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Two protein/cofactors complexes embedded in the thylakoid membrane, Photosystem

I (PSI) and Photosystem II (PSII), play a central role in the conversion of solar en-

ergy into chemical energy. The process is initiated when a network of cofactors in PSII

are photo-induced at specific wavelengths enabling the catalytic core of PSII to oxidize

two water molecule into molecular oxygen and four equivalent of H+ and e-. The four

electrons extracted from the water are transferred through the electron transfer chain

(ETC) of PSI to ultimately reduce 2NADP+ to 2NADPH. The light induced oxidation

of the water in the Photosystem II (PSII) protein complex is catalyzed by the Mn4Ca

cluster which has been the focus of our previous studies on the photosynthetic apparatus

[11]. In this work, first we modelled the structure of PSI starting from an uncompleted

x-ray structure. We provide an energy minimized geometry of the PSI structure using

standard energy minimization schemes. We follow up with vacuum MD simulations re-

straining the positions of the atoms present in the crystal structure allowing the added

atoms to rearrange their starting positions in conformations which is energetically more

favourable. This work provide us with a complete starting structure to study for the

first time by classical MD simulations and in subsequent studies, by mixed QM/MM

calculations the dynamics and the function of the PSI complex at physiological condi-

tions.
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Chapter 1

Introduction

1.1 Introduction

Photosynthesis is a term used to describe the process by which photosynthetic organisms

efficiently convert solar energy from sunlight into chemical energy. This extraordinary

chain of events is started and regulated by light harvesting complexes and chromophores.

Energy from sunlight is captured by these complexes that subsequently funnel it to reac-

tion centres on timescales of 10-100 picoseconds. The excitation energy is used to oxidise

water molecules in the reaction center of Photosystems II. Thus generating a proton

gradient across the thylakoidal membrane and at the same time producing electrons

for subsequent reactions. In eukaryotes (e.g plants and algae), the primary reactions of

photosynthesis takes place in a special cell organelle called chloroplast in which chloro-

phyll play a very key role. Within the thylakoid membranes of the chloroplast there are

two gaint protein complexes namely Photosystems I (PSI)and photosystem II(PSII).

The nomenclature indicates the order in which they were historically discovered and not

their physiological order of their existence in the photosynthetic apparatus.[31] These

two biomolecular systems work in series and are functionally coupled by cytochrome b6f

complex which basically mediates electron transfer between them. Under normal cir-

cumstances electrons flow from PSII to PSI via light absorption at wavelengths 680nm

and 700nm respectively. PSII uses the light-induced energy to oxidize two molecules of

H2O into molecular oxygen (O2) and 4 equivalents of protons and electrons in a process

called water splitting. Thus up to 4e− are removed from the water molecules and are

then transferred through the electron transfer chain(ETC) of PSI to ultimately reduce 2

oxydoreductase (NADP+) to NADPH. During the electron transfer process the proton

gradient generated across the membrane which is the driving force for the synthesis of

Adenosine tryphosphate (ATP). ATP is a nucleoside triphosphate used in cells often

1
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Figure 1.1: Photosynthetic electron transport chain of the thylakoid membrane. [6]

called the ”molecular unit of currency” of intracellular activities. It is believed that

the principles learned from studies of the various natural antenna organelle involved in

this process suggest how to elucidate strategies for designing efficient light-harvesting

systems artificially [34]. By conducting theoretical and experimental studies on the pho-

tosynthetic apparatus at the atomic scale, scientist hopes to apply results to solve the

earth’s energy problem while reducing CO2 emission concurrently.

Computer simulation methods play an important role in the investigation of biological

processes and functions at such a scale. Moore’s law suggests that computer power and

speed doubles every eighteen months or less, implying that molecular dynamics sim-

ulations can be extended to larger systems regardless of it’s fast dynamics [25]. This

makes it possible to reproduce the motions of biomolecules and to obtain information

that would otherwise be inaccessible from experiment in physiological conditions. This

work aims to model the whole molecular structure of the PSI starting from it’s par-

tially solved X-ray structure in order to subsequently perform a classical and QM/MM

equilibrations.

1.2 Overview of Photosynthesis

Even though there is a third biological process that mediates photosynthesis in which

light energy is utilized, oxygenic and anoxygenic kinds are the most widely known.

Oxygenic photosynthesis – the photosynthetic process which involves the production of

O2 resulting from the oxidation of water as the main electron donor, is often carried

out by plants, algae and cyanobacteria. Anoxygenic photosynthesis, gains all of its

electrons from sources other than H2O (for example from hydrogen sulphide, H2S).
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Figure 1.2: 3D diagramatic view of a chloroplast. Picture adapted from: [9]

However the name anoxygenic suggests the absence of oxygen and therefore cannot

exist in cyanobacteria (See [21] and [9]). Whilst these kinds of photosynthesis can

occur in bacteria and involves the production of ATP for cell activities, the latter is

only present in halophilic Archea and involves the extruding of Cl-. Principally, this

process cannot be categorized as photosynthesis since the main reaction center doesn’t

contain chlorophyll, the pigment typically common in all photosynthetic membrane. In

this article, we would generally use oxygenic photosynthesis to represent photosynthesis

regardless of the existence of the others.

The primary reactions of photosynthesis in eukaryotes (e.g. plants and algae) takes

place in a special cell organelle called chloroplast. The chloroplast is enclosed by a dou-

ble membrane which separates the innermost stroma from the outermost cell cytoplasm.

The stroma is an aqueous space within which the enclosed membrane vesicle called thy-

lakoid is found. Thylakoids form a physically continuous three-dimensional network

(see figure on page 3) enclosing an aqueous space called the lumen and can be differen-

tiated into two distinct physical domains: cylindrical stacked structures called granna

and interconnecting single membrane regions stroma lamellae. For a full review of

the thylakoidal architecture see the [28] and [7]. The protein complexes that catalyze

electron transfer and energy transduction are unevenly distributed in thylakoids: PSI

is located in the stroma lamellae, PSII is found almost exclusively in the grana, the

F-ATPase is located mainly in the stroma lamellae, and the cytochrome b6f complex is

found in grana and grana margins. [28].

The initial charge separation occuring in PSI is commenced by a special chlorophyll elec-

tron donor pair, P700, consisting mainly of a chloropyll a molecule coupled to another

chlorophyll a’. From P700, the electron is transferred stepwise to A (a chlorophyll

a molecule), A0 (another chlorophyll a molecule), A1 (a phylloquinone molecule) and

then subsequently to the three iron-sulphur clusters, named FX, FA and FB. After the

docking of terminal cluster FB, the electron is transferred to Fe2S2 cluster of flavodoxin

which transfers the electron to the NADP+-reductase to be reduced to NADPH. In order
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to complete the cycle, P700+ is re-reduced. In the next section, we give an overview of

the architectural arrangements of protein subunits and co-factors of PSI.

1.3 Photosynthesis I Architecture

Our knowledge regarding the structure [17] [18] of PSI is based on the X-ray crystallised

structure of Thermophilic cyanobacteria Synechococcus elongatus. Cyanobacterial PSI

exists in photosynthetic membrane in vivo as both trimeric and monomeric form de-

pending on the organism and some light conditions. Our computational study employed

in this article take the monomeric form of [17]. See figure on page 5 below. Each

monomeric unit consists of 12 protein subunits (PsaA, PsaB, PsaC, PsaD, PsaE, PsaF,

PsaI, PsaJ, PsaK, PsaL, PsaM and PsaX) to which 127 non-covalently bonded cofac-

tors. PsaA and PsaB are the two most largest subunits located at he center of PSI.

