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Abstract

In this thesis, we consider the problem of tracking a desired plasma glucose evolution by
meanss of subcutaneous insulin administration. A time-delay model is used to describe
the glucose insulin homeostasis. This model takes into account also the pancreatic
insulin release , which is not negligible in Type 2 diabetic patients. Only measurements
of glycemia are considered: hence a nonlinear time observer for time-delay systems is
used to estimates the plasma insulin concerntration.In line with the separation theorem,
a nonlinear control law is proposed, based on the feedback linearization, which makes
use of the observer estimations instead of the full state measurements. Simulations are
performed in a virtual environment, and numerical results show the effectiveness of the
proposed approach as well as that of the observer.
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Chapter 1

The Problem and its Background

1.1 Introduction

Diabetes is a chronic disorder of impaired blood glucose control.Around 171 million peo-
ple worldwide had diabetes in 2000. The number is expected to go up to 366 million by
2030 [28].It can be classified into two major categories : type 1 and type 2 diabetes.
Type 1 diabetes is caused by the autoimmune destruction of beta-cells in the pancreas,
causing an absolute loss of insulin production by these cells. Type 2 diabetes is caused
by insulin resistance in the body’s cells, which essentially establishes a state of relative
insulin deficiency [28]. The frequent high blood glucose levels found in diabetes patient
is associated with a number of devastating long-term complications that may lead to
amputation and systemic infection, as well as pathological changes of the eyes, kidneys,
nerves, heart and blood vessels. In fact, individuals with diabetes have a 3 to 7.5 times
greater incidence of death from cardiovascuar causes [51] . In addition, approximately
30% to 40% of all diabetics will develop diabetic nephropathy, and more than 75% of type
1 diabetics with nephropathy will eventually develop end-stage renal disease [51]. Yet, in
the midst of such statistics, the Diabetes Control and Complications Trial (DCCT) has
demonstrated that proper control of blood glucose levels reduces the risk of long-term
complications of both type 1 and type 2 diabetes[28]. Insulin is a physiological hormone
that works to lower the blood glucose concentration in the body. Since diabetics have a
defect in their insulin pathway, their blood glucose levels can often be elevated above the
normal glucose range for the blood, a term referred to as hyperglycemia. Normal blood
glucose levels values vary depending on the time they are measured. A fasting blood
glucose test carried out with no caloric intake for at least eight hours should return a
glucose value between 3.9 and 5.5mmol/L[52]. A glucose measurement taken two hours
after meal consumption (postprandial) is normal if it is between 3.9 and 8.1mmol/L and
a random blood glucose measurement should be between 3.9 and 6.9mmol/L [52].
The basic procedure to cope with any malfunctioning of the endogenous insulin feedback
action is exogenous insulin administration (in Type 1 diabetes only exogenous insulin is
available, while in Type 2 exogenous insulin complements pancreatic production).
Subcutaneous or intravenous injection or infusions are the mean ways by which glu-
cose control strategies are implemented. Control of glycemia by means of subcutaneous
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insulin injections, with the dose adjusted on the basis of capillary plasma glucose concen-
tration measurements, is by far more widely used than control by means of intravenous
insulin, since the dose is habitually administered by the patients themselves (see [32]).
Notwithstanding, in order to design closed-loop control strategies, the insulin absorption
from the subcutaneous depot needs also to be taken into account.
Two approaches used in implementing a closed loop control strategy are: a model-less
and a model-based approach. The first approach does not use a mathematical model
of the glucose-insulin system, and provides an arbitrary (while possibly very effective)
control rule for insulin infusion rate, based on experimental data: recent papers on this
topic are mainly devoted to the application of PID controllers aiming to mimic the pan-
creatic glucose response (see [33, 34, 35, 36]).
Contrary to a model-less approach, a model-based approach presupposes sufficiently de-
tailed knowledge of the physiology of the system under investigation. The advantages
of a model-based approach are evident since, by using a glucose/insulin model, the con-
trol problem may be treated mathematically and optimal strategies may be determined.
Clearly, the more accurate the model, the more effective is the control law.
Different approaches have been proposed, recently, based on nonlinear models such as
the Minimal Model of Bergman et al. (1979) [20] and Toffolo et al. (1980) [37], or
more exhaustive compartmental models like the ones of Cobelli et al. (1982)[38], of
Sorensen et al. (1982) [39] and of Hovorka et al. (2007) [29] (see, e.g., papers on
Model Predictive Control,[40], on nonlinear Model Predictive Control,[55], on Paramet-
ric Programming,[41], on Neural Predictive Control,[42], on H∞ control,[40], on non-
standard H∞ control,[43, 44]). It has to been stressed that most of these approaches
are based on the approximation of the original nonlinear model, provided by linearizion,
discretization and model reduction (balanced truncation). An excellent review of the
available models presently adopted for blood glucose regulation as well as the closed loop
control methodologies and technical devices (blood glucose sensors and insulin pumps)
may be found in [45].
In this thesis, a model based closed loop observer based control scheme is proposed.
It is different from the previously mentioned model based approaches, which use non-
linear Ordinary Differential Equation (ODE) models, in that it uses a nonlinear Delay
Differential Equation (DDE) model to describe the glucose/insulin regulatory system,
reference to [4, 8]. Irrespective of the numerous proposed DDE models in the last 10
years, which allow a better representation of pancreatic Insulin Delivery Rate (IDR) (see
e.g. [12] and references therein), their use is still lacking in the field of glucose control.
First attempts were made in [5, 24], where an intra-venous insulin administration was
designed to track a desired plasma glycemia, by means of a DDE model-based approach
(DDE model taken from [8]). In this this thesis, we met the same purpose of tracking a
desired glucose reference, this time by means of subcutaneous (instead of intra-venous)
infusions. Mindful of this, the above mentioned model of the glucose-insulin regula-
tory system has been coupled to a linear model of the subcutaneous insulin absorption
(see [6, 25], for an overview of the many different models of insulin absorption).We will
adopt model 1 of table 1 in ([25]) for insulin absorption. Before now,the works done so
far in designing a model-based glucose control have focus meanly on type 1 diabetic pa-
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tients(who have essentially no endogenous insulin production and are very well described
by suitably exploiting ODE models), there by avoiding the need to take pancreatic IDR
into account. In this thesis we have taken into account spontaneous pancreatic IDR,
thereby treating healthy, Type 2 diabetic and Type 1 diabetic patients in the same way.
The glucose/insulin model we use to represent the natural dynamics of the system has
been shown to exhibit a number of desirable characteristics (see [8])
Our designed control law, is based on recent results on differential geometry for time-
delay systems (see [2, 46, 47]. We obtained an exact linearized input/output map by a
nonlinear inner feedback which makes use of the state variables at present and delayed
time. The control law is obtained without linearizing, by first order approximations, the
system equations: this way, the control law here provided is meant to work also in case of
large deviations from the desired final level, and not only for small deviations.Since our
proposed control law depends on insulin and glucose measurements at the present and
at a delayed time, and because insulin measurements are slower and more cumbersome
to obtain, more expensive, and also less accurate than glucose measurements, a need
exist to construct a control law that will not need to take into account the measurements
of insulin in serum. This thesis makes use of a state observer for nonlinear time-delay
systems in order to perform the glucose reference tracking by means of only glucose
measurements. Most works concerning observers for time-delay systems consider the
linear case (see, for instance, [49] and references therein). A review of recent works on
observers for nonlinear time delay systems could be found in [50]. The observer, use in
this thesis is the one proposed in [2, 47] for nonlinear time-delay systems.
To show the good performance of our designed control law, and the robustness of the
observer, we implemented a virtual environment. This enabled us to test the insulin
infusion programme. In fact, before arranging an in-vivo clinical setting of experiments
(which are usually costly, time-consuming and confounded by ethical issues) in-silico
tests need to be thoroughly carried out on a virtual patient (or even on a population
of virtual patients), making it possible to evaluate a possibly exhaustive set of different
scenarios, including cases of measurement error and other failures, [48].

