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Abstract

Particle agglomeration can arise naturally (e.g. dust, salt) or as a

result of industrial activities and/or combustion processes (e.g. spray

drying, particle flame synthesis). The process itself and its mecha-

nisms are important for many applications since the physical proper-

ties of the final structures are mainly determined by the composition,

number, diameter and geometric arrangement of their constituent

primary particles. Thus, knowing and controlling the extent of ag-

glomeration meets a growing interest in environmental and industrial

concerns.

The objective of the project is to develop a simulation model of par-

ticles suspended in a flowing fluid using MD simulations coupled to a

Lattice Boltzmann (LB) solver. These simulations allowed to

• determine the agglomerate transport and deposition rates de-

pending on flow conditions and agglomerate structure

• understand of the relationship between agglomerate characteris-

tics (i.e. growth kinetics and morphology) and their behaviour

in a flow field

2 systems of 2000 and 1000 particles were simulated at 300 K and 600

Kelvin both of them in a known fluid. Simulations using Langevin

thermostat were also performed to compare with the LB thermostat

ones. This allowed to quantify the influence of fluid flow on the ag-

glomeration process and agglomerate properties. In further applica-

tions, this will help to a priori tailor the flow conditions to achieve a

desired aggregate morphology.



As a result, reasonable values of aggregates morphology were achieved

according to the literature. One of the main conclusions is that tak-

ing into account the fluid flow (LB solver) the agglomeration process

of the particles suffers a notable acceleration in comparison to the

Langevin simulations. One of the main implications of this work could

be the possibility of using a known fluid to accelerate an agglomera-

tion process given a suitable fluid and to find a desirable configuration

of agglomerates. Another conclusion is that agglomeration process is

sensible to the temperature variation and to conclude we will say that

number of particles in the system influences the final configuration of

agglomerates in LB simulations.



Contents

Contents v

List of Figures vii

Nomenclature xi

1 Introduction 1

1.1 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Lattice Boltzmann Method 3

2.1 A little bit of Historical background . . . . . . . . . . . . . . . . . 3

2.2 Relevant aspects of the Lattice Boltzmann Method . . . . . . . . 6

2.3 Boundary conditions for LBM in ESPResSO . . . . . . . . . . . . 9

3 The Software ESPResSO 11

3.1 Units on ESPResSO . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Particles and Agglomerates 16

4.1 Agglomerates. A general view and formation . . . . . . . . . . . . 16

4.2 Connection between particles: Bonding . . . . . . . . . . . . . . . 18

4.3 Characterization of aggregates . . . . . . . . . . . . . . . . . . . . 18

4.3.1 Fractal dimension and Radius of gyration . . . . . . . . . . 18

4.3.2 Longest distance between particles . . . . . . . . . . . . . 22

5 Simulation inputs and Code 24

5.1 Making the variables dimensionless . . . . . . . . . . . . . . . . . 24

v



CONTENTS

5.2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Simulation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Results 32

6.1 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 First approach and final inputs for the simulations . . . . . . . . . 33

6.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3.1 Simulation 1: 300 K and 1000 particles . . . . . . . . . . . 35

6.3.2 Simulation 2: 300 K and 2000 particles . . . . . . . . . . . 38

6.3.3 Simulation 3 and 4: 600 K and 1000, 2000 particles . . . . 41

7 Conclusions 50

Appdx A 52

References 57

vi



List of Figures

2.1 The left picture is D2Q9 model. Every cell contains 9 particle dis-

tribution particles. The right picture is D3Q19 model: 19 velocities 5

2.2 D3Q15 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Stream step. Particles are redirected from the current cell to the

neighboring ones. Left picture: before stream step. Right picture:

after stream step . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Change of the particle distribution during the collide step . . . . . 8

2.5 Bounce Back Boundary Conditions. Left picture: step t. Right

picture: step t+ ∆t . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Logo of ESPResSO. Source www.espressomd.org . . . . . . . . . . 11

4.1 VMD view. On the left picture time step = 0. All particles are

separated. On the right picture agglomeration process has started

after some time step. . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Left picture: Cross and linear-shape agglomerates. Right pic-

ture: Electron images from gold nano-particles. Real agglomerate.

Source www.azonano.com . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Agglomerate of 3 particles (two contacts). For every contact, a

virtual pair is created at the collision point. The bond between

the real pair or collided particles avoid motion and the collision

point and the angular potential between real and virtual particles

avoid particles from sliding among each other. . . . . . . . . . . . 19

4.4 VDM view of the 6 particles agglomerate in time step 100 . . . . 21

4.5 Fractal dimension is the slope of the line and has a value of 1.79 . 22

vii



LIST OF FIGURES

4.6 Longest distance: the yellow arrow represents the longest distance

between monomers in the agglomerate. . . . . . . . . . . . . . . . 23

6.1 Orthographic view of the box simulation (300 K, 2000 particles

and Langevin thermostat in time-step 7500. We can see how ag-

glomeration process is going on. . . . . . . . . . . . . . . . . . . . 34

6.2 Number of agglomerates as a function of time. Every 500 time-

steps number of agglomerates is printed out. . . . . . . . . . . . . 35

6.3 Average fractal dimension vs time. . . . . . . . . . . . . . . . . . 36

6.4 Average longest distance between particles vs time. . . . . . . . . 37

6.5 Fractal dimension vs cluster size. Green values correspond to LBM

and red ones to Langevin. . . . . . . . . . . . . . . . . . . . . . . 37

6.6 Longest distance vs cluster size. The trend line gives us an idea

about values of longest distance between particles for every cluster

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.7 Number of agglomerates as a function of time. Every 500 time-

steps number of agglomerates is printed out. . . . . . . . . . . . . 39

6.8 Average fractal dimension vs time. . . . . . . . . . . . . . . . . . 39

6.9 Average longest distance between particles vs time. . . . . . . . . 40

6.10 Fractal dimension vs cluster size. Green values correspond to LBM

and red ones to Langevin. . . . . . . . . . . . . . . . . . . . . . . 41

6.11 Longest distance vs cluster size. The trend line gives us an idea

about values of longest distance between particles for every cluster

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.12 Number of agglomerates as a function of time. Every 500 time-

steps number of agglomerates is printed out. . . . . . . . . . . . . 43

6.13 Number of agglomerates as a function of time. Every 500 time-

steps number of agglomerates is printed out. . . . . . . . . . . . . 44

6.14 Average fractal dimension vs time. . . . . . . . . . . . . . . . . . 44

6.15 Average fractal dimension vs time. . . . . . . . . . . . . . . . . . 45

6.16 Average longest distance between particles vs time. . . . . . . . . 45

6.17 Average longest distance between particles vs time. . . . . . . . . 46

viii



LIST OF FIGURES

6.18 Fractal dimension vs cluster size. Green values correspond to LBM

and red ones to Langevin. . . . . . . . . . . . . . . . . . . . . . . 46

6.19 Fractal dimension vs cluster size. Green values correspond to LBM

and red ones to Langevin. . . . . . . . . . . . . . . . . . . . . . . 47

6.20 Longest distance vs cluster size. The trend line gives us an idea

about values of longest distance between particles for every cluster

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.21 Longest distance vs cluster size. The trend line gives us an idea

about values of longest distance between particles for every cluster

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



Nomenclature

Roman Symbols

a primary particle mean radius
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Chapter 1

Introduction

Agglomeration of particles is an abounding phenomena in different technical ap-

plications of industry, appearing in form of either products or waste. In the last

decades, environmental problems have gained a lot of importance and therefore,

this complex-structured particles need to be handled, where transport, agglomer-

ate growth, deposition and other complex processes have to be taken into account.