These co-factors accounts for about 30% of the total mass of PSI which 356KDa. The

process catalyzed by PSI can be divided into light capturing, excitation energy transfer

and electron transfer processes. The initial light capturing process is performed by a

large antenna system that consists of 90 antenna chlorophylls and 22 β-carotenoids. Ex-

citation energy is transferred to the center of the complex, where the electron transport

chain (ECT) is located. The ECT is functionally the most important part of PSI. Lo-

cated at the heart of PSI, it consists of 6 chlorophylls, 2 phylloquinones and all 3 4Fe4S

clusters. Iron-sulfur clusters FA and FB are carried by PsaC which forms the docking

site for ferredoxin/flavodoxin together with PsaD and PsaE. Majority of these cofactors

are harboured by the PsaA and PsaB. The overall PSI complex extends into the stroma

by 90Åwith protein subunits PsaC, PsaD and PsaE which provide the docking site for

the ferredoxin/flavodoxin. It must be noted that not all the co-factors of the ETC as

well as several amino acid residues has been determined spectroscopically in experiment.

See [31], [18], and [13]. In this work, we attempt to provide a model structure for the

undetermined and partially solved molecular structures.

1.4 Theory and Modelling methods in Photosynthesis

Molecular dynamics (MD) simulations provide information concerning the thermal atomic

motions of proteins biomolecules. They calculates the time-dependent molecular trajec-

tories of motion with considerable accuracy and that have the potential to surpass the

amount of information contained in static x-ray structures. Specific computational meth-

ods with this focus have already contributed significantly to photosynthesis research.

There is the need for a multi-scale approach in the effort to describe processes in both
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Figure 1.3: View of C3 symmetry axis of the maximum lateral extent of trimeric
PSI(outlined) and it’s corresponding monomer (colored-left). Outlined image adapted

from [13] and monomer is taken with PyMOL visualization software.

all the photosynthetic apparatus in order to access several order of magnitudes in time

scale and system size [13]. It is undeniable that using quantum-mechanical dynamical

evolution of the system would adequately describe the phenomena in photosynthesis.

However, in spite of the considerable increase in computation power, that approach still

remains a dream and therefore some approximations should be made. In this section,

we outline the computational methods commonly employed in photosynthesis research.

1.4.1 First-principles Approaches

Calculations by first principles quantum-mechanical approach is by far one of the most

difficult tasks to perform as one needs to take into account the complex pigment-pigment

and pigment-protein interactions so abundant in all the photosystems. In this context,

accurate highly corelated wavefunction-based methods are computationally expensive

and can hardly deal with the large molecular model of interest[12]. Therefore the most

successful quantum chemical method mostly used for applications in large molecular

complex is the density functional theory (DFT). The main component in DFT is the

electron density which is a non-negative function dependent on three spatial coordinates

but can be measured experimentally [3] (for e.g. by X-ray diffraction methods). It

is capable of describing the electronic ground states and excited states. In photosyn-

thetic research, several references could be given with regards to the application of DFT

methods. Canfield and Dahlbom et al (2006) has successfully developed a system-wide

optimization scheme for the 150,000-atom of the PSI trimer. Another study is based a
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time-dependent DFT(TD-DFT) by [29] which addressed the issue of the environmental

effects on the excitation energies and photophysical properties of LH2 complexes.

1.4.2 QM/MM methods

Almost more than half, if not all of the processes of interest in natural photosynthe-

sis, are characterized by huge pigment-protein complexes with atomic counts amounting

to hundreds to thousands spanning over several orders of magnitude from picoseconds

to milliseconds. Regardless of the considerable progress made in DFT method based

approaches, there’s still the need to develop novel multiscale approaches with mini-

mal complexity and computational costs. Quantum Mechanical/Molecular Mechanical

(QM/MM) interface between classical and the quantum mechanical approaches with the

view to overcoming diring challenges encountered in MD approaches. The first step in

QM/MM simulation is to divide the system in two subsystems: One ”inner” (usually

a small) region which is treated with principles of quantum mechanics (QM) and an

”outer” region treated with classical molecular mechanics (MM). The basis for this sys-

tem level separation is that the region where QM approach is used is usually limited

to a relatively small region where the electronic structure changes significantly (for e.g.

bond-making, bond-breaking processes) [8]. In the context of photosynthesis a typical

QM/MM application has recently been done describing the catalytic cycle of the oxygen

evolving complex in photosystem II. [11]

1.4.3 Ab initio MD

Ab initio molecular dynamics seeks to provide approximate solution to the electronic

Schrodinger equation via the Born-Oppenheimer approximation for each nuclear config-

uration. This scheme can be defined by the coupled equations:

M1
d2R1

dt2
= −∇1〈Ψ|He|Ψ0〉 (1.1)

HeΨ0 = E0Ψ0 (1.2)

The above equation is the Newton’s second law of motion for nucleus I of mass M1 and

position R1. The force on the right hand side is obtained by calculating the gradient ∇1

of the total energy with respect to the nuclear coordinates to obtain He, the expected

value of the electronic Hamiltonian He. An effecient scheme to solve (1.1) has been

in use since 1985 and is referred to as the Car-Parrinello molecular dynamics method

(CPMD). See [14]. In the CPMD method, DFT is generally used for computing the

electronic ground-state energy.
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1.4.4 Classical Molecular Dynamics

Classical molecular dynamics (MD) presents a simple yet very powerful approach to

describe trajectories of atomic motions in macromolecules. In this approach the Newto-

nian equations of motions are numerically solved by evolving in time the positions and

velocities of each particle. See chapter 2 for detailed implementation of this method.

This numerical technique has been applied to study the reorganization energy of the ini-

tial electron-transfer step in photosynthetic bacterial reaction centers (BCR). Moreover,

atomistic simulations can be used to estimate parameters needed in the so-called coarse-

grained models. [29]. See references for details. In this article, we seek to model an

initial structure of PSI complex to perform classical MD simulations generated molecular

trajectories with a duration of a few picoseconds.

1.5 Summary

This article is organized in three chapters outlined as follows: Chapter one has provided

an introductory background to the article. In chapter two, the theoretical background

of the numerical calculations performed in this thesis are presented and closes the work

with a presentation and analysis of results in chapter three.



Chapter 2

Chapter Two

Introduction

Molecular modelling is the science and art of studying molecular structure and it’s

function through model building and computation [8]. With such a simple definition,

only few could imagine the complexity of the methods and techniques developed and

implemented in application. These methods are diverse and complicated as the three

main disciplines that bridges this field.

The computations aspect encompass ab initio or semi-empirical quantum mechanics,

empirical (molecular) mechanics, molecular dynamics, Monte Carlo, free energy and

solvation methods, structure/activity relationships (SAR), chemical/biochemical infor-

mation and databases, and many other established procedures. The so-called model

building component comprises mainly of experimental techniques such as nuclear mag-

netic resonance (NMR) or X-ray crystallography, spectroscropy among others. Without

much regards to the topic of the study, computational component of molecular mod-

elling is the main approach employed in the study. The study seeks to apply standard

methods of molecular dynamics simulations in search of a stable, minimized structure

of a monomeric PSI complex.

In this chapter, we provide a brief historic background and review of computational

methods (classical molecular dynamics) applied to the study of our biomolecular sys-

tem. The section which follows discusses theoretical foundations to methods used in

application. Thus providing as close as possible, all the derivation of standard tech-

niques from the discussion of the fundamental principles of physics that makes classical

approximation to the biomolecular structure possible.

8
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2.1 Background History

As late as in the 1930s, protein crystals had already been obtained. After Robert

Brown (1827) successfully described thermal motion of particles in solution (‘Brownian’

motion), René J. H. Dutrochet(1828) firmly believed that biological processes could be

explained in terms of physics and chemistry. His conviction was heavily based on his

extensive study he had conducted on osmotic pressure in living systems. However, the

first high resolution structure of proteins - myoglobin and hemoglobins – were solved by

and [22, 30] making it possible for the analysis and study of the ‘anatomy’ of protein

structure and functions at atomic details by computational methods.

