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Chapter 1

Biological Introduction

This thesis is meant to analyze, research, develope hypotetical results in order
to reach a deeper understanding of the labor in a cell membrane. Basically
the transport process. This process details how the cell interact within its
enviroment. The absorption and emission of ions (transport components)
encompass very important work done by the di�erent kinds of cells, going
from the communication between neurons, muscle contractions, to the modus
operandi of snake's venom.

Therefore the interest for this subject is quite wide. Having a deep knowl-
edge about the transport process in the cells, developing an accurate model
of it, can help to the growth and rise in many �elds, going from medicine
applications, to biology, chemistry, biocomputing, among others.

1.1 Cells

The cell is the functional basic unit of life. It was discovered by Robert Hooke
and is the functional unit of all known living organisms. It is the smallest
unit of life that is classi�ed as a living thing, and is often called the build-
ing block of life[6]. Some organisms, such as most bacteria, are unicellular
(consist of a single cell). Other organisms, such as humans, are multicellular.
Humans have about 100 trillion or 1014 cells; a typical cell size is 10 µm and
a typical cell mass is 1 nanogram.

The word cell comes from the Latin cellula, meaning, a small room. The
descriptive term for the smallest living biological structure was coined by
Robert Hooke in a book he published in 1665 when he compared the cork
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CHAPTER 1. BIOLOGICAL INTRODUCTION 5

cells he saw through his microscope to the small rooms monks lived in.
There are two types of cells: eukaryotic and prokaryotic. Prokaryotic cells
are usually independent, while eukaryotic cells are often found in multicellu-
lar organisms. The major di�erence between prokaryotes and eukaryotes is
that eukaryotic cells contain membrane-bound compartments in which spe-
ci�c metabolic activities take place.

All cells, whether prokaryotic or eukaryotic, have a membrane that en-
velops the cell, separates its interior from its environment, regulates what
moves in and out (selectively permeable), and maintains the electric poten-
tial of the cell. Inside the membrane, a salty cytoplasm takes up most of
the cell volume. All cells possess DNA, the hereditary material of genes,
and RNA, containing the information necessary to build various proteins
such as enzymes, the cell's primary machinery. There are also other kinds of
biomolecules in cells.

1.2 Cell membrane

Every living cell has to obtain nutrients and raw materials from its surround-
ings, usually ions 1, this for the biosynthesis and production of energy; on the
other hand, it should take out all the excess, or not needed material. In some
few cases, this process is carried out only by pure di�usion (from the region
of high concentration to the region of low concentration) through the lipid
double layer (about 7.5nm thick), which constitutes the cell membrane, but
in general it needs the action of some special proteins attached to it. This
proteins are known as Ion channels and Ion pumps, di�erent and important
types of transport is due to them.

The process of transporting chemicals can occur against gradient of con-
centration and/or electrical gradient, in these cases it requires the use of
energy. When the work requires the use of energy, the transport is known as
active transport as in the ion pumps, where this energy is given by the ATP
molecules. If the transport is due to the generated �eld; hence, the use of
an extra energy is not needed, this is called passive transport, as the one in
the Ion channels. Exist some di�erent processes to move ions, for example
the use of proteins called ionophores, that mask the charge of the ion, and
allows di�using into the cell.

1in some cases the cell need to obtain complex molecules
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Figure 1.1: Summary of the basic processes of ion movement [2]

As mention above the ion pumps is an active process where proteins in
the cell membrane choose speci�c ions and transports them from one espe-
ci�c side to the other. Another important process in the transport of ions in
the cell membrane are the so called ion channel, proteins that act as small
tubes of passive transport, permeable only to some speci�c ions,. Figure 1.1
shows the summary of the processes.

To understand the basic process of transport let's consider now media
separated by a permeable interface. If one of the media has bigger chemical
concentration than the other, the solute will tend to move from high concen-
tration to low concentration, this is called simple di�usion. Now let's imagine
that we have to di�erent media with ions, positive on one side and negative
on the other side, and naturally they will try to recombine. This di�erence of
charge in the interface (permeable membrane) will create an electric poten-
tial, called membrane potential. This potential creates a force exerted on the
ions going through the membrane, making some ions to move one direction
and stopping the others moving in the other direction. The combination of
these two factors is called electrochemical gradient. This transport process
is mediated and controlled by the membrane proteins called Transporters.

Transporters fall within two categories, carriers and channels. Carriers
(ion pumps) are proteins that are highly selective, and the transport velocities
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are well below compared to the one of free di�usion. An important property
of carriers is that if the substrate concentration is above some critical value
further increase of concentration will not produce greater transport rate.
Channels (ion channels) are proteins that allow movement of ions at greater
rates, even thousands of times compared with the one done by carriers, and
in contrast with the previous, they don't saturate at any value, so an increase
in the concentration of the substrate will increase the rate of ion transport.
Around 25% of energy consumption of a human at rest is due to transport
processes.

1.2.1 Membrane potential

The di�erences in concentration of various ions between extracellular and
intracellular environment that are caused by ion transport create a potential
di�erence between the membrane.

For understanding how, imagine that you have two media, separated by
a membrane. This two media are electrically neutral. Now set a transport
process, that is permeable to just one kind ion, let's say positive, then after
a while, some ions pass the membrane and the neutrality condition is not
longer satis�ed, i.e. in one side of the membrane you will have accumulation
of positive charges, and in the other side accumulation of negative charges.
This will create a capacitor-like piece of membrane, and of course an elec-
tric potential through the membrane. Now, this electric �eld will generate a
force that opposes further di�usion of more positive charges, reaching then a
balance condition. The potential at which the balance condition is achieved
is called the Nernst potential.

Let's derive an expression for this potential in terms of the concentrations.
Consider the Drift Di�usion equation that gives the current J of ions of charge
q due to a gradient of concentration n and an electric potential Φ :

J = −D∇n− µ0zn

|z|
∇Φ

Where µ0 is the mobility of the ion, D the di�usion constant and z is
the valence of the ion. Using the Einstein relation D = µ0

KBT
q
, with T the

absolute temperature and considering a one-dimensional case, we get:

J = −D
(
dn

dx
+

qn

KBT

dΦ

dx

)
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Assuming that the interior of the membrane is at x = 0 and the exterior
at x = L, and using the boundary conditions n(0) = nint and n(L) = next
we can solve the previous equation:

ln(next)− ln(nint) +
q

KBT
(Φ(L)− Φ(0))

i.e.

Φ(0)− Φ(L) =
KBT

q
ln

(
next
nint

)
De�ning Φ(0)− Φ(L) = Vs we can write the Nernst Potential as:

Vs =
KBT

q
ln

(
next
nint

)
The variety of potentials we can encounter across the membrane produce

di�erent behaviors in the cells. Thus we classify them as:

1.2.2 Resting Potential

Conventionally, resting membrane potential can be de�ned as a relatively
stable, ground value of transmembrane voltage in animal and plant cells. In
principle, there is no di�erence between resting membrane potential and dy-
namic voltage changes like action potential from biophysical point of view:
all these phenomena are caused by speci�c changes in membrane permeabil-
ities for potassium, sodium, calcium, and chloride, which in turn result from
concerted changes in functional activity of various ion channels, ion trans-
porters, and exchangers.

As we expect the concentrations of ions and the membrane transport
proteins in�uence the value of the resting potential. The resting potential
of a cell can be most thoroughly understood by thinking of it in terms of
equilibrium potentials. To understand better, consider a cell with only two
permeant ions, potassium and sodium. Consider a case where these two ions
have equal concentration gradients directed in opposite directions, and that
the membrane permeabilities to both ions are equal. K+ leaving the cell
will tend to drag the membrane potential toward EK. Na+ entering the cell
will tend to drag the membrane potential toward the reversal potential for
sodium ENa. Since the permeabilities to both ions were set to be equal,
the membrane potential will, at the end of the Na+/K+ tug-of-war, end up
halfway between ENa and EK. As ENa and EK were equal but of opposite
signs, halfway in between is zero, meaning that the membrane will rest at 0
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mV. Note that even though the membrane potential at 0 mV is stable, it is
not an equilibrium condition because neither of the contributing ions are in
equilibrium. Ions di�use down their electrochemical gradients through ion
channels, but the membrane potential is upheld by continual K+ in�ux and
Na+ e�ux via ion transporters.

1.3 Action Potential

Is a short-lasting event in which the electrical membrane potential of a cell
rapidly rises and falls, following a consistent trajectory. Action potentials
occur in several types of animal cells, called excitable cells, which include
neurons, muscle cells, and endocrine cells, as well as in some plant cells. In
neurons, they play a central role in cell-to-cell communication. In other types
of cells, their main function is to activate intracellular processes. In muscle
cells, for example, an action potential is the �rst step in the chain of events
leading to contraction.

Action potentials are generated by special types of voltage-gated ion chan-
nels embedded in a cell's plasma membrane.[7] These channels are shut when
the membrane potential is near the resting potential of the cell, but they
rapidly begin to open if the membrane potential increases to a precisely de-
�ned threshold value.

As example in the neurons when the channels open, they allow an inward
�ow of sodium ions, which changes the electrochemical gradient, which in
turn produces a further rise in the membrane potential. This then causes
more channels to open, producing a greater electric current, and so on. The
process proceeds explosively until all of the available ion channels are open,
resulting in a large upswing in the membrane potential. The rapid in�ux of
sodium ions causes the polarity of the plasma membrane to reverse, and the
ion channels then rapidly inactivate. As the sodium channels close, sodium
ions can no longer enter the neuron, and they are actively transported out of
the plasma membrane. Potassium channels are then activated, and there is an
outward current of potassium ions, returning the electrochemical gradient to
the resting state. After an action potential has occurred, there is a transient
negative shift, called the after hyperpolarization or refractory period, due
to additional potassium currents. This is the mechanism which prevents an
action potential traveling back the way it just came.
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1.4 Ion selective channels

Ion channels have many di�erences with other transport proteins, essentially
in three ways. The �rst di�erence is that the rate of �ux of a typical channel
is about 107 or 108 ions

s
, that is almost the value of unrestricted di�usion.

By contrast, for example the ATPase (a carrier protein) has a rate of about
100 ions

s
. The second main di�erence is that they don't saturate, as mentioned

before. And the third, they can be "gated" (open or closed) in response of
a cellular event [2].

Ligand-gated channels: A binding of the channel protein with a small
molecule, inside or outside the cell, changes the properties of the protein and
closes/opens the channel.

V olt-gated ion channel: The process of gating is di�erent, the move-
ment of ions through the channel modi�es the membrane potential (created
by the di�erence of charge in the two extremes of the channel), and when a
critical value is reached, the channel closes/opens.

This two are the most common gating processes in channels, but they are
more, like temperature gating, in which a hot or cold temperature triggers the
mechanism, light gating where the light triggers the opening or closing. Me-
chanical gating, where a deformation of the protein makes it to open or close.

The ability of channels to open and remain opened milliseconds, makes
this molecular devices e�ective for fast signal transmissions e.g. in neurons.

1.4.1 Function measurement

Because the rapid opening and closing of the ion channel it's almost impos-
sible to measure its properties using standard chemical processes. Now, the
basic function of the channel, ion movement, gives a very good alternative
to make measurements by using voltage or current changes using the appro-
priate apparatus. This practice was �rst used by Erwin Nernst and Bert
Sakmann in 1976. The method consists of applying a micropipette to the
cell membrane containing few channels, then patch of the membrane of the
cell and putting in an aqueous solution, then varying in this the voltage and
current and measure what happens. See Figure 1.2 below
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Figure 1.2: Patch-clamping method [2]

1.4.2 Basic ion channel structure

Let's take as an example the structure of potassium K+ ion channel of the
bacteria Streptomyces lividans, �rst determined by Roderick MacKinnon in
1998. This protein serves as prototype for studying every other channel, in-
cluding voltage gated neuron ion channels, discovered later. It was measured
that the rate at which this channel works is about 107 ions

s
, approaching the

upper limit of free di�usion. In the �gure below we can see the structure of
the hole protein, including the bottom part, the channel, �rst in (a) it can be
seen eight protein helices (red and blue helices) that form a cone facing the
wider end toward outer of the cell. The ending segments, in gray, converge
to a smaller aperture to make the selectivity �lter, the channel. In the upper
view (b) we can see that the helices make a sort of tunnel, just big enough
for letting a potassium ion go through2. See Figure 1.3.

At the entrance of the channel there are negatively charged amino acids
which increase the local concentration of cations (In this case K+ ions), after
approaching the channel, the narrow gray part in previous picture, the potas-

2This images have been done in VMD, Visual Molecular Dynamics program, with data
from www.pdb.org -Protein Data Base -)
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Figure 1.3: Potassium channel protein structure

Figure 1.4: Carbonyl oxygen (red) cage surrounding the ions (green). Side and top view.

sium ions still have their hydration sphere (water molecules that surround
the positive charged potassium). At this point, about two thirds of the size
of the protein, the narrowed part takes out the hydration sphere and replace
this by carbonyl oxygen atoms in the structure of the tunnel, forming a sort
of cage surrounding the K+ ion (picture below). The electrical repulsion
between the potassium and the oxygen is the key of the selectivity of ions;
moreover, this repulsion is the responsible for moving the ion inside the cell.
See Figure 1.4.

The Figure 1.5 shows a visualization of Ion passing through the channel.
Side and top view.

The study and understanding of ion channel proteins is very important,
since they are present in all cells, especially in neurons, and they are key
component of neuron electrical transmissions. Most of the neurotoxins in
nature (and some neurological diseases) act upon ion channels, so it's re-
ally promising that a good understanding of this proteins help to develop
medicines. Moreover nowadays studies have shown that it's possible to make
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Figure 1.5: Ion channel and ions.

connections between neurons and silicon, widening the possibilities of the
achieving the dream of connecting brains to computers, see for example [2].

As said before, the volt-gated channels are one of the most common ion
channels in cells, especially in neurons, so it is worth it to study how the
membrane potential behaves.

1.5 Ion Pump or Ion transporter

Is a transmembrane protein that moves ions across a plasma membrane
against their concentration gradient, in contrast to ion channels, where ions
go through passive transport. These primary transporters are enzymes that
convert energy from various sources, including ATP (called ATPases), sun-
light, and other redox reactions, to potential energy stored in an electrochem-
ical gradient. This energy is then used by secondary transporters, including
ion carriers and ion channels, to drive vital cellular processes, such as ATP
synthesis.

The family of active transporters called P-type ATPases are cation trans-
porters that are reversibly phosphorylated by ATP. ATPases are a class of
enzymes that catalyze the decomposition of adenosine triphosphate (ATP)
into adenosine diphosphate (ADP) and a free phosphate ion. This dephos-
phorylation reaction releases energy, which the enzyme (in most cases) har-
nesses to drive other chemical reactions that would not otherwise occur. This
process is widely used in all known forms of life. Some such enzymes are inte-
gral membrane proteins (anchored within biological membranes), and move
solutes across the membrane, typically against their concentration gradient.
These are called transmembrane ATPases.[6]
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Figure 1.6: Na+/K+ATPase.

Transmembrane ATPases harness the chemical potential energy of ATP,
because they perform mechanical work: they transport solutes in a direction
opposite to their thermodynamically preferred direction of movement�that
is, from the side of the membrane where they are in low concentration to
the side where they are in high concentration. That is why this process is
considered active transport.

Transmembrane ATPases import many of the metabolites necessary for
cell metabolism and export toxins, wastes, and solutes that can hinder cellu-
lar processes. An important example is the sodium-potassium exchanger or
Na+/K+ATPase (see Figure 1.6), which establishes the ionic concentration
balance that maintains the cell potential. Another example is the hydrogen
potassium ATPase (H+/K+ATPase or gastric proton pump) that acidi�es
the contents of the stomach.

1.5.1 ATP Molecule

Is a multifunctional nucleotide used in cells as a coenzyme. It is often called
the "molecular unit of currency" of intracellular energy transfer. [13] ATP
transports chemical energy within cells for metabolism.

One molecule of ATP contains three phosphate groups, and it is pro-
duced by ATP synthase from inorganic phosphate and adenosine diphosphate
(ADP) or adenosine monophosphate (AMP).

Metabolic processes that use ATP as an energy source convert it back
into its precursors. ATP is therefore continuously recycled in organisms: the
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human body, which on average contains only 250 grams (8.8 oz) of ATP, [14]
turns over its own body weight in ATP each day.

ATP is an unstable molecule in unbu�ered water, in which it hydrolyses
to ADP and phosphate. This is because the strength of the bonds between
the phosphate groups in ATP are less than the strength of the hydrogen
bonds (hydration bonds), between its products (ADP + phosphate), and
water. Thus, if ATP and ADP are in chemical equilibrium in water, almost
all of the ATP will eventually be converted to ADP. A system that is far
from equilibrium contains Gibbs free energy, and is capable of doing work
[3].

The pump uses the energy stored in the ATP molecule which is released
when it is dephosphorylated into ADP, through the overall reaction scheme.

ATP + 3Na+
i 2K+

e → ADP + Pi + 3Na+
e 2K+

i

where the subindexes e and i stands for respectively extracellular and
intracellular ions.



Chapter 2

Applications: Neuroelectronic

Interfacing

In this section we will talk about the technological applications that arise
from the study of ion pumps and ion channels in the cell membrane. In
recent years studies have shown that it is possible to connect and transmit
electrical impulses between neurons and semiconductors. Its well known
that the electrical communication between neurons, i.e. the synapsis, is
possible because of the action of ions moving from and into the cell membrane
embedded with the ion channels and ion pumps, so taking advantage of
this, a coupling with semiconductors is not di�cult to build and use. We
will describe the basics of this interfacing and some simple but promising,
applications.

2.1 Contact cell-chip

A simple union with a cell (nerve) and a sensor transistor in silicon is shown
in Figure (2.1). The cell is surrounded by a membrane made from lipids,
making it an insulating covering. That lipid bilayer separates the bath with
a concentration of 150 mM sodium ions from the cytoplasm with about 150
mM potassium ions. The electrical interaction of cell and chip is the structure
of the contact between the lipid bilayer and the oxide. As seen on [8] the cell
and the semiconductor are separated by an electrolitic bath, and the average
distance between them is about 50nm. Now, lets remember that the electrical
impulses in the nerves are because of the transport of ions, like potasium or
sodium, and in the semiconductor are because of the moving electrons, and

16



CHAPTER 2. APPLICATIONS: NEUROELECTRONIC INTERFACING17

Figure 2.1: Cell and chip. [9]

the interaction depends on the resistance of the distance between oxide1 and
the membrane. The resistance is in average 10MΩ2 as seen in [8]2.

2.2 Ion and electron coupling

In a junction between a chip and a cell we can have two ways of communi-
cation, one from cell to chip and the other in the opposite direction. This
signals are measure in di�erent ways, one is using a capacitor, which is used
to induce responses on the cell, changing the electric potential around the
cell, triggering an action potential, and in the other a source and drain, used
to measure the current in the ion channel, since the gate is controlled by
the external cell potential. Lets describe a little bit more the �rst process.
A falling voltage ramp is applied to the capacitor. A displacement current
�ows across the oxide and gives rise to an ohmic current along the sheet
resistance of the cell�chip contact. The resulting negative extracellular volt-
age Vj = RI, with I = C∆V

∆t
, which opens the channels in the attached

membrane [8]. The process and results are shown in Figure (2.2) and (2.3).
The experiment shows that the ionic current in the cell is controlled by an
electronic signal in the semiconductor.

Now lets describe the process that is used to test signaling from cells to
chips. In this case its used a source and drain in the semiconductor, and
the electrolyte between the cell and oxide plays the role of a gate. Using

1Its usually used an oxide-semiconductor chip, almost like a MOS, but instead of metal
its used an electrolyte.

2This values, as seen in the reference, come form measurements of a chip and a single
rat nerve cell



CHAPTER 2. APPLICATIONS: NEUROELECTRONIC INTERFACING18

Figure 2.2: Using a capacitor to control the opening and closing of the ion channel

Figure 2.3: Applied voltage to the capacitor and ion channel respond [8]
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Figure 2.4: Electrolyte Oxide Semiconductor cell-chip junction. Changes in ion current
induce changes in source to drain current

Figure 2.5: Positive voltage pulses are applied to the cell (ion currents induced) and
EOS responds to the transients of the extracellular voltage that are proportional to the
membrane current [8]

a micropipette, positive voltage pulses are applied to the cell to open the
channels and ions move (for example Na+ ), current �ows into the cell and
along the sheet resistance of the cell�chip contact. It gives rise to a negative
extracellular voltage that modulates the electron current from source to drain
[8]. The opening of the channel causes a voltage Vj = IR in the channel,
with the current I = G∆V �owing to the inner cell. This is completely
analogous to a MOSFET, and the current of electrons in the silicon channel
is modulated. The process and results are seen in Figures (2.4) and (2.5).
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Figure 2.6: (a) chip-prothesis, (b) neuronal memory on chip [8]

2.3 Elementary neuroelectronic devices

With this methods of controlling (EOS capacitor) and recording (EOSFET)
the responses of ion channels and chips, two simple devices can be build.

One is what could be thought as a neuron chip-prothesis. The chip proth-
esis is no more that two separated neurons that can communicate via a chip.
First we assume that the cells have not synapsis, i.e. no connection between
them, then they are putted on a chip, one over an EOS (electrolyte oxide
semiconductor) and the other over a capacitor, both of course, on the same
chip. This works as follows: one neuron transmits an ion current inside and
outside a the cell modulating the gate in the EOSFET, the source and drain
records the signal, then it is treated with an analogical.digital circuit which
transmits the signal to the capacitor, who changes the voltage in the cell
membrane inducing a respond, and subsequently ion current in the other
neuron. Making in this way a arti�cial synapses between cells. This device ,
as simple as it seems, could have a huge impact in many �elds, for example
in medicine, where it can be used as a prosthesis for neurons which lost the
synapse. This �aw is present in persons who su�er from Alzheimer. As pro-
pose in [12] .

Another device is a neuronal memory on chip, and works as follows: A
neuronal memory element is obtained as a connection between two neurons
by synapses, one cell is connected to a capacitor and the other to a transistor
to induce and record the signals respectively. The presynaptic nerve cell is
stimulated from a capacitor, the signal activates the chemical synapsis and
the postsynaptic excitation is recorded with an EOSFET [8]. A scheme of
the two devices are shown in Figure (2.6).
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Figure 2.7: (a) polymer fence and neuron, (b) neuron net on chip [9]

The last thing to mention is one of the most important challenges in
this arising technology, is the problem of how to arrange the cells within the
surface of the chip such that it works as the designer wants. In other words,
how to do the cell nets and keep them �x in there places. There are some
ways to do it, one is simply by letting the neurons displaced randomly, of
course this is easy process, but it has limit applications, since it can be used,
for the moment, only to make general measurements and studies. Other way
is to �x the neurons physically. Mechanical immobilization of cell bodies is
used by picket fences of an organic polymer on capacitor/transistor contacts
with neurons grown in the central area as in Figure (2.7).

So, from this promising applications, we see that is important to continue
studying how the transport of ions in the cell due to the ion channels works.
Owing to the fact that in the cell membrane there are more proteins that
can contribute to the transport process, like, for example, ion pumps, its
very important and necessary step to describe the action of this proteins.
The goal of this document is to introduce a mathematical description of ion
pumps, to complement what is known of ion channels and to give a more
general picture of the hole process.



Chapter 3

Models

As said in the introduction section, the goal of this work is to introduce
and study a very simple mathematical model for the Ion transport in the
cell membrane. Before starting this, we will give a brie�y mathematical in-
troduction to conservations laws, the Riemann problem, the P-system, the
equations that describe the gas dynamics and discuss some existing models
for ion channels. In particular we will describe the Hydrodynamic model for
ion channels as in [4], this last is the modi�cation of the Nernst-Plank model
doing an analogy with the carrier transport in a semiconductor.

The outline of the chapter will be organized in the following way, �rst we
recall the mathematical background needed to study the models. The second
part we will introduce and discuss a mathematical model for ion transport in
the cells taking into account the ion pumps �rst using a P-system and later
on the Euler equations for gas dynamics.

3.1 Mathematical Introduction

3.1.1 Conservation Laws

In physics, a conservation law states that a particular measurable property of
an isolated physical system does not change as the system evolves, ie. there
are no sink nor source attached to the system which modi�es this measurable
properties.

A Conservation Law is characterized with the linear form:

Ut + F(U)x = 0 (3.1)

22
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or the quasilinear

Ut + F(U)UUx = 0 (3.2)

where U ∈ Rn and F : Rn → Rn for a given set of n equations of conser-
vation laws.

3.1.2 Riemann Problem

A Riemann problem, consists of a conservation law together with piecewise
constant data having a single discontinuity, i.e

Ut + F(U)Ux = 0

with the initial condition

U(0, x) =

{
Ul if x ≤ 0,

Ur if x > 0.

The solution of the problem can compromise the appearance of contact
discontinuities, shock and rarefaction waves (no more than two in the result)
which will be brie�y explain afterward.

Since we can see from the Conservation Law, U is an eigenvector of the
Jacobian of F in (3.1), ie. our solution is characterized by the eigenvec-
tors and eigenvalues (which for future references we will de�ne as rk and λk
respectively) of the Jacobian of F. We should keep in mind that in a Con-
servation Law the eigenvalues are real and distinct given the hyperbolicity of
the equations. Each of the eigenvalues along with its eigenvector, generates
a k-family of waves.
To describe these k-family of waves we should know its basic overall proper-
ties.

De�nition 1.

K-shock waves: Are convex solutions on which the information travels at a
speed s, this speed is given by the 'Rankine-Hugoniot' or 'jump' condition.

K-rarefaction waves: Are smooth solutions on which the discontinuity spreads
out in time, allowing a "di�usive" curve in between to �ll it up, so the solution
in this spreading gap has the form U(x

t
).
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Figure 3.1: Back Shock

Figure 3.2: Front Shock

Figure 3.3: Back Rarefaction
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Figure 3.4: Front Rarefaction

Contact discontinuities: These solutions are not smooth as its name suggests,
here a discontinuity remains.

From the latter simple de�nitions we can observe that smoothness is a
basic property to know the kind of waves we are working with. So we de�ne
the next concepts.

De�nition 2.

Genuinely nonlinear: k-characteristic family of waves that in a region D ⊂ Rn

satisfy ∇λk · rk 6= 0.

Linear degenerate: k-characteristic family of waves that in a region D ⊂ Rn

satisfy ∇λk · rk = 0.

Is important to remark that the above de�nitions come intuitively from
an analogy to convexity in scalar equations, where ut+f(u)x = 0 , λ = f ′(u),
r = 1 and ∇λ · r = f ′′(u).

Since in the Riemann problem we are working with conservation laws, we
know that the measurable properties should hold even during any disconti-
nuity hence there should exist some variables which remain invariant along it.

