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Abstract

Imaging with X-rays have developed rapidly over the last few years. X-ray

microscopy, and micro-analysis have many applications in basic science and tech-

nology [1]. There are different ways to focus X-rays including focusing with mirrors,

Fresnel zone plates, and CRLs (Compound refractive lenses) [1]. In our model we

consider the propagation of X-rays from the undulator sources installed at the third-

generation storage rings at the ESRF a high β undulator [1] through compound re-

fractive lenses made of AL with parabolic profile. We use here the finite difference

approach, and the implicit Runge Kutta method of the second order to solve the

wave equation inside, and outside the CRLs. The program written in FORTRAN

to compute the focal distance, and the spot size. We consider two cases, the first

one for 33 Al lenses, and the second one for a few number of lenses up to 15 lenses.

For the first case, we consider only the one dimensional case, as the numerical in-

vestigations showed that we need to use more than 50000 points in each direction

which can not be done using the personal computer. We perform two dimensional

simulation for the second case with few number of lenses. The design of the lenses

is considered as in [1] and we use the same data to compare the results with the

experimental data.. Our results give good agreement with the experimental data

for the focal distance, and for the intensity at the focal plane while, for the FWHM

we have smaller FWHM than in the experimental data. We believe that is because

we use perfect parabolic lenses without any defects.
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1 Introduction

After the discovery X-rays in the late of 1895 by a German physicist, W. C. Roentgen

they become an important tool to examine, and investigate several phenomena in different

fields of science like Biology, Geology, Medicine, and materials science [21]. X-rays have

a lot of applications nowadays in different parts of science. Most of the applications

based on their ability to penetrate the materials. X-rays with lower energy are called

soft X-rays, while X-rays with energy above 15Kev are called hard X-rays. Soft X-rays

can be used in medical imaging for dental cavities, bone fractures, and diseased such as

cancer. In materials science there is a need to investigate, and examine the structure

of the samples. So, there is a demand to focus the X-ray beams that will allow us to

study, and investigate the details of the materials with high resolution. Focusing X-ray

beams becomes very essential in modern science to understand the Biological, chemical,

and Physical systems [21]. There are different ways to focus X-rays like: grazing mirrors,

Fresnel plates, and compound refractive lenses. We will introduce briefly the grazing

mirrors, Fresnel plates, and we will consider the compound refractive lenses [2] in more

detail as this method is the core of our work.

1.1 Focusing X-rays with mirrors

Focusing X-rays with mirrors was the first way to focus the X-ray beams. The idea

of using the mirrors based on the reflection of X-rays off metallic surfaces. The most

important thing is the incident angle. The incident angle should be very small. This kind

of focusing X-ray beams with mirrors is efficient with metals with high density such as

gold. For hard X-rays with small wavelength the incident angle should be very small [20].

This kind of mirror can be adapted to reach the required focusing. X-ray reflection does

not occur except for very small incident angles, below the critical value (2δ)1/2, where 1-δ

is the real part of the index of refraction n=1-δ+iβ. This means that it will be difficult
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Figure 1: Focusing X-rays with zone plates. This figure form [22]

to obtain small incident angle for hard X-rays, for example δ = 2.414 × 10−6 for AL at

15Kev. This is the main issue for such kind of focusing X-rays based on the mirrors [20].

1.2 Fresnel zone plates

The second way to focus X-rays is Fresnel zone plates. It consists of series circular zones

made of an X-ray absorbing material. It focuses the incoming X-ray beams to a point

focus. As it is shown in [22], we can see form figure (1) that the X-rays pass through the

zones let’s say the n-th zone of radius rn, and the optical pass can be written as in [22] in

the following way F = (f 2 + rn
2)1/2. Where f is the focal point. Which can be written as

(f 2 + rn
2)1/2 − f = nλ

with wavelength λ, and n is the number of zones [22]. Now if we consider hard X-rays

with small wavelength the last relation can be written as (f 2 + rn
2)1/2 = f + r2n/2f and

rn = (2n)1/2 [22]. So, focusing X-rays with zone plates depends on the width of the zone,

which depends on the way to fabricate it. In general, Fresnel zone plates can be used for

soft X-rays with very low energy.

7
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1.3 Compound refractive lenses

For the visible light, we can use lenses to focus the light. Refractive lenses can be used for

visible light that will give us short focal distance, strong refraction, and weak absorption.

But, for the X-rays the situation is different because the index of refraction n for X-rays is

given by n=1-δ+iβ. The real part in the index of refraction 1−δ is close to one. Although

β is small number compared to one, the absorption can’t be negligible. Basically in order

to focus X-rays with refractive lenses we will have strong absorption, long focal distance,

and the lens must take a concave shape [23]. This led to the observation that there is

no way to fabricate refractive lenses for X-rays. However, the problems can be solved by

stacking many lenses behind each other [23] by setting the radius of curvature to be small

(e.g. 0.2 mm) [1], and by choosing a low-Z lens material like AL, and Be [1]. The first trial

with CRLs was in [2] by considering a bulk of low-Z material with an array of cylindrical

holes. The cylindrical holes play an important role for point focusing. The design of such

CRLs is very easy to fabricate, but it causes spherical aberrations which produce a blurry

image. So, in [1] they fabricated another kind of CRLs, to avoid the problem in [2]. The

new lenses have a parabolic profile and rotational symmetry around the optical axis so,

they focus in two directions and because of the parabolic shape they don’t have spherical

aberrations as in [2]. We will consider the parabolic shape of the lenses to focus X-rays

using the finite difference method. But, we need to mention that we use here ideal lenses

without any defects. In the last section we will compare our results with the experimental

data in [1]

8
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1.4 The general equations

Our starting point is Maxwell’s Equations which can be written in the following form

∇ · ~D = ρ

∇ · ~B = 0

∇× ~E = −∂ ~B
∂t

∇× ~H = ~J + ∂ ~D
∂t

(1.1)

Where, ~E is the electric field (V/m), ~D is the electric displacement, ~J is the current

density, ρ is the volume charge density, and ~B is the magnetic field.