Decades later molecular dynamics (MD) simulations has emerged as one of the most

effective approaches or methods required to obtain the dynamic properties of many-body

system. The first MD was first accomplished for a molecular system of hard spheres by

Alder1 [10] in their studies on the dynamics of liquids. They considered the ‘liquid

particles’ to be moving at constant velocities between elastic collisions while solving the

equations of motion without making any approximation within the limits imposed by the

‘machine’. It was not until several years later before Rahman (1964) made a successful

attempt to solve the equations of motion for a set of Leannard-Jones particles. Due to

revolutionary advances in computer technology and algorithmic improvements, MD has

subsequently become a valuable tool in many areas of physics and chemistry. Since the

1970s MD has been used widely to study the structure and dynamics of macromolecules,

such a proteins or nucleic acids. It’s success can be attributed to it’s solid foundations

in Physics, Chemistry and Mathematics. For the remaining of the chapter, we elaborate

on the theoretical foundations that serve as the building block of this computational

tool so prevalent in applied research community.

2.2 Theoretical Foundations of Molecular Dynamics Sim-

ulations

In this section we provide theoretical derivations of computational techniques employed

from physics, chemistry and mathematics that intersect to be used in modelling and

simulation of protein complexes. Most derivations provided here are geared towards the

standard MD as it is the main computational tool employed in the study. We begin first

with its roots in quantum mechanics and justify the need for classical approximations to

1Berni Julian Alder is a Swiss born in Germany and spent almost all his entire academic pursuit as
at University of California. He is physicist and has specialized in statistical mechanics but currently
considered a pioneer of numerical simulation in physics.
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incorporate all atoms of huge biological complex as PSI. The development of the potential

surface function for force field parametrisations is presented in later sections. These

derivations are not expected to be complete, for a complete and detailed derivations,

readers is advised to see the references provided herein.

2.3 Quantum Mechanical Foundations

Equations from first principle provides an accurate description of the properties of

molecules such as protein. To obtain the stationary properties of a molecule (or many

body) consisting of nuclei and electrons, it is necessary to solve the time-independent

(stationary) Schrödinger equation:

HΦ = EΦ (2.1)

where

H =
~

2m
∇2 + U

is the Hamiltonian. The first term in the Hamiltonian is the contribution for the kinetic

energy term T and the second term is the potential energy term, U . Φ and E represents

the wave function and energy of the system respectively which can be treated as the

eigenfunction and eigenvalue of the Hamiltonian operator H. For full derivation of (2.1)

see [1]

Due to the complexity of equation (2.1), an analytical solution is only possible for a

system with a few number of atoms (e.g. the hydrogen atom). Therefore for macro-

molecules, direct numerical solution of equation (2.1) still remains a dream despite con-

tinuous increase in computational power and speed. In the light of these, there is the

need to provide a framework to simplify the quantum description of a molecular system

via appropriate physics and mathematical approximations. The most prominent and

common among such approximations is the Born-Oppenheimer (BO) approximation.

This approximation decouples the motion of the heavy nuclei from that of light electron

movements. This implies that nuclei is considered fixed whereas only the electronic

motions are considered. As a result the E and Φ just reduces to electronic properties. BO

approximation also serves as the foundation for ab-initio and semi-empirical quantum

calculations in molecular dynamics studies. In the next section we attempt to give the

mathematical formulation that motivates this approach.
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2.3.1 BORN-OPPENHEIMER APPROXIMATION

Let’s consider a system consisting of Nnuc atoms (each atom has one nucleus) with

nuclear charge Z1 . . .ZNnuc , location at Rnuc in the Cartesian positioning and momenta

Pnuc. If there are Nel electrons with positions and momenta rel and pel respectively, the

Hamiltonian has the form:

H = Tnuc + Uel−el + Tel + Unuc−nuc + Uel−nuc (2.2)

where the terms has the following meanings: Tel =
∑Nel

j=1

p2j
2me

and Tnuc =
∑Nnuc

j=1

P 2
j

2Mj
,

me represents the electron mass and Mj is the mass of the jth nucleus. The interactions

between the nuclei and electrons are expressed via the Coulombic force to obtain the

potential terms for electron-electron interaction Uel−el, the nucleus-nucleus interaction

Unuc−nuc as well as for the nucleus-electron interaction Unuc−el as:

Uel−el = 1
2

∑
j 6=i

e2

|ri−rj | ; Unuc−nuc = 1
2

∑
j 6=i

ZiZje
2

|Ri−Rj | and Unuc−el = −1
2

∑
j 6=i

Zje
2

|ri−Rj | .

The Hamiltonian expression of (2.2) gives the full version of the Schrödinger equation

for any many body system. The BO approximation is one of the several empirical

approximations capable of providing a framework to describe both nucleic and electronic

properties of such systems. The method assumes that the electrons move in the field

generated by the statics of the nuclei. This assumption is valid due to the mass disparity

between electrons and the nuclei. Thus the electrons are assumed to be relatively ‘lighter’

than the nuclei, and will therefore be able to respond instantaneously to any perturbation

in the nuclear configuration allowing the electronic Hamiltonian to be represented in the

form which parametrically depends on the nuclear coordinates, Rnuc giving:

He = Tel + Uel−el + Uel−nuc (2.3)

Trivially, Tnuc−nuc = 0. Almost all quantum chemistry algorithms seek to solve this

electronic Hamiltonian resulting in the electronic energies Eeln (R) and the wave function

|Φn(r,R)〉 which will depend parametrically on the nuclear geometry and is written in

the form:

|Hn(r,R)〉 = Eeln (R)|Φn(r,R)〉 (2.4)

When inter-nuclear repulsions are added, the solution of the electronic Schrödinger equa-

tion in (2.4) for different nuclear coordinates R results in the potential hyper-surface,

U(R), which is constant with respect to the electronic coordinates and therefore any

non-adiabatic coupling effects could be neglected. The elimination of the non-adiabatic

electronic coupling is the core of the BOA leading to the nuclear Schrödinger’s equation:

Hn|Φ(R)〉 = (Tel + Un(R)|Φn(R)〉 = Enucn (R)|Φn(R)〉 (2.5)
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The equation given by (2.5) describes the geometry of the nuclei in the field generated by

the fast moving electrons even though each electronic state generates a different nuclear

potential. The dynamics of the nuclei is well described reasonably well with the nuclear

potential U(R) within the BOA as long as the potential surfaces belonging to different

states are well separated and serves as the origin of the potential functions or force-fields

used in MD. (See section 2.5 in this article). This force-fields can be parameterised to

account for both bonded and non-bonded interactions. The classical approximation

to the quantum mechanical description of a molecule and their interactions are not

directly derived from ’first principles’ approaches, but rather, is the results of adapting

both structure and potential function to a variety of different kinds of information.

This includes the results of quantum mechanical energy calculations, experimental data

obtained by thermodynamics and various kinds of spectroscopic means, the structure

of the crystalline state, measurements of transport properties, collision studies using

molecular beams, and so on [5]. MD generally adopts a classical point of view, typically

representing atoms or molecules as point masses interacting through the forces that

depend on the positions of these objects. In section 2.5, we provide the theoretical

background to what terms are included in the potential function in MD. Regardless of

the approach (classical or quantum) used it is still necessary to apply to some extent,

quantum chemical calculations to derive parameters to cater for charges of the metal

centres so prevalent in the structure of PSI (for e.g iron-sulfur clusters). This is done in

the next section.

2.4 Restrained Electrostatic Potential (RESP)

Electrostatic energy represents an important term in the potential energy function of

almost all force fields and therefore an accurate representation is important for obtaining

good results. Within the partial charge model, the atomic charges are normally assigned

by fitting the molecular electrostatic potential calculated by an electronic structural

method. The electronic potential U at a point R is given by the nuclear charges and an

electronic wave function as in the following:

U(R) =

Nnuc∑
α

Zα
|Rα −R|

−
∫

φ2(R′)

|R′ −R|
dR′ (2.6)

Where φ(R′) is the electrostatic field potential. The fitting is done by minimizing an

error function of the following form, with the constraint that the sum of the partial
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charges Qi = Zα.