De�nition 3.
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k-Riemann Invariant: is a smooth function w : N → R where N ⊂ Rn de�nes
a neighborhood around our initial condition UL ∈ Rn such that if u ∈ N ,
〈rk,∇uw(u)〉 = 0

So the gradients of the k-Riemann invariant are orthogonal to rk and
given that there exists n− 1 gradients (∇uw) which are linearly independent
in D, we construct n − 1 Riemann invariants that are hypersurfaces that
represent the interactions between the measure properties (due to the ∇u)
along rk in a region D.1

3.1.3 P-System

A P-System is a set of two conservation laws, used to model isentropic (con-
stant entropy) or polytropic gases. It has the next form in Lagrangian coor-
dinates stated as a Riemann Problem:

{
vt − ux = 0 for x ∈ R
ut + P (v)x = 0 t > 0

U(x, 0) =

{
UL = (vl, ul), x < 0

U r = (vr, ur), x > 0

Where v = 1
ρ
and ρ represents the density, u the velocity and P (v) a

function of Pressure depending on the density, with the properties Px < 0,
Pxx > 0.

.
The two equations represent conservation of mass and momentum re-

spectively, since the temperature is held constant to keep a constant entropy,
there is no conservation of energy equation, since the energy must be added
up to the system.

The P-System can be rewritten as (3.1) and its Jacobian F (U)U is:

J =

(
0 −1

p(v)x v

)
with the eigenvalues λ1 = −

√
−p(v)x and λ1 =

√
−p(v)x which are real

and distinct, therefore the is an Hyperbolic system.

1For a better understanding of subjects mentioned previously in this subsection, read
Chapter 17 in [1]
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Figure 3.5: States Graph [1]

This problem can be solved with a class of functions that consists of
constant states, separated by Shock waves and/or Rarefaction waves. In this
system the latter equations are respectively:

S1 : u− ul = −
√

(v − vl)(p(vl)− p(v)) ≡ s1(v,U l), vl > v

S2 : u− ul = −
√

(v − vl)(p(vl)− p(v)) ≡ s2(v,U l), vl < v

R1 : u− ul =
´ v
vl

√
−p(y)xdy ≡ r1(v,U l), vl < v

R2 : u− ul =
´ v
vl

√
−p(y)xdy ≡ r2(v,U l), vl > v

where the subindexes (1,2) correspond to the back wave and the front
wave. See pictures (3.1), (3.3) and (3.2), (3.4) correspondingly.2 With this
equations we can depict the states graph as shown in Figure 3.5 to analyze
our possible solutions.

Where depending on the region where U r lies, is the way we will connect
the constant states.

If we de�ne

Si(U ) = {(v, u) : u = si(v,U)}, i = 1, 2
Ri(U) = {(v, u) : u = ri(v,U )}

and

Wi = Si(U) ∪ Ri(U), i = 1, 2

If we have a �xed U lwe can consider the family of curves

2The procedure to reach and analyze this waves can be found in [1] Chapter 17 A
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F = {W2(U ) : U ∈ W1(U l)}

to �nd the point U such that the states can be connected as:

� Region I U l →R1→ U →S2→ Ur

� Region II U l →S1→ U →S2→ Ur

� Region III U l →S1→ U →R2→ Ur

� Region IV U l →R1→ U →R2→ Ur

The fourth Region does not allow us to connect all the possible states of U r

with U l since there is a a point where vacuum is generated, i.e. ρ < 0 . This
needs another approach to solve it, which we will not discuss in here because
our system has always strictly positive density of ions in ρl and ρr .

3.1.4 Euler Equations for Gas Dynamics

Since the Riemann problem is very useful for the understanding of hyperbolic
partial di�erential equations like the Euler equations because all its proper-
ties, such as shocks and rarefaction waves, appear as characteristics in the
solution, we are concern about this subject.

The problem of our concern can be regard with an analogy as a Gas Dy-
namics problem, where the motion of the ions resembles the motion of gases,
which can be described using the Euler equations.

Therefore we present the Euler equations.


ρt + (ρu)x = 0

ut + uux + pxρ = 0

st + usx = 0

(3.3)

Where ρ is the density, u is the velocity, p is the pressure and s is the
entropy.
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The latter equations are the Mass, Momentum and Energy conservation
laws.

Hence the Euler equations can be represented as (3.2) with

U =

 ρ
u
s

 and F(U) =

 u
pρ/ρ

0


Obtaining the following results3.

k = 1 k = 2 k = 3
λk u− c u u+ c
rk (ρ,−c, 0)t (ps, 0, pρ)

t (p, c, 0)t

∇λk · rk c− pcρ 0 c+ pcρ
Riemann Invariants {s, u+ 2

γ−1
− c} {u, p} {s, u− 2

γ−1
c}

where c is called the sound speed, h the enthalpy and γ the adiabatic gas
constant and they satisfy c2 = γp

ρ
= ∂h

∂ρ
, γ > 1, h = h(ρ, s) and hρ = c/ρ .

We should describe our problem as a Riemann problem due to the dif-
ference of density in ions across both sides of the cell membrane. The Euler
equations describe our passive transport (Ion channels) and an added source
term will represent the active transport (Ion pumps).

3See the Appendix for an insight of the computations
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3.2 Mathematical Model

3.2.1 A model for ionic channels: Hydrodynamic equa-

tion

The purpose of this section is to present a model for the ion channels as
seen in [4]. In this paper the authors describe the �ux of particle across the
membrane assuming open channels and without ionic pumps. The model is
analogous to the ones used in semiconductor devices, but the carriers moving
are ions instead of electrons. This model consist on four coupled equations,
which describe the interaction of mass, momentum, energy and the electric
potential that give rise to the ion movement inside the channel. We now
present the equations and also the scaling of the Hydrodynamic system in
one-dimensional case. The goal of scaling the equations is to give a glance
how this problems are easier to be treated numerically in order to do a later
comparison and analysis of the results against the well know electronic case.

As seen in [4] this can give us a deeper insight of the problem since we
can �nd out the behavior of the ions while they are crossing the ion channel,
specially the temperature, fact on which we are interested because a rise in
the temperature is awaited modifying the energy. Being that the we want
to insert to the model the Ion pumps (as added sources), the energy is also
a�ected owing it is an active transport.

We expect having a good understanding of this process can help us to
develop a model for the ion transport in the cell, where the Euler equations
conserve the overall energy of the system.

Now, we will start by putting the system in its original way, i.e. non
scaled:

1. Conservation of Particles.

nt + (nv)x = 0 (3.4)

2. Conservation of Momentum.

pt + (pv + nkBT )x = enE − (p/τp) (3.5)

3. Conservation of Energy.

ωt + (vω + nvkBT )x = envE −
ω − 3

2
nkBT0

τω
+ (κnTx)x (3.6)
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4. Poisson Equation.
− λφxx = e(n+ nD) (3.7)

This Hydrodynamic theory is a combination of the Poisson and Euler �eld
Equations of electrostatics and �uid dynamics, therefore they describe the
di�usive and convective �ow of mass, heat and charge taking into account the
density of the charges, temperature changes and electrical potential gradi-
ents, properties and variables present in the Ion transport in the Ion channels.

As we know the Ion channels are porous proteins inserted across cell
membranes that translocate ions selectively from one side of the membrane
to the other. Ionic movement has long been modeled in two traditions, that
of di�usion theory and rate theory, where di�usion theory in particular, and
both theories in general, usually assume isothermal systems, i.e. systems
with constant temperature everywhere.

The movement of holes and electrons in semiconductors has been mod-
eled by di�usion theory for nearly 50 years, assuming constant temperature
in most cases, and for at least 45 years it has been clear that local tempera-
ture changes occur and produce important phenomena, such "hot electron"
phenomena.

Rate theory can describe �ux over determined potential barriers. This is
also done by a combination of drift and di�usion obeying the Poisson and
Nemst-Planck equations simultaneously, called the PNP theory, in order to
describe the permeation of ions across channels. PNP theory assumes i)
frequent collisions of ions with their surroundings and ii) the collisions will
not signi�cantly change the temperature, therefore this theory cannot deal
with biological transport when energy is directly involved, for example, ac-
tive transport. Semiconductor device theory also has its analog of the PNP
model, termed the self-consistent drift-di�usion model.

We investigate the role of energy exchange within the channel in ion per-
meation by studying the natural extension of PNP theory, which is called the
hydrodynamic model in the literature of the Boltzmann transport equation.
The justi�cation for this is properly explained in [4]

The hydrodynamic model began to be utilized in the mid-1980s. Compu-
tations with this model are considerably more involved than those of simpler
models such as the PNP equations because the model allows a wide range
of behavior it includes possible shock waves and propagating disturbances,



CHAPTER 3. MODELS 32

Figure 3.6: Results obteined from [4]

indeed much of the behavior of �uids. We should also remember that this
behaviors is what we are looking for to introduce into the model the Ion
pump, which is planned to be described as a static shock.

From our system the equation (3.4) says that the concentration of par-
ticles changes with time solely as the result of drift (�ow). The equation
(3.5) states the conservation of momentum, and the last equation (3.6) is
the conservation of energy. The collisions in the last two equations are ap-
proximated as relaxations to values of the equilibrium state. Establishing
the analogy to the Ion transport in the Ion channels the third term in (3.5)
is equal to the change of momentum that is due to the pressure gradient:
the mechanical force, contributed from ion-ion interactions and the thermal
motion of ions. On the right-hand sides, the �rst term is the electrical force
and the second term is the frictional force (due to ion-channel and ion-water
interaction). The electrical force arises from all the charges in the system,
viz., 1) the charge applied to the baths that sustains the (externally applied)
transmembrane potential, 2) the permanent charge on the channel protein,
3) the mobile charge (ions) in the channel's pore, and 4) induced (i.e., po-
larization) charge of the several dielectrics. In (3.6) the third term on the
left-hand side equals the (local accumulation of) work done by the mechan-
ical force. On the right-hand side the �rst term is the input of electrical
energy into mobile ions by the electrical force, the second term is energy loss
because of the frictional force, and the last term is the heat �ux into the
system. In the appendix is shown the scalling of this model, this is made
because is simpli�es the numerical simulations.
In the Figure () its shown some of the results obteined in [4], where we can
see the e�ect of the temperature should be considered inside the transport
of ions in the channel, and how it a�ects the velocity.
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In the left graph of Figure (3.6) we can see the temperature pro�les for
di�erent heat conduction when 100-mV transmembrane potential is applied.
The solid curve is the case when the thermoconductivity coe�cient of the
ions is κ = 3/2 (the ideal value), the short-dashed curve is for κ = 1/2, and
the long-dashed curve is for κ = 3. The 67% reduction and the doubling
of heat conduction make a negligible di�erence in the temperature pro�les,
which implies that the ion permeation and heat generation are electrically
dominated processes. Results with uniform permanent charges of 0.1, 1,
10, and 100 M are shown by the dotted-dashed curve when κ = 3/2. The
temperature rise is greatly suppressed without the acceleration of ions by the
variations of the electric �eld. This again con�rms that heat generation is
an electrically dominated process.

In the right graph of Figure (3.6) shows the local electrical energy input
(solid curve) when 100-mV transmembrane potential is applied. The �rst
term in the energy equation, the local input of electrical energy, is shown
to demonstrate that the temperature rise of sodium ions is due to the ex-
change of the sodium-ion thermal energy and the electrical energy of the
applied electric potential. The result from PNP4 is plotted as a dashed curve
according to the scale on the right-hand side.

4See [4]
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3.2.2 Description of the Model

In this section we will present a mathematical model for the transport in
the ion channel as seen previously adding now an ion pump. Lets consider
a one dimensional case, and let the ion pump be on the x axis, such that
the interface between the outer cell and the inner cell is exactly on x = 0,
moreover, let x < 0 (region 1) have a density ρl and x > 0 (region 2) a density
ρr. The action of the ion pump is to take one ion from region 1 and put it in
region 2, so, it is like if we have a point-wise source exactly an x = 0. First
we will start by describing the P-system with source terms as in [10], at the
beginning it will be assumed that the problem has a solution, and describe
a method to solve analytically the Riemann problem, and what to expect in
each of the four regions. The following part its a more rigorous proof of the
existence of solutions using a self similar viscosity approach.

3.2.3 P-System

In this section we will analyze our model proposition to have a clearer idea
by using a P-System. The system is as follows:

vt − ux = 0

ut + (P (v))x = 0

with

P (v) =
k

vγ
(3.8)

v = 1
ρ
, 1 < γ, and k a positive constant. This is an example of a P-system.

Previously we have deduced the 1 and 2 shockwave and rarefaction curves.
The shock curves are given by

S1 : u− ul = −
√

(v − vl)(P (vl)− P (v)) v < vl

S2 : u− ul = −
√

(v − vl)(P (vl)− P (v)) vl < v

and the rarefaction curves are given by:

R1 u− ul =

vˆ

vl

√
−dP
dv
dy v < vl
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R2 u− ul =

vˆ

vl

√
−dP
dv
dy vl < v

Lets compute explicitly the integral above:

vˆ

vl

√
−dP (y)

dy
dy =

vˆ

vl

√
−
(
− γk

yγ+1

)
dy =

vˆ

vl

√
γk

yγ+1
dy =

√
γk

vˆ

vl

√
1

yγ+1
dy =

√
γk

vˆ

vl

(y)−
1
2

(γ+1) dy =

√
γk(

1
2
− γ

2

) (y)−
1
2
γ+ 1

2 |vvl

=
2
√
kγ

(1− γ)

[
v

1
2
− γ

2 − v
1
2
− γ

2
l

]
So, in summary we have the shock and rarefaction curves:

S1 : u− ul = −
√

(v − vl)(P (vl)− P (v)) v < vl (3.9)

S2 : u− ul = −
√

(v − vl)(P (vl)− P (v)) vl < v (3.10)

R1 : u− ul =
2
√
kγ

(1− γ)

[
v

1
2
− γ

2 − v
1
2
− γ

2
l

]
v < vl (3.11)

R2 : u− ul =
2
√
kγ

(1− γ)

[
v

1
2
− γ

2 − v
1
2
− γ

2
l

]
vl < v (3.12)

Now we have to analyze our speci�c problem, i.e. the same P-system
with the pointwise source terms (representing the ion pump), and see what
happens with the jump conditions, and how they are related to the two other
intermediate states.

We consider the system

vt − ux = α1(H(x))x (3.13)

ut + p(v)x = α2(H(x))x (3.14)
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coupled with the initial data (Riemann Problem)

U(u(x, 0), v(x, 0)) =

{
Ul x < 0
Ur x > 0

(3.15)

with H the Heaviside function, αi , i = 1, 2 positive reals. This can be
written in a conservative form a

vt + (−ux − α1H)x = 0

ut + (p(v) − α2H)x = 0

So in this form, the jump conditions are as follows

s [v] = [−u− α1H] (3.16)

s [u] = [p(v)− α2H] (3.17)

Where the brackets mean di�erence relative to the discontinuity. By the
nature of the physical process been studied, we need to force a discontinuity,
i.e. a steady shock wave owing the Ion pumps as stated before are located
at x = 0. We do this by saying that is a shock with velocity s = 0 this gives

[−u− α1H] = 0

[p(v)− α2H] = 0

Expanding the �rst we get

−ul − (−u− α1) = 0

so

u− ul = −α1

Expanding the second one

p(vl)− p(v) + α2 = 0

So we have the relations

u− ul = −α1 (3.18)

k

vγl
− k

vγ
= −α2 (3.19)
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We are expecting two new states, that we will call U− = (v−, u−)tand
U+ = (v+, u+)t, connected by the contact discontinuity. Moreover if we have
a left state Ul and a right state Ur, then the left state will connect to the
minus state, then this to the plus state, and after the plus state with the
right state, schematically:

Ul → U− → U+ → Ur

Where the �rst connection can be done by a S1 or a R1, and the last
connection can be done by S2 and R2. All this possibilities depend on the
region where Ur lies. See previous chapters. Lets analyze by regions:

3.2.3.1 Region I

In this region the state Ul is connected to U−by a R1, then the contact
discontinuity, and then U+with Ur by a S2. And we have the next system of
equations 

u− − ul = 2
√
kγ

(1−γ)

[
v

1
2
− γ

2
− − v

1
2
− γ

2
l

]
u+ − u− = −α1

k
vγ−
− k

vγ+
= −α2

ur − u+ = −
√

(vr − v+)( k
vγ+
− k

vγr
)

(3.20)

Summing the �rst and last equation and using the secondone we get

u− − ul + ur − u+ =
2
√
kγ

(1− γ)

[
v

1
2
− γ

2
− − v

1
2
− γ

2
l

]
−

√
(vr − v+)

(
k

vγ+
− k

vγr

)

α1 + ur − ul =
2
√
kγ

(1− γ)

[
v

1
2
− γ

2
− − v

1
2
− γ

2
l

]
−

√
(vr − v+)

(
k

vγ+
− k

vγr

)
from the third equation we �nd that

k

vγ+
=

k

vγ−
+ α2

and

v+ =

(
kvγ−

k + vγ−α2

) 1
γ
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substituting this we get an expression of v− in terms of known parameters(
β = 2

√
kγ

(1−γ)

)

α1 +ur−ul = β
[
v

1
2
− γ

2
− − v

1
2
− γ

2
l

]
−

√√√√(vr − ( kvγ−
k + vγ−α2

) 1
γ

)(
k

vγ−
+ α2 −

k

vγr

)
(3.21)

The solution of this equation (remember that we know ul, ur, k and γ),
if exists, gives the value(s) of vi and from the second equation of (3.20) we
�nd v+, then using the other two equations we �nd u+and u−. In the case
that we have more that one solution of vi we have to check if it satisfy the
whole set of equations.

3.2.3.2 Region II

In this region the state Ul is connected to U− by a S1, then the contact
discontinuity, and then U+ with Ur by a S2. And we have the next system
of equations 

u− − ul = −
√

(v− − vl)( k
vγl
− k

vγ−
)

u+ − u− = −α1

k
vγ−
− k

vγ+
= −α2

ur − u+ = −
√

(vr − v+)( k
vγ+
− k

vγr
)

(3.22)

Summing the �rst and last equation and using the second one we get

u− − ul + ur − u+ = −

√
(v− − vl)

(
k

vγl
− k

vγ−

)
−

√
(vr − v+)

(
k

vγ+
− k

vγr

)

α1 + ur − ul = −

√
(v− − vl)

(
k

vγl
− k

vγ−

)
−

√
(vr − v+)

(
k

vγ+
− k

vγr

)
from the third equation we �nd that

k

vγ+
=

k

vγ−
+ α2

and
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v+ =

(
kvγ−

k + vγ−α2

) 1
γ

substituting this we get an expression of v− in terms of known parameters

α1+ur−ul = −

√
(v− − vl)(

k

vγl
− k

vγ−
)−

√√√√(vr − ( kvγ−
k + vγ−α2

) 1
γ

)(
k

vγ−
+ α2 −

k

vγr

)
(3.23)

The solution of this equation, if exists, gives the value(s) of vi and from
the second equation of (3.22) we �nd v+, then using the other two equations
we �nd u+ and u− . In the case that we have more that one solution of viwe
have to check if it satisfy the whole set of equations.

3.2.3.3 Region III

In this region the state Ul is connected to U− by a S1, then the contact
discontinuity, and then U+ with Ur by a R2. And we have the next system
of equations 

u− − ul = −
√

(v− − vl)( k
vγl
− k

vγ−
)

u+ − u− = −α1

k
vγ−
− k

vγ+
= −α2

ur − u+ = 2
√
kγ

(1−γ)

[
v

1
2
− γ

2
+ − v

1
2
− γ

2
r

] (3.24)

Summing the �rst and last equation and using the second one we get

u− − ul + ur − u+ = −

√
(v− − vl)

(
k

vγl
− k

vγ−

)
+ β

[
v

1
2
− γ

2
+ − v

1
2
− γ

2
r

]

α1 + ur − ul = −

√
(v− − vl)

(
k

vγl
− k

vγ−

)
( + β

[
v

1
2
− γ

2
+ − v

1
2
− γ

2
r

]
from the third equation we �nd that

k

vγ+
=

k

vγ−
+ α2

and
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v+ =

(
kvγ−

k + vγ−α2

) 1
γ

so

v
( 1
2
− γ

2
)

+ =

(
kvγ−

k + vγ−α2

) 1
γ

( 1
2
− γ

2
)

and substituting in the equation for v− we get

α1 + ur − ul = −

√
(v− − vl)

(
k

vγl
− k

vγ−

)
+ β

[(
kvγ−

k + vγ−α2

)
− v

1
2
− γ

2
r

]
(3.25)

The solution of this equation, if exists, gives the value(s) of vi and from
the second equation of (3.24) we �nd v+, then using the other two equations
we �nd u+and u−. In the case that we have more that one solution of viwe
have to check if it satisfy the whole set of equations.

3.2.3.4 Region IV

In this region the state Ul is connected to U− by a R1, then the contact
discontinuity, and then U+ with Ur by a R2. And we have the next system
of equations 

u− − ul = 2
√
kγ

(1−γ)

[
v

1
2
− γ

2
− − v

1
2
− γ

2
l

]
u+ − u− = −α1

k
vγ−
− k

vγ+
= −α2

ur − u+ = 2
√
kγ

(1−γ)

[
v

1
2
− γ

2
+ − v

1
2
− γ

2
r

] (3.26)

Summing the �rst and last equation and using the second one we get

u− − ul + ur − u+ = β
[
v

1
2
− γ

2
− − v

1
2
− γ

2
l

]
+ β

[
v

1
2
− γ

2
+ − v

1
2
− γ

2
r

]
α1 + ur − ul = β

[
v

1
2
− γ

2
− − v

1
2
− γ

2
l

]
+ β

[
v

1
2
− γ

2
+ − v

1
2
− γ

2
r

]
from the third equation we �nd that, as before

v
( 1
2
− γ

2
)

+ =

(
kvγ−

k + vγ−α2

) 1
γ

( 1
2
− γ

2
)
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so substituting we get

α1 + ur − ul = β
[
v

1
2
− γ

2
− − v

1
2
− γ

2
l

]
+ β

[(
kvγ−

k + vγ−α2

)
− v

1
2
− γ

2
r

]
The solution of this equation, if exists, gives the value(s) of vi and from

the second equation of (3.26) we �nd v+, then using the other two equations
we �nd u+and u−. In the case that we have more that one solution of viwe
have to check if it satisfy the whole set of equations.

So at the end if the solutions of the previous problems exist and are
unique, we have the states U− and U+ that connect the known states Ul and
U+ , so with this we know the solution of our Riemann problem.

3.2.3.5 Geometrical solution of the Riemann problem for p(v) = 1
v

In the following section we will present the analytical results for the case for
the pressure law with γ = 1 and k = 1 as the equation (3.8) as presented in
[10]. So

p(v) =
1

v
(3.27)

The jump condition for a steady shock i.e. s = 0, the pressure gives

[p(v)] = α2 (3.28)

we conclude that
1

v+
=

1

v−
+ α2, (3.29)

or

v+
0 =

v−0
1 + α2v

−
0

. (3.30)

where α2 is such that 1 + α2v
+
0 > 0 and v− = limx→0− v(x) and v+ =

limx→0+ v(x). From (3.18) we have

u+
0 = u−0 + α1 (3.31)

where u− = limx→0− u(x) and u+ = limx→0+ u(x).
We look for a (unique) solution of the Riemann Problem that veri�es the
interface conditions (3.28) and (3.18). We consider the (u, v)− space and a
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given state Ul = (ul, vl) as in the Figure (3.5).

We have two intermediate state U−0 = (u−0 , v
−
0 ) and U+

0 = (u+
0 , v

+
0 ) con-

nected by a contact discontinuity. The intermediate states (U−0 , U
+
0 ) are

given by the solutions of the following system

u+
0 = u−0 + α1 (3.32)

v+
0 =

v−0
1 + α2v

−
0

(3.33)

u−0 = ul + θ(v−0 , vl) (3.34)

u+
0 = ur − θ(v+

0 , vr) (3.35)

where

θ(v, w) =

{ ´ w
v

√
−p′(s)ds v < w

−
√

(v − w)2/vw v > w
(3.36)

we eliminate the unknowns (u+
0 , v

+
0 ) (or (u−0 , v

−
0 )) we get

u−0 = ul + θ(v−0 , vl) (3.37)

u−0 + α1 = ur − θ(v+
0 , vr) (3.38)

The equations that conect the states in this region are:

Region I

u−0 = ul +

ˆ v−0

vl

√
−p′(s)ds = ul + ln

v−0
vl

v−0 > vl (3.39)

u−0 = ur − α1 +
√

(vr − (v−0 /(1 + α2v
−
0 )))2/(v−0 /(1 + α2v

−
0 ))vr

v−0 < vr/(1− α2vr) (3.40)

Remark 1. An easy calculation shows v−0 > vl and v
−
0 < vr/(1−α1ur) imply

0 < ur − ul < ln
vm
vl

+ γ2

where vm = vr/(1− α2vr). We also remark that if (1− α2vr) < 0 the system
(-) does not admit solution for positive (and the physical reasonable values of
v+

0 ).
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Region II

u−0 = ul +
√

(v−0 − vr)2/v−0 vr

v−0 < vl (3.41)

u−0 = ur − α1 +
√

((v−0 /(1 + α2v
−
0 ))− vr)2/(v−0 /(1 + α2v

−
0 ))ur

v−0 < vr/(1− α2vr) (3.42)

Region III

u−0 = ul +
√

(v−0 − vr)2/v−0 vr

v−0 > vl (3.43)

u−0 = ur − α1 +

ˆ vr

u−0
1+α2v

−
0

√
−p′(s)ds = ul + ln

vr
v−0

1+α2v
−
0

v−0 > vr/(1− α2vr) (3.44)

Region IV

u−0 = ul +

ˆ v−0

vl

√
−p′(s)ds = ul + ln

v−0
vl

v−0 > vl (3.45)

v−0 = vr − χ1 +

ˆ vr

v−0
1+α2v

−
0

√
−p′(s)ds = ul + ln

vr
v−0

1+α2v
−
0

v−0 > vr/(1− α2vr) (3.46)

3.2.3.6 Self-similar viscosity approach. [11]

As mentioned before we know that under the assumption pv(v) < 0 the sys-
tem (3.13-3.14) is strictly hyperbolic and it admits characteristic velocities
λ1 = −

√
−pv(v) and λ2 = +

√
−pv(v).