Dietzel and Sommerfeld [2010] and Dietzel and Sommerfeld [2011].

In nanotechnology research field, the structure and structural properties of nano-

particles is crucial for the prediction of the particle behavior.

Due to the complexity of nano-particles and agglomerates, experimental tech-

niques are limited to very elementary structures Cuendet [2008]. On the other

hand, numerical simulations are able to provide an important alternative of ex-

perimental data, and can be an efficient way to analyze the structure and behavior

of the particles and consequently to create new products faster and cheaper.

A precise calculation of the essential physical properties of nano-particles is

needed for planning their technological applications and for improving the as-

pects related to their manufacturing. The properties of nanoparticles (seen as

single particles), has been studied deeply in the last years, but the geometry of

the aggregates (almost spherical particles sized between 1 nm and 100 nm that

join together and remain fixed once they touch an initial point of contact), is

described by the fractal geometry.

In this thesis, we use the Lattice Boltzmann Method (LBM) to be compared with

a Langevin thermostat method in order to perform simulations of agglomerates
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to analyze agglomerate transport and deposition depending on flow input and

agglomerate structure. We try to present a comparative study of two computer

simulation methods. Applying these methods to the same physical system will

allow us to draw a detailed and quantitative comparison. This idea to compare

this 2 kind of methods have been used in some studies like Pham et al. [2009].

LBM method has become more important in the last years because of his easy

implementation in comparison to other methods that directly try to discretize

the Navier-Stokes (NS) equations. Gao and Wang [2010].

In LBM method, the motion of particles and growth of agglomerates are sim-

ulated by molecular dynamics (MD) and it is coupled to a Lattice Boltzmann

Code to take the fluid into account. This last part is what makes the difference

between using a LB thermostat and a Langevin one.

1.1 Structure of this thesis

This thesis is divided into 7 main chapters. After this first introduction chapter,

we will move to the second one, where the Lattice Boltzmann Method (LBM) is

presented in details. It is important to understand the physics behind the theory.

That way, we will be able to interpret the results from our simulations. Therefore,

all the important equations and origins from LBM are presented in this chapter,

ending with the treatment of the Boundary conditions for this method.

in Chapter 3, The Software ESPResSO is introduced and how to deal with the

units in this program.

In Chapter 4, we present an introduction to particle agglomeration. It is presented

how the ”collision model” works, how it is treated the characterization of the

agglomerates (i.e, fractal dimension, radius of gyration, longest distance, etc).

We finish this chapter explaining how sliding is avoided in the agglomerates.

In chapter 5 we justify and give details about the whole simulation program,

giving and explaining all the parameters used and giving the code used (Tcl

language).

In chapter 6 we present all the results and discuss the complex agglomerates

structures justifying the conclusions based in previous studies.

Finally, We close this Master Thesis with the conclusions in Chapter 7.
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Chapter 2

The Lattice Boltzmann Method

In this part of the document, we will talk about the theoretical background of

the mentioned method. All the formulas and equations used for this solver in

ESPResSO, will be explained with details in this section. Due to the recent

development of this method, many aspects from the understanding point of view

have been recently discussed.

2.1 A little bit of Historical background

Normally when LBM is presented, it is very common to talk about the lattice gas

cellular automata (LGCA).

The first LGCA, this means a special type of Cellular automata (CA) for

fluid flow simulations, was introduced in 1973 by Hardy, Pomeau and de Pazzis.

Hardy et al. [1973]. The HPP model (name derived from the initials of the

authors) conserves momentum and mass, but it does not satisfy the Navier Stokes

equation when we reach the macroscopic limit. Röhm [2011].

It was in 1986 when Frisch, Hasslacher and Pomeau brought back the interest

in CA when they found that a CA over a lattice with symmetry (hexagonal),

satisfies the Navier-Stokes equation in the macroscopic limit Asinari [2001]. The

Lattice Boltzman Method (LMB) was proposed to solve an still remaining prob-

lem: Big oscillations that limited the applications. After some time, the LBM

gained a lot of popularity and it has been one important research area in the last
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years.

The basic idea which made it possible to formulate the Lattice Boltzman

Methos (LBM) is: just replace the Boolean occupation numbers, involved in

the previous LGCA with the corresponding ensemble-averaged populations. The

fields were replaced by continuous distributions over the previous lattices. At

first, Fermi-Dirac Distributions were used as equilibrium functions, instead of the

Maxwellian distribution functions later introduced. Succi [2010].

McNamara and Zanetti published the method in 1988 Boorse and Motz [1966].

As we said, derived from the LGCA, which had many handicaps like noise because

of the boolean fields for particle representation when used for CFD simulations.

After some years of development the Lattice Boltzmann Method (LBM) has

proven to be an important tool to investigate dynamics in soft matter systems.

In coarse grained simulations it allows to replace the solvent by a mesoscopic

fluid. On large length and timescales the LBM leads to a hydrodynamic flow

field that satisfies the Navier-Stokes equation. The relaxation of fluid degrees of

freedom in liquid systems is much more faster than the transport of particles.

This differentiation of timescales allows to neglect the microscopic details of the

fluid.

Traditionally, CFD solvers get the macroscopic parameters , like velocity ~u

and pressure p, by using the Navier-Stokes (NS) equations with finite elements

(FE), volumes (FV) or differences (FD) Feichtinger et al. [2005]. On the other

hand, in lattice Boltzman method (LBM), these macroscopic parameters come

from propagation and collision of particles , that are represented by the particle

distribution functions f(~x,~ε, t), being ~x the location,~ε the particles velocity and

t time.

How do we get the particles interaction? Solving the microscopic kinetic

equation for the particle distribution function f(~x,~ε, t) for each time step. It is

important to notice that after the timing and spacing discretization, the fluid

domain has been subdivided into lattice cells. These cells comprises values for

the particle distribution fα(~x, eα, t) with particles velocities eα for each discrete

lattice direction α.

The next important matter is to see how the discretization works. It is done

in the following way: δx = eα · δt being δx the grid spacing in direction x and δt
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Figure 2.1: The left picture is D2Q9 model. Every cell contains 9 particle distri-
bution particles. The right picture is D3Q19 model: 19 velocities

Figure 2.2: D3Q15 model
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the time-step.

The meaning of this is that a particle moves from a cell to another in 1 time

step. An exception are those particles who have no velocity that will remain in

their original cells.