1.2 Statement of Purpose of Problem

Despite the wide range of current diabetic treatments options available, research shows
that the majority of people with diabetes are not keeping their glucose levels within
the recommended ranges[53]. Despite the established importance of blood glucose self-
monitoring in diabetes management, few patients actually measure their glucose levels
after eating meals or overnight[54]. As a result, even patients with well-controlled type
1 diabetes regularly experience postprandial hyperglycemia or overnight hypoglycemia
[54].Poor patient compliance with their diabetes management strategies may be partially
attributed to burdensome nature of such treatment plans. In addition, due to the in-
ability of insulin injections and current glucose lowering medications to precisely control
blood glucose levels, even a fully compliant diabetic patient may not always be able to
maintain their blood glucose levels within the recommended range.Due to the challenges
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inherent in current diabetes management, there is a need to develop better treatments
that will allow patients to maintain tight blood glucose levels without compromising
their quality of life. The artificial pancreas shows promise in fulfilling this.
In line with the on going research work on artificial Pancreas, that is still at the proto-
type stage, this study aimed to design an observer-based control law for glucose control.
Specifically this study aimed to:

• Review the state of art of Artificial Pancreas

• Analyze some of the available Mathematical models for the glucose- insulin system.

• Design an observer based control law for glucose control using one of the models
for the glucose insulin system and one of the models for insulin absorption in the
subcutaneous layer.

• Present the state Observer that will be used to estimate insulin measurements

• Carry out simulations on a virtual patient on the basis of parameter estimates ob-
tained from data related to an IVGTT experiment conducted on an obese patient,
studied at the Catholic University of Rome, Department of Metabolic Diseases.

• Draw out logical conclusions from the simulations

• Make concrete proposals for further research work on artificial Pancreas.

1.3 Significance of the Study

This study will offer considerable hope to millions of patients with diabetes (Type 1
and 2) worldwide. If the designed control law is implemented together with the other
components of the artificial Pancreas,it will offer diabetes’ patients the possibility of
managing their diabetes easily and enable them to attain an ideal blood glucose tar-
get without posing undue annoyances to they individuals’ busy schedules.The control
law, will help keep to the minimum, disease’s devastating vascular, renal and nervous
complications.Moreover, this work will not only provide significant benefits to diabetic
patients, but also offer significant financial relief to a health care system which comprises
burgeoning shares of our country’s gross domestic product.

1.4 Scope and Delimitation

This study was delimited to designing a control law and implementing it, with the aim
of tracking a desired blood glucose concentration.The implementation was done but on
a virtual patient. The parameters for the model were obtained from the data of an
experiment that was conducted only on a single obese patient in the department of
Metabolic Disease of the Catholic University of Rome.
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1.5 Framework

1.5.1 Blood glucose regulation

It is imperative for the body to always have a certain amount of glucose in the blood-
stream as glucose is the mean source of energy for the central nervous system and the
red blood cells. In a normal healthy person, the blood glucose is maintain between
3.9mmol/L and 6.9mmol/L by a complex neuro-hormonal control system which help
ensures a balance between glucose entering the bloodstream after liver gluconeogenesis
and intestinal absorption following meals and glucose uptake from the peripheral tissues.
When a meal digestion or glycogen conversion causes the blood glucose to rise,the β cells
of the pancreas will secret insulin into the blood stream when the blood and glucose flow
into it. This insulin is delivered in boluses every 5 to 6 minutes. With the help of this
insulin, in the form of a negative feedback loop, most of the glucose absorbed in the
blood is removed and stored in the liver and muscles tissue as glycogen.The amylin that
is released alongside insulin, helps prevent the release of glycagon from the pancreatic α
cells and equally slows down gastric emptying.As the blood glucose level begins to fall
and comes to a normal value, the β cells will stop releasing insulin and amylin.A further
decreased in the blood sugar level below the normal value will cause the pancreatic alpha
cells to release glucagon which helps the liver to release stored glucose into the blood
stream. If the pancreas continue to release more glucagon, the quantity of glucose in
the bloodstream will keep on going up to a point where we will have a positive error
in the negative feedback loop and the β cells will be pushed to start producing insulin
and amylin again. The three Pancreatic hormones work in harmony as a system to
keep the blood glucose level within the required limit. These control interactions are
usually referred to as insulin sensitivity and β cell responsitivity. Hence the glucose and
insulin systems interact by feedback control signals to make sure the concentration of
glucose in the blood stream stays at healthy levels at all times.Figure (1.5.1) shows the
glucose-insulin control system for the non-diabetic subject.

1.5.2 Diabetes Mellitus

In case there is no insulin secretion or there is a decreased sensitivity of the tissue to
insulin, the entry of glucose into skeletal, cardiac, smooth muscle and other tissues is
decreased, as shown in figure (1.5.2). The only uptake of glucose that are unaffected
by the absence of insulin are: the intestinal absorption, and glucose uptake by most
of the brain and the red blood cells. If this is prolonged,blood glucose concentration
starts fluctuating widely, leading to a syndrome called diabetes mellitus.The term dia-
betes therefore comprises a group of metabolic disorders characterized by an increase in
blood glucose concentration (hyperglycemia), resulting from defects in insulin secretion,
insulin action, or both. The most common types of diabetes are: Type 1 diabetes, in
which there is an absolute deficiency of insulin secretion caused by an autoimmune de-
struction of the pancreatic β cells. Individuals with this extensive β cell destruction, and
therefore no residual insulin secretion, require insulin for survival; and type 2 diabetes,
caused by a combination of resistance to insulin action and inadequate compensatory in-
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Figure 1.1: Glucose-insulin control system in a non-diabetic subject

sulin secretory response. These individuals have therefore insulin resistance and usually
have relative (rather than absolute) insulin deficiency, in the face of increased levels of
circulating insulin.Chronic hyperglycemia of diabetes is associated with multiple effects
throughout the body associated with damage, dysfunction and failure of various organs.
One basic procedure to cope with any malfunction of the endogenous insulin feedback
action, is exogenous insulin administration. Focusing on tight blood glucose targets,
the philosophy of insulin replacement is to mimic with injections the insulin secretion
pattern in the non-diabetic person. Insulin in a non-diabetic person, is secreted into
the portal circulation at two rates: a slow basal secretion throughout the 24 hours and
an increased rate at meal times.The basal insulin concentration is capable of keeping a
constant glucose concentration during fasting conditions and the prandial insulin doses
is able to enhance an increased glucose uptake during and after meals.During the last
decades,intensive insulin therapy has been strongly encouraged, following the results of
the major Diabetes Control and Complications Trial [The Diabetes Control and Compli-
cations Trial Research Group, 1993] and follow-up Epidemiology of Diabetes Interven-
tions and Complications [The Diabetes Control and Complications Trial/Epidemiology
of Diabetes Interventions and Complications Study Research Group, 2005] studies in
order to keep blood glucose levels within the required range. However, insulin ther-
apy may risk potentially severe induced hypoglycemia, resulting from too high levels
of insulin, leading to loss of consciousness, coma and eventually death. Because of the
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Figure 1.2: Plasma glucose homeostasis in insulin deficiency The heavy arrows indicate
reactions that are accentuated. The red rectangles across arrows indicate reactions that
are blocked

deficiencies of current diabetes treatments, there is a need to develop a new treatment
modality for diabetes that will better succeed in helping patients maintain tight blood
glucose control. One promising engineering feat is the development of an artificial pan-
creas that is programmed to provide physiologic insulin delivery, while keeping patients’
blood glucose levels within the required range.