We can write the ~D, and ~B as:

~D = ε0 ~E + ~P

and

~B = µ0
~H + ~M

Where ε0 = 1/(36π) × 10−9 (F/m), and µ0 = 4π × 10−7 (H/m) are the permittivity and

permeability of free space. ~P is the polarization, and ~M is the magnetization of the

medium [14]. The other variables do not depend on the optical medium only ~P , and

~M give us information about how the optical medium behaves when the electromagnetic

wave propagate through it.

The vectors ~D, and ~B are functions of ~E, and ~H respectively. Assuming that the

current ~J is also a function of the electric field ~E, and the medium is linear we can obtain

9
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the following constitutive relations [14]

~D = ~f( ~E)

~J = ~g( ~E)

~B = ~h( ~H)

The Polarization can be written as ~P = ε0χe(ω0) ~E where χe(ω0) is the electric suscep-

tibility. In general χe(ω0) is a second rank tensor but, we consider only isotropic medium

so, we can write the electric displacement ~D as:

~D = ε0 ~E + ε0χe(ω0) ~E = ε0(1 + χe(ω0)) ~E = ε1(ω0) ~E (1.2)

Such that ε1(ω0) is the dielectric constant or the electric permittivity of the medium,

and ω0 is the frequency of the electromagnetic wave (in our model we assume that the

frequency is fixed). The linear relation between the current ~J and the ~E for isotropic

medium can be written as:

~J = σ ~E

It means that the current ~J at point ~r depends only on the electric field ~E at that point

and the conductivity σ. By the same way for the magnetic field

~M = µ0χm(ω0) ~H

where χm(ω0) is the magnetic susceptibility of the medium and the magnetic field ~B can

be expressed as:

10
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~B = µ0
~H + µ0χm(ω0) ~H = µ0(1 + χm(ω0)) ~H = µ1(ω0) ~H

In the following subsections we will make some assumptions according to our model.

2 Our model

We consider the propagation of X-rays through CRLs with parabolic profile, we need to

calculate the focal disatnce and the spot size. First we consider the propagation in free

space (from the source to the lenses), then we consider the propagation inside the lenses.

We solve the wave equation in free space, and inside the lenses using the finite-difference

method, and implicit Runge Kutta of the second order. The considered medium inside

the lenses is homogeneous, linear, non-magnetic, and isotropic.

2.1 Maxwell’s equations in free space

In free space ~P = 0 and ~M = 0. So, we can write ~D = ε0 ~E, and ~B = µ0
~H. Maxwell’s

equations can be written as:

∇ · ~E = 0

∇ · ~B = 0

∇× ~E = −∂ ~B
∂t

∇× ~B = ε0µ0
∂ ~E
∂t

(2.1)

11
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2.1.1 Wave equation in vacuum

Since ~E, and ~B generate each other, it will be enough to derive single differential equation

to describe the propagation of X-rays by only ~E.

∇×
(
∇× ~E

)
= ∇×

(
−∂

~B

∂t

)
= − ∂

∂t

(
∇× ~B

)
Using Faraday’s law

∇×
(
∇× ~E

)
= − ∂

∂t

(
ε0µ0

∂ ~E

∂t

)
But,

∇×
(
∇× ~E

)
= ∇

(
∇ · ~E

)
−∇2 ~E

and

∇ · ~E = 0

So, we reach the following wave equation:

∇2 ~E = ε0µ0
∂ ~E

∂t
(2.2)

Following the same procedure to eliminate ~E from Maxwell’s equations we get:

∇2 ~H = ε0µ0
∂ ~H

∂t
(2.3)

If we compare the last two equations with the general form of the wave equation

∇2 ~F =
1

v2
∂ ~F

∂t

12
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where v is the phase velocity, we will obtain the speed of the electromagnetic wave in

vacuum:

v =
1

√
ε0µ0

≈ 3× 108m/s

2.1.2 The propagation of X-rays in vacuum

We will consider now the equation (2.2) for the propagation in vacuum

(
∇2 − 1

c20

∂2

∂t2

)
~E(~r, t) = 0 (2.4)

With speed

c0 ≈
1

√
ε0µ0

= 3× 108m/sec

Where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

So, the equation (2.4) can be written as:

(
∂2 ~E

∂x2
− 1

c20

∂2 ~E

∂t2

)
= −

(
∂2 ~E

∂y2
+
∂2 ~E

∂z2

)
(2.5)

We consider here monochromatic plane wave, and the optical axis along x-axis so, we

can search for a solution for the wave equation in the following form:

~E(~r, t) = ~A(~r, t) exp(i(k0x− ω0t)) + c.c (2.6)

Where c.c is the complex conjugate, k0 = ω0

c0
is the wave number in a vacuum, and ~A is

the complex amplitude which is slowly dependent on ~r and t. By differentiating equation

(2.6) we get:

13
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∂ ~E

∂x
=

(
∂ ~A

∂x
+ ik0 ~A

)
exp(i(k0x− ω0t)) + c.c

∂ ~E

∂t
=

(
∂ ~A

∂x
− iω0

~A

)
exp(i(k0x− ω0t)) + c.c

∂2 ~E

∂x2
=

(
∂2 ~A

∂x2
+ 2ik0

∂ ~A

∂x
− k20A

)
exp(i(k0x− ω0t)) + c.c

∂2 ~E

∂t2
=

(
∂2 ~A

∂t2
− 2iω0

∂ ~A

∂t
− ω2

0
~A

)
exp(i(k0x− ω0t)) + c.c

Now, we can substitute into equation (2.5)

(
∂2 ~A

∂x2
+ 2ik0

∂ ~A

∂x
− k20 ~A

)
− 1

c20

(
∂2 ~A

∂t2
− 2iω0

∂ ~A

∂t
− ω2

0
~A

)
= −

(
∂2 ~A

∂y2
+
∂2 ~A

∂z2

)
(2.7)

If we put k0 = ω0
c0

into the equation (2.7), it becomes:

(
∂2 ~A

∂x2
+ 2i

ω0

c0

∂ ~A

∂x

)
− 1

c20

(
∂2 ~A

∂t2
− 2iω0

∂ ~A

∂t

)
= −

(
∂2 ~A

∂y2
+
∂2 ~A

∂z2

)
(2.8)

We will assume that the field varies progressively along x-axis only (Paraxial approxima-

tion) which means that ∣∣∣∣∣2ω0

c0

∂ ~A

∂x

∣∣∣∣∣ >>
∣∣∣∣∣∂2 ~A∂x2

∣∣∣∣∣
and we consider here a stationary wave so, equation (2.8) becomes:

2iω0

c0

∂ ~A

∂x
= −

(
∂2 ~A

∂y2
+
∂2 ~A

∂z2

)

14
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We finally get:

∂ ~A

∂x
=

ic0
2ω0

(
∂2 ~A

∂y2
+
∂2A

∂z2

)
(2.9)

We will solve the equation (2.9) numerically by using the finite difference method in the

following sections. Now we need to find the dispersion relation for equation (2.9) because

it will give us a quantitative estimation for the space steps. The minimal scale lx along

x-axis can be estimated as:

lx =
ω0

c0
h2r

Where hr is the space step in y, z direction, we should take

hx = constant ∗ ω0

c0
h2r << lx

where constant ≤ 1 we can find this constant only empirically. We need to choose that

constant carefully such that the error associated with hx be negligible. Consequently, the

following condition must be satisfied for the propagation in free space

hx <<<
w0h

2
r

c0

2.2 Maxwell’s equations inside the lenses

We will use Aluminum or Beryllium lenses, so we need Maxwell’s equations inside the

metal with the following properties for the medium:

• conducting, with ~J = σ ~E

• Homogeneous, which means that ε1, µ1, and σ do not depend on the position

• Isotropic, which means that ε1, µ1, and σ have the same values in all directions.

Consequently, they will be constant values, not tensors.

15
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• Free of charges, which means ρ = 0

• Non-magnetic medium, which means that ~M = 0 and ~B = µ0
~H

Using equation (1.2), we can write Maxwell’s equations inside the lenses in the following

way:

∇ · ~E = 0

∇ · ~B = 0

∇× ~E = −∂ ~B
∂t

∇× ~B = ε1µ0
∂ ~E
∂t

+ µ0σ ~E

(2.10)

We will suppose that ε1, and σ are real, and use them to define the complex dielectric

function ε. The index of refraction for X-rays inside the medium is given by:

n = 1− δ + iβ

Where δ is the refractive decrement it is always of order O(10−6) such that 1− δ close to

one, while β is the absorption coefficient it is of order O(10−9). So, the material of the

lenses influences feebly the propagation of X-ray beams. Therefore, we can consider the

field as a plane wave with the same wave number as in free space k0 = ω0

c0
and ~Alens is the

amplitude inside the lens which is slowly dependent on ~r and t. Hence,

~E(~r, t) = ~Alens(~r, t) exp(i(k0x− ω0t)) + c.c (2.11)

16
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We consider here a stationary wave. So,

∇× ~B = µ0 (−iω0ε1 + σ) ~E

Which can be written as:

∇× ~B = −iµ0ω0

(
ε1 +

iσ

ω0

)
~E

Now, we can define the complex dielectric function ε(ω0) as:

ε(ω0) = ε1(ω0) +
iσ

ω0

(2.12)

By the same way we can derive the wave equation for the propagation inside the lenses

using equation (2.10) which gives us:

∇2 ~E − ε1µ0
∂2 ~E

∂t2
= σµ0

∂ ~E

∂t
(2.13)

2.2.1 The propagation inside the lens

For the propagation inside the lenses we use the wave equation:

∇2 ~E − ε1µ0
∂2 ~E

∂t2
= σµ0

∂ ~E

∂t
(2.14)

(
∂2 ~E(~r, t)

∂x2
− ε1µ0

∂2 ~E(~r, t)

∂t2

)
− σµ0

∂ ~E(~r, t)

∂t
= −

(
∂2 ~E(~r, t)

∂y2
+
∂2 ~E(~r, t)

∂z2

)
(2.15)

By differentiating equation (2.11), and substituting into equation (2.15) we get:

17
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(
∂2 ~Alens
∂x2

+ 2ik0
∂ ~Alens
∂x

− k20A

)
−ε1µ0

(
∂2 ~Alens
∂t2

− 2iω0
∂ ~Alens
∂t

− ω2
0
~Alens

)
−σµ

(
∂ ~Alens
∂t

− iω0
~Alens

)

= −

(
∂2 ~Alens
∂y2

+
∂2 ~Alens
∂z2

)
We shall use the same assumption as in free space, that the field inside the lenses

varies progressively along x-axis only (Paraxial approximation)∣∣∣∣∣2k0∂ ~Alens∂x

∣∣∣∣∣ >>
∣∣∣∣∣∂2 ~Alens∂x2

∣∣∣∣∣
And we are consider here a stationary wave. Hence,

2iω0

c0

∂ ~Alens
∂x

−
(
ω2
0

c20
− ε1µ0ω

2
0 − iσµ0ω

)
Alens = −

(
∂2 ~Alens
∂y2

+
∂2 ~Alens
∂z2

)

After some simplifications we get:

∂ ~Alens
∂x

+
iω0

2c0

(
1− ε1µ0c

2
0 −

iµ0σc
2
0

ω0

)
~Alens =

ic0
2ω0

(
∂2 ~Alens
∂y2

+
∂2 ~Alens
∂z2

)
(2.16)

We can put c20 = 1/ε0µ0

∂ ~Alens
∂x

+
iω0

2c0

(
1− ε1

ε0
− iσ

ω0ε0

)
~Alens =

ic0
2ω0

(
∂2 ~Alens
∂y2

+
∂2 ~Alens
∂z2

)

Using equation (2.12) we can write the last equation in terms of the complex dielectric