In every time step the particle distributions functions are collided and redi-

rected to their neighboring cells according to their lattice direction, resulting a

fluid behaviour equal to the Navier Stokes (NS) equations.

Figure 2.3: Stream step. Particles are redirected from the current cell to the
neighboring ones. Left picture: before stream step. Right picture: after stream
step

2.2 Relevant aspects of the Lattice Boltzmann

Method

The main goal of the LBM is to calculate and get the particle distributions for

the next time step. This can be performed using the Bhatnagar-Gross -Krook

(BGK) model.

The Bhatnagar-Gross -Krook operator term refers to a collision operator used

in LB equation and in the LBM and it is given by the following espression

Ωi = −τ−1(ni − nEQi ), (2.1)
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where nEQj is a local equilibrium value for the population of particles in the

direction of link ei .The term τ is a relaxation time, and related to the viscosity.

After the discretization of the BGK model in time and space we get the

following equation,

fα(xi + eαδt, t+ δt)− fα(xi, t) = −1

τ

[
fα(xi, t)− f (eq)

α

]
, (2.2)

and this equation can be divided into two steps: the stream step

fα(xi + eαδt, t+ δt) = f̃α(xi, t+ δt), (2.3)

Representing the propagation of the particles. The particle distribution func-

tions of every cell xi are spread to the neighboring cells xi + eα · δt as we can see

in the Figure (2.4).

Now we focus on the second part of the equation (2.1) (particle distribution

functions after the second step: the collide step),

f̃α(xi, t+ δt) = fα(xi, t)−
1

τ

[
fα(xi, t)− f (eq)

α

]
. (2.4)

The equation (2.3) is about the collision of the particles during their move-

ment. During the collision step the particle distributions of the last time step

fα(~xi, t) are adjusted by the weighted deviation from the local equilibrium distri-

bution f
(eq)
α Feichtinger et al. [2005].

We try to explain graphically how particle distribution varies during the col-

lide step (See Figure (2.4)). As it is explained in equation (2.3), the new particle

distributions result from a weighting between the old distributions and the equi-

librium distributions. In the case for example of τ = 2, the results are an average

of the old and the equilibrium functions.

The local equilibrium distribution functions f
(eq)
α are calculated in the follow-

ing way:

f (eq)
α = ωα · ρ

[
1 +

3

c2
(eα · ~u) +

9

2c4
(eα · ~u)2 − 3

2c2
~u2
]
, (2.5)
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Figure 2.4: Change of the particle distribution during the collide step

where cs = c√
3

with cs the speed of sound.

This equation means that future collisions would not affect the new particle

distributions. It is important to highlight that the collision step will not change

the velocity ~u and density ρ.

Usually the parameter c is fixed to 1. Indeed, the weighted factor ωα are

also initial values for the particle distribution functions and their values change

depending on the lattice model used.

After defining the main and more important equations of the LBM, nor the

following question comes: How to finally obtain the macroscopic values? With

the following three equations we get the pressure and the velocity (variables of

interest) Feichtinger et al. [2005].

ρ =
n∑

α=0

fα (2.6)

p = ρ · c2s (2.7)

~uρ =
n∑

α=0

eifα (2.8)
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It is important to know the dynamic behavior of our simulation fluid. This

can be done using the definition of the Reynolds number (RE) , a well known

parameter that measures the importance of the non-viscous forces versus the

viscous ones. The smaller the RE, the more laminar is the fluid in the next

equation

RE =
|~u0| · L
ν

(2.9)

Where L is the diameter of the largest obstacle , ν is the kinematic viscosity

and ~u0 is the inflow velocity. In LBM and Espresso Software we use only dimen-

sionless quantities, and therefore these units have to be changed as well to their

corresponding non-dimensional value.

2.3 Boundary conditions for LBM in ESPResSO

The boundaries implemented in ESPResSO reproduce no-slip boundary condi-

tions for the fluids and this is done by the bounce-back rule. The main idea

of this rule, is that the link-based update-rule populations are reflected at the

boundary nodes.

The bounce back is done to accomplish a vanishing flow at the boundary

(velocity on the boundary has to be zero). This can get done by bouncing back

as many particles in each direction as are streamed in the opposite direction. (See

Figure (2.5)).

Indeed, this makes possible to solve the linear lattice Boltzmann equation

with bounce-back boundary conditions analytically, too.
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Figure 2.5: Bounce Back Boundary Conditions. Left picture: step t. Right
picture: step t+ ∆t
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Chapter 3

The Software ESPResSO

In this chapter I try to give an introduction to the Software ESPResSO, the soft-

ware used in this thesis.

ESPResSO (See figure (3.1)) is a package for molecular dynamics (MD) simula-

tions . ESPResSO is the acronym of Extensible Simulation Package for Research

on Soft matter systems Ref [a].

Figure 3.1: Logo of ESPResSO. Source www.espressomd.org

A large amount of materials such as glasses, hydrogels, colloids, etc, are in-

cluded in the term soft matter Dünweg and Ladd [2009]. In this kind of material,

many properties are interesting from the molecular point of view rather than the

atomic one Ref [b]. In conclusion, when one is doing an atomic simulation, to be

able to notice the important effects, one should take in account millions of atoms,
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what sometimes is very expensive and not possible.

Simulations need a lot of time steps to get some proper data, and therefore an

efficient and fast software is still needed.

ESPResSO relies on other packages. In this sense is important to highlight that

Tcl language is the interpreter for the simulation control. This means that every

code should be written in a Tcl script.

These are some important characteristics are of ESPResSO Arnold et al. [2013]:

• Optimized for coarse-grained models: specially designed for these kind of

models. In this context, the software gives the user the opportunity among

others to create rigid bodies, to generate new bonds during simulations, or

for example, and related to this thesis, to couple a Lattice Boltzmann fluid

to the particle-agglomerates simulation. Moreover, the software treats the

physical units in a flexible way (values can be given in any unit system).

This deserves more attention and in the next part of the chapter I will

explain deeply how the ESPResSO deals with units.

• Interaction between the user and the simulation engine via scripting lan-

guage Tcl: the Tcl script language (Tool Command Language) determines

all the simulation parameters such as length of the simulation box, number

of particles, etc. Most of these values can be modified during the simula-

tions . This is one of the advantages of using Tcl in simulations. Indeed,

the Tcl interpreter contains some special commands as an extension to Tcl.

• The simulation engine is written in C.

• It has implemented all these possible simulation methods:

– Ensembles

1. NVE: The constant-energy, constant-volume ensemble (NVE), is

obtained by solvingNewton’s equationwithout any temperature

and pressure control. Energy is conserved when this ensemble

is generated. This ensemble is not recommended for equilibration

because, without the energy flow facilitated by the temperature

control methods, the desired temperature is not achieved.
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2. NVT: This ensemble is obtained by controlling the temperature

through direct temperature scaling during the initialization stage

and by temperature-bath coupling during the data collection phase.

The volume is kept constant throughout the run.