We introduce in (3.14) a special form of the so called self-similar viscosity
and we obtain:

vt − wx = 0 (3.47)

ut + p(v)x = εt

(
1

u
wx

)
x

+ α2(H(x))x. (3.48)
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where H = H(x) is the Heavyside function and we introduce the change
of variable w ≡ u + α1H . It is not di�cult to prove that (3.47)-(3.48)
is self-similar, i.e it preserve the invariance under dilatation of coordinates.
(x, t)→ (ax, at), a > 0 and the solutions of the Riemann problem have form(
u
(
x
t

)
, v
(
x
t

))
. This suggest that it is possible write our system as a function

of a single variable ξ = x/t such that −∞ < ξ < +∞

− ξv′ − w′ = 0 (3.49)

−ξu′ + p(v)′ = ε

(
1

u
w′
)′

+ α2H
′(ξ) (3.50)

coupled with the following boundary conditions5

u(±∞) = u±
v(±∞) = v±,

(3.51)

where ε is a positive given constant.

Properties of the solution

From the equations (3.49) and (3.50) and their structure we can divide our
problem into two parts the �rst for ξ < 0 and the second for ξ > 0 separated
by the singular point ξ = 0. The properties of the solutions at this point will
be essential to understand the rule of the localized source (or well) in this
kind of problems.

3.2.3.7 Weak solutions

Let (w(ξ), v(ξ)) be such that (v, p(v)) ∈ (L2
loc(R))3 and assume w(ξ) ∈

H1
loc(R), that implies 1

v
w′ ∈ L2

loc. It follows that the couple (w, v) is weak so-
lution of (3.49-3.51) if for all φ ∈ C1

0(R), that veri�es the boundary conditions
(3.51): ˆ

(ζv − w)φ′dζ +

ˆ
vφdζ = 0 (3.52)

ˆ
(ζw − (p(v)− α2H) + ε

1

v
w′)φ′dζ +

ˆ
wφdζ = 0 (3.53)

In the following theorem we derive some properties of the solution in partic-
ular on the singular point ξ = 0.

Theorem 1. Let (u, v) be a solution of (3.49-3.51) then

5The ' denotes derivative respect to ξ
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i) ξv and w are continuous on R

ii) (u,v) veri�es the

[ξv(ξ) + w(ξ)]ba −
ˆ b

a

v(ζ)dζ = 0 (3.54)

[ξu(ξ)− (p(v(ξ))− α2H(ξ)) + εw′(ξ)]
b
a

−
ˆ b

a

u(ζ)dζ = 0 (3.55)

iii) limξ→±0

[
ξw(ξ)− (p(v(ξ))− α2H(ξ)) + ε 1

v
w′(ξ)

]
exist and are equal, and

then
[
ξw(ξ)− (p(v(ξ))− α2H(ξ)) + ε 1

v
w′(ξ)

]
is continuous in R−{0}

Proof. i) We observe that w is continuous function. By using the weak
formulation (3.52) we deduce that ξv has the same regularity has w
and then i) is proved.

ii) We prove (3.54). Following [5] we use, as test function in (3.52)

ψn(ξ) =


0, −∞ < ξ ≤ a− 1/n
n [ξ − (a− 1/n)] , a− 1/n ≤ ξ ≤ a
1, a ≤ ξ ≤ b
−n [ξ − (b+ 1/n)] , b ≤ ξ ≤ b+ 1/n
0, b+ 1/n ≤ ξ < +∞

(3.56)

for a given a, b ∈ R. (3.56) is not a continuous function and we use the
C1

0 regularization of ψn(ξ) in our weak formulation

n

ˆ a

a−1/n

(ζv − w)− n
ˆ b+1/n

b

(ζv − w) +

ˆ b+1/n

a−1/n

vφnd(ζ) = 0

Taking into account the limit n → 0 of the equation above and us-
ing the Lebesgue Di�erentiation Theorem and Dominated Convergence
Theorem we obtain (3.54). In analogous way we prove (3.55).

iii) This follows assuming a→ 0− and b→ 0+ in (3.55).

Remark 2. We note that v(ξ) and w′(ξ) are continuous in R − {0}. And
w(ξ) is continous in R .
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Theorem 2. Let (u, v) be a solution of (3.49-3.51) such that

0 < δ ≤ v(ξ) ≤ ∆ (3.57)

then we de�ne

0 < a0 ≤ p(v) =
1

v
≤ A0 (3.58)

where the constants a0, A0 depend on δ and ∆. We set λ± =
√
a0 and

Λ± =
√
A0.

Then for 0 < ξ < α+ < λ+

|w′(ξ)| ≤ 1

v(α+)
|u′(α+)| 1

ao

(
ξ

α+

)λ2+−α
2
+

εA0

(3.59)

for ∆+ < α+ < ξ

|u′(ξ)| ≤ 1

v(α+)
|u′(α+)| 1

a0

exp

{
−
α2

+ −∆2
+

2εA0

((
ξ

α+

)2

− 1

)}
(3.60)

for ξ < α− < Λ−

|w′(ξ)| ≤ 1

v(α−)
|u′(α−)| 1

a0

(
ξ

α−

)λ2−−α
2
−

εA0

(3.61)

for λ− < α− < ξ < 0

|w′(ξ)| ≤ 1

v(α−)
|u′(α−)| 1

a0

exp

{
−
α2
− −∆2

−

2εA0

((
ξ

α−

)2

− 1

)}
(3.62)

Proof. First we observe that, for all ξ 6= 0, (w, v) satisfy

ε

(
β

v
w′
)′

+
ξ2 − 1

v2

ξ
w′ = 0, (3.63)

and integrate it with respect to ξ in the intervals (α−, ξ) and (ξ, α+) Thus
we get for u′(ξ):

w′(ξ) =


1/v(α+)u′(α+)

1/v(ξ)
exp

{
−1
ε

´ α+

ξ

ζ2− 1
v(ζ)2

ζ/v(ζ)
dζ

}
ξ > 0

1/v(α−)u′(α−)
1/v(ξ)

exp

{
−1
ε

´ α−
ξ

ζ2− 1
v(ζ)2

ζ/v(ζ)
dζ

}
ξ < 0

(3.64)
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Consider now (3.59) and 0 < ξ < α+ < λ+. By using (3.57) for all 0 < ζ < α+

ζ2 − 1
v(ζ)2

ζ
≤
ζ2 − 1

∆2

ζ
≤ −

(λ2
+ − α2

+)

ζ

then

exp

{
−1

ε

ˆ α+

ξ

ζ2 − 1
v(ζ)2

ζ/v(ζ)
dζ

}
≤ exp

{
−

(λ2
+ − α2

+)

εA0

ˆ α+

ξ

1

ζ
dζ

}
=

(
ξ

α+

)λ2+−α
2
+

εA0

and in view of (3.64) we get (3.59). In the same way we prove (3.61).
Now we consider (3.60) and then 0 < Λ+ < α− < ξ. We have

ζ2 − 1
v(ζ)2

ζ
≥ ζ − A0

ζ
≥

(α2
+ − Λ2

+)

α2
+

ζ > 0

then

exp

{
−1

ε

ˆ ξ

α+

ζ2 − 1
v(ζ)2

ζ/v(ζ)
dζ

}
≤ exp

{
−

(α2
+ − Λ2

+)

α2
+εA0

ˆ ξ

α+

ζdζ

}

= exp

{
−
α2

+ − Λ2
+

2εA0

((
ξ

α+

)2

− 1

)}

(3.60) follows by using the above inequality and in the same way is it possible
prove (3.62).

This theorem implies that under the assumption (3.57) the solution of
our problem has the following properties:

1. |w′(ξ)| → 0 and |v′(ξ)| → 0 as ξ → ±∞

2. |w′(ξ)| = O(|ξ|α) ξ → 0 and |v′(ξ)| = O(|ξ|α−1) as ξ → 0±, for some
α > 0.

This meas that w′(0+) = w′(0−) = 0 and by using the theorem 1

w(0+) = w(0−) (3.65)

which implies

u(0+) = u(0−)− α1

p(v(0+)) = p(v(0−)) + α2
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in particular,we assume (3.27) and the then

u(0+) = u(0−)− α1

1

v(0−)
=

1

v(0+)
− α2. (3.66)

We note that (3.66) has an interesting physical explanation. The source
term α2H

′(ξ) = α2δ(ξ) add or take away a particle from our system and it
modi�es locally the pressure of the system that reorganizes itself in order to
get the equilibrium between left and right pressure.
In the paper [10] the autors prove the existence of solution for (3.49-3.51)
using the Leray-Schauder degree theory. We summarize the result in a sim-
plied version, without details.

For this we consider the space X = C0(−∞, 0)∪ (0,+∞) of the function
continuous for each ξ 6= 0 such that there exist the left and right limit
(w(0+), v(0+)) and (w(0−), v(0−)). Moreover |w(0+) − w(0−)| and |v(0+) −
v(0−)| are bounded.

In this space we also de�ne the norm ‖v‖L∞(−∞,∞) <∞.
Let be Ω a subset of X

Ω = {v ∈ X : δ ≤ v(ξ) ≤ ∆}. (3.67)

and it veri�es (3.65) and (3.66).
We construct two maps namely T such that T : V (ξ) → v(ξ) for all

ξ ∈ (−∞,∞). These operators are de�ned by solving the following problem

− ξv′(ξ)− w′(ξ) = 0 (3.68)

−ξw′ − 1

V (ξ)
v′(ξ) = ε(

1

V (ξ)
w′(ξ))′ (3.69)

w(±∞) = w±(µ) := w− + µ(w± − w−)
v(±∞) = v±(µ) := v− + µ(v± − v−)

(3.70)

respectively for ξ < 0 and ξ > 0 and for all µ ∈ [0, 1]. T1 and T2 are connected
at each step of the iterative process by using (3.65) and (3.66) where V (ξ)
is the solution of the linearized problem at the previous step of the iterative
process.

3.2.3.8 A-Priori estimates

The goal of this section is prove the existence of the solutions for (3.49), (3.50)
and (3.51) by using the iterative process de�ned in the previous section.
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Consider the system (3.49) and (3.50) coupled with (3.51). We know that
w, and then also v are strictly monotone in the intervals (−∞, 0) ∪ (0,+∞)
or is a constant in one of these. The same holds for v and also for p(v).
We distinguish �ve cases:

� C1: v is increasing on (−∞,+∞), p(v) is decreasing on (−∞,+∞), u
is increasing on (−∞, 0) and it is decreasing on (0,+∞)

� C2: v is decreasing on (−∞,+∞), p(v) is increasing on (−∞,+∞), u
is decreasing on (−∞, 0) and it is increasing on (0,+∞)

� C3: v is increasing on (−∞, 0) and it is decreasing on (0,+∞), p(v) is
decreasing on (−∞, 0) and it is increasing on (0,+∞), u increasing on
(−∞,+∞)

� C4: v is decreasing on (−∞, 0) and it is increasing on (0,+∞), p(v) is
increasing on (−∞, 0) and it is decreasing on (0,+∞), u decreasing on
(−∞,+∞)

� C5: (w, v) (and consequently p(v)) are constant on (−∞, 0) or (0,+∞)
and they are increasing or decreasing in the other one.

Remark 3. In the region ξ < 0 and ξ > 0 the functions v′(ξ) and w′(ξ) are
well de�ned, moreover at the point ξ = 0 v′ and u′ become singular according
with the relations (3.65) and (3.66).

Our goal in this section is derive L∞ estimate for u and v, both if αi > 0
and if αi < 0, for i = 1, 2. We remark that w and v are not a continuous
functions, but it jumps at ξ = 0 because of (3.65) and (3.66). It is clear that
the discontinuity of v depends on α2 and on the form of p(v) in a non liner
way, to prove the results given in this section we will use the monotonicity
of p with respect to v and viceversa.
We start considering the last case C5.

Theorem 3. (w, v) are in one of the classes C1 − C5 and

w ≤ w(ξ) ≤ w (3.71)

0 ≤ p ≤ p(v(ξ)) ≤ p (3.72)

0 ≤ v ≤ v(ξ) ≤ v (3.73)

where the constants v, p, w, v, p, w depend on v+, v− and γ (but do not on
ε and µ.)
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Proof. We will present only a sketch (w, v) of the proof of one of the cases,
class C5. Concerning p(v), we consider v is constant in the interval (−∞, 0).
It is easy to show that:

- if α2 > 0 and p(v) is decreasing on (0,+∞)

min{p−, p+} ≤ p(v(ξ)) ≤ max{p− + α2, p+ + α2}

- if α2 < 0 and p(v) is increasing on (0,+∞)

min{p− − α2, p+ − α2} ≤ p(v(ξ)) ≤ max{p−, p+}

- if α2 > 0 and p(v) is increasing on (0,+∞) or α2 < 0 and v is decreasing
on (0,+∞)

min{p−, p+} ≤ p(v(ξ)) ≤ max{p−, p+},

where p± = 1
v±
. All of these cases are summarized in the relation (3.72),

(3.73) follows from (3.72) by using the monotonicity of p. We work in a
similar way if (u, v) are constant in the interval (0,+∞). By using the same
steps we prove (3.71). The proof of the other cases follows in a similar way
(see for example [10, 11])

3.2.3.9 Existence of solution

In this section following we will prove the existence of solutions of our
problem. For each µ ∈ [0, 1], U ∈ Ω and v ∈ X we de�ne the map
F : [0, 1] × Ω → X that carries (µ, V ) to the �rst component vµ of the
solution (v, w) to the problem (3.68) and (3.70). For this we de�ne the ap-
plications T : Ω→ X, S : Ω→ X that carry V ∈ Ω in the solution (v, w) of
our problem. And (v− + µT (V ), w− + µS(V )) is the solution of (3.69).

The �rst step is the analysis of the linear problem that de�ne in same
sense the iterative process

The linearized problem

Consider the linearized problem

− ξv′ − w′ = 0 (3.74)

−ξw′ − a(ξ)v′ = ε(k(ξ)w′)′ + α2H(ξ)′ (3.75)
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for all ξ ∈ (−∞, 0)
⋃

(0,+∞) and coupled to the boundary conditions:

w(−∞) = 0, w(+∞) = w+ − w− (3.76)

v(−∞) = 0, v(+∞) = v+ − v−. (3.77)

In this contest a(ξ) = − 1
V (ξ)2

and k(ξ) = 1
V (ξ)

are continuous functions for
all ξ 6= 0 and they verify:

0 < a0 ≤ a(ξ) ≤ A0 (3.78)

0 < k0 ≤ k(ξ) ≤ K0. (3.79)

for all ξ ∈ (−∞,+∞). In the intervals (−∞, 0) and (0,+∞) the solution
(w, v) of (3.74) and (3.77) can be calculated explicitly by solving the ordinary
di�erential equation

ε(k(ξ)w′)′ +
ξ2 − a(ξ)

ξ
w′ = 0, (3.80)

whereas the solution at the interface point ξ = 0 will be de�ned by using the
jump conditions (3.65) and (3.66). Integrating (3.80) we get

w′(ξ) =

{
c+I+(ξ)
c−I−(ξ)

(3.81)

and, by using (3.75)

v′(ξ) =

{ 1
ξ
c+I+(ξ)

1
ξ
c−I−(ξ)

(3.82)

where

I± = exp

(
1

ε

ˆ ξ

±1

ς2 − a(ς)

ςk(ς)
dς

)
. (3.83)

c± are constant that will be �xed according to (3.65) and (3.66).

Theorem 4. There exist constants α, β, η, κ and Cε such that

1

Cε
|ξ|η/ε ≤ I± ≤

1

Cε
|ξ|α/ε 0 < |ξ| ≤ 1 (3.84)

1

Cε
e−ξ

2κ/ε ≤ I± ≤
1

Cε
e−ξ

2β/ε |ξ| ≥ 1 (3.85)
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Proof. First we estimate I+ = exp
(

1
ε

´ 1

ξ
ς2−a(ς)
ςk(ς)

dς
)
in the case 0 < ξ ≤ 1:

1

ε

ˆ 1

ξ

ς2 − a(ς)

ςk(ς)
dς =

1

ε

ˆ 1

ξ

ς

k(ς)
dς −

ˆ 1

ξ

a(ς)

ςk(ς)
dς ≤

≤ 1

ε

(
1

2k0

+
a0

K0

ln ξ

)
�nally we conclude:

I+ ≤ e
1

2εk0 ξ
a0
εk0 (3.86)

Now we consider the low bound for I+

1

ε

ˆ 1

ξ

ς2 − a(ς)

ςk(ς)
dς =

1

ε

ˆ 1

ξ

ς

k(ς)
dς −

ˆ 1

ξ

a(ς)

ςk(ς)
dς ≥

≥ 1

ε
−
ˆ 1

ξ

a(ς)

ςk(ς)
dς ≥ 1

ε

a0

K0

ln ξ

and then
I+ ≥ ξ

a0
εk0 (3.87)

The same holds for I− in the interval −1 ≤ ξ < 0

1

ε

ˆ 1

ξ

ς2 − a(ς)

ςk(ς)
dς =

1

ε

ˆ 1

ξ

ς

k(ς)
dς −

ˆ 1

ξ

a(ς)

ςk(ς)
dς ≤

≤ −1

ε

ˆ −1

ξ

a(ς)

ςk(ς)
dς ≤ 1

ε

A0

k0

ln |ξ|

and

1

ε

ˆ 1

ξ

ς2 − a(ς)

ςk(ς)
dς =

1

ε

ˆ 1

ξ

ς

k(ς)
dς −

ˆ 1

ξ

a(ς)

ςk(ς)
dς ≥

≥ 1

ε

(
1

K0

− ξ2

k0

)
+

1

ε

(
a0

K0

ln |ξ|
)

≥ 1

ε

(
a0

K0

ln |ξ| − ξ2

k0

)
This prove (3.84) in a similar way we prove (3.85)

Now we can integrate (3.81) and (3.82) and we obtain respectively:

w(ξ) =

{
(w+ − w−)− c+

´∞
ξ
I+(ξ), ξ > 0

c−
´ ξ
−∞ I−(ξ), ξ < 0

(3.88)
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v(ξ) =

{
(v+ − v−) + c+

´∞
ξ

I+(ζ)
ζ
, ξ > 0

c−
´ ξ
−∞

I−(ζ)
−ζ , ξ < 0

(3.89)

The constants c+ and c− can be determined by using (3.65) and (3.66){
w(0+) = w(0−)

v+
0 =

v−0
1+α2v

−
0

(3.90)

In the following section we will analyze the solutions of the system above
compatible of our system and how they depends on the sources.

Determination of the constants c+ and c−

We rewrite system (3.90) by using (3.88)-(3.89){
(w+ − w−)− c+

´∞
ξ
I+(ζ)dζ = c−

´ ξ
−∞ I−(ζ)dζ(

(v+ − v−) + c+

´∞
ξ

I+(ζ)
ζ
dζ
)(

1 + α2c−
´ ξ
−∞

I−(ζ)
−ζ dζ

)
= c−

´ ξ
−∞

I−(ζ)
−ζ dζ

(3.91)

or introducing A, B, C and D:{
∆w − c+A = c−B + α1

∆v + c+C = c−D − α2(∆v + (c+C))(c−D)
(3.92)

A =

ˆ ∞
ξ

I+(ζ)dζ

B =

ˆ ξ

−∞
I−(ζ)dζ

C =

ˆ ∞
ξ

I+(ζ)

ζ
dζ

D =

ˆ ξ

−∞

I−(ζ)

−ζ
dζ

∆w = w+ − w−
∆v = v+ − v−

Because of Theorem 4 it is easy to prove the following Corollary

Corollary 1. Under the assumption of Lemma 4 there exist the two constants
A and A such that

0 < A ≤ A ≤ A < +∞ (3.93)
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(a) Varying ∆u = u+ − u− and ∆v = 1. (b) Varying ∆v = v+ − v− and ∆v = 1.

Figure 3.7: Plot of (3.99) with α2 = A = B = C = D = 1.

then same hold for B, C and D:

0 < B ≤ B ≤ B < +∞ (3.94)

0 < C ≤ C ≤ C < +∞ (3.95)

0 < D ≤ D ≤ D < +∞ (3.96)

By using the �rst relation in (3.92) we get

c+ =
∆w

A
− c−B

A
(3.97)

and substituting in the second equation

∆v+C

(
∆w

A
− c−B

A

)
= c−D−α2

(
∆v + C

(
∆w

A
− c−B

A

))
(c−D) (3.98)

after easy computation we get

α2
BCD

A
c2
− + c−

(
BC

A
+D − α2

(
D∆v +

CD∆w

A

))
−
(

∆v +
C∆w

A

)
(3.99)

In Figure (3.7) we see a plot of the function (3.99) with all constants �xed
and only varying the di�erences between the initial values. In Figure (3.8) we
plotted the same function but by varying γ and then doubling each constant
and �xing all the others. As in [11], we can see, from the �gures, that with
the value of this parameters there is always a solution for the systema, since
the parabolas cross always the y = 0 line.
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(a) Varying γ = α2 with A = B = C =
D = 1.

(b) Varying constants A, B, C, D with
γ = 1.

Figure 3.8: Plot of (3.99) with ∆u = ∆v = 1.

The discriminant of this equation is:

∆α2 =

(
BC

A
+D − α2

(
D∆v +

CD∆w

A

))2

+4α2

(
∆v +

C∆w

A

)(
BCD

A

)
(3.100)

We distinguish the following cases:

1. α2 > 0, ∆v + C∆w
A

> 0 BC
A

+D − α2

(
D∆v + CD∆w

A

)
> 0

In this case (3.99) admits one and only one positive solution

c− =

(
−
(
BC

A
+D − α2

(
D∆v +

CD∆w

A

))
±
√

∆α2

)
A

2α2BCD
(3.101)

= −f ± h

α2

√
∆α2 = −f ± h

α2

√
f 2 + α2g. (3.102)

Where h, g > 0, �rst we assume f to be positive (is su�cient to use for
example a large value of γ), and then the positive solution corresponds to
the sign + in (3.101),i.e:

c− =

(
−
(
BC

A
+D − α2

(
D∆v +

CD∆w

A

))
+
√

∆α2

)
A

2α2BCD
.(3.103)

Now by using (3.97)

c+ =
∆w

A
− c−B

A
,

we look for the value of the constants in particular α2, ∆v and ∆w such that
c+ is positive, for example it is su�cient to consider ∆w large enough.
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3.2.3.10 Solution of the Riemann problem

Theorem 5. Let ε > 0 then there exist a solution of our boundary problem
for all ξ ∈ (−∞,+∞).

Proof. The operators T, S : Ω → X map V ∈ Ω to the solution of the
linearized problem with boundary conditions (3.76)-(3.77). We de�ne the
operator F (µ,w) = w− + µT (w) such that F : [0, 1]Ω → X and we look for
a solution of v = v− + T (v) by using the Leray-Schauder degree theory. The
function v and the related w = S(v) is the solution w, v) of (3.49) and (3.50).
Fist we prove that T (Ω) is precompact and continuous in X.
T (Ω) is precompact in X
To do this we will apply the Ascoli-Arzela compactness criterion. We �x
a sequence Vn ∈ Ω and de�ne v1,n = T (Vn) and v2,n = T (Vn) respectively
for ξ < 0 and ξ < 0. The results of the previous section show that {v1,n}
and {v2,n} are uniformly bounded and uniformly equicontinuous and they
verify the jump condition (3.65) and (3.66). Because of the Ascoli-Arzela
compactness criterion there exist two subsequence such that {v1,nk} → v1

and {v2,nk} → v2, where v1 and v2 also verify the jump conditions. The
results of the previous section show that {v1,n} and {v2,n} are uniformly
bounded and uniformly equicontinuous and they verify the jump condition
(3.65) and (3.66). Because of the Ascoli-Arzela compactness criterion there
exist two subsequence such that {v1,nk} → v1 and {v2,nk} → v2, where v1

and v2 also verify the jump conditions.
T (Ω) are continuous in X
As usually we consider a sequence Vn ∈ Ω and the functions v1,n = T (Vn)
and v2,n = T (Vn) respectively for ξ < 0 and ξ < 0. They are connected by

vn(ξ) =

{
(v+ − v−) + c+

n
´∞
ξ

I+
n(ζ)
ζ

, ξ > 0

c−
´ ξ
−∞

In−−(ζ)

−ζ , ξ < 0
(3.104)

where In± are

I±n = exp

(
1

ε

ˆ ξ

±1

ζ2 − a(Vn(ζ))

ζk(Vn(ζ))
dζ

)
. (3.105)

and cn± are the solutions of (3.91).

Now, there is a subsequence {vn} and v ∈ X such that vn → v in X.
So using {Vnk} we can pass to the limit and obtain v = T (V ), and since all
limiting point in X is of the form of this last equality then we deduce that
T (Vn) → T (V ) ∈ X this means that T is continuous. With this we can say



CHAPTER 3. MODELS 57

that µT is compact and we can compute the Larey-Schuder degree of the
map. So by the de�nition of Ω and previous results the solution v lies in the
interior of the set, so the degree is 1

d(I − µT,Ω, u−) = d(I,Ω, u−) = 1

so we have a �x point and the problem admits at least one solution for
each µ ∈ [0.1].
Now, knowing this we can pass to the limit of ε→ 0, and letting the viscous
solutions satisfy the a-priori bounds, hence by doing the previous limit and
by Helly's selection principle we can get

wε → w

vε → v

Solutions of the original Riemann problem.
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3.3 Gas Dynamics with Added Sources

In this section we will give a more complicated model for the ion transport.
Afterwards we will follow the same steps as in the case of the P-system model,
i.e. we will present the four regions analysis and �nally we will present a self
similar approach for the description of other important properties of the
system. Recalling the equations used to model gas dynamics , and inserting
a point-wise source of ions in the interface position, we propose our model
(which includes the action of the ion Channels given by the Euler equations
and the Ion Pumps represented by the added sources in the equations)

1. Conservation of Mass.

ρt + (ρu)x = α1δ(x) (3.106)

2. Conservation of Momentum.

(ρu)t + (p+ ρu2)x = α2δ(x) (3.107)

3. Conservation of Energy.(
ρ(
u2

2
+ e)

)
t

+

(
ρu(

u2

2
+ e) + pu

)
x

= α3δ(x) (3.108)

Where ρ is the density of mass, u is the velocity of the gas, e the energy
density, p is the pressure, αi, i = 1, 2, 3 are constants (rates of transfer of
mass, momentum and energy density). The function δ(x) is the Delta Dirac
function, and is given by:

δ(x) = Hx (3.109)

With H the Heaviside function. We assume that the gas is ideal gas and
polytropic. An important and fundamental part of the model are the initial

conditions, let U =
(
ρ, ρu, ρ(u

2

2
+ e)

)T
, so the conditions are:

U(x, 0) =

Ul =
(
ρl, ρlul, ρl(

u2l
2

+ el)
)T

if x ≤ 0,

Ur =
(
ρr, ρrur, ρr(

u2r
2

+ er)
)T

if 0 < x.