18
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function as follows:

∂ ~Alens
∂x

+
iω0

2c0

(
1− ε(ω0)

ε0

)
~Alens =

ic0
2ω0

(
∂2 ~Alens
∂y2

+
∂2 ~Alens
∂z2

)
(2.17)

Where

εr =
ε(ω0)

ε0

is the relative permittivity of the medium which related to the index of refraction n with

the relation

n =
√
εrµr

Where µr is the relative permeability and it is close to 1. Hence, we can express the index

of refraction n as

n =
√
εr

If we substitute into equation (2.17) we will get the following:

∂ ~Alens
∂x

+
iω0

2c0

(
1− n2

)
~Alens =

ic0
2ω0

(
∂2 ~Alens
∂y2

+
∂2 ~Alens
∂z2

)
(2.18)

But, the index of refraction for x-rays is given by:

n = 1− δ + iβ

δ and β are very small quantities so, we can neglect the term (δ + iβ)2. Equation (2.18)

takes the form:

∂ ~Alens
∂x

+
iω0

c0
(δ − iβ) ~Alens =

ic0
2ω0

(
∂2 ~Alens
∂y2

+
∂2 ~Alens
∂z2

)

19



Mahmoud Mohamed Reda Ahmed Elsawy 20

Which gives:

∂ ~Alens
∂x

+B ~Alens =
ic0
2ω0

(
∂2 ~Alens
∂y2

+
∂2 ~Alens
∂z2

)
(2.19)

Where,

B =
ω0

c0
(iδ + β)

The last equation models the propagation of X-rays inside the CRLs. We can solve the

equation (2.19) by two ways (for simplicity we just drop the vector notation):

• First, we can solve the equation by assuming that Alens = exp(−Bx)A′lens and we

will have an equation similar to what we obtained in the case of free space which

can be solved numerically using the FDM.

∂A′lens
∂x

=
ic0
2ω0

(
∂2A′lens
∂y2

+
∂2A′lens
∂z2

) (2.20)

Alens = exp(−Bx)A′lens

• Second, we can use directly the FDM for (2.19) without any multiplication. The

two methods are correct from an analytical point of view, while the second one is

better in case of large systems because we will avoid the exponent that will take a

lot of time. We will consider here the two approaches later in the following sections.

By the same manner as we did for equation (2.9), we need to find the dispersion relation

for the equation (2.19). The following conditions must be satisfied

hlens <<
w0h

2
r

c0

hlens <<<
1

| B |

Where hlens is the space step for the x-axis inside the lens.
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3 The design of CRLs

Figure 2: Single Parabolic lens from[1]

3.1 The initial conditions

In this section we will consider the initial conditions for the amplitude of the electromag-

netic waves as in [1] for the undulator sources installed in the third-generation storage

rings At the ESRF a high β undulator [1]. An undulator source has a finite size described

by a Gaussian beam in the vertical and in the horizontal direction [1]

For the horizontal:

W (y) =
(
2πσh

2
)−1

2 exp
(
−y2/2σh2

)
For the vertical:

W (z) =
(
2πσv

2
)−1

2 exp
(
−z2/2σh2

)
Where σv = 14.9µm and σh = 297µm which is corresponding to FWHM dh = 700µm,

and dv = 35µm [1]
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3.2 The surface of the lens

In this model we use compound refractive lenses each of them has a parabolic cross section

with width(lenw)=1mm such that d is the smallest width of the lens, and R=1/r where

r is the radius of curvature. Using the equation of parabola we can define the left and

right surface of the lens as the following:

XSL(y, z) = −0.5 ∗R
(
(y − 0.5 ∗ lenw)2 + (z − 0.5 ∗ lenw)2

)
+

(
lenw − d

2

)

XSR(y, z) = 0.5 ∗R
(
(y − 0.5 ∗ lenw)2 + (z − 0.5 ∗ lenw)2

)
+

(
lenw + d

2

)
4 The finite-difference scheme

In this section we will find the numerical scheme for the propagation in free space and

inside the CRLs. We apply the FDM to the equations (2.9) and (2.19). The FDM will

transform them to a system of ODEs [19] then, we use the implicit Runge Kutta method

of order two with an iteration method to solve the ODEs. As we mentioned before, for

the propagation inside the lens we will consider the two ways to solve equation (2.19). If

we consider the equation (2.20) which means dealing with the exponent, then we will use

the same manner as in the next subsection but, for lenses. While, the second way requires

solving equation (2.19) with the finite-difference method directly without exponent [18].

4.1 Free space

Let’s start with equation (2.9) for the propagation in free space.

∂A

∂x
=

ic0
2ω0

(
∂2A

∂y2
+
∂2A

∂z2

)
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We approximate the second derivatives in y, z direction with space step hr using the

finite difference scheme such that yj = jhr and zk = khr where j, k=0,1,2,.........N and hr

is the space step in y, z. Using Taylor’s expansion, we get:

Aj+1,k = Aj,k + hr

(
∂A

∂y

)
j,k

+
h2r
2

(
∂2A

∂y2

)
j,k

+
h3r
6

(
∂3A

∂y3

)
j,k

+O(h4r)

And,

Aj−1,k = Aj,k − hr
(
∂A

∂y

)
j,k

+
h2r
2

(
∂2A

∂y2

)
j,k

− h3r
6

(
∂3A

∂y3

)
j,k

+O(h4r)

By adding them as we get:

(
∂2A

∂y2

)
j,k

=
Aj+1,k − 2Aj,k + Aj−1,k

h2r
+O(h2r)

By the same manner we can find the approximation to the second derivative in z direction

as follows: (
∂2A

∂z2

)
j,k

=
Aj,k+1 − 2Aj,k + Aj,k−1

h2r
+O(h2r)

Equation (2.9) can be written as:

∂Aj,k
∂x

=
ic0

2ω0h2r

(
Aj+1,k + Aj−1,k + Aj,k+1 + Aj,k−1 − 4Aj,k +O(h2r)