3. NPT: This ensemble allows control over both the temperature

and pressure. The unit cell vectors are allowed to change, and

the pressure is changed by adjusting the volume. This is the right

ensemble when the correct pressure, volume, and densities are

important in the simulation.

– Algorithms for charged systems:

1. P3M for fully periodic systems

2. ELC and MMM-family of algorithms for charged systems with

non-periodic boundary conditions.

3. MEMD (Maggs algorithm)

– Hydrodinamics

1. DPD ( as a thermostat)

2. Lattice Boltzmann

– Non-equilibrium MD to simulate shear flow

– Parallel tempering

– Metadynamics

– Rigid bodies via virtual sites

3.1 Units on ESPResSO

Normally, in the majority of molecular dynamics (MD) software we define a set

of units, this means that for example all times are measured in nano-seconds. On

the contrary, in ESPResSO, mass (m) , length (σ) and energy (ε) are chosen by

the user Inci [2012].

The rest of parameters such as time (t), pressure (p), density (ρ), viscosity (µ),

gamma langevin constant, temperature (T ), etc will be expressed in terms of

13



the three original units m∗, σ∗, ε∗ by the dimensional analysis technique (see

equations below).

reference time: t∗ = σ∗
(
m∗

ε∗

)1/2

(3.1)

reference temperature: T ∗ =
ε∗

kB
(3.2)

reference density: ρ∗ =
m∗

σ∗3
(3.3)

reference viscosity: µ∗ =
m∗

σ∗t∗
(3.4)

reference gamma langevin constant:
1

t∗
(3.5)

m∗ will we the mass of the particle, σ∗ will be the diameter of the particle

and ε∗ will be the thermal energy of the system (ε∗ = 3
2
KT ).

After defining the reference quantities, we can obtain the dimensionless parame-

ters as follows:

r̃ =
r

σ∗
(3.6)

Ẽ =
E

ε∗
(3.7)

T̃ =
T

T ∗
(3.8)
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t̃ =
t

t∗
(3.9)

µ̃ =
µ

µ∗
(3.10)

ρ̃ =
ρ

ρ∗
(3.11)

γ̃ =
γ

γ∗
(3.12)

To get proper simulations, the simulation time step must be smaller than the

relaxation time of the particles.

In this thesis, Lattice Boltzmann Method (LBM) is used to simulate the fluid.

The time step τ for the LBM must be equal or larger than the MD simulation

time step.
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Chapter 4

Particles and Agglomerates

In this chapter we explain how agglomerates behave: movement, particles attach-

ment, characterization and how the agglomerates are implemented in ESPResSO.

How to simulate the fluid by LBM is explained in chapter 2. The other part of

the simulation (particles) needs to be presented deeply as well.

4.1 Agglomerates. A general view and forma-

tion

In this study, particles and its aggregations are simulated. Particles of same mass

and shape (we suppose the nano-particles spherical) are connected to others (or

groups of them) in one unique point contact. This process in time can lead to

agglomerates of particles (see figure (4.1)).

We can approximate usually our particles as spheres because their behaviour

in a flow normally reproduces the behaviour of spheres Iglberger [2005] and

Iglberger et al. [2005].

The radius and mass of primary particles are fixed before the simulation starts

(In our case we simulate soot particles). The particles can be seen as a point with

the known mass in the center of mass of the spherical body. An agglomerate can

also join another agglomerate.

There are simple agglomerates that have been used for model testing like cross-

shape and linear shape but the reality is far away from these simple models (See
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Figure 4.1: VMD view. On the left picture time step = 0. All particles are
separated. On the right picture agglomeration process has started after some
time step.

figure (4.2))

Figure 4.2: Left picture: Cross and linear-shape agglomerates. Right pic-
ture: Electron images from gold nano-particles. Real agglomerate. Source
www.azonano.com

The next part is to explain how ESPResSO deals with the rigid bodies (ag-

glomerates are formed of particles that move all together) and how are imple-
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mented the forces between the particles that keep the agglomerate as a whole

body (conexions). This will be treated in the next subsections.

4.2 Connection between particles: Bonding

When an agglomerate is created, some particles starts joining each other and

sticking. In this section we try to explain what are the main physical and chem-

ical processes that occur and how ESPResSO deals with this question.

To keep two particles together, there should be some adherence forces or chemical

bonds that make this happen. When two particles meet, due to the induced-dipole

forces, a short-range attraction appears and the consequence is an elastic defor-

mation that can lead to make the contact between then stronger, or they can

even create bridges among them.

During this kind of situations, the particles deform and thus they lose their spher-

ical shape. Therefore sticking processes cannot be simulated properly. To solve

this problem in Molecular Dynamics this can be done by introducing potentials

or binding agents provided by the software.

The method used is ”Angle bonded virtual particles model” (AnBV) Inci [2012].

In this method, two virtual particles are introduced in the contact point and the

real particles pair is attached to them. How the virtual pair is connected to the

real pair? By angle-dependent potential with angle Θ = π (see figure (4.3)).

4.3 Characterization of aggregates

4.3.1 Fractal dimension and Radius of gyration

Aggregates are structures formed by the summation of small and almost spherical

particles. The complexity of this structures requires additional parameters to

characterize the morphology and the basic properties of these aerosols Samson

et al. [1987].

An irreversible aggregation of particles has as a result the creation of fractal

aggregates, with a power-law relationship between the cluster radius of gyration

Rg and the number of monomers N in a cluster. This relation was introduced by
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Figure 4.3: Agglomerate of 3 particles (two contacts). For every contact, a virtual
pair is created at the collision point. The bond between the real pair or collided
particles avoid motion and the collision point and the angular potential between
real and virtual particles avoid particles from sliding among each other.

Forrest and Witten [1979] through the following equation:

N = kf

(
Rg

a

)Df

(4.1)

where a is the primary particle mean radius, kf is the fractal prefactor and

Df is the fractal dimension. Rg is the radius of gyration and N is the number of

particles in the aggregate.

The next step is to define what is the radius of gyration. There are different ways

to define it but the normal way to do it is by the mean square of the distances

between spherule centers and the center of mass of the aggregate Pierce et al.

[2006].

R2
g =

1

N

N∑
i=1

(ri − r0)2 (4.2)

r0 =
1

N

N∑
i=1

ri (4.3)
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where ri denote the position of the ith spherule center the and r0 the center

of mass of the cluster.

There is still a more accurate definition for the radius of gyration of each ag-

glomerate. This is due to the fact that all transfer processes and the chemical

reactions appear on the aggregate surface , and therefore we can express the ra-

dius of gyration as the mean square distance between r0 and all points in the

spherule surfaces (see the following equation).

R2
g =

1

N

N∑
i=1

(ri − r0)2 + a2 (4.4)

The bigger the aggregate, more similar are both definitions defined in eq (4.6)

and eq (4.8).

It exists another sense to characterize the morphology of an aggregate. This can

be done by the two-point density -density correlation function Filippov et al.