ErrF (Q) =

Npoints∑
r

(
φ(r)−

Natoms∑
α

Qα
|Rα −R|

)2

(2.7)

The electrostatic potential is sampled at a few thousand points in the vicinity of the

molecule. Usually the set of equations arising from minimizing the error function are

often poorly conditioned so the calculated partial charges are sensitive to small details

in fitting the data. The physical reason for this is that the electrostatic potential is

primarily determined by the atoms near the surface of the molecule, while the atoms

buried within the molecule have very little influence on the external electrostatic po-

tential. A straight forward fitting procedure often results in unrealistic small charges

for the non-surface atoms. To some extent, this problem could be avoided by adding a

hyperbolic penalty term for having non-zero partial charges, since this ensures that only

those charges that are important for the electrostatic potential have values significantly

different from zero. This scheme is known as Restrained Electrostatic Potential(RESP)

fitting and is currently considered the most efficient by majority of force field developers.

We have successfully applied this methods to derive partial charges for cofactor molecules

that are present in the PSI complex with the GAUSSIAN [16] and ANTECHAMBER

[36] software programs. The detailed procedures are outlined in chapter 3.

2.5 Interatomic Interactions Potential Function

The potential energy function, Un in section 2.3.1 can be expressed as the sum of local

(or bonded) and non-local (or non-bonded) terms. Local interactions are induced by

bond structure of the molecule whereas the long-range local terms considers non-bonded

interactions such as electrostatic and van der Waals interactions. A simple but widely-

used form of the potential function in MD comes from Ryckaert-Bellemans potential for

modelling alkane chain [32]. For convenience, the bold face symbol qi ∈ R3, i = 1, ..., N

shall be used to represent the position for the i−th atom throughout the text. The local

interaction terms are [19]:

Bond stretching Covalent bonds between atoms i and i+ 1 is modelled by harmonic

stretching and is described by Ubd (qi,qi+1) ∝ (ri − req) where ‖qi+1 − qi‖

Bond rotation Angles formed by the covalent bonds between three successive atoms

are modelled by Uba = (qi−1,qi,qi+1) ∝ (ψi − ψeq)2 where the bond angle comes

from ψi = ∠ (qi−1,qi,qi+1)



Chapter 2: REVIEW OF BIOMOLECULAR SIMULATION TECHNIQUES 14

Torsion angles The third term in the potential function considers the motion of the

torsion angles ωi between two planes spanned by three atoms and therefore depends

on the positions of four successive atoms given as Uts = Uts (qi−1,qi,qi+1,qi+2)

The corresponding non-bonded interactions are similarly outlined:

Electrostatic interaction This term takes into account the electrostatic interaction

from the charges of the atoms j and k which is usually given by the Coulomb

potential UC = (qj ,qk) ∝ 1
djk

where djk = ‖qj − qk‖.

van der Waals interaction : In the van der Waals term, interactions between polar-

izable atoms are modelled by a Lennard-Jones potential ULJ (qj ,qk) ∝ 1
d12jk
− 1

d6jk

and contains both long range and short range interactions.

Thanks to the additivity principle (see the book [8]), all of these terms could be summed

up to give:

U(q) =
∑
i

Ubd (qi,qi+1) +
∑
j

Ubd (qj−1,qj+1,ql+1)

+
∑
k

UTA (qk−1,qk,qk+1,qk+2) +

∑
k,l

UC (qk,ql) +
∑
k,l

ULJ (qk,ql)

(2.8)

Even though this potential doesn’t capture interactions which involve more than four

atoms modern force fields are parametrized to overcome this challenge. It has several

counts of success in applications allowing computational studies on systems of 100,000

atoms or more [24]. Other possibly relevant interactions that are not directly contained

in the potential can be accounted for by adjusting the potential function parameters in an

appropriate way. This parametrization yield what is popularly known as the force-field

parametrization. Empirical force field parametrizations can be and are always developed

with the view to incorporating solvent effects in order to give a realistic description of

the biomolecular environment. See [24], [27] and [38] for close comparisons of different

force fields. A typical modern empirical force field derived from (2.8) takes the form
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Figure 2.1: Illustration of MM force field parameterization

given below:

U(q) =
∑
bonds

Kb(b− b0)2 +
∑
angles

Kθ(θ − θ0)2+

∑
dihedrals

×Kχ(1 + cos(nχ− δ)) +
∑

improper

Kimp(ϕ− ϕ0)2+

∑
non−bonded

εij

[(
Rminij
rij

)12

−
(
Rminij
rij

)6
]

+
QiQj
εrij

(2.9)

Where b is the bond length; θ is the valence bond angle; χ represents the dihedral or

torsion angle; ϕ, the improper angle; and rij is the actual distance between atoms i and

j. The terms that represent the actual force field, include the bond force constant and

equilibrium distance, Kb and b0 respectively; the valence angle force constant, multiplic-

ity and phase angle, Kχ, n, and δ, respectively; and the improper force constant and

equilibrium improper angel, Kϕ and ψ0 respectively. These values collectively represent

the internal or intra-molecular parameters.

Non-bonded parameters between atoms i and j include the partial atomic charges, Qi

and the LJ well-depth, εij , and minimum interaction radius, Rmin,i are obtained for indi-

vidual atom types and then combined to yield εij and Rmin,ij for the interacting atoms

via some combining rules. The dielectric constant, ε is typically set to 1 to correspond to

permittivity of vacuum, for the incorporation of explicit solvent representations. Alter-

native methods to treat the solvent environment is an active area of research currently

being undertaken by scientist in this speciality [38]. As evident, equation (2.9) are just

simple functions which are used to describe the minimal set of forces that can be used

to describe molecular structures. Several MD packages (e.g. The AMBER [23] in the



Chapter 2: REVIEW OF BIOMOLECULAR SIMULATION TECHNIQUES 16

AMBER software[36]) employ this standard force field to describe bonds, angles and

out-of-plane distortions in molecules. During our the modelling of initial structures,

we used the AMBER force fields [23] for the standard proteins and the GAFF[37] for

cofactor molecules in the PSI complex.

2.6 Foundations of Classical Mechanics (MM)

In the theory of molecular mechanics (MM) the biomolecular system is characterised

as a microscopic mechanical system in which atoms are linked by mechanical springs

which controls their covalent bonds, angle between successive bonds, rotations around

the bonds, etc. The atoms are assumed to interact with each other (attraction or

repulsion) according to non-bonded potentials that determines the non-bonded inter-

atomic forces. A potential function is required to mathematically deduce their inter-

atomic and macroscopic thermodynamic properties by exclusively incorporating classical

terms. The concept is based on the basic formulations of Lagrange and Hamilton in

classical mechanics. This potential (or energy) function is then used to compute all

the relevant forces for equations of motions which ultimately describe the microscopic

motions of the atoms in the molecular system of interest.

2.6.1 Equations of Motion

Lagrangian Mechanics

Consider a molecule with configuration space Q ⊆ Rn and molecular configurations

q =
(
q1, . . . , qn

)T
. Since a typical biomolecular system usually involve a large number

N of atoms, the spartial dimensions n = 3N is large. Let U : Q −→ R be a smooth

molecular interaction potential and assume the system is bounded or infinity at infinity :

(thus U −→∞ as ‖q‖ −→ ∞). This assumption ensures that individual particles doesn’t

escape to infinity or the system is periodic in the sense that Q ∼= Tn for any T ⊂ Rn.

In these cases, the Lagrangian takes the form

L (q, q̇) =
1

2
〈M q̇, q̇〉 − U (q) , (2.10)

where M ∈ Rn×n is a the diagonal, and positive-definite mass matrix and 〈., .〉 is the

standard inner product between vectors in Rn. In addition, let a curve q(t) ∈ Q with

t ∈ [a, b] and fixed endpoints q(a) = qa, q(b) = qb. The Hamilton’s principle of least
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action states that if a curve q(t) minimizes∫ b

a
L (q(t), q̇(t)) dt, (2.11)

then it is a solution of the corresponding Euler-Lagrange equations:

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0, i = 1, . . . , n. (2.12)

A special case of (2.11) and (2.12) in Cartesian space is the familiar Newtons equations

of motion. In this case n = 3, Q = R3N and we let mi be the corresponding atomic

mass, such that M = diag (m1,m1,m1, . . . ,mN ,mN ,mN ), then (2.12) becomes:

miq̈i = −∂U
∂qi

, i = 1, . . . , N. (2.13)

One main advantage of the Lagrangian formulation is that it is invariant under any

coordinate system transforms - a property which the Newtons formulation lacks. The

proof of these equations can be found in any classical mechanic textbook. A good source

of information can be found in [2].