)
We can also approximate the first derivative in the left hand side using Taylor’s expansion

as well. We can approximate xn = nhx, where hx is the space step in x-axis:

An+1
j,k = Anj,k + hx

(
∂A

∂x

)n
j,k

+O(h2x)
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So, the forward scheme is given by:

(
∂A

∂x

)n
j,k

=
An+1
j,k − Anj,k
hx

+O(hx)

For the intermediate scheme:

A
n+ 1

2
j,k = Anj,k +

hx
2

(
∂A

∂x

)n
j,k

+O(h2x)

Finally, using the midpoint scheme, equation (2.9) can be written as:

An+1
j,k − Anj,k
hx

=
ic0

2ω0h2r

(
A
n+ 1

2
j+1,k + A

n+ 1
2

j−1,k + A
n+ 1

2
j,k+1 + A

n+ 1
2

j,k−1 − 4A
n+ 1

2
j,k

)
+O

(
h2x + h2r

)
(4.2)

This scheme contains unknowns An+1
j,k and A

n+ 1
2

j,k . In order to calculate the intermediate

quantities A
n+ 1

2
j,k , we apply the implicit scheme

2 ∗
A
n+ 1

2
j,k − Anj,k

hx
=

ic0
2ω0h2r

(
A
n+ 1

2
j+1,k + A

n+ 1
2

j−1,k + A
n+ 1

2
j,k+1 + A

n+ 1
2

j,k−1 − 4A
n+ 1

2
j,k

)
+O

(
h2x + h2r

)
(4.3)

Comparing (4.2) and (4.3), we arrive to the formula

An+1
j,k = 2A

n+ 1
2

j,k − A
n
j,k (4.4)

The system of equations (4.2) and (4.4) or (4.3) and (4.4) gives us the implicit Runge

Kutta method of the second order [19].
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4.2 Inside the lens

4.2.1 Inside the lens with exponent

First, we start by the substitution Alens = exp(−Bx)A′lens then we will obtain the equation

∂A′lens
∂x

=
ic0
2ω0

(
∂2A′lens
∂y2

+
∂2A′lens
∂z2

)

Second, by the same way as we did in the last subsection we use the finite difference

approximation to approximate the last equation.

2∗
A′j,k

n+ 1
2 − A′j,kn

hx
=

ic0
2ω0h2r

(
A′j+1,k

n+ 1
2 + A′j−1,k

n+ 1
2 + A′j,k+1

n+ 1
2 + A′j,k−1

n+ 1
2 − 4A′j,k

n+ 1
2

)
(4.5)

and

A′j,k
n+1 = 2A′j,k

n+ 1
2 − A′j,kn (4.6)

Finally, we use the substitution A′lens = exp(Bx)Alens

The system (4.5) and (4.6) gives us the implicit Runge Kutta method of second order.

4.2.2 Inside the lens without exponent

Let’s start with equation (2.19) for the propagation inside the lens. We will assume that

Alens = Ã just for simplicity

∂Ã

∂x
+BÃ =

ic0
2ω0

(
∂2Ã

∂y2
+
∂2Ã

∂z2

)
(4.7)

We can use the same procedure as in the last section. For the right hand side we can use

the approximation for the second derivative in y, z direction with space step hr

ic0
2ω0

(
∂2Ã

∂y2
+
∂2Ã

∂z2

)
=

ic0
2ω0h2r

(
Ãnj+1,k + Ãnj−1,k + Ãnj,k+1 + Ãnj,k−1 − 4Ãnj,k

)
(4.8)
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Using the midpoint scheme we get:

Ãn+1
j,k − Ãnj,k
hlens

+BÃ
n+ 1

2
j,k =

ic0
2ω0h2r

(
Ã
n+ 1

2
j+1,k + Ã

n+ 1
2

j−1,k + Ã
n+ 1

2
j,k+1 + Ã

n+ 1
2

j,k−1 − 4Ã
n+ 1

2
j,k

)
(4.9)

Where, hlens is the space step in x direction inside the lens. This scheme contains un-

knowns Ãn+1
j,k and Ã

n+ 1
2

j,k . In order to calculate intermediate quantities Ã
n+ 1

2
j,k , we apply the

implicit scheme

2 ∗
Ã
n+ 1

2
j,k − Ãnj,k
hlens

+BÃ
n+ 1

2
j,k =

ic0
2ω0h2r

(
Ã
n+ 1

2
j+1,k + Ã

n+ 1
2

j−1,k + Ã
n+ 1

2
j,k+1 + Ã

n+ 1
2

j,k−1 − 4Ã
n+ 1

2
j,k

)
(4.10)

(
1 +

B ∗Dist
2

+
ic0hlens
ω0h2r

)
Ã
n+ 1

2
j,k = Ãnj,k +

ic0hlens
4ω0h2r

(
Ã
n+ 1

2
j+1,k + Ã

n+ 1
2

j−1,k + Ã
n+ 1

2
j,k−1 + Ã

n+ 1
2

j,k+1

)
(4.11)

Where, Dist is the distance between two points inside the lens that needs to be defined

according to the shape of our parabolic lens.

Comparing (4.10) and (4.9), we arrive to simple formula

Ãn+1
j,k = 2Ã

n+ 1
2

j,k − Ã
n
j,k (4.12)

The system of equations (4.9) and (4.12) or (4.10) and (4.12) gives us the implicit

Runge Kutta method of the second order [18].
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5 The numerical scheme

5.1 Implicit Runge Kutta inside the lens

5.1.1 Inside the lens without exponent

We consider here the Equations (4.11) and (4.12).

First step

Ã
n+ 1

2
(0)

j,k =
Ãnj,k + ic0hlens

4ω0h2r
(Ãnj+1,k + Ãnj−1,k + Anj,k+1 + Ãnj,k−1)(
1 + B∗Dist

2
+ ic0hlens

ω0h2r

)
Second step we need to run it for several times

Ã
n+ 1

2
(m+1)

j,k =
Ãnj,k + ic0hlens

4ω0h2r
(Ã

n(m)
j+1,k + Ã

n(m)
j−1,k + Ã

n(m)
j,k+1 + Ã

n(m)
j,k−1)(

1 + B∗Dist
2

+ ic0hlens

ω0h2r

)
Last step

Ãn+1
j,k = 2Ã

n+ 1
2
(m)

j,k − Ãnj,k

In calculation it’s enough to take m = 4.

