the possible profitability and benefits of two-stage robust approach.

5.2 Directions for future research
We conclude our work by providing some directions for future research, which follow the
research done in this thesis.

1. Implementation of the set packing robust model.

In our work, we embedded the robust optimization framework into the set packing
formulation of the ATFM problem. This formulation gives an advantage of solving
a mixed-integer programming problem by LP and under some assumptions assures
the integrality of decision variables. Hence computational implementation could
possibly yield improvements of the solutions.

2. Extensions of the formulations.

In this thesis, we investigated and implemented a nominal formulation of the
ATFM problem. This formulation does not take into account the capacities of
departure airports, neither sector capacities nor possible re-routings of flights. In
particular, there is a significant tractability challenge in considering rerouting in
the presence of capacity uncertainty and from the practical perspectives of ATFM
algorithms, this complication should be addressed.
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3. Computational experiments with real data sets.

Due to a notable di�culty of accessing an actual air tra�c data, all of the compu-
tational experiments in this thesis were done on self-generated data sets. Moreover,
in order to prevent the computational possibility of our resources, data sets rep-
resented much smaller instances than those in reality. Although all the data were
generated in a way that they describe real situations, in order to prove the ad-
equacy of proposed methodologies a natural need of running the experiments on
the actual air tra�c data arises. This task would involve the analysis of historical
flight data and implementation of the proposed robust and adaptive models on
large-scale instances.
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Appendix A

Appendix

For practical computations, the following GLPK code was implemented:

% d e f i n i n g parameters
param nTimes ;
param nFl i gh t s ;
param nSuccFl ights ;
param nAirports ;
param nCoupledCombinations ;
param maxNumArrs ;
param capac i ty {k in 1 . . nAirports , t in 1 . . nTimes } ;
param cCost { i in 1 . . nF l i gh t s } ;
param dCost { i in 1 . . nF l i gh t s } ;
param aTime { i in 1 . . nF l i gh t s } ;
param maxDelay { i in 1 . . nF l i gh t s } ;
param a r r F l i g h t {k in 1 . . nAirports , i in 1 . . maxNumArrs } ;
param preF l i gh t { i in 1 . . nSuccFl ights } ;
param succF l i gh t { i in 1 . . nSuccFl ights } ;
param de l t a { i in 1 . . nSuccFl ights } ;
param cBreak { i in 1 . . nSuccFl ights } ;
param tPrime {m in 1 . . nCoupledCombinations } ;
param tPrimePrime {m in 1 . . nCoupledCombinations } ;
param numArr {k in 1 . . nAirports } ;
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% d e s i c i o n v a r i a b l e s
var y { i in 1 . . nFl ights , t in 1 . . nTimes } , b inary ;

% o b j e c t i v e func t i on
minimize obj : sum { i in 1 . . nF l i gh t s } ((1≠sum { t in aTime [ i ] . .
( aTime [ i ] + maxDelay [ i ] ) } y [ i , t ] ) � ( cCost [ i ] +
dCost [ i ]� aTime [ i ] ) + dCost [ i ] � ( sum { t in aTime [ i ] . .
( aTime [ i ] + maxDelay [ i ] ) } y [ i , t ] � t ≠ aTime [ i ] ) ) ;

% c o n s t r a i n t s

s . t . f i r s t { i in 1 . . nF l i gh t s } :
sum { t in aTime [ i ] . . ( aTime [ i ] + maxDelay [ i ] ) } y [ i , t ] <= 1 ;

s . t . second {k in 1 . . nAirports , t in 1 . . nTimes } :
sum { i in 1 . . numArr [ k ] }y [ a r r F l i g h t [ k , i ] , t ] <= capac i ty [ k , t ] ;

s . t . t h i rd {m in 1 . . ( nSuccFl ights ≠1) , ind in cBreak [m] . .
( cBreak [m+1]≠1) } :
sum{ t in tPrime [ ind ] . . nTimes} y [ p r eF l i gh t [m] , t ] +
sum{ t in 1 . . tPrimePrime [ ind ] } y [ suc cF l i gh t [m] , t ] <= 1 ;

s . t . th i rdLas t { ind in cBreak [ nSuccFl ights ] . .
nCoupledCombinations } :
sum{ t in tPrime [ ind ] . . nTimes} y [ p r eF l i gh t [ nSuccFl ights ] , t ] +
sum{ t in 1 . . tPrimePrime [ ind ] } y [ suc cF l i gh t [ nSuccFl ights ] , t ] <= 1 ;

s . t . f our th { i in 1 . . nF l i gh t s } :
sum { t in 1 . . ( aTime [ i ] ≠1) } y [ i , t ] = 0 ;

s . t . f i f t h { i in 1 . . nF l i gh t s } :
sum { t in ( aTime [ i ] + maxDelay [ i ] + 1 ) . . nTimes } y [ i , t ] = 0 ;

s o l v e ;
end ;
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