1.6 The Organization of this thesis

In Chapter (1), we gave an overview of the thesis, statement of purpose of the problem,
significance of the study, delimitation and scope of the study and theoretical as well
as conceptual frame work of the thesis. We looked at artificial pancreas with a greater
focus on its state of art In chapter (2). Chapter (3) gives an analysis of some of the
existing models for the glucose-insulin system. In chapter (4), we designed a control law
for glucose control using one of the available models for the glucose insulin system and
one of the models for insulin absorption. We went further in this chapter, to present the
state Observer that will be used to estimate insulin measurements. We end the thesis
with chapter (5) in which we carried out simulations on a virtual patient on the basis of
parameter estimates obtained from data related to an IVGTT experiment conducted on
an obese patient, studied at the Catholic University of Rome, Department of Metabolic
Diseases. Logical conclusions are drawn from the simulations. Finally in this chapter,
we made concrete proposals for further research work on artificial Pancreas.
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Chapter 2

Artificial Pancreas

Definition 2.0.1. The artificial pancreas is a technology in development to help people
with diabetes automatically control their blood glucose level by providing the substitute
endocrine functionality of a healthy pancreas.

There are several important exocrine (digestive) and endocrine (hormonal) functions
of the pancreas, but it is the lack of insulin production which is the motivation to develop
a substitute. While the current state of insulin replacement therapy is appreciated for its
life-saving capability,the task of manually managing the blood sugar level with insulin
alone is arduous and inadequate.
The goals of artificial pancreas are:

• to improve insulin replacement therapy until glycemic control is practically normal
as evident by the avoidance of the complications of hyperglycemia

• to ease the burden of therapy for the insulin-dependent.

• to mimic normal stimulation of the liver by the pancreas.

Some of the approaches under consideration are:

• the medical equipment approach- using an insulin pump under closed loop control
using real time data from a continuous blood glucose sensor.

• the bioengineering approach- the development of a bio-artificial pancreas consisting
of a biocompatible sheet of encapsulated beta cells. When surgically implanted,
the islet sheet will behave as the endocrine pancreas and will be viable for years.

• the gene therapy approach- the therapeutic infection of a diabetic person by a ge-
netically engineered virus which causes a DNA change of intestinal cells to become
insulin-producing cells.

We will focus only on the medical equipment approach.
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2.1 Closed loop Artificial Pancreas

It is an electro mechanical system that employs negative feedback to autonomously
release insulin into the body in such a way that physiologically mimics the insulin pro-
ducing activity of healthy pancreatic beta cells. The logic behind such a device is the
idea that by delivering insulin into the body in the same way that a healthy pancreatic
beta-cell would do, normal blood glucose levels can be achieved in a diabetic patient.[26]
The artificial pancreas will ideally require very little manual input from the user, and
thus also significantly decrease the treatment burden of diabetes. Due to their complete
inability to produce insulin, patients with type 1 diabetes will be the main beneficia-
ries of an insulin-delivering artificial pancreas [27]. However, because type 2 diabetics
become insulin dependent at later stages of their disease,it may be beneficial to these
patients as well [28].

2.1.1 How the artificial Pancreas Works

The artificial pancreas essentially consists of three important components: a glucose
sensor/monitor, an insulin pump to store and deliver insulin, and a control algorithm to
compute the amount of insulin to be delivered and communicate between the sensor and
the pump [28]. Figure (2.1.1) shows an overview of the three components that comprise
a closed loop artificial pancreas and how these components interact with one another.

Figure 2.1: Artificial Pancreas

Before, during and after meals, as well as at night, glucose levels are continuously
monitored by a sensor in a patient’s blood or interstitial fluid. The glucose sensor
determines the patient’s blood or interstitial glucose concentration, and it sends this
information to the control system of the artificial pancreas. The control system then
uses a mathematical algorithm to compute the required insulin dosage that needs to
be administered to return glucose levels back to baseline. This information is then
forwarded to the insulin pump, which releases the appropriate amount of insulin into
the bloodstream. There may also be a feature for the patient to manually program their
insulin pump to inject themselves with a customized dosage of insulin if the need arises.
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2.1.2 Insulin delivery Modes

There are two types of insulin delivery modes which can be implemented in an artifi-
cial pancreas: closed-loop or semi closed-loop. In a closed-loop insulin delivery system,
the artificial pancreas will continuously and automatically deliver insulin to the patient
without any manual input by the patient[28]. The artificial pancreas will simply con-
tinuously monitor the patient’s glucose concentrations and autonomously deliver the
appropriate insulin dose in order to keep the patient’s glucose concentration within the
normal range.
On the other hand, the artificial pancreas may also operate in a semi-closed-loop insulin
delivery mode , where it will function completely autonomously, except for when the
patient is intending to consume a meal or engage in exercise. During these times, the
device will require the patient to provide it with information regarding the size and com-
position of their upcoming meal or the intensity level of their planned exercise regimen.
The artificial pancreas then uses this information to immediately modify the amount
of insulin being delivered to the patient in order to pre-compensate for the anticipated
fluctuations in glucose concentration.

2.1.3 Body interface Designs for Sensor and Insulin Pump

There are three major types of artificial pancreas devices based on the location of the
glucose sensor and insulin delivery pump within the body[28]:

• The subcutaneous (SC) sensing and SC delivery (SC-SC) system.

• The intravenous (IV) sensing and intraperitoneal (IP) delivery (IV-IP) system.

• The intravenous (IV) sensing and IV insulin delivery (IV-IV) system.

Each of the three categories of devices has their own distinct advantages and disadvan-
tages. The SC-SC system has the advantage of being a minimally invasive system when
compared to the IV-IP or IV-IV system. The minimally invasive nature of an SC-SC
system gives it significant potential to achieve widespread application and, as a result,
many of the current research efforts are devoted towards creating such a device. However,
because SC-SC devices are inserted into the interstitial fluid of the subcutaneous tissue
and not directly into the bloodstream, there are considerable delays associated with SC
insulin delivery[28]. These delays are related to the time taken for newly injected insulin
to migrate from the interstitial tissue, into the blood stream and the body’s cells. In
addition, there are also delays associated with glucose sensing in a SC-SC system, due to
the time lag involved with glucose diffusing from the bloodstream into the subcutaneous
interstitial fluid[29]. Due to the considerable delays associated with a SC-SC system,
it currently appears that an SC-SC artificial pancreas will have difficulty operating in
a completely closed-loop fashion, and users of an SC-SC device may have to manually
enter in meal information to assist with insulin delivery [28].
The IV-IP system has lower insulin delivery delays when compared to an SC-SC system.
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Nevertheless, the delays that remain are still substantial. For instance, there is an ap-
proximate delay of 70 minutes from the time that insulin is delivered intraperitoneally to
when glucose levels noticeably drop in the blood. Additionally, there are minor glucose
sensing delays associated with the IV glucose sensor. Another drawback of the IV-IP
technology is that it is considerably more invasive than the SC-SC system, and can result
in complications such as intravenous line infections and insulin pump occlusion [28].
The IV-IV artificial pancreas system is presently used only in special circumstances, such
as in critically ill patients, surgical operations, or for research purposes. The benefit of
this approach is that there are minimal insulin delivery delays (i.e., approximately 30
minutes due to the delay of insulin action in the blood), which facilitates the develop-
ment of a fully closed-loop IV-IV system. The drawback of the IV-IV approach is that
it is relatively invasive because it requires vascular access for both glucose monitoring
and insulin delivery. As expected, IV-IV devices are also associated with a high risk of
infection as well as biocompatibility issues[28].
Artificial pancreas control algorithms need to be adapted based on the continuous glu-
cose sensing interface (subcutaneous, intra-peritoneal or intravenous) being employed,
because of the associated differences in sensing delays between these interfaces. For
instance, any algorithm designed to process interstitial (subcutaneous) glucose measure-
ments will need to account for the delay between the change of blood and interstitial
glucose levels when computing the insulin dosage to deliver. Similarly, control system
algorithms need to be modified based on the different routes of insulin pump delivery
because of their different insulin absorption rates

2.1.4 Current Artificial Pancreas devices

Today, artificial pancreas technology has developed to the point where there are a num-
ber of early models currently available in prototype forms. Three prominent prototype
models are discussed here.