Hamiltonian Mechanics

From the molecular Lagrangian (2.11), the Hamiltonian formalism can be introduced

via the conjugate momentum variable:

pi =
∂L
∂q̇i

, i = 1, . . . , n. (2.14)

assuming the transformation (q, q̇) 7→ (q,p) is invertible and requires the Hessian matrix
∂2L
∂q̇i∂qj

= M to be invertible. The conjugate pair (p,q) is called phase space variables.

In this way, the Hamiltonian is just the Legendre transform of the Lagrangian L as:

H(q,p) = 〈q̇,p〉 − L(q, q̇),

As usual the Hamiltonian describes the energy of the system. Once it is defined, the

Hamilton’s equations of motion is straight forward:

q̇i =
∂H

∂pi

ṗi = −∂H
∂q̇i

, for i = 1, . . . , n. (2.15)
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The straight consequence of the above is that:

∂H

∂qi
= −∂L

∂qi
(2.16)

which shows the equivalence of Hamilton’s equations and the Euler-Lagrange equations

shown above.

2.7 Foundations of Statistical Mechanics

Statistical mechanics is the branch of physics by which macroscopic properties of systems

are studied from microscopic or molecular standpoint. It aids in the understanding and

prediction of macroscopic properties from the properties of the individual molecules

that make up the whole system [26]. Thus with statistical mechanics, basic concepts

and assumptions are introduced and when applied to an N-body system, reproduces

their thermodynamic states and function. In this section, we discuss some of these

assumptions which are widely used in MD simulations and for that matter is employed

in all simulations of this work. We provide the link between these discussions to the

partition function and how it can be used to reproduce all the MD ensemble at different

degrees of freedom.

2.7.1 Thermodynamic States

As discussed above in section 2.3, the Schrödinger equation is solvable only for elemen-

tary systems (e.g H2). For many body systems, the solution would take the form:

ψtotal = C (ψa(1), ψb(2), ψc(3), . . .) (2.17)

where ψa means a particle in state a with an energy Ea defined by equation (2.1). In

statistical mechanics, there are two state representation of an N-body system, namely

microstate and macrostate. A system is said to be in microstate when all parameters

( for e.g. position and momentum) of the constituent particles are specified whereas

for a macrostate, only the distribution of particles over the energy levels needs to be

specified. Many microstates can exist for each state of the system specified through

macroscopic variables (for e.g. energy, volume, number of atoms, etcetera) and there

are many parameters for each state. From classical mechanics perspective, a microstate

is usually represented by the phase space representation, position, q = (qx, qy, qz) and

momentum, p = (px, py, pz) giving 6N degrees of freedom for a system constituted by

N particles. For a system in equilibrium, only three macroscopic variables (P, V, T)
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or (P, V, N) or (E, V, N), where P=pressure, V=volume, T=temperature, N=Number

of particles and E=energy, are needed to describe the state of the system of interest.

There must exists an equation of state for the system which relates the 3 variables to a

fourth variable. For an ideal gas, this equation is given by PV = NkT where k is the

universal gas constant. Statistical mechanics formalism suggests that the equilibrium

tends towards a macrostate which is the most stable and depends on the perspective of

microstates. By an a priori assumption, the macrostate which is the most stable contains

the overwhelming majority of microstates. This introduces probabilistic approaches in

statistical mechanics which defines how energy is distributed among all microstates.

2.7.2 Distribution of Energy

The probability of finding the system in it’s jth quantum state at a specific temperature,

T is given by the Boltzmann population formula:

Pj =
Ωj exp(

−Ej
kT )

Z
(2.18)

where

Z =
∑
j

Ωj exp(
−Ej
kT

) (2.19)

is called the partition function and Ωj is the degeneracy of the jth state. The classical

mechanical equivalence of (2.18) for a system of M coordinates and M momenta is given

by:

P(q,p) =
exp

(
−H(q,p)
kT

)
Z

h−M (2.20)

where H is the classical Hamiltonian, h is the Planck’s constant, and the classical par-

tition function is also given by:

Z = ~M
∫

exp

(
−H(q,p)

kT

)
dqdp (2.21)

Notice that (2.18) gives a non-zero probabilities for populating all states from the low-

est to the highest. States of higher energy Ej are disfavored by the Boltzman fac-

tor, exp
(
−Ej
kT

)
. This implies that if states of higher energy have higher degeneracies

Ωj(which they usually do), the overall population of such states may not be low. How-

ever, the a priori assumption states all microstates of a given E are equally probable

and thus the equilibrium macrostate must have overwhelming Ω. Though partition func-

tion is known, many of the macroscopic properties of the system can be calculated

using standard equations of statistical mechanics of different degrees of freedom. For
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Figure 2.2: A plot of the population of microstate (in this case represented by the
disorder number, Ω) macrostate at equilibrium. The disorder number is defined as the

number of microstate available to a macrostate.

example it can be used to show that the kinetic and potential energies associated with

translational, rotational and vibrational degrees of freedom are all quadratic.

2.7.3 Ensemble Averages

A molecular dynamics simulation generates a sequence of points in phase space as a

function of time. Usually these points belongs to the same ensemble and they correspond

to the different conformations of the system and their respective momenta. An ensemble

is a collection of all possible systems which have different microscopic states but have

an identical macroscopic or thermodynamic state. [26]. There exists different ensembles

with different characteristics as described below: Microcanonical ensemble(NVE) is

a thermodynamic state characterized by a fixed number of atoms, N, fixed volume, V and

a fixed energy, E. This corresponds to an isolated system. Canonical ensemble(NVT)

represents a collection of all systems whose thermodynamic state is characterized by a

fixed number of atoms, N, a fixed volume, V, and fixed temperature, T. Grand canonical

ensemble (mVT) is the thermodynamic state characterized by a fixed chemical potential,

m, a fixed volume and a fixed temperature. The ensemble averages are given by

〈A〉ensemble =

∫ ∫
dpNdqNA

(
qN , pN

)
ρ
(
qN , pN

)
(2.22)

where A
(
qN ,pN

)
is the experimental observable quantity of interest and ρ

(
qN ,pN

)
is

the probability density function defined by (2.20). In practice all these integral equa-

tions are extremely difficult to solve because all possible states of the system must be
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calculated. So far all discussion has not taken time into account, a concept which is

inevitable in every MD simulations and is the topic of the next section.

2.8 Time Averages and Ergodicity

In molecular dynamics simulations, the thermodynamic observable is usually associated

with a state function defined f : Γ −→ < on Γ which characterize the thermodynamic

states of the system. Notable exceptions are temperature and entropy which need the

invariant probability distribution over the phase space (microstates) in order to be prop-

erly introduced. This has been discussed in preceding sections of this chapter.

Lemma 2.1. Given an initial condition ζ = (q,p) ∈ Γ,for Hamiltonian equations of

motion, (2.15) there exist a unique solution

ζ (t) = T tζ = (q(t),p(t))

for all t ∈ R and the compact set Oζ = {ζ(t)|t ∈ <, ζ(0) = ζ} is the orbit of ζ in phase

space.

Compactness of Oζ is critical in order to reproduce all constants of motion (e.g. energy,

H (ζ(t)) as functions of time. See texts in dynamical systems (e.g. [4]) for proof of the

lemma. Given a phase space function, f corresponding to a macroscopic physical quan-

tity, precise measurement values f(ζ(t)) are almost infeasible since detailed knowledge of

positions and momenta of the particles of the system would be necessary. It is therefore

supposed that the results of a measurement is the time average of f . Each measurement

of a macroscopic observable at time, t0, usually takes time to be realized, the microscopic

state variable ζ(t) changes and so different values of f (ζ(t)) are generated and the time

average:
1

t

∫ t0+t

t0

f (T sζ) ds, (2.23)

emerge as ”constant”(i.e independent of t0 and t). This macroscopic interval of time

for the measurement is extremely large from the microscopic point of view, and so it is

practical to take limit t −→∞ in (2.23):

f∗ (ζ) = lim
t−→0

1

t

∫ t0+t

t0

f (T sζ) ds. (2.24)

It must be noted that this limit does not depend on the initial time t0 and the system

”visits” all open sets of the phase space Γ during the measurement process for longer

microscopic time intervals. This is the benchmark of Ergodicity applied in molecular
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dynamics and its clearly expressed in the lemma given below. For measurable state

function f , the limit in (2.24) coincides with the average value of f over Γ, defined by:

〈f〉 =

∫
Γ
f(Γ)dζ. (2.25)

where f is assumed to be integrable and measurable which leads to the famous Ergodic

theorem.