5.1.2 Inside the Lens with exponent

We will consider the equation (2.20) inside the lens with the same procedure as in (4.2)

and (4.4) except for the exponent. For simplicity we write A′ instead of A′lens

First step

A′lens = exp(B ∗Dist)Alens

A
′n+ 1

2
(0)

j,k =
A′nj,k + ic0hlens

4ω0h2r
(A′nj+1,k + A′nj−1,k + A′nj,k+1 + A′nj,k−1)

1 + ic0hlens

ω0h2r
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The second step we need to run it for several times

A
′n+ 1

2
(m+1)

j,k =
A′nj,k + ic0hlens

4ω0h2r
(A
′n(m)
j+1,k + A

′n(m)
j−1,k + A

′n(m)
j,k+1 + A

′n(m)
j,k−1)

1 + ic0hlens

ω0h2r

Third step

A′n+1
j,k = 2A

′n+ 1
2
(m)

j,k − A′n,j,k (5.1)

Last step

Alens = exp(−B ∗Dist)A′lens (5.2)

In calculation, it’s enough to take m= 4.

5.2 Implicit Runge Kutta in vacuum

In this part we consider the equations (4.2) and (4.4)

First step

A
n+ 1

2
(0)

j,k =
Anj,k + ic0hx

4ω0h2r
(Anj+1,k + Anj−1,k + Anj,k+1 + Anj,k−1)

1 + ic0hx
ω0h2r

The second step we need to run it for several times

A
n+ 1

2
(m+1)

j,k =
Anj,k + ic0hx

4ω0h2r
(A

n(m)
j+1,k + A

n(m)
j−1,k + A

n(m)
j,k+1 + A

n(m)
j,k−1)

1 + ic0hx
ω0h2r

Last step

An+1
j,k = 2A

n+ 1
2
(m)

j,k − Anj,k

In calculation, it’s enough to take m = 4.
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6 The stability and the error

6.1 The stability of the scheme

In this section we investigate the stability of the implicit scheme by using the Von Neu-

mann stability method (also known as Fourier stability analysis). We will define the

stability as it’s in [15]. The stability of numerical schemes is related to the numerical

error. A finite difference scheme is stable if the errors made in one step do not cause the

errors to increase as the computations are continued [15]

Let’s start with the scheme,

A
n+ 1

2
j,k = Anj,k +

ic0hx
4ω0h2r

(
A
n+ 1

2
j+1,k + A

n+ 1
2

j−1,k + A
n+ 1

2
j,k+1 + A

n+ 1
2

j,k−1 − 4A
n+ 1

2
j,k

)
+O

(
h2x + h2r

)
(6.1)

Which can be written as the following,

Anj,k = (1 + 4q)A
n+ 1

2
j,k − q

(
A
n+ 1

2
j+1,k + A

n+ 1
2

j−1,k + A
n+ 1

2
j,k+1 + A

n+ 1
2

j,k−1

)
(6.2)

Where

q =
ic0hx
4ω0h2r

And the solutionAnj,k of the discrete equation approximates the analytical solutionA(x, y, z)

of the PDE on the grid. Now we define the round-off error εnj,kas :

εnj,k = Nn
j,k − Anj,k (6.3)

Where Nn
j,k is the numerical solution. Since the exact solution Anj,k must satisfy the

discrete equation, the error εnj,k must also satisfy the discrete equation. So,
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εnj,k = (1 + 4q) ε
n+ 1

2
j,k − q

(
ε
n+ 1

2
j+1,k + ε

n+ 1
2

j−1,k + ε
n+ 1

2
j,k+1 + ε

n+ 1
2

j,k−1

)
(6.4)

We now substitute εnj,k = εneijkθ. After some simplifications the last equation becomes:

εn = εn+
1
2

(
1 + 4q − q

(
eijθ + e−ijθ + eikθ + e−ikθ

))
(6.5)

Consider

f(θ) =
(
1 + 4q − q

(
eijθ + e−ijθ + eikθ + e−ikθ

))
using Euler’s relation we can see that

f(θ) = (1 + 4q − q (2 cos(jθ) + 2 cos(kθ))) (6.6)

Put

cos(jθ) = 1− 2 sin2(jθ/2)

And

cos(kθ) = 1− 2 sin2(kθ/2)

We can reach

f(θ) =
(
1 + 2q

(
sin2(jθ/2) + sin2(kθ/2)

)
(6.7)

εn = εn+
1
2f(θ) (6.8)

We now define the amplification factor g(θ) = εn+1
2

εn
so, it’s clear that

g(θ) =
1

f(θ)
(6.9)

30



Mahmoud Mohamed Reda Ahmed Elsawy 31

The condition for stability is given by:

|g(θ)| ≤ 1 (6.10)

∣∣∣∣∣ 1

1 + 2q
(
sin2(jθ/2) + sin2(kθ/2)

)∣∣∣∣∣ ≤ 1 (6.11)

Which is true for all the values of θ since 1 + 2q
(
sin2(jθ/2) + sin2(kθ/2) ≥ 1

We can conclude that the implicit scheme is unconditionally stable

6.2 The Runge rule for the estimation of the error

Suppose that we need to calculate some physical value Z, we apply the approximate finite-

difference calculations. Let the symbol Zh is a result of our finite-difference calculations,

and R is the error of the calculations such that

R = C ∗ hn +O(hn+1)

where C is a constant and n is the order of approximation error. The problem is that we

do not know the constant C. Runge suggested the method to estimate the error of the

calculations.

• We can write:

Z = Zh + Chn +O(hn+1)

• And

Z = Z2h + C ∗ (2h)n +O(hn+1)
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Where Z2h is the approximate calculations done with the step 2h.