[2000] (see the following equation):

C(r) = 〈〈ρ(r0)ρ(r0 + r)〉〉|r|=r (4.5)

having in the case of fractal-aggregates the following form:

C(r) = Acr
Df−d (4.6)

where Ac is just a constant, d is the Euclidean dimension and Df the fractal

dimension.

This equation can be rewritten as follows (see equation below).

C(r) = Âc

(
r

Rg

)Df−d

fc

(
r

Rg

)
(4.7)

where Âc is a normalization constant and fc a cutoff function.
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In our simulations the fractal dimension of the agglomerates are calculated from

the slope of the log-log plot of the radius of gyration Rg versus the number of

particles N .

Taking logarithms from the statistical law (4.5), we get the following equation

logN = log kf +Df logRg −Df log a (4.8)

As an example we illustrate how to calculate the fractal dimension of an

agglomerate got from an small simulation.

First we simulate a line-shape agglomerate of 6 particles and take a picture in

time step 100 (see figure (4.4)) and calculate the fractal dimension (figure (4.5)

and table).

Figure 4.4: VDM view of the 6 particles agglomerate in time step 100

Rg N logRg logN

2 2 0.693 0.693

4 4 1.386 1.386

6 6 1.791 1.791

8 6 2.079 1.791

10 6 2.303 1.791

Table. Radius of gyration versus number of particles for Df at t = 10
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Figure 4.5: Fractal dimension is the slope of the line and has a value of 1.79

4.3.2 Longest distance between particles

It is calculated also to contribute in the characterization of agglomerates during

the simulation process, and It is defined as the longest physical distance between

all the possible pairs of monomers in the agglomerate.

We take the previous simulation example to illustrate a very simple calculation

of a longest distance. See figure (4.6).
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Figure 4.6: Longest distance: the yellow arrow represents the longest distance
between monomers in the agglomerate.
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Chapter 5

Simulation inputs and Code

In this chapter, we will introduce the parameters that need to be defined before

starting the simulations. Moreover we will show with an example how to make the

variables dimensionless to work with ESPResSO, and at the end of the chapter,

the code (Tcl script) will be presented and explained in details.

5.1 Making the variables dimensionless

As I explained in Chapter 3, ESPResSO works with dimensionless variables that

can be obtained dividing the real quantities over the reference ones. We choose

mass (m) , length (σ) and energy (ε) in such a way that the dimensionless values

are (equation below):

length: r̃ = 1 (5.1)

mass: m̃ = 1 (5.2)

energy: ε̃ = 1 (5.3)
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This means that σ = σ∗, m = m∗, ε = ε∗.

We try to clarify this with an example. Let us consider air as a fluid with

temperature 300 K. Given the system characteristics (real values) like Fluid

Temperature (T = 300K ), particle diameter (σ = 100 nm), particle density

(ρ = 1300 kg/m3), fluid dynamic viscosity (µ= 1.9831e-5 kg/m*s), air pressure

(P=101325 Pa), and the Boltzmann Constant KB, we can compute the reference

parameters and as well others values related to these 3 units like relaxation time,

gamma langevin constant, etc (see equations below).

ε∗ =
3

2
KBT = 6.2129 · 10−21 (5.4)

T ∗ =
3

2
T = 450 (K) (5.5)

m∗ = ρV ∗ =
ρπσ3

6
= 6.805 · 10−19 (kg) (5.6)

t∗ = σ∗
√
m∗

ε∗
= 1.0467 · 10−6 (s) (5.7)

γ =
1

t∗
= 955381.61 (s−1) (5.8)

relaxation time t′∗ =
ρσ2

18µ
= 3.64 · 10−8 (s) (5.9)

µ∗ =
m

σ∗t′∗
= 5.699562 · 10−4 (kg/m · s) (5.10)
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After that, we are able to make dimensionless the variables (real value /

asterisk one). So, we obtain from this examples the following values: r̃ = 1,

m̃ = 1, ε̃ = 1, t̃ = 0.03479, T̃ = 0.667, γ̃ = 10.96, µ̃ = 0.106. As a conclusion, we

could state that these should be the values to be introduced in a simulation and

not the real ones.

5.2 Inputs

Now in this section, we define all the parameters that must be specified in the

Tcl script before running the simulation. Some values for the fluid, some for the

particles and some for the system characteristics will have to be defined.

1. Particles, domain and system characteristics

• number of particles

• box length

• boundary conditions (periodic, etc)

• Initial position of particles

• time step for the MD simulation

2. Thermostat, potentials and bonded potentials.

• type of thermostat (Langevin, Boltzmann, etc)

• type of potential used and parameters. (Lennard Jones, etc)

• angle potential.

3. Fluid parameters (just for the Lattice Boltzmann thermostat case)

• Temperature

• density

• viscosity

• grid spacing

• time step for the fluid simulation

• friction coefficient
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5.3 Simulation Code

In this part of the thesis, we present the Tcl script that was used to do the

simulations. The agglomeration code was given by Gizem Inci, ITV. We analyze

every part of the code and we explain the purpose they have in the simulation.

As we said before, we are simulating nano-particles in a fluid (in this case air)

using a Lattice Boltzmann thermostat or a Langevin one.

The modes that need to be activated in ESPResSO for this simulation are called

by Algorithm 1

require_feature "COLLISION_DETECTION"

require_feature "VIRTUAL_SITES_RELATIVE"

require_feature "EXTERNAL_FORCES"

require_feature "LB" # (In LB thermostat case)

The total number of particles, box dimensions and initial random position of

particles are defined in Algorithm 2. Indeed a vtf file is create to be able to watch

the simulation in a viewer as VMD for instance.

#require_max_nodes_per_side {1 1 1}

set particle 1000

# (or 2000)

cellsystem domain_decomposition -no_verlet_list

set box_length 100

setmd box_l $box_length $box_length $box_length

set pidlist [list]

set fl [open LB1.vtf a]

set filei 0

for {set i 0} {$i<$particle} {incr i} {

set posx [expr $box_length*[t_random]]

set posy [expr $box_length*[t_random]]

set posz [expr $box_length*[t_random]]
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part $i pos $posx $posy $posz type 0

}

writevsf $fl

In the next Algorithm 3, Lattice Boltzmann fluid parameters are introduced

by the user. Moreover, potentials and boundary conditions are defined. Also the

collision model is called. Finally some functions are presented that will be called

later for the calculations of fractal dimension and longest distance.