Lemma 2.2. If particle motion is restricted to a bounded domain, then for many initial

conditions there exist an ensemble (or probability measure) such that the time-average

value of the observable equals an ensemble average: f∗ (ζ) = 〈f〉,

The lemma implies that when the system is allowed to evolve in time indefinitely, it will

eventually pass through all possible states. One goal, therefore, of a molecular dynamics

simulation is to generate enough representative conformations such that this theorem

holds. Equation (2.24) is comparable to eq. (2.22) and is written as:

〈A〉time = limτ−→∞
1

τ

∫ τ

t=0
A
(
qN (t),pN (t)

)
dt ∼ 1

M

M∑
t=1

A
(
pN ,qN

)
(2.26)

Here t is the simulation time, M is the number of steps in the simulation and A
(
pN ,qN

)
is the instantaneous observable value of A.

2.9 The Algorithm for Molecular Dynamics

Molecular Dynamics (MD) allows for the computing of equilibrium and non-equilibrium

properties of the systems, which obey the laws of classical physics. It is especially a good

idea to apply MD simulations when characterizing a system with timescale τ > τq '
0.2ps. The essence of the simulation is the use of computer to model a physical system.

Calculations implied by a mathematical model are carried out by the ’machine’ and the

results are interpreted in terms of physical properties. Since computer simulation deals

with models it may be classified as a theoretical method. On the other hand, physical

quantities can in a sense be measured on a computer, justifying the term ’computer

experiment’. [20] The implementation of an MD as compared to a real experiment is

illustrated in figure 2.3: In this section, we attempt to present the core algorithm of

MD.
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Figure 2.3: Main components of the execution of MD simulations

2.9.1 Initial Velocity Distribution

All MD integrators, require some initial generation of velocity assigned to the start-

ing atomic coordinate. It is important that this conformation does not include atom

overlaps, unusual local conformations which may result in large forces usually causing

instability in MD integration. In almost all cases, the starting conformation is derived

by experimental procedures such as X-ray diffraction and NMR spectroscopy. To initial

MD integrators, initial velocity distribution is first drawn from the Maxwell-Boltzman

distribution:

P (νi,α) =

(
m

2πkBT

) 1
2

exp
mν2i,α
2kBT (2.27)

where νi,α is the α(= x, y, z) component of the velocity of atom i . The distribution is

used to define the instantaneous temperature T (t) via the equipartition theorem which

states that the energy of a molecular system is shared equally among all energetically

accessible degrees of freedom (or accessible modes of motion) of the system. Specifically

each quadratic degree of freedom will on average possess an energy of 1
2kT , where T

is the temperature. See the book of [26] for derivation and proof of this theorem and

section 2.7 for brief discussion. Since the kinetic and potential energy has a quadratic

dependency on the velocity and position respectively, it relates the energy of the system



Chapter 2: REVIEW OF BIOMOLECULAR SIMULATION TECHNIQUES 24

via the equation given below:

〈mν
2
α

2
〉 =

1

2
kBT, (2.28)

All terms have the usual meaning (〈. . .〉 means ensemble averages). Because the en-

semble average corresponds to the average over all velocity of atoms, the instantaneous

temperature, T(t) can be defined:

kBT (t) =
1

Nf

∑
i,α

mνi,α, (2.29)

Nf is the number of degrees of freedom. Therefore the velocities are generated stochas-

tically and the instantaneous temperature doesn’t coincide with the initial temperature

T but must be controlled through other mechanisms.

A general practice is velocity re-scaling via:

ν ′i,α =

√
T

T (t)
νi,α (2.30)

It can be shown that the temperature scales with the temperature rescaling with T ′(t) ∼=
T otherwise the relative fluctuations of temperature in the system of N atoms is given

by:
∆T (t)

〈T (t)〉
=

√
(〈T 2(t)〉 − 〈T (t)〉2)

〈T (t)〉
∼
√
N (2.31)

In a similar fashion, pressure is also controlled during MD simulation runs.

2.9.2 Integration Algorithms

As outlined earlier, the main goal of a classical molecular dynamics simulation programs

is to solve the Newton’s equation of motion to write atomic coordinates and velocities

of the particles as function of time:

mi ˙νi,α = −∂U(R)

∂ri,α
for i = 1, . . . , N and α = (x, y, z) (2.32)

To discretize and numerically solve this IVP, a time step δt > 0 is chosen and the

sampling point sequence tn = nδt considered. The main objective here would be to

construct a sequence of points Rn that closely follow the points R(tn) on the trajectory

of the exact solution. There are several numerical and discretization schemes that have

been developed for this problem at different order of numerical accuracy namely: Euler,

Verlet, Leap frog algorithms. In this section we will discuss the derivation of the Verlet

algorithms as it is the most widely used scheme in many MD programs.
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Verlet algorithm

Given a time-dependent atomic coordinate r(t) ≡ ri,α, the forward and backwards Taylor

expansion in time gives:

r(t+ δt) = r(t) + v(t)δt+
F (t)

2m
δt2 +

...
r(t)δ

δt3
3!

+O(δt4) (2.33)

r(t− δt) = r(t)− v(t)δt+
F (t)

2m
δt2 −

...
r(t)δ

δt3

3!
+O(δt4) (2.34)

summing up equations (2.33) and (2.34), the positions for the next time step δt is

obtained:

r(t+ δt) = 2r(t)− r(t− δt) +
f(t)

2m
δt2 +O(δt4) (2.35)

Thus the new position at t + δt4 is approximated at order of O(δt4). However it must

be noted that (2.35) does not use the velocity to compute new position coordinates but

can be derived from (2.35) itself and is given by:

v(t) =
r(t+ δt)− r(t− δt)

2δt
+Oδt2 (2.36)

It must be noted that from (2.35) and (2.36) the kinetic energy and thus instantaneous

temperatures (see ?? for more) at time t cannot be calculated until the positions are

known at next time step t+δt. In addition, since the interactions and forces between the

atoms in the system must be taken into account, the total nergy and momentum must

be conserved. During a typical MD simulations there must be a mechanism to explicitly

check these conditions. Other methods such as Leap frog and Velocity Verlet algorithms

are developed to cater for this computational delay deficiency. A typical implementation

of (2.35) and (2.36) is given below.