And this completes the model. Notice that this can be seen as a conser-
vative system of the form:
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Ut + F(U)x = 0

The system has the form:
ρt + (ρu− α1H)x = 0

(ρu)t + (p+ ρu2 − α2H)x = 0(
ρ(u

2

2
+ e)

)
t
+
(
ρu(u

2

2
+ e) + pu− α3H

)
x

= 0

(3.110)

3.3.1 Analyzing the two Equation Model

In the previous section we have presented general idea by doing the analysis
for a P-system, now we will present an analogous procedure with our model
equations. For sake of simplicity we will start with only two equations, the
conservation of mass, and the conservation of momentum. Our system is the
following

(ρ)t + (ρu)x=α1Hx

(ρu)t +
(
P + ρu2

)
x

= α2Hx

First we need to derive the shock and rarefaction curves of the homoge-
neous system. From the Rankine-Hugoniot condition (for the homogeneous
system) we know that

s [ρ] = [ρu] (3.111)

s[ρu] = [P + ρu2]

where [ ] denotes change in the discontinuity, we can eliminate s and �nd
explicit the shock curves

u−ul = −

√
(2ρlρul)

2 − 4ρρl
[
− (ρl − ρ) (Pl − P + ρlu2

l ) + (ρlul)
2]

2ρlρ
ρl < ρ

(3.112)

u−ul = −

√
(2ρlρul)

2 − 4ρρl
[
− (ρl − ρ) (Pl − P + ρlu2

l ) + (ρlul)
2]

2ρlρ
ρ < ρl

(3.113)
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Figure 3.9: Shock and Rarefaction curves.

where, as before, the subscript l its related to the left state.

Now by considering the Riemann Invariants of the gas dynamics system

[1],
{
u− 2

γ−1
c, u+ 2

γ−1
c
}
where the �rst is due to the �rst and second eigen-

value respectively. So, we have that this Riemann Invariants are constant in
a 1-2 rarefaction, so the rarefaction curves should be given by

ul −
2

γ − 1
cl = ur −

2

γ − 1
cr ρl < ρ (3.114)

ul +
2

γ − 1
cl = ur +

2

γ − 1
cr ρ < ρl (3.115)

Lets recall that In our problem we are using P = kργ with 1 < γ , and

c =
√

γP
ρ

=
√
kγ
√
ργ−1 =

√
kγρ

γ
2
− 1

2 . The Figure 3.9 shows the four curves.

So our goal know is to �nd the two intermediate states, U− and U+, in
terms of known parameters, as in the previous section. Now using the jump
conditions of the non-homogeneous system we get

s [ρ] = [ρu− α1H]

s[ρu] = [P + ρu2 − α2H]

In this step we have to force a non-moving shock, so we set s = 0, we get
the expected contact discontinuities relations

ρ+u+ = ρ−u− + α1 (3.116)
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ρ+u
2
+ = P− − P+ + ρ−u

2
− + α2 (3.117)

Now we have to solve the Riemann problem knowing the values of (ul, ρl)
and (ur, ρr), so if we have a contact discontinuity at x = 0 with a source term
at that point we expect two new intermediate states (u−, ρ−) and (u+, ρ+)
connected by the previous relations. So we have to connect l − states to
−states with a shock or rarefaction curves, and +states to r − states by
shock or rare, and the −states and +states by contact discontinuity. So lets
consider the case that we connect l − states to −states with a shock and
+states to r− states by rare, as an example. So we have to solve the system

u− ul = −

√
(2ρlρul)

2 − 4ρρl
[
− (ρl − ρ) (kργl − kργ + ρlu2

l ) + (ρlul)
2]

2ρlρ
(3.118)

ρ+u+ = ρ−u− + α1 (3.119)

ρ+u
2
+ = P− − P+ + ρ−u

2
− + α2 (3.120)

u± 2

γ − 1
c = ur ±

2

γ − 1
cr (3.121)

Where the ± depends if we are connecting the states by a R1 or R2. The
�rst equation connects Ul to U−, the second and third connect U− to U+,
and the last equation U+ to Ur. Substituting P and c we get

u− ul = −

√
(2ρlρul)

2 − 4ρρl
[
− (ρl − ρ) (kργl − kργ + ρlu2

l ) + (ρlul)
2]

2ρlρ

ρ+u+ = ρ−u− + α1

ρ+u
2
+ = kργ− − kρ

γ
+ + ρ−u

2
− + α2

u± 2

γ − 1

√
kγρ

γ
2
− 1

2 = ul ±
2

γ − 1

√
kγρ

γ
2
− 1

2
l

The solution for the intermediate states is given by this system of equa-
tions. We have four unknowns and four equations, so we can solve (assuming
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that the known parameters are such that the system has solution, maybe not
unique) the system. Analytically its very complicated to arrive at a solution,
because of the value of γ, that is strictly bigger that 1.

So our next step is to make some simpli�cations to arrive at some results
and study what will happend of certain values of the parameters. We will
assume for a moment that αi for i = 1, 2 are so small, that the system will
behave like it where a gas, so we can use the approximation and results of
the Gas Dynamics equations (more speci�cally as an almost homogeneous
system), so we will assume that the pressures and velocities through the
discontinuity are constant. This assumption is physically meaningful because
if we have a di�erent pressure across it, the forces will be di�erent and the
shock will eventually move, thing that we don't want. So the simplify system
is

u− ul = −

√
(2ρlρul)

2 − 4ρρl
[
− (ρl − ρ) (kργl − kργ + ρlu2

l ) + (ρlul)
2]

2ρlρ

ρ+u− = ρ−u− + α1 (3.122)

ρ+u
2
− = ρ−u

2
− + α2 (3.123)

u± 2

γ − 1
c = ur ±

2

γ − 1
cr (3.124)

The second and third equation be combined, and they result is

u− =
α2

α1

(3.125)

With this result we can start the analysis of each region.

3.3.1.1 Region I

In this region the state Ul is connected to U−by a R1, then the contact
discontinuity, and then U+with Ur by a S2. And we have the next system of
equations



CHAPTER 3. MODELS 63

Figure 3.10: Solution Region I.


u− − 2

γ−1
c− = ul − 2

γ−1
cl

ρ+u
2
− = ρ−u

2
− + α2

ρ+u
2
− = ρ−u

2
− + α2

ur − u+ = −
√

(2ρ+ρru+)2−4ρrρ+[−(ρ+−ρr)(kργ+−kρ
γ
r+ρ+u2+)+(ρ+u+)2]

2ρlρr

(3.126)

So if we put u− = α2

α1
, we can solve this system numerically. In Figure

3.10 we show a result for the given values of: ul = 1, ρl = 1, ρr = 1.5, ur = 1,
α1 = 0.5, α2 = 0.6, k = 1, γ = 1.4.

We see in the picture that values of αi cannot be such that the ratio is
out of region I.

3.3.1.2 Region II

In this region the state Ul is connected to U−by a S1, then the contact
discontinuity, and then U+with Ur by a S2. And we have the next system of
equations:


u− − ul = −

√
(2ρlρ−ul)

2−4ρ−ρl[−(ρl−ρ−)(kργl −kρ
γ
−+ρlu

2
l )+(ρlul)

2]
2ρlρ−

ρ+u
2
− = ρ−u

2
− + α2

ρ+u
2
− = ρ−u

2
− + α2

ur − u+ = −
√

(2ρ+ρru+)2−4ρrρ+[−(ρ+−ρr)(kργ+−kρ
γ
r+ρ+u2+)+(ρ+u+)2]

2ρlρr

(3.127)
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Figure 3.11: Solution Region II.

So if we put u− = α2

α1
, we can solve this system numerically. In Figure

3.11 we show a result for the given values of: ul = 1, ρl = 1, ρr = 1, ur = 0.7,
α1 = 0.9, α2 = 0.7, k = 1, γ = 1.4.

We see in the picture that values of αi cannot be such that the ratio is
out of region II.

3.3.1.3 Region III

In this region the state Ul is connected to U−by a S1, then the contact
discontinuity, and then U+with Ur by a R2. And we have the next system of
equations


u− − ul = −

√
(2ρlρ−ul)

2−4ρ−ρl[−(ρl−ρ−)(kργl −kρ
γ
−+ρlu

2
l )+(ρlul)

2]
2ρlρ−

ρ+u
2
− = ρ−u

2
− + α2

ρ+u
2
− = ρ−u

2
− + α2

u+ 2
γ−1

c = ur − 2
γ−1

cr

(3.128)

So if we put u− = α2

α1
, we can solve this system numerically. In Figure

3.12we show a result for the given values of: ul = 1, ρl = 1, ρr = 0.3,
ur = 1.1, α1 = 0.3, α2 = 0.21, k = 1, γ = 1.4.

We see in the picture that values of αi cannot be such that the ratio is
out of region III.
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Figure 3.12: Solution Region III.

Figure 3.13: Solution Region IV.

3.3.1.4 Region IV

In this region the state Ul is connected to U−by a R1, then the contact
discontinuity, and then U+with Ur by a R2. And we have the next system of
equations 

u− − 2
γ−1

c− = ul − 2
γ−1

cl

ρ+u
2
− = ρ−u

2
− + α2

ρ+u
2
− = ρ−u

2
− + α2

u+ 2
γ−1

c = ur − 2
γ−1

cr

(3.129)

So if we put u− = α2

α1
, we can solve this system numerically. In Figure

3.13 we show a result for the given values of: ul = 1, ρl = 1, ρr = 1, ur = 1.5,
α1 = 1, α2 = 1.4, k = 1, γ = 1.4.
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We see in the picture that values of αi cannot be such that the ratio is
out of region IV.

3.3.2 Simulations of the two equation model

Here we will present some simulations of the system presented in the previous
part. It will be showed how the solutions ρ and u evolve in space and time
for some speci�c values of the initial data, the sources and constants in the
equations.

The simulations where made using a code written in MATLAB and the
main idea is as follows: the �rst step is to solve numerically one of the sys-
tems (3.126), (3.127), (3.128) or (3.129) given some initial data (Ul and Ur)
and some values for the parameters γ and k, with this the intermediate states
where found (U− and U+). The second step was to compute numerically the
speeds of the shocks using (3.111) and the speed of the rarefaction using the
eigenvalues of gas dynamics. Then, having this information, its posible to use
the idea in Figures (3.1) and (3.4), for example, to now the behavior of the
solution in space and time, and then plot all this information. An example
of the main code used can be found in the appendix.

Now lets go to the simulations, �rst lets look region I.

3.3.2.1 Region I

In this region we wanted to solve numerically the equations (3.126). We can
solve this for given values of: ul = 1, ρl = 1, ρr = 1.5, ur = 1, α1 = 0.5,
α2 = 0.6, k = 1, γ = 1.4, in Figure (3.14) we can see the result for ρ(x, t) for
four time steps. The �gure represents an ion pump. Colored graph shows
the top view of the Chanel, colours related to the density value..

Notice that, as expected from the previous section, for t > 0 we can see a
contact discontinuity at x = 0, the values of the left and right values of the
ρ− = 1.18 and ρ+ = 1.281 respectively. It can be seen that the to initial val-
ues are connected by a rarefaction moving to the left and a shock moving to
the right. The speed of the shock is higher than the speed of the rarefaction
wave.

Now the evolution for u is similar, we will present only evolution for last
time step (t = 4). See Figure (3.15). Notice that here the velocity at x = 0
is the same, so the velocity is continues at this point. Of course here we
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure 3.14: ρ evolution in space and time. Solution of the system (3.126). Values of
parameters are: ul = 1, ρl = 1, ρr = 1.5, ur = 1, α1 = 0.5, α2 = 0.6, k = 1, γ = 1.4.
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Figure 3.15: u evolution in space and time (t = 4). Solution of the system for ul = 1,
ρl = 1, ρr = 1.5, ur = 1, α1 = 0.5, α2 = 0.6, k = 1, γ = 1.4.

have the same behavior as in the case of the density, one rarefaction moving
to the left and one shock moving to the right. We can see that the e�ect
of the sources is to generate two intermediate states U− = (1.18, 1.2) and
U+ = (1.281, 1.2)

3.3.2.2 Region II

Now lets look what happends in the next region. It can be solved numeri-
cally the system (3.127). As before we present a plot of the evolution of the
density in space and time for some time steps, and the picture of the velocity
in the last step. The solution for the values of : ul = 1, ρl = 1, ρr = 1,
ur = 0.7, α1 = 0.9, α2 = 0.7, k = 1, γ = 1.4 is in Figure (3.16). Notice that
in this region we have the appearance of three shock waves, one moving to
the left, with the higher speed, one moving to the right, with the lower, and
a standing shock, this is the contact discontinuity at x = 0. The values of
the left and right densities are ρ− = 0.83 and ρ+ = 0.936 respectively.

Now for the velocity we have the same behavior, two shocks, but not a
contact discontinuity, the value of the intermediate state is u = 0.77. The
result, for the last time step can be seen in Figure (3.17), notice that the
velocities of the shocks are the same as the ones of the density. The e�ect
of the sources is to generate two intermediate states U− = (0.83, 0.77) and
U+ = (0.936, 0.77) .
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure 3.16: ρ evolution in space and time. Solving the system (3.127) with values of
parameters are: ul = 1, ρl = 1, ρr = 1, ur = 0.7, α1 = 0.9, α2 = 0.7, k = 1, γ = 1.4

Figure 3.17: u evolution in space and time (t = 4). Solution of the system for ul = 1,
ρl = 1, ρr = 1, ur = 0.7, α1 = 0.9, α2 = 0.7, k = 1, γ = 1.4
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure 3.18: ρ evolution in space and time. Solving the system (3.128) with values of
parameters are: ul = 1, ρl = 1, ρr = 0.3, ur = 1.1, α1 = 0.3, α2 = 0.21, k = 1, γ = 1.4

3.3.2.3 Region III

For this region we want to solve numerically the system (3.128). Solving
with the parameter values ul = 1, ρl = 1, ρr = 0.3, ur = 1.1, α1 = 0.3,
α2 = 0.21, k = 1, γ = 1.4 we get the solutions. As before the solution for the
density looks like Figure (3.18) for some time steps. In this case it appear
one shock moving to the left, one rarefaction moving to the right. The rar-
efaction speed is higher than the speed of the shock. Two intermediate states
appear, ρ− = 0.771 and ρ+ = 0.453 separated by a contact discontinuity.

For the velocity its presented only the last time step, Figure (3.19). The
behavior is the same, one shock moving to the left, and one rarefaction
moving faster to the right. The e�ect of the sources is to generate two inter-
mediate states U− = (0.771, 0.7) and U+ = (0.453, 0.7).

Now the last region.
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Figure 3.19: u evolution in space and time (t = 4). Solution of the system for ul = 1,
ρl = 1, ρr = 0.3, ur = 1.1, α1 = 0.3, α2 = 0.21, k = 1, γ = 1.4

3.3.2.4 Region IV

Our last example is one of region IV, it has to be solved the system (3.129).
Numerically it can be solved by setting ul = 1, ρl = 1, ρr = 1, ur = 1.5,
α1 = 1, α2 = 1.4, k = 1, γ = 1.4. The result is shown in Figure (3.20).

Here we can easily see two rarefaction waves moving one to the left and the
other to the right, moving approximately with the same speed, its important
to remark that it seems that the wave of the right is di�using more rapidly
that the one of the left. Also notice the appearance of a contact discontinuity
at x = 0, the values of the densities at this point are ρ− = 1.387 and
ρ+ = 1.087.
For the velocity, in the last time step, we have Figure (3.21). There are the
same two rarefactions as in the density, but only one intermediate state. The
e�ect of the sources is to generate two intermediate states U− = (1.387, 1.4)
and U+ = (1.087, 1.4).

3.3.3 Analyzing the Model

Recalling the equations (3.141), (3.142) and (3.148)


ρt + (ρu)x = α1Hx

(ρu)t + (p+ ρu2)x = α2Hx(
ρ(u

2

2
+ e)

)
t
+
(
ρu(u

2

2
+ e) + pu

)
x

= α3Hx

(3.130)

(3.131)
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure 3.20: ρ evolution in space and time. Solving the system (3.129) with values of
parameters are: ul = 1, ρl = 1, ρr = 1, ur = 1.5, α1 = 1, α2 = 1.4, k = 1, γ = 1.4.

Figure 3.21: u evolution in space and time (t = 4). Solution of the system for ul = 1,
ρl = 1, ρr = 0.3, ur = 1.1, α1 = 0.3, α2 = 0.21, k = 1, γ = 1.4
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From the latter system in Conservative Form (i.e. without source terms),
we know its shock and simple wave curves for the Riemann Problem.
The Shock Curves are given by

1.Shock Curves =


PR
PL

= e−x

ρR
ρL

= ex+β
1+βe−x

uR−uL
cL

= 2
√
τ

γ−1
1−e−x√
1+βe−x

3.Shock Curves =


PR
PL

= ex

ρR
ρL

= 1+βex

ex+β
uR−uL
cL

= 2
√
τ

γ−1
e−x−1√
1+βex

The Simple Waves are:

1.Simple Wave Curves =


PR
PL

= e−x

ρR
ρL

= e−
x
γ for

uR−uL
cL

= 2
γ−1

(1− e−τx)
x ≥ 0

3.Simple Wave Curves =


PR
PL

= ex

ρR
ρL

= e
x
γ for

uR−uL
cL

= 2
γ−1

(eτx − 1)

x ≥ 0

Where β = γ+1
γ−1

, τ = γ−1
2γ

and c2 = γP
ρ
.

In order to solve the Riemann Problem in our case with the added sources
we assume to expect a Steady Shock Curve as an e�ect due to the external
forces, hence we introduce the following shock relations by the Rankine-
Hugoniot condition

Shock Relations =


s[ρ] = [ρu+ α1Hx]

s[ρu] = [P + ρu2 + α2Hx]

s[1
2
ρu2 + 1

2
ρe] = [1

2
ρu3 + ρue+ Pu−+αHx]

Where the [·] represents the relative di�erence in the discontinuity.
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As we said this are supposed to be steady shocks, therefore s = 0 getting:


[ρu] = −α1Hx

[P + ρu2] = −α2Hx

[1
2
ρu3 + ρue+ Pu] = −α3Hx

We are expecting two new states, that we will call U− = (v−, u−)tand
U+ = (v+, u+)t, connected by the contact discontinuity. Moreover if we have
a left state Ul and a right state Ur, then the left state will connect to the
minus state, then this to the plus state, and after the plus state with the
right state, schematically

Ul → U− → U+ → Ur

Where the �rst connection can be done by a S1 or a R1, and the last
connection can be done by S2 and R2. All this possibilities depend on the
region where Ur lies.

3.3.3.1 Analyzing the E�ect of the Steady Shock

As we know, in the case of the Ion transport across the cell, the ions densities
are unequal. In order to generate some analytical results to have an steady
shock we assume that our system behaves approximately like a gas dynamic
problem, thus we expect equal pressures, i.e. P+ = PL = P , as well as the
same velocities in the discontinuity u+ = u− = u. Which in the Conservation
case result to be the Riemann Invariants for a Contact Discontinuity in the
Euler Equations.

Now we expect to �nd a relation from the new Steady Shock Equations.
First since u+ = u− = u. we multiply the �rst shock condition by u and
substitute into the second and as P+ = PL = P we get.

u± =
α2

α1

We know from the P-system that vacuum appears in the Riemann Prob-
lem when u is increasing, which is consistent with the latter relation, where
the �mass source� is inversely proportional to the velocity.

Expanding (3.117) we know
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1

2
ρ+u

3
+ + ρ+u+e+ + P+u+ −

1

2
ρ−u

3
− − ρ−u−e− − P−x−u− = −α3Hx

1

2
ρ+u

2
+ + ρ+e+ + P+ −

1

2
ρ−u

2
− − ρ−e− − P−x− =

−α3

u
Hx

Knowing the fact from the Second Thermodynamic Law and the shape of
the pressure we know e = c2

γ(γ−1)
= γP

ργ(γ−1)
= P

ρ(γ−1)
plugging it into the latter

equation

1

2
ρ+u

2
+ + ρ+

P+

ρ+(γ − 1)
+ P+ −

1

2
ρ−u

2
− − ρ−

P−
ρ−(γ − 1)−

− P−x− =
−α3α1

α2

Hx

1

2
(ρ+u

2
+ + P+ − ρ−u2

− − P−x−) =
−α3α1

α2

Hx

−α2

2
Hx =

−α3α1

α2

Hx

The result is the relation

α3 =
1

2

α2
2

α1

We recall that α1, α2 and α3 represent the sources of mass, momentum
and energy, respectively. Thus the latter relation represents the kinetic en-
ergy into the system by the action of the sources.

In our problem this term is similar to a kinetic energy (rate of change of
the energy) so this could be the one delivered by the ATP molecules in the
ion pump. Moreover with the previous relations we can �nd

u = 2α3α1

on which we can conclude that is possible to have an increment of mass
in the system having steady densities as long as we don't add energy to it.

3.3.4 Self similar Viscosity Approach for the Riemann

Problem in Isentropic Gas Dynamics with added

source

The main idea of this section is to present the �rst steps needed to proof
the existance of solutions for the Euler equations with sources, following
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similar procedure as in [11] and [5].We consider the one dimensional system
describing the isentropic motions of inviscid gases

{
ρt + (ρu)x = 0

(ρu)t + (p+ ρu2)x = α2Hx

x ∈ R, t > 0

where ρ, u, and p(ρ) represent respectively the density, velocity and pres-
sure.

We assume that the pressure function p(ρ) satisfy

p′(ρ) > 0 for ρ > 0

p(ρ)→∞ as ρ→∞ and p(ρ)→ 0 as ρ→ 0

with the initial data

(ρ(x, 0), u(x, 0)) =

{
(ρ−, u−), x < 0

(ρ+, u+), x > 0

This system can be described in terms of the variable ξ = x
t
, so it can be

rewritten as

(P ) ≡

{
−ξρ′ + (ρu)′ = 0

−ξ(ρu)′ + (p+ ρu2 − α2H)′ = 0

The goal through this subsection is to �nd, justify and analyze a solution
for the latter system with a self similar viscosity approach, ie. the system

(Pε) ≡

{
−ξρ′ + (ρu)′ = 0

−ξ(ρu)′ + (p+ ρu2 − α2H)′ = εu′′
ε ∈ (0, 1), (3.132)

with {
ρ(±∞) = ρ±
u(±∞) = u±
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3.3.4.1 Weak Solution

Now we try to �nd a weak solution for (3.132) . Multiplying the �rst equation
by the test function ψ ∈ C1

c (R) we have.

ˆ
(−ξρ′)ψdξ +

ˆ
(ρu)′ψdξ = 0

After an integration by parts becomes the �rst term becomes

´
(−ξρ′)ψdξ =

´
(ξρ−

´
ρdξ)ψ′dξ

=
´

(ξρ)ψ′dξ +
´
ρψdξ

And the second one

´
(ρu)′ψdξ = −

´
(ρu)ψ′dξ

Hence (3.132.1) has a weak form as

ˆ
(ξ − u)ρψ′dξ +

ˆ
(ρu)′ψdξ = 0

Following the same steps for (3.132.2)

´
−ξ(ρu)′ψdξ +

´
(p+ ρu2 − α2H)′ψdξ −

´
εu′′ψdξ = 0

solving for each term

´
−ξ(ρu)′ψdξ =

´
(ξρuψ′ − ψ′

´
ρudξ)dξ

=
´
ξρuψ′dξ +

´
ρuψdξ

ˆ
(p+ ρu2 − α2H)′ψdξ = −

ˆ
(p+ ρu2 − α2H)ψ′dξ

−
ˆ
εu′′ψdξ = ε

ˆ
u′ψ′dξ

Therefore the de�nition in the weak sense of (3.132) is

ˆ
(ξ − u)ρψ′dξ +

ˆ
(ρu)′ψdξ = 0 (3.133)

ˆ
[(ξ − u)ρu− p+ εu′ + α2H]ψ′dξ +

ˆ
ρuψdξ = 0

so the functions (ρ, u) are solutions of (3.132) if they satisfy the latter
weak de�nition of the system, with ψ ∈ C1

c , ρ > 0, where ρ ∈ L∞loc(R) and
u ∈ W 1

loc(R).



CHAPTER 3. MODELS 78

From the Weak formulation it can be seen that as ρ ∈ L∞loc(R) implies
that ρu ∈ L1

loc(R) which are the weak derivatives of (ξ−u)ρ and (ξ−u)ρu−
p + εu′ + α2H respectively which belong to the space W 1

loc(R) and hence
continuous a.e. C(R− {0}) .

Theorem 6. Let (ρ, u) be a solution of (3.132). Then (i) for a, b ∈ R,

[(ξ − u)ρ]ba +
´ b
a
ρdξ = 0

[(ξ − u)ρu− p+ εu′ + α2H]ba +
´ b
a
ρudξ = 0

(3.134)

(ii)u, (ξ − u)ρ and −p + εu′ + α2H are continuous a.e. on R − {0} . If
p ∈ Cn(Ru)for n ≥ 0, then ρ and u are Cn+1(R+)for all ξ such that ξ 6= u(ξ).

Proof. We already saw that u, (ξ − u)ρ and −p+ εu′ + α2H are continuous
on R− {0}. Fix a, b ∈ R with a < b and consider

ψn(ξ)



0 −∞ < ξ ≤ a− 1/n

n(ξ − a) + 1 a− 1/n ≤ ξ ≤ a

1 a ≤ ξ ≤ b

−n(ξ − b) + 1 b ≤ ξ ≤ b+ 1/n

0 b+ 1/n ≤ ξ < +∞

As ψn /∈ C1
c (R) it cannot be directly used as a test function. However,

since ψn is Lipschitz continuous, it can be approximated by C
1
n(R) functions.

Let the sequence ψkn /∈ C1
c (R) converge to ψn as k →∞. If we put ψkn in the

place of ψ in (3.133.2), then we get

ˆ
[(ξ − u)ρu− p+ εu′ + α2H](ψkn)′dξ +

ˆ
ρuψkndξ = 0

Taking the limit k →∞, we obtain

n
´ a
a−1/n

[(ξ − u)ρu− p+ εu′ + α2H]− n
´ b+1/n

b
[(ξ − u)ρu− p+ εu′ + α2H]

+
´ b+1/n

a−1/n
ρuψndξ = 0

(3.135)
The Lebesgue Di�erentiation Theorem states that for almost every point,

the value of an integrable function is the limit of in�nitesimal averages taken
about the point, i.e. if a real or complex valued function f mapping a
measurable set A to the Lebesgue Integral

´
A
fdy where dy denotes the

n-dimensional Lebesgue measure, then the derivative of this integral at x is
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de�ned to be lim 1
|B| =

´
B
fdy when B → 0 being B a ball centered at x.