• We can estimate the error within the main order

R = Chn +O(hn+1) =
Zh − Z2h

2n − 1
+O(hn+1)

We apply the second order schemes. So, n = 2, and

R =
Zh − Z2h

3
+O(h3)

We are interested in the spot size, and the focal distance. So, let Z be the size of our focal

spot or the focal distance. We have steps hr, hx, hlens in our calculations which means

that we need to investigate all the corresponding errors [19].

6.3 The estimation of the spot size using FWHM

We will use the definition of the FWHM as in [16], and [17]. Full width at half maximum

(FWHM) is an expression of the extent of a function, given by the difference between

the two extreme values of the independent variable at which the dependent variable is

equal to half of its maximum value [16]. The technical term Full-Width Half-Maximum,

or FWHM, is used to describe a measurement of the width of an object in a picture [17].

In our case we will obtain the FWHM using σ (the Standard deviation):

σ =

√∑
j,k |Ajk|2

(
y2j + z2k

)∑
j,k |Ajk|2

or

σy =

√∑
j |Aj|2y2j∑
j |Aj|2
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Figure 3: FWHM for Gaussian curve from [16]

or

σz =

√∑
k |Ak|2z2k∑
k |Ak|2

Because the points are distributed with Gaussian distribution , it will be easy to calculate

FWHM through the dispersion σ:

1

2
= exp

(
−
(
FWHM

2 ∗ σ

)2
)

Therefore

FWHM = 2 ∗
√

2 ln(2) ∗ σ

7 The numerical results

In this part we will discuss our numerical results. The initial conditions are Gaussian

beams with FWHM=700µm in the horizontal direction, and FWHM= 35µm in the verti-

cal direction. If we need to consider the same initial conditions, we need to conider them

over a space bigger than the space for the CRLs. We use here lenses of 1mm in each

direction. The results showed that we need to consider the initial conditions over 8mm
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with the same number of points. So, we will consider the propagation from the source to

the CRLs according to the bigger space, then we do the resizing before the lenses. We

consider here two cases, the first case using the data from [1], and the second case with

energy 15Kev with different number of lenses to perform the 2-d simulation.

7.1 33 AL lenses with energy 15Kev

The first case we consider the data from [1]. We need to choose hx, and hr the space steps

in x, y, and z directions respectively correctly, and try to find the suitable number of

points for our mesh. The dispersion relation governs the relation between the space steps

in each direction hx <<
ω0hr

2

c0
. In order to choose the number of points in y, z direction we

need to calculate 0.001/hr this relation will give us the number of points in the horizontal

and vertical direction. hx here is used as the space step in x-axis to identify the place

of the detector. For instance, if the focal plane at 1.298m from the CRLs it means that

we need 1.298/hx points in x-axis while, hlens is used as the space step inside the lens

and it should satisfy the conditions in the dispersion relation for equation (2.20). For the

propagation before the CRLs, we use the data for the bigger space. By the same way we

can compute the space step in x-axis before the lenses from the relation h′x <<
ω0h′r

2

c0
. In

this simulation, we consider only the one dimensional case, we will see in the following

subsections that we need to consider more than 50000 points in each direction which can

not be done using the personal computer.

• Number of AL lenses =33

• Radius of curvature=0.2mm

• Energy=15Kev

• δ = 2.414× 10−6
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• β = 1.299× 10−8

• Gaussian beam for the initial condition in the horizontal direction has FWHM=700µm

with sigma=279µm

• Gaussian beam for the initial condition in the vertical direction has FWHM=35µm

with sigma=14.9µm

• The distance from the source to the CRLs is 63m

7.1.1 The error of the space steps

In this part we need to choose correctly the space steps in each direction. So, we need

to define a suitable value for the constant in the relation hx =constant×ω0

c0
h2r. Using the

values for 15 Kev, I mean ω = 2× π× 3.627E18 constant ≤ 1. We can find this constant

only empirically such that the error associated with hx be negligible. In our case we use 33

lenses it means that we need to consider more points in each direction to get the accurate

results. We started here with 40000 points because for 20000 points the plot has some

error Fig(4). We fix the space step inside the lens hlens = 0.000001 which will satisfy the

condition from the dispersion relation in equation (2.20) we will consider the choice of

hlens in detail later after fixing the space steps hx and hr. We measure the spot size at

1.298m from the lenses as in [1] so that we can compare the results.

The choice of hx

Let’s start first to choose the best value for the constant in the relation

hx = constant× ω0

c0
h2r

that will give us the best choice for the space step hx. We fixed here the number of

points to be 40000, which means that we fixed the space step hr. We tried here with
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Figure 4: Results for 2000, and 40000 points

Number of points const hr hx focal distance FWHM
40000 0.131645688 0.000000025 0.00000625 1.2580312m 3.25µm
40000 0.065822844 0.000000025 0.000003125 1.2539093m 3.55µm
40000 0.032911422 0.000000025 0.000001562 1.2528818m 3.65µm

Table 1: The choice of hx

some values for the constant, the results showed that the best choice for the constant is

0.032911422 which gives us small error in the FWHM, and in the focal distance Table(1).

We can go further by choosing a smaller value for the constant which means smaller

value for hx that will give us smaller error. But, in this case we need more points for

the propagation after the CRLs for example, if we choose the constant to be 0.016455711

that gives us space step hx = 0.000000781, and we need 1661440 points in x-axis to reach

the detector at 1.298m. So, it’s enough to consider the value 0.032911422 for the constant.
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The error of choosing hx

In order to compute the error we will use the Runge rule. We can assume that Zh=3.55

and Z2h=3.65 for the spot size. The error can be written as

R =
Zh − Z2h

3
= 0.033333333

which is small if we compare it to the FWHM= 3.65. We can do the same for the focal

distance f if Zh=1.2539093, Z2h=1.2528818, then

R =
Zh − Z2h

3
= 0.0003425

which is very small if you compare it to 1.2528818. From the last investigations we can

say that the best choice for the constant in the relation

hx = constant× ω0

c0
h2r

is 0.032911422 which is equivalent to hx = 0.000001562.