subroutine integrate(f,en) !subroutine to integrate equation of motion

sumv=0

sumv2=0

do i=1,npart !loop over all particles

do a=1,3 !loop over the 3D cartesian coordinates

rr=2*r(i,a)-rm(i,a)+dt**2*f(i,a)/m(i) !Verlet algorithm

v=(rr-rm(i,a))/(2*dt) !velocity equation

sumv=sumv+v !velocity center of mass

sumv2=sumv2+m(i)*v**2 !total K. E

rm(i,a)=r(i,a) !update postions for previous time

r(i,a)=rr !update current time

enddo

enddo

temp=sumv2/(3*npart*kb) !instantaneous temperature
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etot=(en+0.5*sumv2)/npart !average total energy per particle

return

end subroutine

2.10 Minimization of the Potential Function

Before starting a MD simulation, it is necessary to allow the initial structure to reach a

locally stable energy configuration. At that energy, the first derivative of the potential

function 0 and the second derivative is positive (i.e.
∂Up
∂r = 0 and

∂2Up
∂r2

> 0 were r is the

atomic coordinates.) The set of atomic coordinates that satisfy these equations are saved

and adapted as the energetically favourable starting configuration for equilibration and

production runs. This is a very important step in MD simulation, but very complex prob-

lem to solve for macromolecules, because of the large number of atoms and interactions

involved. In particular it is very difficult to explore large areas of conformational space

by crossing saddle point barriers(or energy barriers). However, various mathematical

optimization algorithms have been developed to address this problem at different levels

of approximation. The conjugate gradient and steepest descent algorithms are among

the most commonly used in structural analysis of macromolecules. They involve the

minimization of a quadratic cost function (energy potential), subject to some constraint

pathways or not for a specified force-fields. Thus given an N -dimensional system with

the potential energy functional U(r) : RN −→ R, defined over all atomic coordinates,

r ∈ RN , the optimization algorithms seeks to find

min U(r),

provided U(r) is a continuous and differentiable function with g(r) = ∇U(x) as it’s gra-

dient. Steepest descent and conjugate gradient algorithms seeks to generates a sequence

r0, r1, r2, r3, . . . such that U(r0, ) > U(r1, ) > U(r2, ) > U(r3, ) > . . . In general these

algorithms takes the form:

rk+1 = rk + αkdk (2.37)

here αk > 0 is a step length and dk is a search direction for a kth guess. In order

to converge these algorithms, αk must be chosen to satisfy certain conditions, like the

Wolfe line search conditions for conjugate gradient algorithms:

U(rk + αkdk)− U(rk) ≤ σ1α
k(gTk )dk) (2.38)

and

∇U(rk + αkdk)Tdk ≥ σ2(gTk )dk (2.39)
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where 0 < σ1 ≤ σ2 < 1. Different versions of conjugate gradient and steepest descent

algorithms are implemented in all MD simulation packages. These algorithms are suffi-

cient enough to find a local minima for molecular topologies supplied to it. The energy

minimization algorithms implemented in AMBER software package is run by specifying

the IMIN flag to 1 or 2 without performing any molecular dynamics.

A rather more rigorous scheme called simulated annealing is also commonly used to

find an initial stable structure. It is based on the sequential ’heating’ and ’cooling’ of

the system. This practice is widely used in experimental procedures in the prediction

of proteins. In a typical simulated annealing implementation, the temperature of the

system is raised to an enormous temperature and cooled down abruptly during the

dynamics. The working principle is that by raising the temperature, there’s a high chance

to overcome the energy barrier to sample out the stable configuration in the final step.

Simulated annealing has a strong theoretical formulation in statistical mechanics and

combinatorial mathematics[35]. Several MD packages have diverse molecular dynamics

protocols to implement simulated annealing with acceptable accuracy. In this work

2.11 Analysis of Molecular Dynamics Result

In order to demonstrate the accuracy of the integration methods, it is usually useful to

carry out a series of performance indication runs with several time step values. Some

of these indicators are, the temperature, radius of gyration, root mean square devia-

tion (RMSD), Mean square fluctuation and Debye-Waller factors, Diffusion coefficients,

among others. In this section we discuss only a selected few which is used in this work.

These frameworks are not entirely new but have their theoretical backings in mathemat-

ical statistics.

2.11.1 Root Mean Square Deviations (RMSD)

The RMSD follows the evolution of the structure during the simulation. It is defined

by:

RMSD =

√√√√ 1

N

N∑
i=1

(ri − rref
i )2 (2.40)

where rrefi are the coordinate vectors of the reference structure (usually, the starting

structure, used for the simulation) and N is the total number of atoms. The RMSD

plotted during the trajectory of a structure as it is allowed to equilibrate at a constant

temperature should a plateau value in times of the order of 100ps.
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2.11.2 Radius of Gyration

The radius of gyration,RG is a useful parameter to define the overall conformation of

the system. It can be calculated in two steps. First the center-of-mass coordinates, RC ,

are obtained from ∑
mi(ri −Rc) (2.41)

and then the radius of gyration is related to the moment of inertia and defined by:

R2
G =

∑
mi(ri −RC)

M
(2.42)

where M is the total mass of the system It is also possible to obtain RG from the system

coordinates, without going through the center-of-mass calculations, from:

R2
G =

∑∑
mimj(ri − rj)

2

M2
(2.43)



Chapter 3

METHODOLOGY: THE

MODELLING AND

SIMULATIONS

Introduction

In this chapter, the main results obtained are presented. The chapter begins by outlining

the techniques and procedures used which has a strong theoretical backing from the

formulations discussed in the previous chapter. In the final sections we discuss the

relevance of the work and lay foundation for future works to be done on the PSI complex.

3.1 Preparation of Initial Structure

The initial structure used for all simulations was taken from the crystal structure of

PSI complex of the thermophylic cyanobacterium Synechococcus elongatus crystalized

at 2.5Å[17] by X-ray diffraction experimental method. The structure described therein

provides atomic details of 12 protein subunits and 127 cofactors. Specifically they com-

prise of 96 chlorophylls, 2 phylloquinones, 3 Fe4S4 clusters, 22 β-carotenoids, three 1,2

dipalmitoylphosphatidylglycerole (LHG), one 1,2 distearoylmonogalactosyldiglyceride

(LMG) (these two co-factors would be referred to as lipids for the remaining part of

the text), a putative Ca2+ ion and 201 naturally occurring crystal water molecules.

As discussed in chapter 1, PSI can exists either as a monomer or trimer or both. For

29
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Figure 3.1: flow chart of the implementations used in this work

the purpose of our study we consider just the monomer reported above. The entry

corresponding to this description from the Protein Data Bank is 1JB0.

Figure 3.2: visualization of PSI as obtained from the protein data bank. View on the
left is horizontal to the thylakoid membrane while view on the right is parallel to the

thylakoid membrane.

Photosystems I protein complex is particularly interesting yet challenging protein com-

plex system to model. So far the structure we have adopted, cyanobacterial PSI, from
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Jordan et al (2001) represents the highest resolution X-ray crystallization at 2.5Å avail-

able in 3D so far. Even though this resolution isn’t high enough, it serves as a good

starting point for computational studies on the protein complex. That also implies that

in order to obtain the Hamiltonian of the system which is to be integrated during sim-

ulations, all molecules partially solved during the X-ray experiment has to completely

resolved by computational means.

In the monomer of PSI, there was a large space of positions with unassigned atomic

coordinates. There are 35 amino acids with missing atoms at the N-terminals and

C-terminal of the residues. In addition, ∼91 amino acids residues were reported as

missing and were not located during experiment. Most of these residues are expected

to complete the protein sequencing, therefore their absence creates a gap in the intra-

molecular interaction and could lead to huge forces during MD integration. For example

the the protein subunit PsaK at residues numbered 44-54 contains up to 10 amino acid

residues not completely resolved during X-ray crystallisation (see figure below). This was

Figure 3.3: visualization of PsaK subunit from X-ray data

successfully complete modelled in this work by the MODELLER[15] and GROMACS

molecular modelling software package and results shown on page 32 .

Moreover, some of non-standard molecules were also reported to have missing atoms. In

total, 52 cofactors were reported to have missing atoms. The breakdown is as follows:

1 β−carotenoid BCR4009(B), two lipids LHG5003(A) and LHG5004(B) and 49 chloro-

phylls. We have successfully dealt with this with the aid of the XLEAP utility of AM-

BER12. For each of these molecules, we first prepare the topology of a full molecule and

then supplied this input to XLEAP which automatically completes the sections of the
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Figure 3.4: visualization of PsaK subunit after adding missing amino acid residues

Figure 3.5: visualization of some missing co-factors in PSI with labelling

molecules not completely modelled in X-ray crystallization without considering neigh-

bour atoms. After all structural modelling procedures, atomic count amounts to a total

of ∼52700 (including all hydrogen atoms and the naturally occurring water molecules).

Since during tries to generates a reasonable coordinates for the missing atoms to com-

plete the structure and without taking into account the electrostatic contribution of it’s

environment, there is large collection of atoms superimposed either with already existing

atoms in the X-ray structure or with the positions of the already completed atoms. This

problem was successfully dealt with during our energy minimization.
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Figure 3.6: complete structures of Chlorophyll, β−carotene, and lipid molecule

Figure 3.7: illustration of superimposition of atomic coordinates after modelling of
missing cofactors. BCR is shown in pink-red and other two chlorophylls are shown in

red.