The Lebesgue Convergence Theorem provides su�cient conditions under
which two limit processes commute, namely Lebesgue integration and al-
most everywhere convergence of a sequence of functions. The statement
says, assume that the sequence {fn} converges pointwise to a function � and
is dominated by some integrable function g i.e. |fn(x)| ≤ g(x) ,where in our
case |ρuψn| ≤ |ρu| ∈ L1

loc . Then the limiting function � is integrable and
lim
´
S
fndµ =

´
S
fdµas n→ 0 .

Due to the a.e. property of the Theorems we can apply the former to the
�rst two terms and the latter to last one in (3.135) getting then (3.134.2). A
similar statement show (3.134.1) .

Now taking (ii), owing to the weak formulation of the system (3.133)
(ξ−u)ρ is continuous, hence ρ is continuous at ξ if ξ 6= u(ξ). From (3.134.2)

εu′(ξ) =
´ ξ
a
ρ(ς)u(ς)dς − [(ξ − u(ξ))ρ(ξ)u(ξ)− p(ρ(ξ)) + α2H(ξ)]

+[(ξ − u(a))ρ(a)u(a)− p(ρ(a)) + εu′(a) + α2H(a)]
(3.136)

we have to remember that the Heavyside function H(ξ) = 0 for values of
ξ < 0 .

If p is C0(R), u is C1at ξ 6= u(ξ) and ξ 6= 0. It can also be said from
(3.134.1),

(ξ − u(ξ))ρ(ξ)+ =

ˆ
ρ(ς)dς + (a− u(a))ρ(a)

Applying the derivative respect to ξ to the last equation we are able to
�nd an expression for ρ′ continuously dependant on u′. Therefore if p is
Cn(R) we can consider (ρ, u) ∈ Cn+1(R)as long as ξ 6= u(ξ) and ξ 6= 0.

The demonstration that the singular point of a solution (ρ, u) in (76) is
unique is demonstrated in [5] Lemma 4 where we �nd out that u(ξ) = ξ is a
unique point in our problem (Pε) and moreover two important relations are
shown for some τ > 0 small in (s, s + τ) we have u(ξ) < ξ and in the case
that (s− τ, s) then ξ < u(ξ) . The proof is the same since the conservation
of momentum equation remains sourceless in our case. The only restriction
to keep in consideration here is that the jump due to the source α2 located
at 0 should be small enough to keep the relations previously shown.
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3.3.5 Monotonicity Properties

The monotonicity of solutions plays a key role in our problem. It can be easily
veri�ed that, at a point of smoothness, the solution (ρ, u) of (Pε) satis�es{

(u− ξ)ρ′ + ρu′ = 0

(u− ξ)ρu′ + p(ρ)′ − α2H
′ = εu′′

Before starting with the monotonicity properties lets do some important
remark: the singularity in this equations appear when the term (u − ξ) is
zero, i.e. in the �x point of u, di�erent from case of P-system that it appear
in ξ = 0. Next we want to analyze the behavior of (ρ, u) in a neighborhood
of the singular point ξ = s, ξ = 0, and ξ = ±∞. From the latter we know

ρ′ =
ρu′

(ξ − u)
(3.137)

εu′′ =
{(ξ − u)2 − p′(ρ)}

ξ − u
ρu′ − α2H

′

where H ′ is equal to the Dirac delta function δ which is 0 everywhere
except in 0 . Since we know that due to the source we will have a steady
jump in 0 for our solution, we can neglect this point, thus the latter equation
can be written in a di�erential form

d

dξ

[
u′(ξ) exp

{
1

ε

ˆ ξ {(ς − u)2 − p′(ρ)}ρ
ς − u

dς

}]
= 0 (3.138)

keeping in mind that if p ∈ C0(R) then u ∈ C1(R)as long as ξ 6= u(ξ),
ξ 6= 0 after doing an integration through ξ we get

u′(ξ) =


u′(α+) exp

{
−1
ε

´ ξ
α+
{(ς−u)2−p′(ρ)}ρ

ς−u dς
}
, s < ξ

u′(α0) exp
{
−1
ε

´ ξ
α0

{(ς−u)2−p′(ρ)}ρ
ς−u dς

}
, 0 < ξ < s

u′(α−) exp
{
−1
ε

´ ξ
α−
{(ς−u)2−p′(ρ)}ρ

ς−u dς
}
, ξ > 0

for 0 < s

for any α±0 such that 0 < s < α+, α− < 0 and 0 < α0 < s. In the case
where the source α2H is located before the singularity s, i.e. 0 < s. And

u′(ξ) =


u′(α+) exp

{
−1
ε

´ ξ
α+
{(ς−u)2−p′(ρ)}ρ

ς−u dς
}
, 0 < ξ

u′(α0) exp
{
−1
ε

´ ξ
α0

{(ς−u)2−p′(ρ)}ρ
ς−u dς

}
, s < ξ < 0 for s < 0

u′(α−) exp
{
−1
ε

´ ξ
α−
{(ς−u)2−p′(ρ)}ρ

ς−u dς
}
, ξ > s
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for any α±0 such that 0 < α+, α− < s and s < α0 < 0 when the s < 0 .
Since the exponential is always positive u is strictly monotone on the

domains {(s,∞), (0, s), (−∞, 0)} for 0 < s and {(0,∞), (s, 0), (−∞, s)} for
s < 0 .

Is clear that thanks to (3.137) that ρ when 0 < s has the same monotonic-
ity as u on (s,∞) while holds the opposite in (0, s) and(−∞, 0) . When s < 0
the monotonicity of ρ is equal to u in (−∞, s) and opposite in (s, 0), (0,∞)
. Since we are only interested in solutions of ρ(ξ) > 0 due to our hypothesis
then we will continue only focusing in the case u′(ξ) for 0 < s.

The monotonicity of the positive solution ρ ∈ L∞ implies that

0 < k ≤ ρ(ξ) ≤ K <∞, ξ ∈ R

where k and K depend only on ρ±and ρ(s±) = limξ→s± ρ(ξ).Under the
hypothesis made that p′(ρ) > 0 for ρ > 0 we can say that p′(ρ) is bounded
by

0 < a0 ≤ p′(ρ) ≤ A0, ξ ∈ R

where a0 and A0 may depend on k and K.

Theorem 7. Let (ρ, u) be a solution of (Pε) with a unique singular point
s ∈ R where 0 < s . (i) There exists three constants α− < 0 < s ,0 < α0 < s,
0 < s < α+, depending on a0 and k, such that

|u′(ξ)| ≤ |u′(α+)|
∥∥∥ ξ−s
α+−s

∥∥∥αε , 0 < s < ξ < α+

|u′(ξ)| ≤ |u′(α0)|
∥∥∥ ξ−s
α0−s

∥∥∥αε , 0 < α0 < ξ < s

|u′(ξ)| ≤ |u′(α−)|
∥∥∥ ξ−s
α−−s

∥∥∥αε , α− < ξ < 0 < s

(ii) There exists three constants β− < 0 < s , 0 < β0 < s and 0 < s < β+,
depending on A0, and a constant β > 0 , depending on A0 and k , such that

|u′(ξ)| ≤ |u′(β+)| exp

{
−β

ε

((
ξ−s
β+−s

)2

− 1

)}
, 0 < s < ξ < β+

|u′(ξ)| ≤ |u′(β0)| exp

{
−β

ε

((
ξ−s
β0−s

)2

− 1

)}
, 0 < β0 < ξ < s

|u′(ξ)| ≤ |u′(β−)| exp

{
−β

ε

((
ξ−s
β−−s

)2

− 1

)}
, β− < ξ < 0 < s
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(iii) u′(s) = 0 for the pressure p ∈ Cn(R+), n ≥ 1, the solution (ρ, u) has
the regularity

ρ ∈ C(R) ∪ Cn+1(R− {s} − {0}) ; u ∈ C1(R) ∪ Cn+1(R− {s} − {0})
(3.139)

Proof. u(ξ)→ u+as ξ →∞ and u′(s) is �nite from (3.136). We have u(ξ) < ξ
on (s,∞) when 0 < s. Thus there is a positive constant b dependant on α2

such that =b(ξ=s) + s < u(ξ) < ξ always holds on (s,∞) (see Figure ). Let
α+ be a constant such that s < α+ < s + θ

b+1
with θ =

√
a0. Then for all

ς ∈ (s, α+).

(ς − u)2=p′(ρ)ρ

ς − u
≤
{

(1 + b)(α+ − s)2 − θ2

(1 + b)

}
ρ

ς − s
≤ −α 1

ς − s
< 0

with

α =
(θ2 − (1 + b)2(α+ − s)2)k

1 + b

Then α is positive and from (3.138)

|u′(ξ)| ≤ |u′(α+)| exp

{
α

ε

ˆ ξ

α+

1

ς − s
dς

}
= |u′(α+)|

(
ξ − s
α+ − s

)α
ε

for all ξ ∈ (s, α+) . The second and third statement of (i) can be proved
similarly since ξ < u(ξ) for (−∞, 0), (0, s).

Now we prove for (ii). Fix β+ > s + max{2(u+ − u−), 2
√

2Θ} with
Θ =

√
A0. Then, for any ξ ∈ (β+,∞),ξ − u(ξ) ≥ 1

2
(ξ − s) and

{(ς − s)2 − p′(ρ)}ρ
ς − u

≥
{

1

2
− 2Θ2

(ς − s)2

}
ρ(ς − s) ≥ k

4
(ς − s) > 0

Set

β =
(β+ − s)2

2

k

4

Then β is positive and
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|u′(ξ)| ≤ |u′(β+)| exp
{
− 2β
ε(β+−s)2

´ ξ
β+
ς − sdς

}
= |u′(β+)| exp

{
−β

ε

((
ξ−s
β+−s

)2

− 1

)}
As in (i) the proof for the second and third statement in (ii) are similar.
Part (i) implies regularity for u′ near the singular point ξ = s and specially

that u′(s) = 0 . Since −p(ρ) + εu′ + α2H
′ is continuous in R − {0}, ρ is

also continuous due to the proportionality between p(ρ) and ρ. Hence the
regularity of the solutions (ρ, u) is improved to (3.139).

3.3.6 A-priori Estimates

In this section we will consider the solutions of the following system in −∞ <
ξ <∞ {

(u− ξ) ρ′ + ρu′ = 0

(u− ξ) ρu′ + p′(ρ) = εu′′ + α2Hx

(3.140)

with the boundary conditions:

ρ(±∞) = ρ− + µ(ρ± − ρ−) 0 ≤ µ ≤ 1
u(±∞) = u− + µ(u± − u−)

Notice that the boundary conditions for ρ are all positive, so the family of
solutions of this system have the same regularity and monotonicity derived
before. The goal of this section is to prove the following estimations of the
solutions are independent of µ and ε

0 < δ < ρ(ξ) < M

|u(ξ)| < M

this two in −∞ < ξ <∞, and

−b(ξ − s) + s < u(ξ) < a(ξ − s) + s

for s < ξ <∞

a(ξ − s) + s < u(ξ) < −b(ξ − s) + s
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Figure 3.22: Jump in u. 0 < s.

for −∞ < ξ < s. We have to prove also that 0 < a < 1 and 0 < b.
Combining the last two we get

A|ξ − s| < |u− ξ| < B|ξ − s|

with s 6= ξ.

Before starting the justi�cation of the previous estimates, we have to con-
sider and classify all the possible behaviors of monotonicity of the solutions.
It's known that

ρ′ =
ρu′

(ξ − u)

so the monotonicity of ρ will be dependent of the monotonicity of u and
the sign of (ξ−u). As seen before LEMMA 4 from [5] if s < ξ then ξ > u and
the opposite relation holds when ξ < s. Considering this we have to di�erent
options, one is when 0 < s, the result of monotonicities is then summarized
in Table (3.1).

The other option is when we have the case of s < 0, so the regions will
change and the results are summarized in Table (3.2).

We want to prove that the constants that bound the solutions are inde-
pendent of µ and ε, we will prove this in the case that α2 is such that the
jump in the velocity is small enough not to over pass the value of u+or u−(i.e.
the asymptote), see Figure (3.22) or Figure (3.23)6. In other words, α2 such

6This two �gures are only examples on how the solution of u will be, and to give an
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Case u ρ

0 < s I II III I II III
1 ↓ ↓ ↑ ↑ ↑ ↑
2 ↑ ↑ ↓ ↓ ↓ ↓
3 ↓ ↓ ↓ ↑ ↑ ↓
4 ↑ ↑ ↑ ↓ ↓ ↑
5 ↓ ↑ ↑ ↑ ↓ ↑
6 ↑ ↓ ↓ ↓ ↑ ↓
7 ↓ ↑ ↓ ↑ ↓ ↓
8 ↑ ↓ ↑ ↓ ↑ ↑

Table 3.1: Monotonicity for 0 < s. I = (−∞, 0), II = (0, s), III = (s,∞)

Case u ρ

s < 0 I II III I II III
1 ↓ ↑ ↑ ↑ ↑ ↑
2 ↑ ↓ ↓ ↓ ↓ ↓
3 ↓ ↓ ↓ ↑ ↓ ↓
4 ↑ ↑ ↑ ↓ ↑ ↑
5 ↑ ↑ ↓ ↓ ↑ ↓
6 ↓ ↓ ↑ ↑ ↓ ↑
7 ↓ ↑ ↓ ↑ ↑ ↓
8 ↑ ↓ ↑ ↓ ↓ ↑

Table 3.2: Monotonicity for s < 0. I = (−∞, s), II = (s, 0), III = (0,∞)
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Figure 3.23: Jump in u. s < 0.

that the monotonicity of the solution doesn't change in a neighborhood of
0. So with this restriction we will give justi�cation about the bounds for the
solution only in the �rst four cases of tables (3.1) and (3.2).

Theorem 8. Let (u, ρ) be a solution of the system (3.140). If the solution
has the behavior of cases 1,2 or 3, in the tables (3.1) and (3.2), then there
exists (M , δ) constants bounding the solution, that are independent of µ and
ε. For solutions satisfying the behavior of case 4 in the same tables, there
exist a constant M independent of µ and ε such that bounds the solution.

Proof. First part, the existence of δ we can see that for cases 1 and 2 we can
take δ = min{ρ−, ρ+} and M = min{ρ−, ρ+}. For case 3 we can take the
same δ and for case 4 we can take the same M . Now we have to prove the
lower bound for the case 3, from [5] Lemma 67 we can see that this bound
exist and the value is max{ρ−, ρ+}+ 1

ξ−s(u− − u+).

Now lets justify the existence of A. Let8 τε[s + 1, s + 2] then is satis�ed
u′(τ) = u(s + 2) − u(s + 1) > u+ − u−, and lets consider the case where
s+ 1 < 0 and 0 < s+ 2, notice that u′(τ) is bounded even if τ is positive or
negative (in this range of s), this because α2 is such that the monotonicity

idea of how the geometry works, in the case of always decreasing monotonicity, but the
logic and proofs are analogous even if monotonicities are di�erent.

7We see in the proof that this is proven using only the density, and because in our
problem we have a source only in the equation of momentum, the same proof apply.

8We are considering this interval because we will use this τ to make the proof, and in
this range we can pass the discontinuity and �nd some α2 in the proof, the other cases of
s and τ are considered below.
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doesn't change near zero. Lets assume that τ > 0, so integrating the second
equation of (3.140) from ξ > s to τ we get

ρ(ξ)u2(ξ) + p(ρ(ξ))− εu′(ξ)− ρ(τ)u2(τ)− p(ρ(τ))+

εu′(τ)− α2H(ξ) + α2H(τ) = −
τˆ

ξ

ξ∗(ρu′)dξ∗ =

τˆ

ξ

ξ∗ (ρ(s− u))′ dξ∗−s
τˆ

ξ

ξ∗ρ′dξ∗ = [ξ (ρ(s− u))]τξ−
τˆ

ξ

(ρ(s− u)) dξ∗−s
τˆ

ξ

ξ∗ρ′dξ∗

τ (ρ(τ)(s− u(τ)))−ξ (ρ(ξ)(s− u(ξ)))−
τˆ

ξ

(ρ(s− u)) dξ∗−sρ(τ)u(τ)+sρ(ξ)u(ξ) ≤

≤ τ (ρ(τ)(s− u(τ)))−−sρ(τ)u(τ) + sρ(ξ)u(ξ)

then if ξ → s and because τ > 0, we have H(ξ) = 0 and H(τ) = 1 so we
�nd a condition that α2 has to satisfy in order to have A as wanted (for this
particular case of s and τ)

ρ(ξ)u2(ξ) + p(ρ(ξ))− εu′(ξ)− ρ(τ)u2(τ)− p(ρ(τ)) + εu′(τ) + α2 ≤

≤ τ (ρ(τ)(s− u(τ)))− sρ(τ)u(τ) + sρ(ξ)u(ξ)

moreover we get

p(ρ(s)) ≤ maxρ+<q<ρ(s+1){3qu∗ + p(q)}+ (u− − u+)− α2 ≡ A

where u∗ = max{|u−|, |u+|}, so A is independent of µ and ε. In the case just
described if we put τ < 0 the proof is the same but without α2. For the case
of s > 0 then τ > s and in this region there is no source so the proof is the
same without α2. The same happends if s+ 2 < 0 . Notice that if τ = 0 we
have a problem, because we cannot valuate the expressions here, but if for
τ > 0 and τ < 0 is bounded, and α2 doesn't change the monotonicity, then
for the equality to zero it should be bounded, and this �nishes all the cases.
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Now lets prove the bound for the velocity. For the cases 3 and 4 of the
tables is enough to have M = max{u−, u+}9. Now from the shape of the
solution we know that |u(ξ)| ≤ {|u±|, |u(s)|, |u(0±)|}, where 0± denotes the
value of the velocity in the limit from the left, and from the right, and we
know that this value is �nite because α2 is �nite, so the only thing is to prove
that the singular point u(s) = s is bounded. In [5] we �nd that this value
is bounded by u(s) ≤ u(α) + ρ−

ρ+−1
, where u(α) , α > s, then is we have a

discontinuity is obvious that u(s) can be bounded by

u(s) ≤ u(α) +
ρ−

ρ+ − 1
+max{|u(0+)|, |u(0−)|}

and this is independent of µ and ε. The proof for the case 1 is similar. This
completes the proof.

As seen in [5] the lower bound of case 4 can depend in ε.

Theorem 9. Assume that 0 < δε < ρ, and that α2 is such that the singular
point is unique10, then there exist constants 0 ≤ a ≤ 1 , 0 ≤ b dependins the
initial data and constants δ and M in the previous theorem such that they
satisfy the bounding of u.

Proof. From the system (3.140) we can get(
p′(ρ(ξ))− (u(ξ)− ξ)2 − α2H

′

ρ′(ξ)

)
ρ′(ξ) = εu′′(ξ)

.
Since we know that at the point where α2H

′ is valid, i.e. in 0 we will
have a �nite discontinuity. Hence we can say that for all the points in the
domain di�erent than 0 . 11(

p′(ρ(ξ))− (u(ξ)− ξ)2) ρ′(ξ) = εu′′(ξ)

Lets focus on some cases, �rst lets say that u is increasing on (s,∞).
Following exactly the same idea12 as Lemma 7 of [5], we should choose α2

such that

9Notice that this fact is true because we have that α2 is small enough.
10This means that the jump caused by α2 is small enough such the graph of y = u(ξ)

does not cross y = ξ more than one time.
11Since the jump of u in 0 will shift the graph a little bit, such that it does not overpass

the line y = ξ, the value of the constant a will just change a small amount but it will still
be less than 1.

12And using the same de�nitions and names.
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εu′′(ξ) < 0

(moreover in this region ρ′ > 0 so there is no problem with 1
ρ′

in the

expression) and then the value of a will be:

a ≤ max{1

2
,
2(u+ − s)−

√
a0

2(u+ −
√
a0)

< 1}

Now the case of u decreasing. choose α2 such that εu′′(ξ) > 0 (moreover
in this region ρ′ < 0 so there is no problem with 1

ρ′
in the expression). With

this restriction on the source Lemma 7 of [5] shows that a = 0 and 0 < b. 13

13Notice that this proof is somehow technical, and rigorous, but with the restrictions
given to α2 the results are obvious from the geometrycal point of view, as seen in the
Figures (3.1) and (3.2) and considering the strict monotonicities.



Conclusions

In this thesis we mean to develope a more robust model for the ion transport
in the cell membrane based on the idea of [4]. We introduce the Ion pumps
into the model, since they are an important active process for the ion trans-
port. By doing this we expect to develope a model where the gathing for
the Ion channels can also be included, allowing us to incorporate the biogical
behaviour seen in the cells as the resting and action potential, developing a
more complete model for this problem.

In the �rst chapter it has been presented all the theoretical background
needed to understand the problem whereas in the second chapter a few ap-
plications were described; due to this work is meant to be the beggining of a
deeper research, this can be regard as small set of goals for future works.

The third chapter introduces the mathematical background needed to do
the model, the �rst approach to model the ion transport taking into account
the ion pumps was done by analyzing the P-system with added sources and a
forced steady shock in the origin. The existence of solutions for the Riemann
problem in here was done with a speci�c pressure law, using a self-similar
viscosity approach as in [11]. A more general model was introduced adding
sources and steady shock to the Euler equations, this show us the e�ect of the
forced contact discontinuity, which introduce a kinetic energy to the system,
important remark and justi�cation to keep working in this model since it
cames up naturally in the mathematics the energy from the ATP molecules
consumed by the Ion pumps. Using the self-similar viscosity approach in
this latter model with a source in the momentum equation it was possible to
conclude that the solution for the density and the velocity are continues and
monotonic in regions I,II and III of the domain (see section 3.3.5), except on
the origin, in the case of not vanishing viscosity. Also we have done some nu-
merical calculations (solutions of a simpli�ed model) to sketch the appearance
of the results showing the two intermediate states connecting the initial data.
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Appendix

Equivalence of systems.

Here we will justify the equivalence of the systems (3.141) and (3.142). This
will help to compute the eigenvalues and eigenvectors of the system in a more
easy way.


ρt + (ρu)x = 0

(ρu)t + (p+ ρu2)x = 0(
ρ(u

2

2
+ e)

)
t
+
(
ρu(u

2

2
+ e) + pu

)
x

= 0

(3.141)


ρt + (ρu)x = 0

ut + uux + pxρ = 0

st + usx = 0

(3.142)

The system (3.141) has the form Ut + F(U)x = 0 so the eigenvalues and
the eigenvectors are given by the Jacobian, due to the relations of the un-
knowns in the equations, the Jacobian is hard to compute.

In (3.142) the shape is Ut + F(U)Ux = 0 (quasilinear), since here F is
a matrix, eigenvalues and eigenvectors are given by it, which is easier to solve.

We shall proof that both systems are equivalents, then the eigenvalues
that we got in (3.142) correspond also for (3.141).

Proof. First we verify that equations (3.141)1 and (3.142)1 are the same, then
for simplicity in the following process we write it down as

ρt = −(ρu)x (3.143)

91
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Then we �nd the equivalence for the second equation on the systems. We
expand (3.141)2 and substitute after (3.143) obtaining thus (3.141)2 is the
same as (3.141)1

(ρu)t + (p+ ρu2)x = (ρ)tu+ (u)tρ+ px + ρxu
2 + 2ρuux

= −(ρu)xu+ utρ+ px + ρxu
2 + 2ρuux

= −(ρ)xu
2 − uxuρ+ utρ+ px + ρxu

2 + 2ρuux

utρ+ px + ρuux = ut + uux + px/ρ = 0

The equation in (3.141)3 is described in terms of energy while (3.142)3
is expressed with the entropy, we need to relate this unknowns. The second
law of thermodynamics asserts a relation between energy and entropy.

TdS = de+ pdv = de+ pd

(
1

ρ

)
(3.144)

where T is temperature, v = 1/ρ dS, de, dv are di�erentials of entropy, en-
ergy and density volume respectively.

The derivative of (3.144) respect to time t and space x give us.

et = TSt +
p

ρ2
ρt (3.145)

ex = TSx +
p

ρ2
ρx (3.146)

(3.147)

Expanding (3.141.3) and using (3.143)we have

(
ρ(
u2

2
+ e)

)
t

+

(
ρu(

u2

2
+ e) + pu

)
x

=

=

(
ρt(

u2

2
+ e)

)
+ ρ

(
u2

2
+ e

)
t

+ (ρu)x (
u2

2
+ e) + (ρu) (uux + ex) + (pu)x + (pu)x

= ρ(uut + et) + (ρu) (uux + ex) + (pu)x

Then using the relations of the derivatives of the energy and (3.142.2) we
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can write the latter equation as

ρ(uut + TSt +
p

ρ2
ρt) + (ρu) (uux + TSx +

p

ρ2
ρx) + upx + pux =

= ρ(uut + TSt +
p

ρ2
ρt) + (ρu) (uux + TSx +

p

ρ2
ρx) + upx + pux

= ρu

(
ut + uux +

px
ρ

)
+
p

ρ
[−(uρ)x + (uρx + uxρ)] + TρSt + TρuSx

Tρ(St + uSx) = St + uSx = 0

As we have seen the equations are equivalent so the eigenvalues and eigen-
vectors hold for both systems. We want to introduce the system.


ρt + (ρu)x = α1δ(x)

(ρu)t + (p+ ρu2)x = α2δ(x)(
ρ(u

2

2
+ e)

)
t
+
(
ρu(u

2

2
+ e) + pu

)
x

= α3δ(x)

(3.148)

where Hx = δ(x) is the delta-Dirac as the derivative in space of the Heaviside
function, since we are trying to add a point-source to the system.
As (3.148) can be represented as (3.141) and due to the eigenvalues in that
case can be computed with the Jacobian, the point-source term vanishes, let
it then the same eigenvalues and eigenvectors as in (3.141) and (3.142).

Table Parameters

Knowing that systems (3.141) and (3.142) are equivalent, we can compute the
eigenvalues and eigenvectors. From the system (3.142) we have the Jacobian. u ρ 0

pρ/ρ u ps/ρ
0 0 u


The characteristic equation for the eigenvalues is given by

(u− λ)[(u− λ)2 − pρ] = 0

Hence with c =
√
pρ the eigenvalues are: λ1 = u− c,λ2 = u and λ3 = u+ c,

with the corresponding eigenvectors (ρ,−c, 0)t, (ps, 0,−pρ)t and (ρ, c, 0)t.
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Riemann Invariants

Now we take the Riemann invariants. Since we are in R3 then we should
have 2 Riemann invariants for each eigenvalue. From the de�nition we know
that 〈r,∇uw〉 = 0, so

� for λ1:

〈(ρ,−c, 0)t, (wρ, wu, ws)〉 = 0 then ρwρ − cwu = 0 .

So the Riemann Invariants are dictated by

w = s, u− h

� For λ2 we have.