Medtronic Minimed

A SC-SC closed-loop artificial pancreas device has been developed using the Medtronic
Minimed (Northbridge CA, US) continuous glucose monitoring system (CGMS), and
Medtronic Paradigm insulin pump[30].
In one study of this device, 10 individuals with type 1 diabetes tested the device in a fully
closed-loop insulin delivery mode over a 28-hour period. During the study, preprandial
(before meal consumption) and postprandial glucose levels were measured at 5.6 ± 1.6
and 10.8 ± 2.6 mmol/L (mean ± SD). Patients with diabetes should aim to achieve
preprandial blood glucose levels of 3.9 to 6.9mmol/L, and peak postprandial blood glu-
cose levels of less than 10.0mmol/L. In total, 17 hypoglycemia events were observed,
primarily after meals, suggesting excessive insulin secretion by the device. Under closed-
loop control, glucose was within the range of 3.9 to 10.0mmol/L 75% of the time.
A team from Yale carried out another study of this device in 17 well-controlled diabetics
over a 34-hour period. During this study, a comparison was made between the effec-
tiveness of the device operating in a fully closed-loop approach, and its operation in a
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semi-closed-loop meal announcement mode, which included manual insulin delivery 10
to 15 minutes before meals. Better results were obtained with the device operating in
meal announcement mode, with postprandial peak glucose values of 10.8 ± 2.6 mmol/L
(vs. 12.6 ± 2.8 mmol/L for fully closed-loop) and mean glucose levels of 7.8 ± 2.6
mmol/L (vs. 8.3 ± 3.2 mmol/L for fully closed-loop).

Roche Diagnostics

An SC-SC artificial pancreas prototype has been developed by Roche Diagnostics GmbH
(Manheim, Germany). The device operates in a semi closed-loop insulin delivery fashion
with meal announcement, and employs a unique “empirical” control algorithm which
administers an insulin bolus every 10 minutes according to a set of clinically derived rules.
The prototype is designed to monitor subcutaneous interstitial glucose levels for up to 4
to 5 days[30]. The Roche system was tested on 12 type 1 diabetic subjects over a period
of 32 hours and compared to results obtained with regular self-directed therapy. Overall,
the device achieved similar mean glucose concentrations when compared to self directed
therapy (6.9 vs. 6.2 mmol/L). The prototype reduced the number of hypoglycemia
events per day from 3.2 to 1.1 per subject. In addition, during the evaluation, 60% of
glucose readings obtained with the device were within the desired 5.0 to 8.3mmol/L
range, compared to only 45% of readings with self directed therapy.

EVADIAC Group

A fully closed-loop IV-IP device is being developed by the “Evaluation dans le Diabete
du Traitement par Implants Actifs” (EVADIAC) group, a team of French doctors and
researchers. Their artificial pancreas system employs an intravenous long term sensor
system (LTSS) developed by Medtronic MiniMed. The LTSS, an enzymatic oxygen
based sensor, is implanted in the superior vena cava through direct jugular access and is
connected by a subcutaneous lead to an intraperitoneal insulin pump implanted in the
abdominal wall. An external wireless transmitter receiver is used to communicate with
the intraperitoneal pump [30].
The EVADIAC prototype was tested in four elderly type 1 diabetics over a 48 hour
period. During this evaluation, blood glucose levels were within 4.4 to 13.3mmol/L,
84.1% of the time. In fact, excluding meals, glucose levels were below 13.3mmol/L for
98%
Closed-loop control of blood glucose has been a subject of continuous research for more
than 40 years, however, till now no commercially available product does exist. The
continuous subcutaneous insulin infusion pumps are being widely used, and a number of
continuous glucose monitoring systems have received regulatory approval [31]. Although
the sensors and pumps systems still have some limitations, their use in an open-loop
combination resulted in better clinical outcomes over conventional injections therapy
[31, 32]. Thus, the primary limitations to develop such an artificial pancreas are the de-
velopment of reliable closed-loop control algorithms, and the availability of robust and
precise glucose sensors. However, recent research in the development of the artificial
pancreas suggests that, types of the automatic glucose control system are likely to come
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to market in the near future
The artificial pancreas automatically regulates the blood glucose level based on the glu-
cose measurements, the insulin infusions and in model-based control approaches, on the
mathematical insulin-glucose model (diabetic patient model) used to design the con-
troller. Also, these models are essential for testing and validating the artificial pancreas
in simulation studies (i.e. in-silico) before putting it into clinical use with real patients.
Thus, one essential task in the development of artificial pancreas is to obtain a Mathe-
matical model for the Glucose Insulins system, which can help in the development of a
closed-loop control system.
Several models with different structures and degrees of complexity are being used to
describe the glucose insulin regulatory system. Most of these are first principle models
represented by differential and algebraic equations and based on existing knowledge and
hypotheses regarding the underlying physiological system. Next we will take a look at
some of the existing models.
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Chapter 3

Mathematical Models for
glucose-insulin system

Many Mathematical models have been developed for studying problems related to di-
abetes.These includes Ordinary Differential Equations (modeling), Delay Differential
Equations (DDEs), Partial Differential Equations (PDEs) , Fredholm Integral Equa-
tions(FIEs), Stochastic Differential Equations (SDEs) and Integro Differential Equations
(IDEs) ( see [12] for more details about such models).In this chapter we will present
an overview of some of the mathematical models appearing in the literature for use
the study of problems related to diabetes.General approaches include the technique of
compartment-split by introducing auxiliary variables in ODEs( [13]), and modeling in
delay differential equations by using explicit time delays in either discrete or distributed
forms ([4, 15, 8]). Modeling by explicit delays is more natural and accurate, although the
analysis is usually harder([4]).Models in the form of delay differential equations grouped
according tp their functions include:

• Models used to analyze the ultradian insulin secretion oscillations

• Models used with dignostic tests

• Models related to insulin therapies

• Models taking intracellular activity of β cells into account

In this Chapter we present models of first and second category.

3.1 Ultradian Insulin Secretion Related Models

Insulin is released in a biphasic manner when the glucose concentration is raised from
subthreshold to stimulatory levels, with a rapid peak at 2-4 min (first phase), a decrease
lasting 10-15 min (pulsatile insulin secretion) followed by a gradual increase within
the next couple of hours (50-120 minutes), Chew et al (2009) ([14]), (second phase,
ultradian insulin secretion). As mentioned in ([14]), ultradian oscillations have been
seen after meal ingestion during continuous enteral nutrition, and during intravenous
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glucose infusion. Historically, it was in 1923 when rapid and slower oscillations in the
peripheral concen- trations of glucose were reported by Karen Hansen and half a century
later rapid oscillations in the peripheral insulin concentrations were demonstrated. As
several authors mention, the precise mechanisms generating ultradian oscillations are
not fully understood yet and the two most common mechanisms mentioned are:

• instability of the glucose-insulin feedback loop, where the insulin oscillations en-
train those of glucose

• existence of an intrapancreatic pacemaker.

In this section, we present the ODEs models by Sturis et al (1991)([13]) and Tolić et al
(2000) ([16]), that formed the basis of the DDEs models, the DDEs models by Drozdov
and Khanina (1995)([17]), Li et al (2006)([18]) model in addition to Chen and Tsai
(2009) ([19]) model.