#--------------------------------------------------------------------------#

# PART-2---> DEFINE THE MODELS AND CONSTANTS OF EQUATIONS

#--------------------------------------------------------------------------#

set min [analyze mindist 0 0]

puts "THE FIRST MINIMUM DISTANCE : $min"

setmd time_step 0.001

setmd skin 0.9999

#------------------LATTICE BOLTZMAN THERMOSTAT--------------------#

set temp 0.667

lbfluid dens 0.0017056513 visc 0.1061032954 agrid 2 tau 0.1 friction 15

thermostat lb $temp

#---------------lENNARD JONES POTENTIAL-------------------#

set eps 1.0

set sigma 1.0

set rcut 2.5

setmd min_global_cut 1

inter 0 0 lennard-jones $eps $sigma $rcut auto

#---------------BONDED POTENTIALS-------------------#

inter 1 angle 500 [PI]

inter 0 harmonic 500 1.0
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#---------------BOUNDARY_CONDITIONS-----------------------#

#...Periodic boundary cond. Later, this may be changed....#

setmd periodic 1 1 1

#------------------COLLISION------------------------------#

on_collision bind_at_point_of_collision 1.0 0 1 1

#--------------------PARTICLE CONTROL----------------------#

set min 0

set cap 20

while { $min < 0.95 } {

# set ljforcecap

inter ljforcecap $cap

# integrate a number of steps, e.g. 20

integrate 40

# check the status of the sytem

set min [analyze mindist 0 0]

# this is a shortcut for ’set cap [expr $cap+10]’

incr cap 20

}

#puts "Warmup finished. Minimal distance now $min"

# turn off the ljforcecap, which is done by setting the

# force cap value to zero:

inter ljforcecap 0

for {set i 0} {$i <$particle} {incr i} {

lappend pidlist $i

vtfpid $i

}

#---------------Function----------------------------------#

proc distance_between_2_points {position1 position2 box} {

set ret 0.0

for {set j 0} {$j<3} {incr j} {

set dist [expr abs([lindex $position1 $j]-[lindex $position2 $j])]

if {$dist > [expr $box/2.0]} {

29



set dist [expr abs($dist-$box)]

}

set ret [expr $ret+ [sqr $dist]]

}

return [expr sqrt($ret)]

}

proc real_distance_between_2_points {position1 position2 box} {

set ret 0.0

for {set j 0} {$j<3} {incr j} {

set dist [expr abs([lindex $position1 $j]-[lindex $position2 $j])]

set ret [expr $ret+ [sqr $dist]]

}

return [expr sqrt($ret)]

}

#----------------Fractal Dimension------------------------#

set initial_radius 0

set incr_step $sigma

In the following algorithm the integration procedure starts, indicating the

total number of steps and the period that we want for printing the results. In

this process, agglomeration lists are printed in every time step indicating the

number and identification of monomers included. (To see how Fractal dimension,

center of mass and radius of gyration is calculated for every time step, see the

rest of the code in Appendix 1).

#---------------PARTICLE MOTION---------------------------#

set n_cycle 10000

set n_steps 1000
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set fileid 0

set i 0

while { $i<$n_cycle } {

integrate $n_steps

writevcf $fl pids $pidlist

if {$i==[expr $fileid*500]} {

set file [open "LB1_$fileid.txt" "a"]
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Chapter 6

Results

Simulations have been carried out. 4 using a LBM thermostat and 4 were done

using a Langevin thermostat. The purpose of this is to compare the 2 methods

and see the influence on the agglomerates properties when we take in account

the flow. The simulations were performed using 1000 particles, 2000 particles at

300K and 600 K. In total we have 4 simulations for each method.

6.1 The system

The system and the simulation had the following characteristics:

• N1 = 1000.

• N2 = 2000.

• Spherical Lennard Jones particles with a density of ρ = 1300 kg/m3.

• Cubic box with periodic boundary conditions (PBC) in all directions. Each

size of the box has a size of 50 in dimensionless units.

• Random initial position of particles inside the box.

• Particle diameter 100 nm.

• The temperature is 300 K or 600 K (in dimensionless units 0.667).
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• Time-step is 0.001

• The collided particles remain fixed at the initial point of contact.

• The Lennard Jones parameters are (in dimensionless units): epsilon 1 and

sigma 1.

• The following features from ESPResSO are activated: ”Collision detection”,

”Virtual Sites Relative”, ”External forces” and for the LBM simulations we

also need ”LB”.

• Functions used to calculate fractal dimension, center of mass and longest

distance in order to characterize the agglomerates that are created.

• Creation during the simulation of a vtf file in order to visualize the whole

simulation in VMD.

6.2 First approach and final inputs for the sim-

ulations

The first idea was to consider the surrounding fluid is assumed to be air with

viscosity of µ = 1.983105kg/ms. Well, in fact, this system, using the Langevin

Thermostat, had no problem, but when we tried to simulate our system consid-

ering air with the LBM, we could not simply perform the simulation.

The parameters needed to initiate the LB thermostat in ESPResSO are the

following and considering air as the surrounding fluid had the following values

(dimensionless):

• density of the fluid: 0.01

• viscosity of the fluid: 0.106

• agrid (grid spacing for LBM): 1

• tau (LB time-step): 0.01
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Segmentation error occurred and this can be explained because of the low

density fluctuations when Lattice Boltzmann method used Xiaoyi and Li-Shi

[1997].

Density of the fluid was increased to reach values that have been tried in

Lattice Boltzmann Simulations before Lenz et al..

• density of the fluid: 1

• viscosity of the fluid: 0.8

• agrid (grid spacing for LBM): 1

• tau (LB time-step): 0.01

6.3 Simulation results

Cluster size distribution in time, average fractal dimension and longest distance

as a function of time and size of the agglomerates will be presented and discussed.

Results for each simulation are presented together (both methods) in order to

be able to compare easily. VMD software will help to visualize and analyze the

results. See figure (6.1).

Figure 6.1: Orthographic view of the box simulation (300 K, 2000 particles and
Langevin thermostat in time-step 7500. We can see how agglomeration process
is going on.
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6.3.1 Simulation 1: 300 K and 1000 particles

The agglomeration growth is assessed and shown in the figure (6.2) for LBM

method and Langevin method. At the beginning of the simulations randomly

placed 1000 particles collide and create clusters, and then with time cluster-

cluster collisions form bigger clusters. To understand better the results, the

study is divided between small clusters (< 10 monomers) and big clusters (> 10

monomers). Fractal dimension and longest distance will be calculated for clusters

with 10 or more particles.

Figure 6.2: Number of agglomerates as a function of time. Every 500 time-steps
number of agglomerates is printed out.

Now, in order to characterize the agglomerates, the average fractal dimension

as a function on time is shown in the figure (6.3).

As we are moving on in the simulation process, values of the fractal dimension

start to oscillate between 1.7 and 1.9, values in concordance with the studies of

Filippov et al. [2000], for soot particles.

The next step is to do the same with the longest distance between particles

(See figure (6.4)). The process is similar to the previous one. every 500 time steps,
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Figure 6.3: Average fractal dimension vs time.

we calculate the longest distance between particles within each agglomerate and

then compute the average (clusters with 10 or more particles).

This result is what we were expecting. As the simulation moves on, agglom-

erates grow and therefore in average the longest distance between particles must

grow as well, as shown in the graphic. The agglomerates in LBM method are

bigger, therefore the longest distance between particles will be bigger also. We

will discuss the reason of this further when we present all the results.

Another interesting way of characterize the agglomerates can be what was

proposed in Isella and Drossinos [2010]. This is to represent the fractal dimension

and longest distance between particles, as a function of cluster size. The process to

do this is the following: we collect all the data, and for every size of agglomerate,

represent all the values of fractal dimension and longest distance.