〈(ps, 0,−pρ)t, (wρ, wu, ws)〉 = 0 then pswρ − pρws = 0

The Riemann Invariants in this case are:

w = u, p

� And for λ3 the results are:

〈(ρ, c, 0)t, (wρ, wu, ws)〉 = 0 then rhowρ + cwu = 0

with Riemann Invariants:

w = s, u+ h

//

Where h(ρ, s) satis�es hρ = c/ρ and is called enthalpy.

Linearly Degenerate and Genuinely nonlinear

To �nish with the table data, we check for linearly degenerate (∇λk · rk = 0
) and genuinely nonlinear (∇λk · rk 6= 0 ) conditions.

� For λ1

∇λk · (ρ,−c, 0) = c− pcρ
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� For λ2

∇λk · (ps, 0,−pρ) = 0

� For λ3

∇λk · (ρ, c, 0) = c+ pcρ

Hence with c =
√
pρ , the eigenvalues are: λ1 = u−c,λ2 = u and λ3 = u+c,

with eigenvectors (ρ,−c, 0)t, (ps, 0,−pρ)t and (ρ, c, 0)trespectively.

Scalling of the Hydrodynamical Model

Having justify the use of the Hydrodynamical model to describe our concern-
ing problem now the goal is to scale the system, to do this we need some
scaling factors for all the variables. For computational reasons, we will de�ne
the density of current J = nv. Now the scaling is as follows

Symbol Meaning Scaling Factor Scale Transition*
n Ion density ni given by max(nD) ns = n

ni

nD Permanent density distribution ni nDs = nD
ni

x Space variable L (channel length) xs = x
L

t Time variable t∗ given by t∗ = kBT0
q

ts = t
t∗

T Temperature variable T0 Ts = T
T0

v Velocity L
t∗

Vs = V
L/t∗

Φ Potential kBT0
q

φs = φ/
(
kBT0
q

)
p Momentum variable mni

L
t∗

ps = p/
(
mni

L
t∗

)
Table 3.3: Scaling Factors

Let's start with equation (3.5), substituting J and E = −Φx in the equa-
tion, it reads:

Jt +

(
J2

n

)
x

+

(
kB
m
nT

)
x

= − e

m
nΦx −

(
J

τp

)
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Symbol Meaning Value

κ Thermoconductivity 3µ0k
2
BT0/2e

µ0 Mobility
m Mass
e Charge
kB Boltzman constant

Table 3.4: Variables

The next step is to substitute the scaling factors in the equation, e.g. we
will put x→ Lxs:

1

t∗
kBT0nit

∗

mL
Jst +

k2
BT

2
0 n

2
i t
∗2

m2L3ni

(
J2
s

ns

)
x

+
kBT0ni
mL

(nsTs)x =

− eni
mLkBT0

kBT0

e
nsΦsx −

kBT0nit
∗

mL

(
Js
τp

)
Now eliminating constants we arrive at:

Jst +
kBT0t

∗2

mL2

(
J2
s

ns

)
x

+ (nsTs)x = − e

kBT0

kBT0

e
nsΦsx −

(
t∗Js
τp

)
Using the relation k0T0 = mL2

t∗2
and de�ning 1

τ
= t∗

τp
we get the adimen-

sional form of (3.5):

Jst +

(
J2
s

ns

)
x

+ (nsTs)x = −nΦsx −
(
J

τ

)
Returning to the original variable p and dropping the "s" we have the

adimentional form of (3.5):

pt + (pv + nT )x = nE −
(p
τ

)
(3.149)

Now we scale for the Conservation of Mass

nt + (nv)x = 0

Scaling (substituting for the scale factor and the scaled variable) we reach

nt + (nv)x =
(ni
t∗

)
(ns)ts +

[
(niL)

ts
(nsvs)

]
xs

(
1

L

)
= (ns)ts + (nsvs)xs = 0
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Dropping the subindex s our Dimensionless Conservation of Mass equation
is

nt + (nv)x = 0 (3.150)

Scaling the Poisson Equation we have.

−λφxx = e(n+ nD)

Substituting.

−λφxx = e(n+ nD)

− λ

L2
φxsxs = e(nins + ninDs)

− λ

L2
φxsxs = eni(ns + nDs)

−λ∗φxsxs = (ns + nDs)

With λ∗ = λ
eL2ni

.
Dropping the subindex "s" we have

− λ∗φxx = n+ nD (3.151)

Continuing with scaling, we will take equation (3.6). As before we will
rewrite the equations in terms of J , �rst in the de�nition of w

w =
3

2
nkBT +

1

2
nmv2 =

3

2
nkBT +

m

2

J2

n

and then we put everything in (3.6)

3

2
kB(nT )t +

m

2
(
J2

n
)t +

3

2
kB(JT )x +

m

2
(
J3

n2
)x + kB(JT )x

= −eJΦx −
3kB
2τw

n(T − T0)− m

2τw
(
J2

n
) + (κnTx)x

Using the scaling factors de�ne above

3kBniT0

2t∗
(nsTs)t +

m

2

k2
BT

2
0 n

2
i t
∗2

m2L2nit∗
(
J2
s

ns
)t +

3k2
BT

2
0 nit

∗

2mL2
(JsTs)x +

m

2

k3
BT

3
0 n

3
i t
∗3

m3L4n2
i

(
J3
s

n2
s

)x +
k2
BT

2
0 nit

∗

mL2
(JsTs)x = −ek

2
BT

2
0 nit

∗

emL2
JsΦsx −

3kBniT0

2τw
ns(Ts − 1)− m

2τw

k2
BT

2
0 n

2
i t
∗2

m2L2ni
(
J2
s

sn
) +

niT0

L2
(κnsTsx)x
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Using the relation k0T0 = mL2

t∗2
and eliminating terms we arrive at

3

2
(nsTs)t +

1

2
(
J2
s

ns
)t +

3

2
(JsTs)x +

1

2
(
J3
s

n2
s

)x + (JsTs)x =

−JsΦsx −
3t∗

2τw
ns(Ts − 1)− t∗

2τw
(
J2
s

ns
) +

t∗

kBL2
(κnsTsx)x

De�ning 1
τ ′

= t∗

τw
and α = t∗κ

kBL2 we arrive at the adimentional equation

3

2
(nsTs)t +

1

2
(
J2
s

ns
)t +

3

2
(JsTs)x +

1

2
(
J3
s

n2
s

)x + (JsTs)x =

−JsΦx −
3

2τ ′
ns(Ts − 1)− 1

2τ ′
(
J2
s

ns
) + (αnsTsx)x

Returing to the variable ws, the adimentional version of w and dropping
the "s" we get

wt + (vw + nvT )x = −nvΦx −
w − 3

2
n

τ ′
+ (αnTx)x (3.152)

In summary the equations are

nt + (nv)x = 0

pt + (pv + nT )x = nE −
(p
τ

)
wt + (vw + nvT )x = −nvΦx −

w − 3
2
n

τ ′
+ (αnTx)x

−λ∗φxx = n+ nD

Simulations Example Code

This part of the code was used to compute numerically the intermediate
states for region I, and plot the solution path in phase space.

function [resp1,resp2,resp3,resp4] = SolucionSR(rL,uL,rR,uR,A1,A2,k,g,reg)
a1=0; a2=0;
if (reg==1)
f = @(x)uL+(2/(g-1))*( sqrt(P(k,x,g)*g./x) - sqrt( P(k,rL,g)*g./rL ) )-
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(A2/A1);
rhomin=fzero(f,1);
plot(rhomin,A2/A1,'x');
% Value and plot of rho+
f = @(x)-uR+A2/A1-sqrt(B(rR,x,A2/A1,a1).^2-4*A(rR,x).*...
C(rR,x,A2/A1,a1,a2,k,g))./(2*x*rR);
rhomas=fzero(f,1);
plot(rhomas,A2/A1,'o');
resp1=rhomin;
resp2=A2/A1;
resp4=resp2;
resp3=rhomas;
%Plot of UR plot(rR,uR,'+');
%Plot of solution path in Region I
r2=rhomas:.01:rR;
U2=A2/A1-sqrt(B(r2,rhomas,A2/A1,a1).^2-4*A(r2,rhomas).*...
C(r2,rhomas,A2/A1,a1,a2,k,g))./(2*rhomas*r2); plot(r2,U2,'k')
r2=rL:.01:rhomin;
R2=uL+(2/(g-1))*( sqrt(P(k,r2,g)*g./r2) - sqrt( P(k,rL,g)*g./rL ) );
plot(r2,R2,'k');

if (rhomas<=rhomin)
r3=rhomas:.01:rhomin;
else
r3=rhomin:.01:rhomas;
end

plot(r3,r3*0+A2/A1,'k');
end
% Region I ends����

This part of the code was used to plot the solution in space and time for
region I. Some functions are note presented here.

function sim = canalRS(s1,s2,s3,uL,uR,um,uM)
% domx is the value of the extremes of the interval.
%Domain in x.
domx=30;
% Values to adjust the graohic
y1=uL-0.5; y2=uR+0.5;
% With larger frames, �rst adjust the �gure's size to �t the movie:
�g = �gure('position',[100 100 850 600]);
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%Do the plots and animation.
for n=1:25
% Values of x in time n.
tn=n;
x1n=-tn/s1;
x2n=-tn/s2;
x3n=tn/s3;

%Needed in the �rs plot.
X1n=-domx:0.01:x1n;
Xrare=x1n:0.01:x2n;
Xint1=x2n:0.01:0;
Xint2=0:0.01:x3n;
X3n=x3n:0.01:domx;
cosen=coseno(Xrare,um,uL,x2n,x1n);
v1=vectorshock(X1n,uL);
v2=vectorshock(Xint1,um);
v3=vectorshock(Xint2,uM);
v4=vectorshock(X3n,uR);
V=[v1 cosen v2 v3 v4];

if n==1

% Plots the initial condition
xm=-domx:0.01:0;
xM=0:0.01:domx;
subplot(2,1,2);
plot(xm,0*xm+uL,'k',[0 0],[uL uR],'k',xM,0*xM+uR,'k');
title('Channel side view. Density plot.');
xlabel('x');
ylabel('Density');
axis([-domx domx y1 y2]);
X1prim=-domx:0.01:0; X2prim=0:0.01:domx;
V1prim=vectorshock(X1prim,uL);
V2prim=vectorshock(X2prim,uR);
Vprim=[V1prim V2prim];
subplot(2,1,1);
imagesc(Vprim);
title('Channel top view. Density plot.'); xlabel('x'); ylabel('y')
colorbar('location','NorthOutside')
colormap(jet);
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ylim([-2 4]);
F(1)=getframe(�g);
else
% Plots in time n>0:
%�����Graphic 2����-
subplot(2,1,2);
plot(X1n,0*X1n+uL,'k',Xrare,cosen,'k',Xint1,Xint1*0+um,'k',[0 0],...
[um uM],'k',Xint2,Xint2*0+uM,'k',[x3n x3n],[uM uR],'k',X3n,X3n*0+uR,'k');
title('Channel side view. Velocity plot.'); xlabel('x'); ylabel('Density');
axis([-domx domx y1 y2]);
%������������
%�����Graphic 1����-
subplot(2,1,1);
imagesc(V);
title('Channel top view. Velocity plot.'); xlabel('x'); ylabel('y')
colorbar('location','NorthOutside')
colormap(jet);
ylim([-2 4]);
%������������
F(n) = getframe(�g);
end

end
[h, w, p] = size(F(1).cdata);
% use 1st frame to get dimensions hf = �gure;
% resize �gure based on frame's w x h, and place at (150, 150)
set(hf, 'position', [150 150 w h]);
axis o�
movie(hf,F,1,2);

For the other regions the code is similar.

Existence of solutions of problem P

First we will start with the solutions of the problem with self similar viscosity.

Existence of a solution of Pε

In this section we will give a complete explanation of the proof of existence of
solutions for the problem (P ). This system is similar to the one propose for
the model of ion pumps, but with source terms equal to zero. This part can
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be used as starting point for proving the existence of solution of the model
(with pointwise sources) and, of course, some de�nitions and steps can be
considerably di�erent from the ones here. All the following proofs and main
ideas are taken from [5].

Lets remind some estimators and properties, if ρ and u are the solutions
of the problem then the following are true

0 < δ < ρ(ξ) < M ξ ∈ (−∞,∞) (3.153)

|u(ξ)| < M ξ ∈ (−∞,∞) (3.154)

− b(ξ − s) + s < u(ξ) < a(ξ − s) + s ξ ∈ (s,∞) (3.155)

a(ξ − s) + s < u(ξ) < −b(ξ − s) + s ξ ∈ (−∞, s) (3.156)

Now take

−b(ξ − s) + s < u(ξ) < a(ξ − s) + s ξ ∈ (s,∞)

in this range u(ξ)− ξ < 0 and ξ− s > 0, so subtracting ξ and factorizing
we get

−(b+ 1)(ξ − 1) < u(ξ)− ξ < −(1− a)(ξ − s)

−B(ξ − 1) < u(ξ)− ξ < −A(ξ − s)

multiplying by −1 we get

A(ξ − s) < −(u(ξ)− ξ) < B(ξ − s)

Now take

a(ξ − s) + s < u(ξ) < −b(ξ − s) + s ξ ∈ (−∞, s)

in this range u(ξ)− ξ > 0 and ξ− s < 0, so subtracting ξ and factorizing
we get (with the same de�nitions of A and B)

−A(ξ − s) < u(ξ)− ξ < −B(ξ − s)

So if we put
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A|ξ − s| < |u(ξ)− ξ| < B|ξ − s| ξ ∈ (−∞,∞), ξ 6= s (3.157)

the inequality reduces to the previous two inequalities above if we con-
sider ξ ∈ (−∞, s) or ξ ∈ (s,∞) . This estimators will be used in the following
sections to prove the existence of solutions of the problem.

Let's recall the system (Pε) in the variable ξ

{
(u− ξ)ρ′ + ρu′ = 0

(u− ξ)ρu′ + p(ρ)′ = εu′′
with

{
ρ(±∞) = ρµ± := ρ− + µ(ρ± + ρ−)

u(±∞) = uµ± := u− + µ(u± + u−)

(3.158)
We will construct the necessary tools to prove that our system has a

solution. The ideas and proofs are similar to the ones �nd in [?]. The set X
is de�ned as:

X = {(P, V ) ∈ C0(R)× C1(R) : ‖(P, V )‖X <∞}
where the norm is

‖(P, V )‖X = sup
−∞<ξ<∞

|P (ξ)|+ sup
−∞<ξ<∞

|V (ξ)|+ sup
−∞<ξ<∞

|V ′(ξ)|

The set Y is de�ned as the (P, V ) ∈ X such that are bounded by

0 < δ̄ < P (ξ) < M̄ ξ ∈ R (3.159)

|V (ξ)| < M̄ ξ ∈ R (3.160)

Ā < 1− V ′(s) < B̄ (3.161)

Ā|ξ − s| < |ξ − V (ξ)| < B̄|ξ − s| ξ 6= s (3.162)

with constants that satisfy 0 < δ̄(ε) < δ, 0 < M < M̄ and 0 < Ā < A < 1 <
B < B̄ . And the last set de�ned is Ω

Ω = {(P, V ) ∈ Y : |V ′(ξ)| < K}
We will prove some important properties of the set Ω.
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Theorem 10. Let Y ⊂ X be the set with bounds de�ned before. The the set

Ω = {(P, V ) ∈ Y : |V ′(ξ)| < K}

is bounded and open subset of X.

Proof. By de�nition the set is bounded. Now �x the point (Po, Vo) ∈ Ω, the
goal is to �nd a positive real ν such that ||(P, V )−(Po, Vo)||X < ν which may
imply that (P, V ) ∈ Ω. Lets construct it. We have previously �nd bounds
for ρ and u, so the inequalities

0 < δ̄ < P (ξ) < M̄ ξ ∈ R (3.163)

|V (ξ)| < M̄ ξ ∈ R

follow immediately. Now lets continue with the bound of the derivative.
Let so be the �x point of Vo. Since Vo is continuous and bounded and because
of (3.157) there exists positive constants Ao and Bo such that

Ā|ξ− so| < Ao|ξ− so| < |ξ−V (ξ)| < Bo|ξ− so| < B̄|ξ− so| ξ 6= so (3.164)

applying the derivative respect of ξ we have

Ao ≤ 1− V ′o(so) ≤ Bo

notice two important things, the �rst is that it has the equality included,
this because it holds if and only if ξ = so in the not-derived inequality, and
second that the inequalities still hold even when derived, this because its
evaluated in one point14, remember that in this point all the values of each
member of the inequality are the same.

It can be chosen A, Ao, B, Bo close enough such that

νo ≡ min{Ao − A,B −Bo} < 1

and this is always possible because it can be set 1 > Ao = 1 − a and
1 < 1 + b = Bo, see (3.157). Because

A < Ao ≤ 1− V ′o(so) ≤ Bo < B

and by the de�nition of νo then

14If g(x) < f(x) and in there exist a point xo such that g(xo) = f(xo) then its true that
g′(xo) < f ′(xo), it may fail in any other point.
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A < A+
νo
2
< Ao

and

Bo < B − νo
2
< B

then, it should exist a κ < 1 such that when evaluating 1 − V ′o(ξ) in
(so − κ, so + κ) it satis�es

A+
νo
2
< 1− V ′o(ξ) < B − νo

2
ξ ∈ (so − κ, so + κ)

De�ne ν as

ν ≡ 1

2
νoκ

Ā

B̄
≤ 1

2
νoκ <

1

2
νo

every inequality holds because Ā
B̄
≤ 1 and κ < 1, suppose that ||(P, V )−

(Po, Vo)||X < ν then |V (s)− V (so)| < ν, and because V has a �xed point we
have

ν ≥ |V (s)− V (so)| = |s− V (so)| ≥ A|s− so|

the last inequality is because of (3.164). So in summary

|s− so| ≤
v

Ā
=
νoκ

2B̄

this is true in particular in s ∈ [s− κ, so + κ]. Since |V ′o(ξ)− V ′(ξ)| < νo
2
,

with this, A+ νo
2
< 1− V ′o(ξ) < B − νo

2
implies

A < 1− V ′o(ξ) < B ξ ∈ (so − κ, so + κ)

this proves the bound of the derivative (3.161) in the region (so−κ, so+κ),
now is only missing the bound in the complement of this set. Integrating this
last in (s, ξ)

Ā|ξ − s| < |ξ − V (ξ)| < B̄|ξ − s| ξ ∈ (so − κ, so + κ)

and this proves (3.162) in the same set. Now in the complementary set
(so − κ, so + κ)c. Notice that

|ξ − V (ξ)| ≤ |ξ − Vo(ξ)|+ ν

adding something positive and zero



CHAPTER 3. MODELS 106

|ξ − V (ξ)| ≤ |ξ − Vo(ξ)|+ ν < Bo|ξ − s|+ B̄|ξ − s| − B̄|ξ − s|+ ν

and because of (3.164)

|ξ− V (ξ)| ≤ |ξ− Vo(ξ)|+ ν < Bo|ξ− s|+ B̄|ξ− s| − B̄|ξ− s|+Bo|s− so|+ ν

factoring

|ξ − V (ξ)| ≤ B̄|ξ − s| − (B̄ −Bo)|ξ − s|+Bo|s− so|+ ν

The parameters written above are

ν ≤ κνo
2B̄

, |s− so| ≤
νoκ

2B̄
, νo ≤ B̄ −Bo, B̄ > 1

so we want to see what happends with

|ξ − V (ξ)| ≤ B̄|ξ − s|+ something

where something is −(B̄−Bo)|ξ−s|+Bo|s−so|+ν. Since ξ takes values
in |ξ − s| > κ− κνo

2B̄
, we get:

−(B̄ −Bo)|ξ − s|+Bo|s− so|+ ν ≤ −(B̄ −Bo)
(
κ− κνo

2B̄

)
+Bo

νoκ

2B̄
+
κνo
2B̄

= −κ(B̄ −Bo)
(

1− νo
2B̄

)
+Bo

νoκ

2B̄
+
κνo
2B̄

and
(
1− νo

2B̄

)
≤ 1 then

−(B̄ −Bo)|ξ − s|+Bo|s− so|+ ν ≤ −κ(B̄ −Bo) +Bo
νoκ

2B̄
+
κνo
2B̄

factoring

−(B̄ −Bo)|ξ − s|+Bo|s− so|+ ν ≤ −κ(B̄ −Bo) +
κνo
2B̄

(1 + B̄)

≤ −κ(B̄ −Bo) +
κ(B̄ −Bo)

2B̄
(1 + B̄) ≤ −κ(B̄ −Bo)

(
1 +

κ

2B̄
(1 + B̄)

)
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and because 0 ≤ (B̄ −Bo) and 0 ≤
(
1 + κ

2B̄
(1 + B̄)

)
then

−(B̄ −Bo)|ξ − s|+Bo|s− so|+ ν ≤ 0

so something = −(B̄ −Bo)|ξ − s|+Bo|s− so|+ ν ≤ 0 and

|ξ − V (ξ)| ≤ B̄|ξ − s|+ something ≤ B̄|ξ − s|

|ξ − V (ξ)| ≤ B̄|ξ − s|
and the right hand of (3.162) has been proved, the lefthand side is anal-

ogous. In conclusion, choosing ν as we did, we prove that the point (P, V )
satis�es all the conditions (3.159),(3.160),(3.161) and (3.162) so the point is
inside Ω, then its open and bounded.

Estimates of the Operator

In this section we check that the map F is well de�ned and establish uni-
form estimates of (ρ, u) = F (m, (P, V )) and their derivatives. The derived
estimates may depend on ρ±, u± and ε but are independent of the choice of
(m, (P, V )) ∈ [0, 1]× Y . Consider a mapping T which carries (P, V ) ∈ Y to
a solution T (P, V ) := (ρ, u) of (3.158) with boundary conditions

ρ(±∞) = ρ± − ρ− u(±∞) = u± − u−
We can easily veri�ed that (ρ

=

, u
=

) + mT (P, V ) is a solution of (3.158),
and hence F (m, (P, V )) = (ρ

=

, u
=

) + mT (P, V ). The proof is simple

Proof. We check for the solutions at in�nity

in +∞ : ρ− + µ(ρ+ − ρ−)
in −∞ : ρ− + µ(ρ− − ρ−)

The same process veri�es for u± where the resultant conditions at in�nity
are the same as in (3.158).

The bounds in (3.163) and assuming positive derivative of the pressure
with positive density

p′(ρ) > 0 for ρ<0

this implies the existence of two positive constants a0 and A0 which satisfy
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0 < a0 < p′(P (ξ)) < A0 <∞ for all ξ ∈ R and depend on δ̄ and M̄.

From (3.158)2, we get

εu′′ + {p′(P )−(V−ξ)2}P
V−ξ u′ = 0, V (ξ) 6= ξ

Since the latter equation has a unique singularity at the �xed point s of
V , u′ is obtain, by separation of variables,

u′(ξ) =

c+ exp
{
−1
ε

´ ξ
α+

{(ς−V )2−p′(P )}P
ς−V dς

}
=: c+I+ s < ξ

c− exp
{
−1
ε

´ ξ
α−

{(ς−V )2−p′(P )}P
ς−V dς

}
=: c−I− ξ < s

(3.165)

for any α− < s < α+. In turn ρ′ is obtained by (3.158)1

ρ′(ξ) =
P (ξ)

ξ − V
u′ (3.166)

Theorem 11. Let (P, V ) ∈ Y and V (s) = s . Then there exist positive
constants α, α′, β, β′ and Cε which depend only on a0, A0, Ā, B̄, δ̄ and M̄ (Cε
may depend on ε) and satisfy.

1
cε
|ξ − s|α

′
ε ≤ I±(ξ) ≤ Cε|ξ − s|

α
ε , |ξ − s| < 1

1
Cε
e−

β′
ε

(ξ−s)2 ≤ I± ≤ Cεe
−β
ε

(ξ−s)2 , |ξ − s| > 1
(3.167)

Proof. Let s < ξ < s+ 1. Then

s+1ˆ

ξ

{(ς − V )2 − p′(P )}P
ς − V

dς =

s+1ˆ

ξ

(ς − V )Pdς −
s+1ˆ

ξ

p′(P )}P
ς − V

dς

From (3.157) we remember (ξ − V ) ≤ B̄|ξ − s| where B̄ = b + 1 then
as the upper bound of P is M̄ and for p′(P ) and P we have respectively as
lower bounds a0 and δ̄ (notice that the lower bound is due to the minus sign
in front of the integral) doing the change of variables for (ξ − V ) we have

s+1ˆ

ξ

{(ς − V )2 − p′(P )}P
ς − V

dς ≤ M̄B̄

1ˆ

0

ςdς − a0δ̄

B̄

1ˆ

ξ−s

1

ς
dς = A+ α log |ξ − s|
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where α ≡ aoδ̄
B̄
> 0 and A ≡ M̄B̄

2
.15 Also

I+(ξ) = exp

1

ε

s+1ˆ

ξ

{(ς − V )2 − p′(P )}P
ς − V

dς

 ≤ e
A
ε e

α
ε

log |ξ−s| = Cε|ξ − s|
α
ε

Let s+ 1 < ξ, then using the same logic as in the previous steps

−
ξˆ

s+1

{(ς − V )2 − p′(P )}P
ς − V

dς = −
ξˆ

s+1

(ς − V )Pdς +

ξˆ

s+1

p′(P )}P
ς − V

dς

≤ −̄δĀ
ξ−sˆ

1

ςdς +
a0M̄

Ā

ξ−sˆ

1

1

ς
dς ≤ −β(ξ − s)2 + A

where β = δ̄Ā
2

+ 1 and A is a positive constant which depends on β and
A0M̄
A

. Also

I+(ξ) = exp

−1

ε

ξˆ

s+1

{(ς − V )2 − p′(P )}P
ς − V

dς

 ≤ e
A
ε e−β(ξ−s)2 = Cεe

−β(ξ−s)2

The rest is followed by similar arguments.