3.1.1 Sturis et al (1991) ([13]) Compartmental-Split ODE Model

Based on two negative feedback loops describing the effects of insulin on glucose utiliza-
tion and production and the effect of glucose on insulin secretion, the authors Sturis,
Polonsky, Mosekilde and Van Cauter (1991) ([13]), developed a six dimensional ODE
model. This model was later simplifies by Tolić , Mosekilde and Sturis (2000)([16]) .
This model has been the basis of several DDE models. It has the following form:

dG(t)

dt
= Gin − f2(G(t))− f3(G(t))f4(Ii(t)) + f5(x3(t))

dIp(t)

dt
= f1(G(t))− E

(

Ip(t)

Vp

−
Ii(t)

Vi

)

−
Ip(t)

tp
dIi(t)

dt
= f1(G(t))− E

(

Ip(t)

Vp

−
Ii(t)

Vi

)

−
Ip(t)

ti
dX1(t)

dt
=

3

td
(Ip(t)−X1(t))

dX2(t)

dt
=

3

td
(X1(t)−X2(t))

dX3(t)

dt
=

3

td
(X2(t)−X3(t)) (3.1)

where G(t) is the mass of glucose, Ip(t), Ii(t) the mass of insulin in the plasma and the
intercellular space, respectively, Vp is the plasma insulin distribution volume, Vi is the
effective volume of the intercellular space, E is the diffusion transfer rate, tp , ti are
insulin degradation time constants in the plasma and inter-cellular space, respectively,
Gin indicates (exogenous) glucose supply rate to plasma, andX1(t), X2(t), X3(t)are three
additional variables associated with certain delays of the insulin effect on the hepatic glu-
cose production with total time td . f1(G) is a function modeling the pancreatic insulin
production as controlled by the glucose concentration, f2(G) models insulin independent
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glucose utilization ( by the brain and nerves), f3(G)f4(I) are functions modeling insulin
dependent uptake (mostly due to fats and muscles cells) and f5(I) is a function modeling
glucose production controlled by insulin concentration.
The glucose triggered time delay in the glucose insulin system is taken care of by break-
ing the insulin system into two separate compartments and the other one, the hepatic
glucose production delay is fulfilled by the three auxiliary variables: X1, X2, X3. This
model simulated ultradian insulin secretion oscilations numerically.

3.1.2 Drozdov and Khanina (1995)([17]) Single Delay DDE
Model

Drozdov and Khanina in 1995 proposed a model that uses a single explicit time delay
instead of double delays in modeling ultradian oscillations in human insulin. The model
equations are:

dIp(t)

dt
= f1

(

0.1G(t)

V3

)

−

(

E

Vp

+
1

tp

)

Ip(t) +
E

Vi

Ii(t)

dIi(t)

dt
=

E

Vp

Ip(t)−

(

E

Vi

+
1

ti

)

Ii(t)

dG(t)

dt
= f5

(

Ip(t− τg)

Vp

)

−
0.1G(t)

Vg

f4

(

Ii(t)

Vi

)

+Gin − P0 (3.2)

Where P0 is a constant, τg is the delay in glucose production and the model parameters
have the same meaning as in equation (3.1).The functions f1, f4, f5 are suitable functions
modeling the same thing as in (3.1).
Numerical results were obtained for a number of Gin and τg values. Stability analysis is
also presented in the paper. The claim is that for a very large and very small values of
Gin the steady state is stable and ultradian oscillations do not arise, but for moderate
Gin values, the steady state solutions become unstable and periodic oscillations of insulin
and glucose occur.

3.1.3 The Two Explicit Time Delay Model Proposed by Li et
al (2006)[18]

The authors consider two time delays; the first one, τ1 to denote the total time delay
from the time that the glucose concentration level is elevated to the moment that the
insulin has been transported to the interstitial space and becomes ‘remote insulin’, the
second one (τ2) has to do with the delay of the effect of hepatic glucose production
measured from the time that insulin has become ‘remote insulin’ to the moment that a
significant change of hepatic glucose production occurs. The model is formulated by the
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observation of the Law of Conservation. The model is given by

dG(t)

dt
= Gin − f2(G(t))− f3(G(t))f4(I(t)) + f5(I(t− τ2))

dI(t)

dt
= f1(G(t− τ1))− diI(t) (3.3)

I(0) = I0 > 0, G(0) = G0 > 0, G(t) = G0, t ∈ [−τ1, 0], I(t) = I0, t ∈ [−τ2, 0], τ1, τ2 > 0

where di > 0 is the insulin clearance rate and I(t) is the insulin concentration. The other
parameters are defined as above.
Numerical simulations including bifurcation analysis are given in the paper and compar-
isons are made to some existing models.Based on the bifurcation analysis, the authors
suspect that the total time delay τ1 is critically responsible for the oscillation. The total
time delay is measured from the moment that the glucose concentration level starts to
increase to the moment that the insulin has been transported to the interstitial space.

3.1.4 The Two Explicit Time Delay Model Proposed by Chen
and Tsai (2009) [19]

The authors proposed a modified version of the Li et al (2006) and Li and Kuang (2007)
([15]) models with respect to the following:

• They use a variable glucose infusion function Gin(t) instead of the constant Gin

used in [18] throughout the simulation time, so that external inputs like food
uptake can be simulated too.

• They introduce two additional functions f6 and f7 to provide the effects of hyper-
glycemia, with the rest of the functions f1 − f5 the same as in [18]

• They introduce two additional parameters α, β for the purpose of estimating the
condition of major dysfunction of diabetes (α for insulin release from the pancreas,
β for the ability of insulin-dependent glucose utilization - small β value indicates
increasing severity of insulin resistance).

• They use f7(G(t)−330) for describing the kidney glucose excretion rate above the
urine threshold (330 mg

dl
).

• They perform least squares estimation of the parametersG0, I0, τ1, τ2, α, β, di, tm,m ∈
M , where m = 1, 2, 3 and tm are CHO (infused carbohydrate) times

The model equations are:

dG(t)

dt
= [Gin(t) + f5(I(−τ2))f6(G(t))]− [f2(G(t)) + f7(G(t)− 330)]− βf3(G(t))f4(I(t))

dI(t)

dt
= αf1(G(t− τ1))− diI(t) (3.4)
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with
Gin(t) =

∑

m∈M

Gm(t− tm)u(t− tm)

where where G(t), I(t) denote glucose and insulin concentrations respectively, Gm(t −
tm),m ∈ M denotes the mth exogenous food uptake at tm, u(t − tm) is a unit step
function that has the unity value for t ≥ tm . Gin(t) is the overall effective exogenous
food uptake.

3.2 Models used with Diagnostic tests

A number of diagnostic tests have been developed to assess two indices important in
metabolic research known as insulin sensitivity and glucose effectiveness and also the β
cell function. An example of such diagnostic tests is the IVGTT (intravenous glucose
tolerance test).
The intravenous glucose tolerance test (IVGTT) involves the intravenous administration
of a bolus of glucose and the frequent sampling of glucose and insulin concentrations.
Two noticeable differences in modeling IVGTT from the glucose-insulin regulation are
that

• The large bolus intravenous glucose infusion causes the time delay of the hepatic
glucose production insignificant and thus negligible; and

• The bi-phasic insulin secretion caused by the quick and direct stimulation of large
bolus of glucose infusion in plasma.

These distinguish the modeling rationale from the ultradian oscillation. In this case,
only one time delay should be considered.

Definition 3.2.1. Insulin sensitivity is defined as the ability of insulin to enhance glu-
cose effectiveness and glucose effectiveness, is the ability of glucose to promote its own
disposal

Several models have been proposed to interprete the IVGTT. Some of which are: the
minimal model proposed by Bergman, Ider, Bowden and Cobelli (1979)([20]), the DDEs
models of Panunzi, Palumbo, and De Gaetano (2007) ([8]), Giang, Lenbury, De Gaetano,
Palumbo (2008) ([21]), and the integro- differential equation model of Palumbo, Panunzi,
De Gaetano (2007) ([4]).