This is shown in the figures (6.5) and (6.6).

As we can see in figure (6.5), most of our agglomerates have a size between

20 and 90 monomers, and in that interval, our trend line gives values between

1.7 and 1.9 for the fractal dimension, again expected values according to Filippov
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Figure 6.4: Average longest distance between particles vs time.

Figure 6.5: Fractal dimension vs cluster size. Green values correspond to LBM
and red ones to Langevin.
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et al. [2000] and Inci [2012]. Both methods produce a quite similar prediction.

Figure 6.6: Longest distance vs cluster size. The trend line gives us an idea about
values of longest distance between particles for every cluster size.

6.3.2 Simulation 2: 300 K and 2000 particles

We repeat the process and first of all, in figures (6.7), (6.8) and (6.9) we show the

agglomeration growth, average fractal dimension and average longest distance.

As we saw in the simulation 1, agglomerates in the LBM simulation, show

a little higher fractal dimension and longest distance. Taking a look into the

figures (6.2) and (6.7), we can observe that cluster formation and cluster growth

speed is much higher in LBM simulations than in langevin ones. This means that

agglomeration process is faster in LBM method.

If we investigate the literature, we find the following statemens: ”Typically

collisions are induced by Brownian motion, gravity, and velocity gradients in the

uid carrying the particles since these phenomena bring about relative velocities

between particles. Also particle inertia can be a source of collision”, Derksen and

Eskin [2011].
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Figure 6.7: Number of agglomerates as a function of time. Every 500 time-steps
number of agglomerates is printed out.

Figure 6.8: Average fractal dimension vs time.
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Figure 6.9: Average longest distance between particles vs time.

And also the observation that agglomeration of particles in the micrometer

size range is largely affected by fluid, has first been formulated by Smoluchowski.

In Langevin simulations, hydrodynamics are not considered. Since in LBM

method we are taking into account the hydrodynamics, and this also contributes

in the agglomeration process according to the literature, It is reasonable to obtain

faster agglomerations in LBM method than in the langevin ones. Because of

the hydrodynamics, bonds could also be broken, but since we are avoiding this

possibility in our model, just a positive effect in the agglomeration process is

possible.

Another fact to highlight is that we obtain similar fractal dimension for both

simulations 1 and 2, but the values for the LBM simulation are little bit higher

at the end of the simulation with 2000 particles (order of 2) while in the 1000

particles simulation Df between 1.5 and 2. See the figures (6.3) and (6.8).

In figures (6.10) and (6.11) one can see prediction for fractal dimension and

longest distance as a function of cluster size.
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Figure 6.10: Fractal dimension vs cluster size. Green values correspond to LBM
and red ones to Langevin.

6.3.3 Simulation 3 and 4: 600 K and 1000, 2000 particles

Since graphs will be similar, we try to summarize a little bit and present the

results of the 2 last simulations together. The goal after checking these results

will be try two answer these last 3 questions:

1. Changing the temperature, do we still obtain reasonable values according

to the literature?

2. Why does the fractal dimension Df change in LBM more compare to the

Langevin Simulation?

3. Why do we get different results if we change the number of particles in the

system?

Now we present the results for simulations 3 and 4.

As we can see in figures (6.14) and (6.15), we obtain slightly larger values for

fractal dimension when we have 2000 particles (between 1.7 adn 2.2) while with
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Figure 6.11: Longest distance vs cluster size. The trend line gives us an idea
about values of longest distance between particles for every cluster size.

1000 particles our values vary from 1.5 to 2. Moreover we obtain larger longest

distance between particles in simulation 4 than in 3. This is an expected result

because the more particles we have, the bigger will become our agglomerates and

therefore the larger the longest distance between monomers will be.

We take a look into the prediction for fractal dimension and longest distance.

See figures (6.18)-(6.21).

Most of our agglomerates have less than 100 particles and for this range, our

trend line predicts again for this temperature predicted values according to the

literature Filippov et al. [2000] and Inci [2012].

Finally, we solve the questions left that are proposed at the beginning of this

chapter:

1. Why does the fractal dimension Df change in LBM more compare to the

Langevin Simulation in almost all the cases?

2. Why do we get different results if we change the number of particles in the

system?
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Figure 6.12: Number of agglomerates as a function of time. Every 500 time-steps
number of agglomerates is printed out.

If we fix the temperature and vary the particle number (simulations 3 and 4),

what do we get? The Df values remain more or less in the same interval in the

Langevin simulation. See figures (6.14) and (6.15). This can be due to the fact

that Brownian motion is the same because the temperature remains constant,

Soddy [1909] and Boorse and Motz [1966].

On the other hand, in LBM simulations, Df has bigger values when we have

2000 particles than when we have 1000 particles. See figures (6.14) and (6.15). As

before, the Brownian motion keeps being the same, but the effects of the surround-

ing fluid affects more particles and then contributes more to the agglomeration

process Derksen and Eskin [2011]. This means the agglomeration procedure will

be faster and we will have bigger agglomerates. In this simulations, the bigger

agglomerates have bigger fractal dimension, therefore we can conclude:

• If we speak about langevin simulations, keeping the temperature constant,

and increasing the number of particles, the average Df will keep more or

less the same.
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Figure 6.13: Number of agglomerates as a function of time. Every 500 time-steps
number of agglomerates is printed out.

Figure 6.14: Average fractal dimension vs time.
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Figure 6.15: Average fractal dimension vs time.

Figure 6.16: Average longest distance between particles vs time.
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Figure 6.17: Average longest distance between particles vs time.

Figure 6.18: Fractal dimension vs cluster size. Green values correspond to LBM
and red ones to Langevin.
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Figure 6.19: Fractal dimension vs cluster size. Green values correspond to LBM
and red ones to Langevin.

• If we speak about LBM simulations, keeping the temperature constant, and

increasing the number of particles, the average Df increase due to the fluid

contribution to the agglomeration process and it is higher than the Df in

the langevin simulations.

We need to ask ourselves another question. What happens if now we keep the

number of particles constant and vary the temperature?. To analyze this case ,

see figures (6.8) and (6.15).

If we take a look on the figure (6.15), we have higher values for the LBM sim-

ulation than for the langevin simulation like we have observed in every simulation

in this thesis.

Now, if we move to the figure (6.8), we can see that due to the descend

of the temperature, the Brownian motion decreases as well, and therefore the

contribution to create agglomerates (big ones) that are responsible for the high

values of Df . We also can notice that LBM Df values are very sensible with the

temperature increasing with less temperature (fluid contribution increases).
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Figure 6.20: Longest distance vs cluster size. The trend line gives us an idea
about values of longest distance between particles for every cluster size.
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Figure 6.21: Longest distance vs cluster size. The trend line gives us an idea
about values of longest distance between particles for every cluster size.
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Chapter 7

Conclusions

In this study, we were able to performed simulations using 2 kind of thermostats:

LB (particles suspended in a flowing fluid using MD simulations coupled to a LB

solver.) and Langevin thermostat. The conclusions that we got from our study

were the following:

1. From these simulations presented in details, it is found that the larger

clusters have bigger fractal dimension values.