According to the last Theorem since the exponential is bounded then u′

and ρ′ are integrable on (−∞,∞) and thus (ρ, u) can be calculated by (3.165)
and (3.166) just integrating them in their domains getting the formulas

ρ(ξ) =

{
(ρ+ − ρ−)− c+

´∞
ξ

P (ξ)I+(ξ)
ς−V (ς)

dς, s < ξ

c−
´ ξ
−∞

P (ξ)I−(ξ)
ς−V (ς)

dς, ξ < s
(3.168)

u(ξ) =

{
(u+ − u−)− c+

´∞
ξ
I+(ξ)dς, s < ξ

c−
´ ξ
−∞ I−(ξ), ξ < s

(3.169)

Since we have continuity on (ρ, u) at ξ = s this gives

15The lower limit of the second Integral is adjusted just to allow it to be solvable by
removing a point from it
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c+

∞̂

ξ

P (ξ)I+(ξ)

ς − V (ς)
dς + c−

ξˆ

−∞

P (ξ)I−(ξ)

ς − V (ς)
= (ρ+ − ρ−) (3.170)

c+

∞̂

ξ

I+(ξ)dς + c−

ξˆ

−∞

I−(ξ)dς = (u+ − u−) (3.171)

The determinant of the latter system is

∞̂

ξ

P (ξ)I+(ξ)

ς − V (ς)
dς

ξˆ

−∞

I−(ξ)dς −
ξˆ

−∞

P (ξ)I−(ξ)

ς − V (ς)︸ ︷︷ ︸
negative due to domain

∞̂

ξ

I+(ξ)dς > 0

So there exists a unique solution (c+, c−) telling us that the operators T
and F are well de�ned.

We now estimate (ρ, u) = T (P, V ), de�ned in (3.168) and (3.169). Since
our objective is to get uniform bounds which are independent of the choice
of (P, V ) ∈ Y , we consider a generic constant Kε which may depend on
a0, A0, Ā, B̄, δ̄and M̄ . So we get

|c+|+ |c−| < Kε

Now we estimate ρ , u and their derivatives to see the regularity properties
of the operator. Since u′, is given by (3.165) and as seen in the last theorem
I± are bounded we have

|u′(ξ)| = c±I± ≤ Kε|ξ − s|
α
ε |ξ − s| < 1,

|u′(ξ)| = c±I± ≤ Kεe
−β(ξ−s)2 |ξ − s| > 1,

Now for ρ' we have from (3.166) doing the same steps

|ρ′(ξ)| = |P (ξ)|
|ξ−V (ξ)| |u

′(ξ)| < Kε|ξ − s|
α
ε
−1 |ξ − s| < 1,

|ρ′(ξ)| = |P (ξ)|
|ξ−V (ξ)| |u

′(ξ)| < Kεe
−β(ξ−s)2 |ξ − s| > 1,

where the constant |P (ξ)| is absorbed by Kε. In the �rst equation the
term |ξ − V (ξ)| is replaced by |ξ − s| which is subtracted in the exponent.
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For the second equation we do the same change and as |ξ − s| > 1 then we
can remove the term and the inequality holds.

We also have

u′′(ξ) = 1
ε
{p′(P )−(ξ−V )2}P

ξ−V c±I± ξ 6= s

so

u′′(ξ) =
1

ε

(
p′(P )

ξ − V
− (ξ − V )

)
Pc±I± ≤

1

ε

(
A0

ξ − V
− (ξ − V )

)
M̄c±I±

Remembering the inequalities from (3.155) and (3.156) we substitute the
term ξ−V noticing in which case we do not change the sign and which terms
pick to keep a valid inequality, so we get

|u′′(ξ)| ≤ 1
ε

(
A0

(1−a)|ξ−s| + (1 + b)|ξ − s|
)
M̄ c±I±︸︷︷︸

=u′(ξ)

≤ Kε |ξ − s|
α
ε
−1︸ ︷︷ ︸

<1

≤ Kε |ξ − s| < 1

|u′′(ξ)| ≤ 1
ε

(
A0

(1−a)|ξ−s| + (1 + b)|ξ − s|
)
M̄c±I± ≤ Kε e

−β(ξ−s)2︸ ︷︷ ︸
max=1

≤ Kε |ξ − s| > 1

From these estimates we get equicontinuity of ρ, u and u′ on any closed
set which does not contain the singular point s. The latter results imply

|u′(ξ)| < Kε −∞ < ξ <∞
and hence u is equicontinuos. Now we check from the boundedness of

ρ and u , since they heavily depend on the exponential I±from (3.167) we
integrate it according to the de�ned know domains in (3.155) and (3.156).16

´ ξ
s
I+(ς)dς < Kε(ξ − s)

α
ε

+1;
´ ξ
s

PI+
|ς−V |dς < Kε(ξ − s)

α
ε ; s < ξ < s+ 1´ s

ξ
I−(ς)dς < Kε(s− ξ)

α
ε

+1;
´ s
ξ

PI−
|ς−V |dς < Kε(s− ξ)

α
ε ; s− 1 < ξ < s´ ξ

s+1
I+(ς)dς < Kεe

−β(ξ−s)2 ;
´ ξ
s+1

PI+
|ς−V |dς < Kεe

−β(ξ−s)2; s+ 1 < ξ´ s−1

ξ
I−(ς)dς < Kεe

−β(ξ−s)2 ;
´ s−1

ξ
PI−
|ς−V |dς < Kεe

−β(ξ−s)2; s+ 1 > ξ

We can check the consistency in this results with the previously inequal-
ities for |u′(ξ)| and |ρ′(ξ)| .

16Keep in mind that all constants are absorbed by the term Kε
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Since the exponential are decaying their maximum value is one, and the
terms elevated at (·)αε in their corresponding domains are bounded between
zero and one, these estimates imply the boundedness of ρ and u

|u(ξ)| < Kε; |ρ(ξ)| < Kε; −∞ < ξ <∞

therefore we can establish the estimates for ρ(ξ) and u(ξ) from (3.168)
and (3.169) or integrating from (3.166) and (3.166).

|ρ(ξ)− ρ(s)| < Kε(s− ξ)
α
ε ; |ξ − s| < 1

|ρ(ξ)− ρ(s)| < Kεe
−β(ξ−s)2 ; |ξ − s| > 1

|u(ξ)− u(s)| < Kε(s− ξ)
α
ε

+1; |ξ − s| < 1

|u(ξ)− u(s)| < Kεe
−β(ξ−s)2 ; |ξ − s| > 1

As checked with the obtained estimates that |ρ(ξ)| < Kε , |u(ξ)| < Kε and
|u′(ξ)| < Kε this imply that T (Y ) of Y under the mapping T are bounded
under the C0 × C1 norm.

The next step is to prove that the operator T is compact, result that will
be necessary later.

Theorem 12. The operator T : Ω̄→ X is a compact operator.

Proof. The proof is separated in two parts, the �rst is to show that the oper-
ator is precompact and the second that is continuous, so the combination of
this two facts gives compactness. First we will prove the precompactenss us-
ing the Ascoli- Arzela theorem, which needs the equicontinuity of sequences.
Recall that a function is equicontinous if it is continuous and has bounded
variation in an open set, so we will you use this facts to prove it. Let (ρn, un)
be a sequence in T (Ω̄) since |u′(ξ)| < Kε in −∞ ≤ ξ ≤ ∞ then un is equicon-
tinous. Now for ρn, let 0 < η be given, the because

|ρ(ξ)− ρ(s)| < Kε|ξ − s|
α
ε |ξ − s| < 1

exists a 0 < δ1 such that |ρ(ξ1)− ρ(ξ2)| < η for all ξ1, ξ2 ∈ I = (−δ1, δ1),
this can be easily seen because of the right hand side of the inequality, this
can be bounded by a number η and then you can only �nd δ1 such that
Kε|ξ1 − ξ2|

α
ε is bounded by the same number. Now from the bounds

|ρ′(ξ)| < Kε|ξ − s|
α
ε
−1 |ξ − s| < 1

|ρ′(ξ)| < Kεe
−β
ε

(ξ−s)2 1 < |ξ − s|
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its obvious that ρ′n is uniformly bounded in I
c = (−∞,−δ1)∪ (δ1,∞) and

from

|ρ(ξ)− ρ(s)| < Kεe
−β
ε

(ξ−s)2 1 < |ξ − s|

we can �nd, using the same rezoning, a δ2 such that |ρ(ξ1)−ρ(ξ2)| < η for
all ξ1, ξ2 ∈ I = (−δ1, δ1) with |ξ1 − ξ2| < δ2. Take δ = min{δ1, δ2}, choosing
this, and letting η → 2η we can, for sure, bound ρn:

|ρ(ξ1)− ρ(ξ2)| < 2η

|ξ1 − ξ2| < δ

So, for each δ it exists a 2η such that the two previous are true, so recalling
a characterization of equicontinuity for sequences17, then ρn ful�lls this, so
its equicontinous. The arguments for proving that u′n is equicontinous are
similar, and also we can use the bounded variation of the sequence, I mean
the bounds of u′′n

|u′′n(ξ)| < Kε|ξ − s|
α
ε
−1 |ξ − s| < 1

|u′′n(ξ)| < Kεe
−β
ε

(ξ−s)2 1 < |ξ − s|

From

0 < δ < ρ(ξ) < M ξ ∈ (−∞,∞)

|u(ξ)| < M ξ ∈ (−∞,∞)

A|ξ − s| < |u(ξ)− ξ| < B|ξ − s| ξ ∈ (−∞,∞), ξ 6= s

we see that ρn, un and u′n are bounded, we need this because we want
to use the Ascoli-Arzela theorem. This theorem states that a real valued
sequence {fn}n∈N de�ned in a close and bounded set (that is equivalent to a
compact set if the space is Euclidean, by Heine-Borel theorem), and if the se-
quence is bounded and equicontinous, then there exists a subsequence {fnk}
that converges uniformly, so all this requirements are ful�lled by ρn, un and
u′n, so there exists subsequences that converge. Taking a new subsequence of

17For a sequence {fn}, countable, if for all ε > 0 exists δ > 0 such that |fn(x)−f(y)| < ε
if |x− y| < δ, then the sequence is equicontinous.
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unk we can assume that sn → s (the singular point).

De�ne ρn → ρ, un → u, u′n → u1. Moreover u1 = u′. Because of

|u′(ξ)| < Kεe
−β
ε

(ξ−s)2 1 < |ξ − s|

|ρ(ξ)− ρ(s)| < Kεe
−β
ε

(ξ−s)2 1 < |ξ − s|

and the de�nition of the set

Ω = {(P, V ) ∈ Y : |V ′(ξ)| < K}

we can choose L such that

|u′n(ξ)| < η L < |ξ

|un(ξ)| < η ξ < −L

|ρ′(ξ)| < η ξ < −L

|ρn(ξ)− (ρ+ − ρ−)| < η L < ξ

|un(ξ)− (ρ+ − ρ−)| < η L < ξ

Moreover, the limits satisfy this estimates and because ρn, un and u′n
converge uniformly in [−L,L] it can by found an N such that

‖(ρn, un)− (ρ, u)‖X = sup
−∞<ξ<∞

|ρn− ρ|+ sup
−∞<ξ<∞

|un− u|+ sup
−∞<ξ<∞

|u′n− u′|

≤ sup
−∞<ξ<∞

|ρn|+ sup
−∞<ξ<∞

|ρ|+ sup
−∞<ξ<∞

|un|+ sup
−∞<ξ<∞

|u|+ sup
−∞<ξ<∞

|u′n|+ sup
−∞<ξ<∞

|u′|

< 6η

for n > N , so that (ρn, un)→ (ρ, u) ∈ X, which means that T (Ω̄) ful�lls
the requirements to be a precompact set.
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Lets prove now that T is continuous. Let (ρn, un) ∈ Ω, and (Pn, Vn) →
(P, V ) ∈ X. De�ne (ρn, un) = T (Pn, Vn) and (ρ, u) = T (P, V ). Because of the
�rst part of sequence {(ρn, un)} has a convergent subsequence {(ρnk , unk)}
such that (ρnk , unk)→ (ρo, uo). Then

ρnk =

(ρ+ − ρ−)− cnk+

´∞
ξ

Pnk (ζ)I
nk
+

ζ−Nnk (ζ)
dζ snk < ξ

cnk−
´ ξ
−∞

Pnk (ζ)I
nk
−

ζ−Nnk (ζ)
dζ ξ < snk

unn =

{
(u+ − u−)− cnk+

´∞
ξ
Ink+ dζ snk < ξ

cnk−
´ ξ
−∞ I

nk
− dζ ξ < snk

where cn;k
+ and cn;k

− are solutions of the linear system describes in (3.170)
and (3.171) with Ink± given by

Ink± (ξ) = exp

−1

ε

ξˆ

±1

{(ζ − Vnk)2 − p′(Pnk)}Pnk
ζ − Vnk

dζ


since I± are bounded from below and above its valid to put limnk→∞

inside the integrals, which allow us to write

ρo =

{
(ρ+ − ρ−)− co+

´∞
ξ

P o(ζ)Io+
ζ−V o(ζ)dζ s < ξ

co−
´ ξ
−∞

P o(ζ)Io−
ζ−V o(ζ)dζ ξ < s

uo =

{
(u+ − u−)− co+

´∞
ξ
Io+dζ s < ξ

co−
´ ξ
−∞ I

o
−dζ ξ < s

and form the de�nition of T we have

(ρn, un) = T (P, V ) = (ρ, u)

And by the sequential characterization of continuity18 we see that the
function T satis�es this, because (ρnk , unk) → (ρo, uo) then T (ρnk , unk) →
(ρ, u) = (ρo, uo), so T is continuous. Now precompactness and continuity
means compact.

We will prove now that the problem (Pε) has a solution under the as-
sumption 0 < δε < ρ, with the help of the Leray-Schauder theorem.

18if f : X → Y and xn → x ∈ X and f(xn)→ f(x) ∈ Y then f is continuous.
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Theorem 13. Suppose that the pressure function p(ρ) satis�es

p′(ρ) > 0 ρ > 0 (3.172)

p(ρ)→∞ ρ→∞

p(ρ)→ 0 ρ→ 0

If the solutions (ρ, u) of (P µ
ε ) satisfy 0 < δε < ρ, then the boundary value

problem (Pε) has a solution with (ρ(ξ), u(ξ)) for any ε > 0.

Proof. We de�ne F : [0, 1] × Ω̄ → X by F (µ, P, V ) = (ρ−, u−) + µT (P, V )
in Ω, then (ρ, u) is a solution of (P µ

ε ) with (ρ, u) ∈ Ω. To apply the Leray-
Schauder theorem to a mapping of the for I +G where I is the identity map
we need G to be compact. If this is true then we have to compute the degree
of the map, this will tell us if the whole mapping, as a �x point, has a zero
inside the domain which it is de�ne, in other words, if the �x point problem
has a solution. Lets show it. We want to solve

(ρ, u) + µT (ρ, u) = (ρ−, u−) µ ∈ [0.1]

As T is compact, µT is compact in X, so we can compute the degree of
(ρ, u)+µT (ρ, u). For any solution (ρ, u) of the previous, 1

µ
{(ρ, u)−(ρ−, u−)} ∈

T (Ω̄). So u satis�es |u′(ξ)| < Kε. So by the theorem that says that we have
four di�erent classes of solutions, (3.153), (3.154) and (3.157) then a solution
has to lie in the interior of Ω, so the degree has to be

d(I − µT,Ω, (ρ−, uu)) = d(I,Ω, (ρ−, uu)) = 1 µ ∈ [0.1]

so

(ρ, u) + µT (ρ, u) = (ρ−, u−)

admits at least one solution for each µ, this means has a �x point and
our problem has a solution.

Structure of solutions of Riemann problem

In this section we will consider a sequence (ρε, uε) of solutions of (Pε) obeying
the estimates (3.153),(3.154) and (3.157). By taking subsequences we assume
that the limits belong to one of the categories explained in previous sections,
and also assume that sε → s as ε → 0. The limits ρ and u inherit the
monotonicity properties, but they are not longer strict.
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Solution of the Riemann problem

In this section we construct solutions of (P ) using (ρε, uε), solutions of (Pε),
and study what happens with the limit. Lets do this assuming �rst that
ρ > 0, so in this case (3.153),(3.154) and (3.157) are independent of ε.

Theorem 14. Let (ρε, uε), ε > 0 be a solution of (Pε). Then there exists
a subsequence (ρεn , uεn), ε → 0 such that the sequence of singular points
sεn → s and (ρεn , uεn) converges pointwise to a weak solution (ρ, u) of (P ).
Furthermore, if ρ > 0, then there exists constants β− < α− < s < α+ < β+

such that

(ρ(ξ), u(ξ)) =


(ρ−, u−), ξ < β−

(ρ(s), u(s)), α− < ξ < α+

(ρ+, u+), β+ < ξ

(3.173)

Proof. We will omit the subindex εn and use ε for the subsequence. Now lets
integrate −ξ(ρnun)′ + (ρnu

2
n + pn)′ = εu′′n in the set (sε, ξ):

−
ξˆ

sε

ζ(ρεuε)
′dζ +

ξˆ

sε

(ρεu
2
ε + pε)

′dζ =

ξˆ

sε

εu′′εdζ

integrating the �rst term by parts give:

−
ξˆ

sε

ζ(ρεuε)
′dζ = −ξρε(ξ)uε(ξ) + sερε(sε)uε(sε) +

ξˆ

sε

ρεuεdζ

the second term gives

ρε(ξ)u
2
ε(ξ) + pε(ρε(ξ))− ρε(sε)u2

ε(sε)− pε(ρε(sε))
and the third gives

εu′ε(ξ)− εu′ε(sε) = εu′ε(ξ)− 0

where we use the property u′(s) = 0 from above sections. Gathering all
the results we get

εu′ε(ξ) = −ξρε(ξ)uε(ξ) + sερε(sε)uε(sε) +

ξˆ

sε

ρεuεdζ + ρε(ξ)u
2
ε(ξ) + pε(ρε(ξ))

−ρε(sε)u2
ε(sε) + pε(ρε(sε))
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and using uε(sε) = sεwe can cancel two terms and get

εu′ε(ξ) = −ξρε(ξ)uε(ξ) +

ξˆ

sε

ρεuεdζ + ρε(ξ)u
2
ε(ξ) + pε(ρε(ξ))− pε(ρε(sε))

because ρε(ξ), uε(ξ) and pε(ρε(ξ)) are bounded by M

εu′ε(ξ) ≤ M3 +M − ξM2 +M2

ξˆ

sε

dζ − pε(ρε(sε))

≤ M3 +M − ξM2 +M2

ξˆ

sε

dζ

= M3 +M − ξM2 +M2(ξ − sε)

because sε is bounded byM so we can cancel theM3, and taking absolute
value we get

ε|u′ε(ξ)| ≤M + 2|ξ|M2

so

ε|u′ε(ξ)| ≤M(|ξ|+ 1) −∞ ≤ ξ ≤ ∞

Lets multiply uε the equation −ξ(ρnun)′ + (ρnu
2
n + pn)′ = εu′′n and inte-

grating in an interval (ao, bo) we have

ε

boˆ

ao

uεu
′
εdζ = −

boˆ

ao

ζuε(ρεuε)
′dζ +

boˆ

ao

uε(ρεu
2
ε + pε)

′′dζ

the �rst term gives

ε

boˆ

ao

uεu
′
εdζ = εuε(bo)u

′
ε(bo)− εuε(ao)u′ε(ao)−

boˆ

ao

(u′ε)
2dζ

so



CHAPTER 3. MODELS 119

εuε(bo)u
′
ε(bo)− εuε(ao)u′ε(ao)−

boˆ

ao

(u′ε)
2dζ = −

boˆ

ao

ζuε(ρεuε)
′dζ +

boˆ

ao

uε(ρεu
2
ε + pε)

′dζ

boˆ

ao

(u′n)2dζ =

boˆ

ao

ζuε(ρεuε)
′dζ + εuε(bo)u

′
ε(bo)− εuε(ao)u′ε(ao)

−
boˆ

ao

uε(ρεu
2
ε + pε)

′dζ

≤ M

boˆ

ao

ζ(ρεuε)
′dζ +M (εu′ε(bo)− εu′ε(ao))

−
boˆ

ao

uε(ρεu
2
ε + pε)

′dζ

notice that −M
´ bo
ao

(ρεu
2
ε + pε)

′dζ<−
´ bo
ao
uε(ρεu

2
ε + pε)

′dζ both negative,
so

ε

boˆ

ao

(u′ε)
2dζ ≤

boˆ

ao

ζuε(ρεuε)
′dζ +Mε (u′ε(bo)− εu′ε(ao))

≤ M(|bo|+ |ao|+ 1) +Mε (u′ε(bo)− εu′ε(ao))

and using

ε|u′ε(ξ)| ≤M(|ξ|+ 1) −∞ ≤ ξ ≤ ∞

the inequality

ε(u′ε(bo)− εu′ε(ao)) ≤M(|bo|+ |ao|+ 1)

holds, so

ε

boˆ

ao

(u′ε)
2dζ ≤M(|bo|+ |ao|+ 1)
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Set ϕ be a function with suppϕ ⊂ (ao, bo), and multiply ϕ the equation
−ξ(ρεuε)′ + (ρεu

2
ε + pε)

′ = εu′′ε , integrate

−
∞̂

−∞

ϕζ(ρεuε)
′dζ +

∞̂

−∞

ϕ(ρεu
2
ε + pε)

′dζ =

∞̂

−∞

εϕu′′εdζ

take absolute value

|
∞̂

−∞

ϕ(ρεu
2
ε + pε)

′dζ −
∞̂

−∞

ϕζ(ρεuε)
′dζ| = |

∞̂

−∞

εϕu′′εdζ|

so integrating the last term

|
∞̂

−∞

εϕu′′εdζ| = | εϕu′ε|∞−∞ −
∞̂

−∞

εϕ′u′εdζ|

= |
∞̂

−∞

εϕ′u′εdζ|

≤ ε

 boˆ

ao

(ϕ′)2dζ


1
2
 boˆ

ao

(u′ε)
2dζ


1
2

where the last inequality is because of Cauchy-Schwarz inequality and the
compact support of ϕ. By ε

´ bo
ao

(u′ε)
2dζ ≤M(|bo|+ |ao|+ 1) we have

|
∞̂

−∞

εϕu′′εdζ| ≤ ε
1
2M(|bo|+ |ao|+ 1)

 boˆ

ao

(ϕ′)2dζ


1
2

so with the limε→0 we get

∞̂

−∞

εϕu′′εdζ = 0

we will use this result in a moment. Now −
´∞
−∞ ϕζ(ρu)′dζ+

´∞
−∞ ϕ(ρu2 +

p)′dζ, the �rst term is, integrating by parts (notice that it doesn't have ε)

−
∞̂

−∞

ϕζ(ρu)′dζ = −(ϕζ)′(ρu)|∞−∞ +

∞̂

−∞

(ϕζ)′ρudζ =

∞̂

−∞

(ϕζ)′ρudζ
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the term
´∞
−∞ ϕ(ρu2 + p)′dζ gives

∞̂

−∞

ϕ(ρu2 + p)′dζ = ϕ(ρu2 + p)|∞−∞ −
∞̂

−∞

ϕ′(ρu2 + p)dζ = −
∞̂

−∞

ϕ′(ρu2 + p)dζ

in conclusion

∞̂

−∞

(ϕζ)′ρudζ −
∞̂

−∞

ϕ′(ρu2 + p)dζ = limε→0

∞̂

−∞

(ϕζ)′ρεuεdζ

−limε→0

∞̂

−∞

ϕ′(ρεu
2
ε + pε)dζ

= −limε→0

∞̂

−∞

εϕu′′εdζ = 0

so (ρ, u) is a weak solution of (P ).

Now we consider the structure of the limit solution under the condition
ρ > 0. In that case there exist constants δ > 0 and M > 0 such that

δ < ρ(ξ) < M ξ ∈ R

for small ε > 0. From (3.172) there exist constants ao > 0 and Ao > 0
such that

ao ≤ p′ ≤ Ao

so the constants β− < α− < s < α+ < β+ are independent of ε so taking
the limit ε→ 0 of

|u′(ξ)| ≤ |u′(α+)|
∥∥∥ ξ−s
α+−s

∥∥∥αε , s < ξ < α+

|u′(ξ)| ≤ |u′(α−)|
∥∥∥ ξ−s
α−−s

∥∥∥αε , α− < ξ < s

|u′(ξ)| ≤ |u′(β+)| exp

{
−β

ε

((
ξ−s
β+−s

)2

− 1

)}
, β+ < ξ

|u′(ξ)| ≤ |u′(β−)| exp

{
−β

ε

((
ξ−s
β−−s

)2

− 1

)}
, β− < ξ

(3.174)
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the bound of |u′| < Kε and the initial conditions we see that near s the
value |u′(α±)| ≈ 0, so |u′(ξ)| ≈ 0, so we have

(ρ(ξ), u(ξ)) =


(ρ−, u−), ξ < β−

(ρ(s), u(s)), α− < ξ < α+

(ρ+, u+), β+ < ξ

The next theorem tells us about the Rankine-Hugoniot jump condition.

Theorem 15. The solution (ρ, u) satis�es the Rankine-Hugoniot jump con-
dition at all ξ ∈ S

ξ[ρ(ξ+)− ρ(ξ−)] = ρ(ξ+)u(ξ+)− ρ(ξ−)u(ξ−)

ξ[ρ(ξ+)u(ξ+)−ρ(ξ−)u(ξ−)] = ρ(ξ+)u2(ξ+)+p(ρ(ξ+))−ρ(ξ−)u2(ξ−)−p(ρ(ξ−))

Proof. Integrate

[(ξ − u)ρ]ba +

ˆ b

a

ρdξ = 0

over the set (ξ − δ, ξ + δ), and take the limit ε→ 0, to get

(ξ + δ − u(ξ + δ))ρ(ξ + δ)− (ξ − δ − u(ξ − δ))ρ(ξ − δ) +

ˆ ξ+δ

ξ−δ
ρdξ = 0

take the limit δ → 0 and put ξ + δ → ξ+ and ξ − δ → ξ− to get

ξ[ρ(ξ+)− ρ(ξ−)] = ρ(ξ+)u(ξ+)− ρ(ξ−)u(ξ−)

for the second one is done the same but using

[(ξ − u)ρu− p+ εu′]ξ+δξ−δ +

ˆ ξ+δ

ξ−δ
ρudξ = 0
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In this section we study the structure of the limit (ρ, u) without the strict
positiveness of the density limit, i.e., ρ ≥ 0, but with the convexity hypothesis

p´′(ρ) > 0 ρ > 0

The next theorem takes two important properties of solutions to (P µ
ε )

under the previous hypothesis of the pressure.

Theorem 16. Let (ρε, uε) be a solution of (P µ
ε ) and sε be a singular point.

Then (i) if uε in increasing on (sε,∞), then u′ε ≤ 1 on this interval. (ii)
If uε is increasing in (−∞, sε), then u′ε ≤ 1 on this interval. (iii) If uε is
decreasing on (sε,∞), then there exists exactly one ξ ∈ (sε,∞) such that
u′′ε (ξ) = 0. (iv) if uε is increasing on (−∞, sε), then there exists exactly one
ξ ∈ (−∞, sε), such that u′′ε (ξ) = 0.