3.2.1 The Minimal model Proposed by Bergman et al(1979)([20])

The first IVGTT model is the minimal model and it has been widely utilized in many
clinics and extended in various applications . The model is an ODE model formulated
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in split compartment and is given by

dG(t)

dt
= −(b1 +X(t))G(t) + b1Gb

dX(t)

dt
= −b2X(t) + b3(I(t)− Ib)

dI

dt
= b4[G(t)− b5]

+t− b6(I(t)− Ib) (3.5)

with initial conditions G(0) = b0, X(0) = 0, I(0) = b7+ Ib. Here G(t)[mg/dl], I(t)[U/ml]
is the plasma glucose, insulin concentration at time t[min], respectively. X(t)[min−1]
stands for the auxiliary function representing insulin-excitable tissue glucose uptake ac-
tivity that is assumed to be proportional to insulin concentration in a “distant” compart-
ment. Gb[mg/dl], Ib[U/ml] is the subjects baseline glycemia, insulinemia, respectively.
b0[mg/dl] is theoretical glycemia at time 0 after the instantaneous glucose bolus intake.
b1[min−1] is the insulin-independent constant of tissue glucose uptake rate. b2[min−1] is
the rate constant describing the spontaneous decrease of tissue glucose uptake ability.
b3[min−2(U/ml)−1] is the insulin-dependent increase in tissue glucose uptake ability, per
unit of insulin concentration excess over the baseline. b4[(U/ml)(mg/dl)−1min−1] is the
rate of pancreatic release of insulin after the intake of the glucose bolus, per minute per
unit of glucose concentration above the “target” glycemia b5[mg/dl].b6[U/ml]is the first
order decay rate for insulin in the plasma. b7[U/ml] is the plasma insulin concentration
at time 0, above basal insulinemia, immediately after the glucose bolus intake.
While the minimal model has its features widely used in research, it has several draw-
backs in mathematics as pointed out in ([22]). The parameter fitting is to be divided
into two separate parts: first, using the recorded insulin concentration as given input
data in order to derive the parameters in the first two equations in the model, then
using the recorded glucose concentration as given input to derive the parameters in the
third equation. However, the system is an integrated physiological dynamic system and
one should treat it as a whole system and be able to conduct a single step parameter
fitting process. Secondly, some of the mathematical results produced by this model are
not realistic. Specifically, it can be shown that the minimal model does not admit an
equilibrium and the solutions may not be bounded. Finally, the non-observable aux-
iliary variable X(t) is artificially introduced to delay the action of insulin on glucose.
An alternative and natural approach is to introduce explicitly the time delay in the
model. To address these issues, De Gaetano and Arino proposed a so called dynamic
model ([22]) with explicit delay in distributed form. Recently, Palumbo et al ([8]) built
a discrete delay differential equation model to further study the short but complicated
phenomenon. Although not able to confirm the conclusion analytically, the authors
produced reasonable simulation profile with experimental raw data statistically ([4, 8])

3.2.2 Palumbo et al (2007) Model ([8]) and Palumbo et al
(2007)([4])

In [8] the authors present 4 two-compartment models for the plasma glucose and the
plasma insulin concentrations following an IVGTT, two without delay and two with
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delay on insulin action (τi ).For each model the glucose equation includes a second-order
linear term describing insulin-dependent glucose uptake, expressed in net terms since it
includes changes in liver glucose delivery and changes in glucose uptake, as well as a zero-
order term expressing the net balance between a possible constant, insulin-independent
fraction of hepatic glucose output and the essentially constant glucose utilization of
the brain. A linear term for glucose tissue uptake may or may not be present, and
the effect of plasma insulin on glucose kinetics may or may not be delayed. Variations
in plasma insulin concentration depend on the spontaneous decay of insulin and on
pancreatic insulin secretion. After the nearly instantaneous first phase insulin secretion,
represented in the model by means of the initial condition, a delay term is considered;
it represents the pancreatic second phase secretion and formalizes the delay with which
the pancreas responds to variations of glucose plasma concentrations. In this paper,the
authors identified a special case (the model A in the paper) as the best model under
the Akaike Information Criterion (AIC), (‘without first order plasma glucose elimination
(Kxgi ) and without delay on insulin action’). The model is given as follows.

dG(t)

dt
= −KxgiG(t)I(t) +

Tgh

VG

,

dI(t)

dt
= −KxiI(t) +

TiGmax

VI

f(G(t− τg)) (3.6)

The parameters
Tgh = KxgiIbGbVg

,
TiGmax = KxiIbVIf(Gb)

where

• G(t) in [mM] denotes the plasma glycemia.

• I(t) in [pM] denotes the plasma insulinemia.

• Kxgi in [min−1 pM−1] is the rate of glucose uptake by insulin dependent tissues per
pM of plasma insulin concentration.

• Tgh in [min−1 (mmol/kgBW)] is the net balance between hepatic glucose output
and insulin independent zero-order glucose tissue uptake.

• VG in [L/kgBW] is the apparent glucose distribution volume.

• Kxi in [min−1] is is the apparent first order disappearance rate constant for insulin.

• TiGmax in [min−1(pmol/kgBW)] is the maximal rate of second phase insulin release.

• VI in [L/kgBW] is the apparent insulin distribution volume.

• τg in [min] is the apparent delay with which the pancreas varies secondary insulin
release in response to varying plasma glucose concentrations.
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• tmax,I in [min] is the time to maximum insulin absorption

• The non linear function f(·) models the pancreas Insulin Delivery Rate as

f(G) =
( G
G∗

)γ

1 + ( G
G∗

)γ

.

• The γ in f(·) denotes the progressivity with which the pancreas reacts to circulating
glucose concentrations.

• G∗ and I∗ are the steady state. G∗ correspond to the glycemia at which the insulin
release is half its maximal rate.

The authors proved that the unique steady state (G∗, I∗) is globally asymptotically
stable when

γ ≤ 1

under the condition
KxgiIbγ

1 + (Gb

G∗
)γ

≤ Kxg +KxgiIb

regardless of the length of the time delay. However this case only accounts for 3% of the
experimental data the authors obtained. For more general cases, the authors have shown
that there exists a bifurcation point τ0 > 0 such that the steady state is locally asymp-
totically stable when the delay is smaller than τ0 .Evidently, delay dependent conditions
for global stability are needed to improve the analysis.The authors also demonstrated
that the insulin sensitivity index can be obtained in the same way as in the minimal
model but it is more effective.
Recently, in Palumbo et al (2008) ([21]), the authors considered the most general of
the 4 models of the family introduced in [8] (with first order plasma glucose elimination
(Kxg) and with delay in insulin action (τi)) and deal with theoretical results concerning
global stability under certain conditions on the parameters and the effect of the delays
τi, τg on the oscillatory behavior of the solutions when Kxg = 0.If Kxg = 0 and τi = 0
the DDE model of [21] reduces to that of [8].
In [4], the authors, Palumbo, Panunzi and De Gaetano considered a model that consists
of a system of two coupled integro-differential equations where different choices of the
convolution kernels result in a number of different models including DDEs with constant
delay. The model equations are

dG(t)

dt
= −KxgG(t)−KxgiG(t)Ĩ(t) +

Tgh

VG

dI(t)

dt
= −KxiI(t) +

TiGmax

VI

f(G̃(t)) (3.7)

where

G̃(t) =

∫ τg

0

wg(θ)G(t− θ) dθ
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Ĩ(t) =

∫ τi

0

wi(θ)I(t− θ) dθ

and the kernels
wg : [0, τg] → R

+

wi : [0, τi] → R
+

non-negative square integrable functions sunch that
∫ τg

0

wg(θ)G(t− θ) dθ = 1

,
∫ τi

0

wi(θ)I(t− θ) dθ = 1

and there exist Tg, Ti such that

∫ τg

0

wg(θ)I(t− θ) dθ ≤ Tg < ∞

∫ τi

0

wi(θ)I(t− θ) dθ ≤ Ti < ∞

Kernel choices:

• wg(t) = δ(t− τg), wi(t) = δ(t− τi)

• wg(t) = α2
gte

−αgt, wi(t) = α2
i te

−αit

In the first case above, the integro- differential system reduces to a DDE system of two
equations with constant delays τg, τi

dG(t)

dt
= −KxgG(t)−KxgiG(t)I(t− τi)(t) +

Tgh

VG

dI(t)

dt
= −KxiI(t) +

TiGmax

VI

f(G(t− τg))(t)) (3.8)

In the second case with τg = ∞, τi = ∞ chain trick, using a linear, the authors trans-
formed the integro - differential equation system into a system of six ODEs.
The following theoretical results are presented in the paper: It is shown that the integro-
differential system has positive solution and that it is persistent. Local stability is shown
for the DDE system and the ODE system. Global stability is shown for the IDE system,
depending upon a condition on parameter values

KxgiIbγ

1 + (Gb

G∗
)γ

≤ Kxg +KxgiIb

They remarked that the above condition is not satisfied for particular values making
sense physiologically.
As seen above, there are several DDE insulin regulatory system models. Until 2009, non

22



of these model had bee used to control plasma glucose concentration. The first attempts
were made by Palumbo (see palumbo et al (2009ab) ([5, 24]), using the IVGTT DDE
models proposed by Palumbo et al (2007)([8]) and Palumbo et al (2007) ([4]).In these
papers, the authors designed an intravenous insulin administration to track a desired
plasma glycemia.The authors used the model below to design the control law.

dG(t)

dt
= −KxgiG(t)I(t− τi)(t) +

Tgh

VG

dI(t)

dt
= −KxiI(t) +

TiGmax

VI

f(G(t− τg))(t)) + u(t) (3.9)

where u(t) in [pM/min] is the insulin delivery rate; ie. the control input with G(τ) =
G0(τ), I(τ) = I0(τ), τ ∈ [−τg, 0]
In this thesis, we aim to achieve the same goal of tracking a desired glucose reference
, by means of subcutaneous ( instead of intravenous) infusion. Since Insulin will be
administered subcutaneously in our case, we will take into account subcutaneous insulin
kinetics. We will adopt model 1 of table 1 in Wilinska et al (2005) ([25]) for insulin
absorption. Thus Insulin absorption in the subcutaneous layer is described as:

dQ1

dt
= u(t)−Ka1Q1

dQ2

dt
= Ka1Q1 −Ka1Q2 (3.10)

where Q1 and Q2 represents insulin mass (mU) in the accessible and non-accessible
subcutaneous compartments, respectively and Ka1 is the transfer rate.
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Chapter 4

A DDE-Model Based Approach to
Glucose Control

The model that we will use to design our control law consist of the Palumbo et al (2007)
model described in equation (3.6) coupled to the linear model of subcutaneous insulin
absorption described in equation (3.10). The model equations are:

dG(t)

dt
= −KxgiG(t)I(t) +

Tgh

VG

,

dI(t)

dt
= −KxiI(t) +

TiGmax

VI

f(G(t− τg)), (4.1)

dS2(t)

dt
=

1

tmax,I

S1(t)−
1

tmax,I

S2(t),

dS1(t)

dt
= −

1

tmax,I

S1(t) + u(t),

Where

• G(t) in [mM] denotes the plasma glycemia.

• I(t) in [pM] denotes the plasma insulinemia.

• S2 is the insulin mass in the accessible subcutaneous depot.

• S1 in [pmol] is the insulin mass in the accessible subcutaneous depot.

• Kxgi in [min−1 pM−1] is the rate of glucose uptake by insulin dependent tissues per
pM of plasma insulin concentration.

• Tgh in [min−1 (mmol/kgBW)] is the net balance between hepatic glucose output
and insulin independent zero-order glucose tissue uptake.

• VG in [L/kgBW] is the apparent distribution of volume for glucose.

• Kxi in [min−1] is is the apparent first order disappearance rate constant for insulin.
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• TiGmax in [min−1(pmol/kgBW)] is the maximal rate of second phase insulin release.

• VI in [L/kgBW] is the apparent distribution of volume for insulin.

• τg in [min] is the apparent delay with which the pancreas varies secondary insulin
release in response to varying plasma glucose concentrations.

• tmax,I in [min] is the time to maximum insulin absorption

• u(t) in [pM/min] is the subcutaneous insulin delivery rate; ie. the control input.

• The non linear function f(·) models the pancreas Insulin Delivery Rate as

f(G) =
( G
G∗

)γ

1 + ( G
G∗

)γ

.

• The γ in f(·) denotes the progressivity with which the pancreas reacts to circulating
glucose concentrations.

• The G∗ in [mM] is the glycemia at which the insulin release is half its maximal
rate.

4.1 Properties of the Model

• It agrees with Mathematical Principles in that it exhibits satisfactory properties
of solutions:

– Positivity and boundedness of solution

– stability of a unique equilibrium point

(see [8] for the proof of the case with no exogenous input)

• It conforms to established physiological concepts.

– It present a realistic Pancreatic IDR

• It maybe used for many closed loop control strategy on type 1 and type 2 diabetic
patients.

• It can be adopted to perform clinical trials on healthy subjects

• It easy enough to be used to synthesize control laws

• It is statistically robust, in that, its parameters are statistically identifiable with
very good precision by means of standard perturbation experiment(see [1] for the
case of obese, insulin resistant subject and [4] for the case of a healthy subject).
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4.2 Linearisation of the model and Derivation of the

Control Law

We linearized the system by means of a state feedback and coordinate transformation (
see [9]).The following definitions will be useful.

Definition 4.2.1. Lie Derivative: The lie Derivative Lϕ of a C∞ function λ(x) with
respect to a C∞ vector field ϕ is define as

Lϕλ(x) := 〈▽λ(x), ϕ〉 (4.2)

Where ▽ stands for the gradient operator.Moreover, the symbol Lk
ϕλ(x) means the k-

times repeated iterations of Lϕλ(x)

Lk
ϕλ(x) = Lϕ(L

k−1
ϕ λ(x))(x) (4.3)

L0
ϕλ(x) = λ(x) (4.4)

Consider:

ẋ = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t))

x(0) = x0 (4.5)

where h : Rn → R is a C∞ function and f is a C∞ vector field on R
n,

Definition 4.2.2. Relative degree of a nonlinear system: The nonlinear system
(4.5) has relative degree r, (r ≤ n) if the following holds:

•
LgL

i
fh(x) = 0, i = 0, ..., r − 2

• LgL
r−1
f h(x) 6= 0 ∀x ∈ B(x0, δ)

Definition 4.2.3. Observability: A system is said to be observable if, for any possible
sequence of state and control vectors, the current state can be determined in finite time
using only the output.

Definition 4.2.4. Observability Matrix: The observability matrix of (4.5) Q(x) is
defined as ( see [9])

Q(x) =
( d

dx

)

















h(x)
Lfh(x)

.

.

.
Ln−1
f h(x)

















(4.6)
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Definition 4.2.5. State controllability: Complete state controllability describes the
ability of an external input to move the internal state of a system from any initial state
to any other final state in a final time interval.