2. Taking into account the fluid flow (LB thermostat), the agglomeration pro-

cess is notably accelerated in comparison to the Langevin thermostat sim-

ulations. In the same period of time, bigger clusters are formed in LB

simulations.

3. If we keep constant the number of particles of our system, but we vary the

temperature:

• In the Langevin simulations: The Brownian motion will also vary and

therefore the contribution to the agglomeration process (acceleration

or deceleration).

4. If we keep constant the temperature and change the number of particles:

• In LBM simulations: if we increase/decrease the number of particles,

agglomeration rate increases/decreases because the surrounding fluid

affects more/less particles (hydrodynamic shielding) and contributes

more/less to the agglomeration process.
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• In Langevin Simulations: the agglomeration process does not suffer

any acceleration/deceleration.

5. If we talk about Df as a function of cluster size, it is almost same for LBM

and Langevin Simulations.

Future work can be oriented in the sense of testing different kind of surrounding

fluids and see how agglomeration process and morphology of agglomerates are af-

fected. The study could also be extended simulating more different temperatures,

number of particles or type of particles.

It would be possible to take into account the possibility of breaking bonds.

In this way we would be able to check if the hydrodynamics still accelerates the

agglomeration process.
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Appdx A

We show here the code that prints and calculates: bond lists, fractal dimension,

radius of gyration and center of mass of each agglomerate.

# creates bond lists

for {set b 0} {$b<$particle} {incr b} {

set Bonds($b) [list]

}

for {set c 0} {$c<$particle} {incr c} {

set bondi [part $c print bonds]

set bondlist [lindex $bondi 0]

set Nbonds [llength $bondlist]

for {set d 0} {$d<$Nbonds} {incr d} {

set bd [lindex $bondlist $d]

set bdwith [lindex $bd 1]

lappend Bonds($c) $bdwith

lappend Bonds($bdwith) $c

}

}

#creates agglomeration lists

set Nagg 0

set Ag(0) [list]

for {set f 0} {$f<$particle} {incr f} {

set found 0

for {set g 0} {$g<=$Nagg} {incr g} {

if {[lsearch -exact $Ag($g) $f]!=-1} {

set found 1

}

}

if {$found==0} {
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set lst [list [concat $f $Bonds($f)]]

set Ag($Nagg) [lindex $lst 0]

set e 1

set length [llength $Ag($Nagg)]

while {$e<$length} {

set element [lindex $Ag($Nagg) $e]

foreach ii $Bonds($element) {

if {[lsearch $Ag($Nagg) $ii]==-1} {

lappend Ag($Nagg) $ii

}

}

set length [llength $Ag($Nagg)]

incr e

}

incr Nagg

set Ag($Nagg) [list]

}

}

#eliminate 1-particle agglomerates

set Agg(0) [list]

set NAGG 0

for {set ii 0} {$ii<$Nagg} {incr ii} {

set size [llength $Ag($ii)]

if {$size>1} {

set Agg($NAGG) $Ag($ii)

incr NAGG

set Agg($NAGG) [list]

}

}

# list of sizes of agglomerates

for {set ff 0} {$ff<$NAGG} {incr ff} {

set long($ff) [llength $Agg($ff)]

}

#calculates the center of mass for each agglomerate

for {set h 0} {$h<$NAGG} {incr h} {

set center($h) [list]
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set part1 [lindex $Agg($h) 0]

for {set jj 0} {$jj<3} {incr jj} {

set centeri($jj) [lindex [part $part1 print folded_position] $jj]

for {set xx 1} {$xx<$long($h)} {incr xx} {

set partxx [lindex $Agg($h) $xx]

set coor($jj) [lindex [part $partxx print folded_position] $jj]

set temp_cent($jj) [expr $centeri($jj)/($xx)]

if { [expr abs($temp_cent($jj)-$coor($jj))]<[expr $box_length/2]} {

set centeri($jj) [expr $centeri($jj)+$coor($jj)]

} elseif {[expr $temp_cent($jj)-$coor($jj)]<0 &&

[expr abs($temp_cent($jj)-$coor($jj))]>[expr $box_length/2]} {

set centeri($jj) [expr $centeri($jj)+$coor($jj)-$box_length]

} elseif {[expr $temp_cent($jj)-$coor($jj)]>0 &&

[expr abs($temp_cent($jj)-$coor($jj))]>[expr $box_length/2]} {

set centeri($jj) [expr $centeri($jj)+$coor($jj)+$box_length]

}

}

set centeri($jj) [expr $centeri($jj)/$long($h)]

if {$centeri($jj)>$box_length} {

set centeri($jj) [expr $centeri($jj)-$box_length]

}

if {$centeri($jj)<0} {

set centeri($jj) [expr $centeri($jj)+$box_length]

}

}

set center($h) "$centeri(0) $centeri(1) $centeri(2)"

}

#calculates the longest distance between 2 particles in each aglomerate

for { set p 0} {$p<$NAGG} {incr p} {

set longest_distance($p) 0

for {set o 0} {$o<$long($p)} {incr o } {

for {set oo 0} {$oo<$long($p)} {incr oo} {

set firstpt [lindex $Agg($p) $o]

set scndpt [lindex $Agg($p) $oo]

set distance [distance_between_2_points

[part $firstpt print folded_position] [part $scndpt print folded_position]
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$box_length]

if {$distance>$longest_distance($p)} {

set longest_distance($p) $distance

}

}

}

}

#calculates the points for the Df of each agglomerate

for {set m 0} {$m<$NAGG} {incr m} {

set distance_list($m) [list]

foreach k $Agg($m) {

set dist_from_centre [distance_between_2_points $center($m)

[part $k print folded_position] $box_length]

lappend distance_list($m) $dist_from_centre

}

set max_dist 0

set l 0

set lght [llength $distance_list($m)]

set dist 0

while {$l<$lght} {

set dist [lindex $distance_list($m) $l]

if {$dist>$max_dist} {

set max_dist $dist

}

incr l

}

set Dflist($m) [list]

set radius $initial_radius

while { $radius <[expr $max_dist] } {

set n 0

set radius [expr $radius+$incr_step]

foreach ll $distance_list($m) {

if {$ll <= $radius} {

incr n
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}

}

lappend Dflist($m) "[expr $radius*2] $n"

}

}

for {set kk 0} {$kk<$NAGG} {incr kk} {

puts $file "Total n agg: $NAGG #AgglomerateN=$kk of $long($kk)

partilces Longest distance: $longest_distance($kk) "

set Dflength [llength $Dflist($kk)]

for {set mm 0} {$mm<$Dflength} {incr mm} {

puts $file "[lindex $Dflist($kk) $mm] "

}

}

close $file

incr fileid

}

incr i

}

# CLOSE MAIN LOOP

exit
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