Proof. Let uε be increasing on (sε,∞) and suppose there exist ξ ∈ (sε,∞)
such that u′ε(ξ) > 1. So the proof will be done by contradiction. Since we
know that u′ε(sε) = 0 be previous results, and u′ε(ξ) → 0 as ξ → ∞, it
should exist ξ1, ξ2 ∈ (sε,∞) such that u′ε(ξ1) = u′ε(ξ2) = 1, this because the
function is increasing and the derivative has to go from zero, increase, and
zero again, moreover u′′ε (ξ1) > 0 and u′′ε (ξ2) < 0 i.e. should be two points
where the function changes concavity. In this case, because uε in increasing,
then (ξ−uε)2 is decreasing on (ξ1, ξ2) and using the equations of (P ) we �nd,
from the second equation

εu′′

ρ′
= (u− ξ)ρu

′

ρ′
+
p′ρ′

ρ′

and from the �rst

(u− ξ) = −ρu
′

ρ′

combining this we have

p′(ρ)− (u− ξ)2 = ε
u′′

ρ′

and form the �rst equation again we know

ρ′ = − ρu′

(u− ξ)
so as before we can use this to �nd the signs. Using this we get
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p′(ρε(ξ1))− (uε(ξ1)− ξ1)2 = ε
u′′ε (ξ1)

ρ′(ξ1)
> 0

p′(ρε(ξ2))− (uε(ξ2)− ξ2)2 = ε
u′′ε (ξ2)

ρ′(ξ2)
< 0

so

(uε(ξ1)− ξ1)2 < p′(ρε(ξ1))

p′(ρε(ξ2)) < (uε(ξ2)− ξ2)2

combining

p′(ρε(ξ2)) < (uε(ξ2)− ξ2)2 < (uε(ξ1)− ξ1)2 < p′(ρε(ξ1))

because p′ is increasing then ρε(ξ2) < ρε(ξ1) but we know that if uε increase
ρε increase in (sε,∞) so this is a contradiction. Doing the same we get the
other result for case (ii).

Now the other two results. Let uε decrease in (sε,∞).Since uε is decreas-
ing then ρε decreases too in this set. Since u′ε(ξ) → 0 as ξ → ∞, and
u′ε(sε) = 0, there exists ξ1 ∈ (sε,∞) such that u′′ε (ξ1) = 0. Now suppose that
there exists ξ2 > ξ1 such that u′′ε (ξ2) = 0 too, so the proof will be done by
contradiction. As in the previous part of the proof, using

p′ε(ρε)− (uε − ξ)2 = ε
u′′ε
ρ′ε

we get

p′(ρε(ξ1))− (uε(ξ1)− ξ1)2 = 0

p′(ρε(ξ2))− (uε(ξ2)− ξ2)2 = 0

combining

p′(ρε(ξ1)) = (uε(ξ1)− ξ1)2 < (uε(ξ2)− ξ2)2 = p′(ρε(ξ2))

now, p′ is increasing then ρε(ξ1) < ρε(ξ2), but ρε decreases (→←), so there
∃! ξ ∈ (sε,∞) such that u′′ε (ξ) = 0. For the other part of the interval the
proof is the same.
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Properties (i) and (ii) of previous theorem provide the structure of rar-
efaction waves and (iii) and (iv) provide the structure of shock waves. Since
(3.174) implies the convergence of the double index sequence uε1(sε2) for
viscous solutions uε which belong to the category of C1, C2, C3, we have
u(s) = s. For the case of C4, the convergence is from(i) and (ii) of previous
theorem. So we get u(s) = s. In the following two theorems we study the
continuity of the limit solution.

Theorem 17. Let a solution (ρ, u) of (P ) be a limit of viscous solutions
(ρε, uε) of (Pε) and s be the limit of singular point sε. Then u(s) = s and ρ
and u are continuous at ξ = s.

Proof. First, we suppose ρ(s) > 0. Then, from (3.173), ρ(ξ) and u(ξ) are
constant on a neighborhood of ξ = s. So ρ and u are continuous at ξ = s.

Now suppose ρ(s) = 0. Since ρ± are positive, this is possible only when
(ρε, uε) belongs to Category C4 . So , uε are increasing on (=∞,∞) and
|u′ε(�)| ≤ 1. We already know that uε is uniformly bounded. The Ascoli-
Arzela theorem implies the limit u is continuous on (=∞,∞). From the
Rankine-Hugoniot jump condition at ξ = s we have p(ρ(s+)) = p(ρ(s−)), it
means that the pressure doesn't change in the singular point. Now remember
that p′ ≥ 0 if ρ ≥ 0, i.e. increasing or constant, because of the continuity of
the pressure ρ cannot jump in the discontinuity, if not the pressure will jump
too, so ρ+ = ρ−, i.e. its continuous in s.

We consider now the continuity of rarefaction waves.

Theorem 18. Let a solution (ρ, u) of (P ) be a limit of viscous solutions
(ρε, uε) of (Pε) and s be a singular point. If uε in increasing on (s,∞), then
ρ and u are continuous on (s,∞). If uε in increasing on (−∞, s), then ρ and
u are continuous on (−∞, s).

Proof. We know that |uε(ξ)| is bounded by a constantM that is independent
of ε. We shown two theorems above that |uε(ξ)| ≤ 1. So the sequence {|u} is
uniformly bounded and equicontinous, so it ful�lls the requirements for the
Ascoli-Arzela theorem, and u is continuous.

Suppose that ρ(s) > 0 . From
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(ρ(ξ), u(ξ)) =


(ρ−, u−), ξ < β−

(ρ(s), u(s)), α− < ξ < α+

(ρ+, u+), β+ < ξ

we now that ρ is constant in (s, s+ δ) for some δ, and that this last is not
dependent of ε, moreover remember that a in A|ξ−s| < |u(ξ)− ξ| < B|ξ−s|
is independent of ε (A = 1− a) so because of the equation

|ρ′ε| =
|ρεu′ε|
|uε − ξ|

<
ρε

|uε − ξ|
its bounded from above, on the interval (s + c,∞), for any c > 0. So by

the Ascoli-Arzela |ρ| is continuous, so ρ is continuous on (s,∞).

Now the case ρ(s) = 0. We divide the proof in two.

First: Suppose ρ(ξ) > 0 on (s,∞). It is enough to prove that ρ is con-
tinuous on (s+ δ,∞) for any δ > 0 .

We start assuming u(s+δ) = s+δ. Then, since u′ε(ξ) ≤ 1 for all ε, we can
say that ξ = s+ δ because we satisfy u′ε(ξ) ≤ 1 with our previously de�ned u
having u′(ξ) = 1 for all ε, so u(ξ) = ξ and as s is a �xed point, i.e. u(s) = s
then ξ can take values on the interval [s, s+ δ].

From (u− ξ)ρ′ + ρu′ = 0 we have

ρ =

=0︷ ︸︸ ︷
(u− ξ) ρ′

u′
= 0

with ξ ∈ [s, s+δ]. This contradicts our supposition ρ(ξ) > 0 on (s,∞) there-
fore to satisfy u′ε(ξ) ≤ 1 for all ε, we remove the equality from the inequality
getting u(s+ δ) < s+ δ.

As we can see from (3.155) and (3.156) we have

u(ξ)− ξ < 0 on ξ ∈ (s,∞) u(ξ)− ξ > 0 on ξ ∈ (−∞, s)

So taking the latter inequality we have

u(ξ)− ξ < 0 < s+ δ − u(s+ δ)→ u(ξ)− ξ < s+ δ − u(s+ δ) ξ ∈(s,∞)
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u(s+ δ)− s− δ < 0 < u(ξ)− ξ → u(s+ δ)− s− δ < u(ξ)− ξ ξ ∈(-∞,s)

Then taking into account the interval on which we are interested whereξ ∈
(s,∞)

u(ξ)− ξ < s+ δ − u(s+ δ) < ξ − u(ξ) ξ ∈(s+δ,∞)

Thus |u(ξ)− ξ| > s+ δ − u(s+ δ) for ξ ∈ (s+ δ,∞). So because of

|ρ′ε| =
|ρεu′ε|
|uε − ξ|

<
ρε

|uε − ξ|

is bounded in the set. Now yes, with this conditions, for the �rst case in
the set (s,∞) , we can apply Ascoli-Arzela theorem and ρ is continuous.

Second: suppose that ρ(ξ) = 0 on (s, s + τ ] and ρ(ξ) > 0 on (s + τ,∞)
for some τ > 0. The continuity, except in ξ = s + τ , follows from the
�rst case, we only need to prove the continuity at this point. The Rankine-
Hugoniot is valid everywhere, so at s + τ . Since ρ(ξ) = 0 on (s, s + τ ], then
ρ ((s+ τ)−) = 0, and the jump condition gives

(s+ τ)ρ ((s+ τ)+) = ρ ((s+ τ)+)u ((s+ τ)+)

(s+ τ)ρ ((s+ τ)+)u ((s+ τ)+) = ρ ((s+ τ)+)u2 ((s+ τ)+) + p (ρ ((s+ τ)+))

form the �rst, cancelling ρ ((s+ τ)+) we have

(s+ τ) = u ((s+ τ)+)

plug in this in the second one cancels the terms (s+τ)ρ ((s+ τ)+)u ((s+ τ)+)
and ρ ((s+ τ)+)u2 ((s+ τ)+) so

p (ρ ((s+ τ)+)) = 0

so because of p(ρ) = 0 implies ρ = 0

ρ ((s+ τ)+) = 0

so ρ ((s+ τ)+) = ρ ((s+ τ)−) = 0 and ρ is continuous.

The proof for the interval ξ ∈ (−∞, s) is similar.
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The previous theorem provide regularity properties for the limit of the
solution (ρ, u). Let S be the set of points of discontinuity of (ρ, u) and C
be the set of points of continuity. If u is increasing, (ρ, u) is continuous due
to the last theorem. If u is decreasing, we can easily verify that there exists
at most one point of discontinuity in (=∞, s) and (s,∞) from the theorem
were we characterized the shock waves with in (iii),(iv).

Now we consider the relationship between the characteristic speeds of the
problem (P ) and the weak derivative of the limit solution (ρ, u) According
to our original problem{

ρt + (ρu)x = 0 x ∈ R
(ρu)t + (ρu2 + p(ρ))x = 0 t > 0

Let

m = ρu, U =

(
ρ
m

)
, F (U) =

(
m

m2

ρ
+ p(ρ)

)
We know that the eigenvalues λ±of ∇F are given by

λ±(ρ, u) = u±
√
p′(ρ)

We use the notation λ±(ξ) = λ±(ρ(ξ), u(ξ)) and λε± = λ±(ρε(ξ), uε(ξ)) .

Let dµ = (dµ1, dµ2) = dU
dξ

be the vector valued measure which corresponds
to the weak derivative of U , i..e. corresponding to the linear functional:

φ→ −
´
φ′(ξ)U(ξ)dξ, φ ∈ C1

c (R)

We apply the Volpert product of ∇F (U) and dµ to the equation (P ) to
get

(Fˆ(U)− ξI)dµ = 0

in the sens of measures, where the averaged superposition ∇ˆF (U) of U
by ∇F is given by

(∇ˆF (U)(ξ) =

1ˆ

0

∇F (U(ξ−) + s(U(ξ+ = −U(ξ−)))ds

Let ξ ∈ C ∩ suppµ. Since there is at most one point of discontinu-
ity, ∇ˆF (U) = ∇F (U) in a neighborhood of ξ . Suppose the determinant



CHAPTER 3. MODELS 129

of(∇F (U)=ξI) is not zero, for example det(∇F (U)=ξI) > 0. Then there
exists a neighborhood N of ξ such that det(∇F (U)=ςI) > δ > 0 for all
ς ∈ N . But from (Fˆ(U)− ξI)dµ = 0 the measures det(∇F (U)=ςI)dm1,2 = 0
on N , which contradicts the fact that ξ ∈ suppµ. So ξ is an eigenvalue of
∇F (U(ξ)). We summarize these facts in a theorem :

Theorem 19. Let a solution (ρ, u) of (P ) be a limit of viscosity solutions
(ρε, uε) of (Pε)with a singular point s. Let dm be the measure of φ →
−
´
φ′(ξ)U(ξ)dξ. Then we have: (i) If u is increasing, then(ρ, u)is continu-

ous. If u is decreasing, then there exists at most one point of discontinuity
in (=∞, s)and (s,∞). (ii) If (½, u) is continuous at ξ ∈ suppµ, ξ = λ+(ξ) on
(s,∞) and ξ = λ−(ξ)on (=∞, s).

We conclude the section with a theorem which provides the structure of
the limit solution (ρ, u) of the viscosity solutions (ρε, uε) which obey the a
priori estimates.

Theorem 20. Let (ρ, u) be a solution of the Riemann problem (P ) through
the method of self-similar zero-viscosity limits and s be the limit of singular
points. (i) If u is increasing on (s,∞), then �λ+(ξ) is continuous on (s,∞)
and

λ+(ξ) =


λ+(s) , s < ξ < λ+(s)

ξ , λ+(s) < ξ < λ+(ρ+, u+)

λ+(ρ+, u+) , λ+(ρ+, u+) < ξ

(ii) If u is increasing on (=∞, s), then �λ−(ξ) is continuous on (=∞, s)
and

λ−(ξ) =


λ−(s) , s < ξ < λ−(s)

ξ , λ−(ρ−, u−) < ξ < λ−(s)

λ−(ρ−, u−) , ξ < λ−(ρ−, u−)

(iii) If u is decreasing on (s,∞), then λ+(ξ) has an unique discontinuity
on (s,∞) and

λ+(ξ) =

{
λ+(s) , s < ξ < ρ+u+

(ρ+−ρ(s))

λ+(ρ+, u+) , ρ+u+
(ρ+−ρ(s))

< ξ

(iv) If u is decreasing on (=∞, s), thenu has an unique discontinuity on
(=∞, s) and
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λ−(ξ) =

{
λ−(s) , ρ−u−

(ρ−−ρ(s))
< ξ < s

λ−(ρ−, u−) , ξ < ρ−u−
(ρ−−ρ(s))

Proof. We always consider the eigenvalue λ− on the interval (=∞, s)and λ+

on the other side (s,∞). If u is increasing, then u and ρ are continuous. So
they should be constant out of suppm and λ± are continuous and increasing,
too. With these facts we can easily check that suppm is a connected subin-
tervals of (=∞, s] or [s,∞). If not, λ± is discontinuous. So the structure of
λ± should follow (i) and (ii).

If u is decreasing, then λ± are also decreasing and there exists at most one
point of discontinuity on(=∞, s) and(s,∞). Since λ± = ξ on suppm and λ±
are decreasing, suppm should be the point of discontinuity and λ± be constant
before and after the discontinuity. We can �nd the point of the discontinuity
from the Rankine-Hugoniot jump condition, and λ±should follow (iii) and
(iv).

In summary, the limit of viscosity solutions has an intermediate state
which is connected to the boundary states by rarefaction waves ((i) and (ii))
or shocks ((iii) and (iv)).

Theorem 21. If the system (P ) (The P-system) is strictly hyperbolic, i.e.
there existsc > 0 such that

p´(ρ) ≥ c2 > 0, ρ > 0

then the emerging limit does not have a vacuum state.

Proof. The last theorem implies that λ± is constant on the interval (s,� +
(s)) 6= φ and(λ+(ρ+, u+),∞). Since

√
p´(ρ) is increasing on (s,∞), u(ξ) is

also constant on those intervals. From (u−ξ)ρ′+ρu′ = 0 , ρ is also constant.
Now we consider the interval (λ+(s), λ+(ρ+, u+)). From (u−ξ)ρu′+p(ρ)′ = 0
we get c2ρ´ ≤ (ξ=u)ρ, and hence there exists a constant C such that

ρ´ ≤ Cρ.

So we have

ρ(ξ) ≤ ρ(λ+(s))eC(ξ=λ+(s)).
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Suppose the solution has a vacuum state, i.e. ρ(s) = 0. Then, since ρ is
constant on (s,�λ+(s)), ρ(λ+(s)) = 0, and hence ρ is zero on (λ+(s), λ+(ρ+, u+)).
So ρ(∞) = 0 which contradicts the boundary condition ρ(∞) = ρ+ > 0.

Convex pressure laws

In Lemma 6 the a priori estimates 0 < δ < ρ(ξ) < M , |u(ξ)| < M for any
ξ ∈ (−∞,∞) are established except for the lower bound for ρ of the case
C4. In this section we complete the a priori estimates in two cases under the
convex pressure laws

p′′(ρ) ≥ 0 for ρ > 0

. First, we consider the case of strictly hyperbolic systems.

The equation

(u− ξ)ρ′ + ρu′ = 0 −∞ < ξ <∞

can be written as a �rst order linear equation for ρ :

ρ´ +
u´

u− ξ
ρ = 0, ξ 6= s

where s is the singular point. Then the solution is given by

ρ(ξ) =

{
ρµ+e

−
´∞
ξ

u′
ς−udς , s < ξ

ρµ−e
−
´ ξ
−∞

u′
ς−udς , ξ < s

where ρµ− = ρ+ and ρµ+ = ρ− + m(ρ+=ρ−) are the boundary conditions
ρ(±∞) = ρµ± := ρ− + µ(ρ± − ρ−) for 0 ≤ µ ≤ 1

Theorem 22. Let a solution (ρ, u) of (Pm

ε ) belong to the class C4. If the
system (P ) is strictly hyperbolic, i.e.

p´(ρ) ≥ c2 > 0, ρ > 0

then there exists a constant δ > 0 which satis�es (3.153) and is indepen-
dent of ε and m.

Proof. Since u is increasing on R, u´ ≤ 1 by previous theorems, and ξ=u(ξ)
is also increasing. Since the function is always increasing, and the derivative
goes from zero at the singular point, to zero at in�nity, then it should exist
a ξ1 > s such that 0 < ξ=u(ξ) ≤ c

2
on (s, ξ1) and c

2
≤ ξ=u(ξ) on (ξ1,∞).
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Then

ρ(ξ1) = ρm+e
=

´∞
ξ1

u′
ς−udς ≥ ρµ+e

− 2
c
(u+−u−) (3.175)

From the equations in (P ), we can write[
p′ (ρ(ξ))− (u(ξ)− ξ)2] ρ′(ξ) = εu′′(ξ)

Integrating this last on(s, ξ1) we get, for the right side

ε

ξ1ˆ

s

u′′(ς)dς = ε[u′(ξ1)− u′(s)] = εu′(ξ1) ≤ ε (3.176)

where we use u′(s) = 0 and the fact that u´ ≤ 1. Now for the left part.

ξ1ˆ

s

(p′(ρ)− (ς − u)2)ρ′dς

In the set (s, ξ1), we have 0 < ξ=u(ξ) ≤ c
2
so

(ξ=u(ξ))2 ≤ c2

4

−c
2

4
≤ − (ξ=u(ξ))2

so substituting this and using p´(ρ) ≥ c2, and integrating we have

3c2

4

ξ1ˆ

s

ρ′dς =

ξ1ˆ

s

(c2 − c2

4
)ρ′dς ≤

ξ1ˆ

s

(p′(ρ)− (ς − u)2)ρ′dς

so

3c2

4
(ρ(ξ1)− ρ(s)) ≤

ξ1ˆ

s

(p′(ρ)− (ς − u)2)ρ′dς

Combining this last result with (3.176)

ε ≤ 3c2

4
(ρ(ξ1)− ρ(s))

using (3.175) we can write the bound of ρ from below by
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min{ρ−, ρ+}e−
2
c
(u+−u−) − 4ε

3c2
≤ ρµ+e

− 2
c
(u+−u−) − 4ε

3c2
≤ ρ(s)

Notice that if ε→ 0 then ρ is bounded by a constant independent of ε.

We return to general convex pressure laws p´(ρ) ≥ c2 > 0, with ρ > 0
and consider the function

g(ρ) =
p(ρ)

ρ
, ρ > 0

. Either the function g : R+ → R+ is invertible or the system is strictly
hyperbolic, as we will see in the next theorem. Consider the case when g has
an inverse g=1

Theorem 23. Let a solution (ρ, u) of (Pm

ε )belong to the class C4. If the
boundary conditions (ρ±, u±) satisfy

u+=u= < max
m>0

(m ln(
ρµ−

g−1(m2)
)) + max

m>0
(m ln(

ρµ+
g−1(m2)

)) (3.177)

then there exists a constant δ > 0 which satis�es (3.159) and is indepen-
dent of ε and m.

.

Proof. Let s be the singular point of the solution (ρ, u). Since u is increasing
in R, we have u

=

< u(s) < u+. If (3.177) holds,

u+=u(s) < max
m>0

(m ln(
ρµ+

g−1(m2)
))

or

u(s)=u
=

< max
m>0

(m ln(
ρµ−

g−1(m2)
))

We assume that the �rst one holds. Then there exists m > 0 such that
u+=u(s) < m ln(

ρµ+
g−1(m2)

) or equivalently, taking the exponent,

g
(
ρm+e

=

(u+=u(s))

m

)
−m2 > 0.

Since ξ=u(ξ) is increasing, as stated above in the previous theorem, we
can �nd a ξ1 > s such that 0 < ξ=u(ξ) ≤ m on (s, ξ1) and m ≤ ξ=u(ξ) on
(ξ1,∞). Then
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m ≤ ξ=u(ξ)
1

ξ=u(ξ)
≤ 1

m

− 1

m
≤ − 1

ξ=u(ξ)

so ρµ+e
=

´∞
ξ1

u′
m
dς ≤ ρµ+e

=

´∞
ξ1

u′
ς−udς = ρ(ξ1) integrating the left hand side

ρµ+e
=

´∞
ξ1

u′
m
dς

= ρm+e
− (u+−u(ξ1))

m
dς

and because ξ1 > s

ρm+e
− (u+−u(s))

m ≤ ρµ+e
=

´∞
ξ1

u′
ς−udς = ρ(ξ1) (3.178)

We can easily check that g(ρ) is increasing for ρ > 0, derivating respect
of ξ

g′(ρ) =
p′ρ′

ρ
− pρ′

ρ2

the �rst term is positive because p´(ρ) = p′ρ′ ≥ c2, and p is positive then
g′ is positive because ρ′ ≤ 0 so the second term is positive and g is increasing.
Using (3.178) and the positiveness of the derivative of g its obvious that

g(ρ(ξ1))=m2 > 0

.
Integrating [

p′ (ρ(ξ))− (u(ξ)− ξ)2] ρ′(ξ) = εu′′(ξ)

on (s, ξ1) we get, as in previous theorem

ε

ξ1ˆ

s

u′′(ς)dς = εu′(ξ1) ≤ ε (3.179)

Before doing the second part, see that in the set (s, ξ1) its true 0 <
ξ=u(ξ)≤m so its also true

−m2 ≤ −(ξ=u(ξ))2

so the second integral can be bounded by
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ξ1ˆ

s

(p′(ρ)−m2)ρ′dξ ≤
ξ1ˆ

s

(p′(ρ)− (ς − u)2)ρ′dξ

and the right hand side is

ξ1ˆ

s

(p′(ρ)−m2)ρ′dξ =

ξ1ˆ

s

(pρ)′ −m2ρ′dξ

= (p(ξ1)− p(s)) (ρ(ξ1)− ρ(s))−m2 (ρ(ξ1)− ρ(s))

=

[
p(ξ1)− p(s)
ρ(ξ1)− ρ(s)

−m2

]
(ρ(ξ1)− ρ(s))

so

[
p(ξ1)− p(s)
ρ(ξ1)− ρ(s)

−m2

]
(ρ(ξ1)− ρ(s)) ≤

ξ1ˆ

s

(p′(ρ)− (ς − u)2)ρ′dξ

The convexity hypothesis implies that p is increasing, and because ρ(s) >
0 then

p(ρ(ξ1))

ρ(ξ1)
−m2 =

p(ρ(ξ1))

ρ(ξ1)− ρ(s)
−m2 <

p(ρ(ξ1))− p(ρ(s))

ρ(ξ1)− ρ(s)
−m2

so

0 < g(ρ(ξ1))−m2 =
p(ρ(ξ1))

ρ(ξ1)− ρ(s)
−m2 <

p(ρ(ξ1))− p(ρ(s))

ρ(ξ1)− ρ(s)
−m2

Remember that this should be compared with the left side integrated
before, i.e. (3.179) so

(
g(ρ(ξ1))−m2

)
(ρ(ξ1)− ρ(s)) ≤ ε

ρ(ξ1)− ρ(s) ≤ ε

g(ρ(ξ1))−m2

and
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ρ(ξ1)− ε

g(ρ(ξ1))−m2
≤ ρ(s)

ρ(ξ1)− ε

g(ρ(ξ1))−m2
≤ ρ(ξ1)− ε

g(ρ(ξ1))−m2

ρm+e
− (u+−u(s))

m − ε

g(ρ(ξ1))−m2
≤ ρ(s)

where the last inequality comes from (3.178). So the density ρ is bounded
below by

min{ρ+, ρ−}e
=

1
m(u+=u(s))=

ε

g(ρ(ξ1))=m2
≤ ρm+e

− (u+−u(s))
m − ε

g(ρ(ξ1))−m2
≤ ρ(s)

for a su�ciently small ε > 0. The situation is similar if the second
condition holds.

One can check that, if

u+=u= < max
m>0

(m ln(
ρµ−

g−1(m2)
)) + max

m>0
(m ln(

ρµ+
g−1(m2)

)) (3.180)

holds and ρ
=

≤ ρ+, then (3.177) holds. If ρ
=

>ρ+ and instead of using
the continuity of the boundary data

ρ(±∞) = ρ− + µ(ρ± − ρ−) 0 ≤ µ ≤ 1
u(±∞) = u− + µ(u± − u−)

one uses

ρ(±∞) = ρ+ + µ(ρ± − ρ+) 0 ≤ µ ≤ 1
u(±∞) = u+ + µ(u± − u+)

and the (3.177) holds. So (3.180) is su�cient condition (but not neces-
sary) such that the vacuum won't appear. As seen in [Smoller], admissible
solutions of the gas dynamics don't have vacuum state i�

u+ − u− <
ˆ ρ−

0

√
p′(ρ)

ρ
dρ+

ˆ ρ+

0

√
p′(ρ)

ρ
dρ

We state the last theorem.
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Theorem 24. Suppose that p(ρ) satis�es

p′(ρ) > 0 ρ > 0

p(ρ)→∞ ρ→∞

p(ρ)→ 0 ρ→ 0

If the system

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p(ρ))x = 0

is strictly hyperbolic or the initial data (ρ±, u±) satisfy (3.180), then the
boundary value problem (P ) has a solution (ρ, u) which is a ε→ 0 of solutions
of (Pε).The function (ρ, u) has structure stated in the previous theorems and
does not contain vacuum, moreover,

(
ρ(x

t
), u(x

t
)
)
is a solution of the Riemann

problem.
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