7.1.2 The space step inside the lens

Now, after getting the best choice for hx = 0.000001562 which is corresponding to the

constant 0.032911422 in the relation

hx = constant× ω0

c0
h2r

We need to choose the space step inside the lens hlens that will give us small error according

to Runge rule for the spot size, and for the focal distance. We fix here the number

of points to be 40000 which means that hr = 0.000000025. We have seen from the
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hlens focal distance FWHM
0.000001 1.2528818m 3.65µm
0.0000005 1.2492204m 3.90µm
0.00000025 1.2483004m 3.95µm
0.000000125 1.2480707m 3.95µm

Table 2: The choice of hlens

dispersion relation for the propagation inside the lens that the following conditions have

to be satisfied

hlens <<
w0h

2
r

c0

And

hlens <<<
1

| B |
1
|B| = 5.4533 ∗ 10−6. Table(2) gives us different values for hlens with the corresponding

spot size, and focal distance. As you can see that the best choice for hlens is 0.000000125

that will give us small error according to (Runge rule).

7.1.3 The choice of hr

Now, we will try to find the best choice for the space step in y, and z direction hr I mean

to find the suitable number of points in y, and z direction we do that by changing the

number of points and try to prove that the results don’t depend on the number of points.

We fixed here the space step inside the lens hlens = 0.000000125, and the best choice for

the constant to obtain hx from the relation

hx = constant× ω0

c0
h2r

which is equivalent to 0.000001562 for 40000 points, and 0.000001 for 50000 Table(3).

Due to the large number of lenses, we need to consider more points we started with 40000

points, and checked 50000 points. The results for 40000, and 50000 points are very close
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Number of points constant hr hx focal distance FWHM
40000 0.032911422 0.000000025 0.000001562 1.2480707m 3.95µm
50000 0.032911422 0.00000002 0.000001 1.2470340m 3.92µm

Table 3: The choice of hr

for the focal distance, and for the FWHM. We could take more points which means smaller

hr, and hx. But, we use here the implicit Runge Kutta method of the second order it

means that we need to take 80000 points as the next step after 40000 not 50000. Because

of the limitations in the computer we will consider only 50000 points. We can say that

as a starting point, it’s enough to consider 50000 points. In the future we must try with

more points using supercomputers, and also for the 2-d case. In other words, the suitable

choice of hr will be 0.00000002.

8 Comparing the results

Results for ideal lenses

We have obtained the best choice for the space steps hx, hlens and hr which correspond-

ing to using 50000 points. Our results give focal distance f=1.2470340m, and FWHM=

3.92µm at 1.298m from the CRLs Figure(5). We considered ideal lenses without any de-

fects that’s the main reason for having smaller FWHM than the experimental data. We

considered only the 1-dim case for the horizontal direction while in the experimental data

you will see the horizontal, and vertical results Figure(6). In the following comparison, we

used all the data in [1] with the smallest width of the lens d=16µm, while in the previous

plots we used 100µm it’s just to compare the results with the experimental data. Table(4)

gives us the comparison between our results, and the experimental data. The results show

that we have a good agreement with the experimental data for the focal distance, and for

the intensity at the focal plane, while in case of the FWHM we have a smaller FWHM.

We believe that is perhaps because of the ideal CRLs that we use, and the fixed frequency.
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Item focal distance Detector FWHM(Horizontal scale)
Our results(perfect lenses) 1.2470340m 1.298m 3.92µm
Experimental data 1.2553036m 1.298±0.04m 14.0µm

Table 4: Comparing the Results

Figure 5: Results for focusing hard X-rays with 33 perfect Al CRLs directly after the
lenses, and at 1.298m from the lenses

9 Two dimensional simulation

In this section we perform simulation for the 2-dimensional case. We obtained from the

last section that we need to consider more than 50000 points in each direction in order

to get the accurate results, which makes it difficult to make 2-d simulation for the first

case using the P.C. In this section, we just wanted to test the program for getting results

in 2-d. We perform simulations here with few number of lenses up to 15 lenses made of

AL. We use the same parameters as in the first case but, we considered here the initial

condition to be one everywhere. Figure(7), and Figure(8) give us the results directly after

the lenses. When we increase the number of lenses, the maximum value of the intensity
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Figure 6: Experimental data for the horizontal and vertical direction [1]

decreases that’s because the absorption will increase with the number of lenses.

10 Conclusion

We presented here a new numerical method based on the finite-difference method to focus

X-rays using the CRLs. We solve the wave equation inside, and outside the lenses using

the FDM, and implicit Runge Kutta method of second order with iterative method. The

program written in FORTRAN to compute the focal distance, and the spot size. We

considered here two cases with the same shape of the lenses as in [1]. The first case we

considered 33 AL lenses with 15Kev, we have good agreement with the experimental data

for the focal distance, for the intensity at the focal plane while in case of the FWHM we

have a smaller FWHM. We believe that is perhaps because of the ideal CRLs that we use,

and the fixed frequency. The results showed that we need to use more than 50000 points

in each direction that forced us to perform only one dimensional simulation. For the same

number of lenses time of calculation increase 16 times when quantity of points in each
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Figure 7: Two dimensional results for 1 lens, and 5 lenses

direction increases two times, that’s because of the condition hx <<
ω0hr

2

c0
. It means that

if we compare a system of 100×100 points with system of 1000×1000 for such number of

lenses we need to do 10000 times more operation than in the first case. The maximum

quantity of complex points which could be calculated nowadays on a personal computer

is about 5000 × 5000 to 10000× 10000. So, the program should properly optimized and

paralyzed to perform the 2-d simulation using the supercomputer. In the second case, we

tested the program for a small number of lenses up to 15 lenses made of AL. In the future,

we will try to add some defects to the lenses, and check the influence of the defects on

the spot size, and on the focal distance.
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