3.1.1 Assignment of protonation states

Histidines of PsaA numbered His-215, 300, 396, 461 and of PsaB identified His-192, 275,

377, 442 were considered to be protonated at the delta positions. All other histidines

are protonated at the epsilon positions. It must be noted that not all missing amino

acids was taken care of in our modelling procedure. For these residues, the missing side

chain were immediately terminated with hydrogen atoms. Thus some of the complete

missing amino acid residues reported at the terminal positions were ignored.

3.1.2 Charge determination of cofactor molecules

As noted in the previous section, the PSI complex contains 127 non-standard protein

amino acids. With regards to the topology preparation for cofactors CLA, BCR, LHG

and LGM, we used the ab initio calculations previously developed by [11]. However, the
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Table 3.1: Other protonation states of specific residues considered. [13]

Residue name Protonation state Reason

HIS33-A protonated On outside
HIS135-A protonated On outside, in-

creased H bond-
ing

HIS633-A protonated On outside
HIS33-B protonated not clear, in hy-

drophobic region
HIS121-B protonated Near ASP367-B
HIS205-B protonated Near ASP209-B

and ASP133-B
HIS241-B protonated close to ASP367-

B
HIS368-B protonated In hydrophobic

region
HIS95-D protonated Hydrophobic re-

gion
HIS63-E protonated On outside
HIS50-F protonated Near ASP46-F

and GLU459-B
HIS3-J protonated Near GLU26-A

and LYS30-A

force field topology preparation for PQN and SF4 was separately prepared by utilizing

the ANTECHAMBER[36] tool of ABMER12 and GAUSSIAN[16] as outlined below.

First we modelled the electrostatic potential field of these cofactors with GAUSSIAN

and used the RESPGEN tool to generate R.E.S.P charges of all heavy atoms of PQN.

This was accomplished by assigning partial charges to each atom. In the initial step,

the LEAP tool of AMBER12 program was used to assign GAFF [37] and ff99SB force

field [23] parameters which account for bond lengths, proper and improper dihedral

angles. Using Antechamber, the resulting molecular structure served as the preparation

input files for GAUSSIAN calculations. In GAUSSIAN, the molecular structures were

first energy-minimized at a density functional level of theory with the Hartree-Fork Self

Consistent Field Method (HF-SCF). This approximation is known to provide an accurate

description of minimized geometries. To maintain consistency with the AMBER-ff99SB

force field, we used the 6-31G* basis set. Partial atomic charges were fitted to reproduce

electrostatic potential on this set of grid points by a restrained electrostatic potential

fit, as implemented in the RESP program from AMBER12 suite. Atomic charges of the

iron sulphide cluster (SF4) were assigned according to the redox state of its atoms in

the dark-adapted (S1) state as follows: S1–S4 (sulphur), -2; Fe1-Fe4 (non-heme irons),

+2 non-heme iron was set to +2. We then ensured that equilibrium geometries of the

cofactors were accurately reproduced by the force field. We used the PARMCHK tool
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of ANTECHAMBER to automate the calculation of any missing force field parameters

(bond lengths, angles, and dihedrals). These two structures were successfully added

to the PSI complex for subsequent calculations. The net charge of the PSI monomer

evaluates after all these was -8.

3.2 Initial MD Simulations

Before the minimization step, a short MD simulation was performed at low temperature

coupling of 250K for 20ps and 0.2fs timestep. Due to the high number of missing residues

and incomplete chains, it was deemed appropriate to turn off partial atomic charges for

all atoms in the system. Particularly, we wanted to avoid system crash due to division

by zero during simulations as all atomic van der Waal radii overlapped after completion

of the missing atoms and residues with already existing residues. In addition to this, the

van der Waal’s radii were scaled by about 90 percent for all atoms. The figure on page 35

shows changes in minimum distances between CLAs and protein atoms during the entire

minimization cycles. On the figure, Cycle 0 corresponds to the minimum distance after

adding missing atoms from the X-ray data. At that point, most of the phytyl tails of

the chlorophylls overlapped with some atoms of the proteins. The distance approaches

an average value of close to 1.7Åwhich is the average distance for H-bonds.

Figure 3.8: A plot showing minimum distance between all chlorophyll and protein
atoms during minimization cycles.
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Energy Minimization(EM) Cycles

Eight cycles of steepest descent and conjugate gradient energy minimization of the mod-

elled or prepared structure was performed in stages with the SANDER program of

AMBER12 in vacuum. As was done in the initial MD simulation run, charges were

zeroed and VDW parameters were scaled to allow all atoms in an unstable conformation

(particularly completed missing atoms) to re-orient to stable conformation during the

minimization. With these parameters, the first to third minimization cycles was suc-

cessfully performed. These cycles were begun with first 500 steps of EM by the steepest

descent algorithm without position restraint on all atoms. To maintain consistency with

the initial positions for all the tails of the cofactors and proteins, harmonic position

restraint was enforced on both the protein and all cofactors. In the second cycle a re-

straint of 1000Kcal/mol was applied to all the proteins and 150Kcal/mol for all tails

of cofactor protein and the Ca2+. This restraint was weakened gradually up to the

6th cycle. However, in the last cycle, no position restraint was applied but the cycle

was had to include the chlorin heads to the list of restrained molecules with a force of

150Kcal/mol while the phytyl tails allowed to move during the next round of 1000 cycles

of energy minimization. After these, the atomic charges of the simulations were then

turned on for the simulated annealing simulations. (see figure for full parameters used

for simulated annealing). A simulated annealing MD simulations protocol was used to

Figure 3.9: schematic view of minimization cycles and simulated annealing

find lowest-energy of the complete structure of PSI. The structure used for the rest of

the simulations had a final energy minimum at -98088.9112Kcal/mol*A2.
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Figure 3.10: Energy and temperature fluctuations in simulated annealing MD fol-
lowed by a final 20ps MD simulations. Energy was stabilized in the last 20ps of the

simulations.

3.2.1 MD simulations protocol

The SANDER module of AMBER 12 package was used for all MD simulations at this

stage. The simulations were performed using periodic boundary conditions and the

SHAKE algorithm in vacuum. Constant pressure simulations (NPT) were run at a time

step of 2fs for 20ps. These simulations were carried out at a temperature of 283 K with

Berendsen weak temperature coupling. [33]. Long range electrostatics were treated

with the Particle Mesh Ewald method and the Lenard-Jones interactions were evaluated

with 10.0Å cut-off value. Positional restraints were of 50kcal/(mol*A2) were applied

to the protein backbone and 30kcal/(mol*A2) for all cofactor molecules. The collected

structural data was analysed with the PTRAJ module of AMBER 12 software while the

visualization was done with PyMOL visualization software. This optimized structure of

PSI complex showed a remarkable stability during the short 20ps MD simulation run

as indicated in the RMSD plot in figure on 38. See also figure on 37 to compare with

energy fluctuations during the final 20ps MD simulation run. The RMSD approaches

an equilibrium of 1.7Å in the final time steps.

3.3 Conclusions

In this work we have successfully provided an optimized structure of the PSI protein

complex and tested the structure for short simulation of 20ps in vacuum. The initial

structure was adapted from the 3D crystal structure solved by Jordan et al (2001)
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Figure 3.11: RMSD plot on protein backbone atoms during final MD simulation run

Figure 3.12: Our minimized structure of PSI after minimization, simulated annealing
and MD simulation.

at 2.5Å using X-ray diffraction. The low resolution implied that several atoms and

molecular fragments were not completely solved during the experiment. However, us-

ing sophisticated techniques, we have completed all these missing atoms and obtained

an optimized structure of this huge protein complex. The final structure was showed

remarkable stability during our MD simulation runs laying foundation for further pro-

duction runs in physiological environment. It is our hope that this structure can serve

as starting structure for QM/MM equilibration to incorporate most of the active sites

accessible at short time scales.
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