Proposition 4.2.1. The nonlinear system defined in equation(4.5) is said to be observ-
able if dim(Q(x)) = n

We will now apply the above definitions and propositions to our model to enable us
linearize it and provide us with a feedback controller that stabilizes the system.
Let Gref (t) be the desired glucose reference signal to be tracked, which we assumed to
be smooth and bounded.
Let

x(t) =









x1(t)
x2(t)
x3(t)
x4(t)









=









G(t)
I(t)
S2(t)
S1(t)









(4.7)

y(t) = G(t)−Gref (t) (4.8)

Define

z(t) = φ(x) =









z1(t)
z2(t)
z3(t)
z4(t)









=









y(t)
y

′

(t)
y

′′

(t)
y

′′′

(t)









=











G(t)−Gref (t)
d(G(t)−Gref (t))

dt
d2(G(t)−Gref (t))

dt2
d3(G(t)−Gref (t))

dt3











(4.9)

(4.9) stems from the fact that our system has a full relative degree.By using (4.9) we
have the following results.

z2(t) = ż1(t) = −KxgiG(t)I(t) +
Tgh

VG

− Ġref (t) (4.10)

z3(t) = ż2(t) = −Kxgi

(

−KxgiG(t)I2(t) +
Tgh

VG

I(t)

−KxiG(t)I(t) +
TiGmax

VI

G(t)f(G(t− τg))

+
1

VItmax,I

G(t)S2(t)
)

− G̈ref (t) (4.11)

z4(t) = ż3(t) = −Kxgi

[

K2
xgiG(t)I3(t)−

kxgiTgh

VG

I2(t)

+3KxgikxiG(t)I2(t)

−
3KxgiTiGmax

VI

G(t)I(t)f(G(t− τg))

−
3Kxgi

VItmax,I

G(t)I(t)S2(t)

+2
TghTiGmax

VGVI

f(G(t− τg)) +
2Tgh

VGVIttmax,I

S2(t)
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+k2
xiG(t)I(t)−

KxiTiGmax

VI

G(t)f(G(t− τg))

−
1

VItmax,I

(Kxi +
1

tmax,I

)G(t)S2(t)

+
TiGmax

VI

G(t)
df(α)

dα

∣

∣

∣

∣

α=G(t−τg)

dG(θ)

dθ

∣

∣

∣

∣

θ=t−τg

+
1

VIt2max,I

G(t)S1(t)− 2
KxiTgh

VG

I(t)

]

−
d3Gref (t)

dt3
(4.12)

ż4(t) = −Kxgi

(

−KxgiG(t)I(t) +
Tgh

VG

)

.
[

K2
xgiI

3(t) + 3KxgiKxiI
2(t)

−
3KxgiTiGmax

VI

I(t)f(G(t− τg))−
3Kxgi

VItmax,I

I(t)S2(t)

+k2
xiI(t)−

KxiTiGmax

VI

f(G(t− τg))

−
1

VItmax,I

(Kxi +
1

tmax,I

)S2(t)

+
TiGmax

VI

df(α)

dα

∣

∣

∣

∣

α=G(t−τg)

dG(θ)

dθ

∣

∣

∣

∣

θ=t−τg

1

VIt2max,I

S1(t)

]

−Kxgi

.

(

−kxiI(t) +
TiGmax

VI

f(G(t− τg)) +
1

VItmax,I

S2(t)

)

.

[

3K2
xgiG(t)I2(t)−

2KxgiTgh

VG

+ 6KxgiI(t)KxiG(t)I(t)

−
3KxgiTiGmax

VI

G(t)f(G9t− τg))−
3Kxgi

VItmax,IG(t)S2(t)

+K2
xiG(t)−2

KxiTgh

VG

]

−Kxgi

(

df(α)

dα

∣

∣

∣

∣

α=G(t−τg)

dG(θ)

dθ

∣

∣

∣

∣

θ=t−τg

)

.

[

−
3KxgiTiGmax

VI

G(t)I(t) +
2TghTiGmax

VGVI

−
KxiTiGmax

VI

G(t)

]

−Kxgi

(

1

tmax,IS1

−
1

tmax,I

S2(t)

)

.

[

−
3Kxgi

VItmax,I

G(t)I(t)−
1

VItmax,I

(

Kxi +
1

tmax,I

)

G(t) +
2Tgh

VGVItmax,I

]

−Kxgi





TiGmax

VI

G(t)
d2f(α)

dα2

∣

∣

∣

∣

α=G(t−τg)

(

dG(θ)

dθ

∣

∣

∣

∣

θ=t−τg

)2
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+
TiGmax

VI

G(t)
df(α)

dα

∣

∣

∣

∣

α=G(t−τg)

d2G(θ)

dθ2

∣

∣

∣

∣

θ=t−τg

−
1

V − It3max,I

G(t)S1(t) +
1

VIt2max,I

G(t)u(t)

]

−
d4Gref (t)

dt4
(4.13)

From equations((4.10), (4.11),(4.12),(4.13)) we have that the dynamics of z(t) is given
by:

ż(t) = Az(t) + B

(

α(∗)−
Kxgi

VIt2max,I

G(t)u(t)

)

(4.14)

where α(∗), according to equation(4.13) is a suitable function of: G(t), I(t), G(t −
τg), S2(t), S1(t) ,

diG(θ)
dθi

∣

∣

∣

∣

θ=t−τg

i = 1, 2

Gref (t),
dG
ref

(t)

dtj
, j = 1, ..., 4

Thus, the (inner) feedback control law

u(t) =
−α(∗) + v(t)

−
Kxgi

VI t
2

max,I

G(t)
(4.15)

where v(t) is a new (outer input), yields the following linear equation

ż(t) = Az(t) + Bv(t) (4.16)

With A and B a Brunowski pair, given as follows:

A =









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









, B =









0
0
0
1









(4.17)

Finally, by choosing the new input v(t) as the (outer) feedback

v(t) = Cz(t) (4.18)

with C a suitable row vector in R
4, the following equation is obtained,

ż(t) = (A+ BC)z(t) (4.19)

Thus by designing C, such that A + BC is Hurwitz (this is possible since A, B is a
controllable pair), we get that z(t) goes to zero exponentially, which returns the glucose
to converge to the desired reference signal exponentially.From a mathematical point of
view, the control law defined in equations((4.15),(4.18)) can always be computed, since
the variable G(t)( at the denominator of equation(4.15) never vanishes: indeed, as it is
required from basic assumptions on the qualitative behavior of the solutions, the glucose
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dynamics is strictly positive whatever are the chosen initial conditions on the positive
orthant (see [4]).It follows that, from a mathematical point of view, the control law
defined in equations((4.15),(4.18)) can be used with any physically meaningful initial
conditions.As well, equation(4.19) holds with any physically meaningful initial condi-
tions.
Our control law (4.15) is a function of G(t), I(t), G(t − τg), S2(t), S1(t). Nevertheless,
insulin measurements are slower, more cumbersome to obtain, more expensive , and
also less accurate than glucose measurements. A need exists, therefore, to construct a
control law avoiding the measurements of insulin in the plasma and in the subcutaneous
depot. Since our system is observable, this is not a big problem as it is possible to re-
construct the system’s state from its output measurements using a state observer.Next
we will consider a state observer for equation(4.5) that will help estimates the plasma
and subcutaneous insulin concentration and design a feedback control law base on only
glucose measurements.

4.3 State Observer for Our Model

Since our model belongs the class of DDE systems considered in [2], we will use the
neutral delay differential observer proposed in [2] for such systems.













dĜ(t)
dt

dÎ(t)
dt

dŜ2(t)
dt

dŜ1(t)
dt













=













−KxgiĜ(t)Î(t) +
Tgh

VG

−KxiÎ(t) +
TiGmax

VI
f(G(t− τg)),

1
tmax,I

Ŝ1(t)−
1

tmax,I
Ŝ2(t)

− 1
tmax,I

Ŝ1(t) + u(t)













+ w(t), t ≥ 0

w(t) = Q−1(Ĝ(t), Î(t), Ĝ(t− τg), Î(t− τg), Ŝ2(t), Ŝ1(t)).
(

K(G(t)− Ĝ(t))−Q1(Ĝ(t), Î(t), Ĝ(t− τg), Î(t− τg), Ŝ2(t), Ŝ1(t))w(t− τg)
)

(4.20)

With initial conditions










Ĝ(τ)

Î(τ)

Ŝ2(τ)

Ŝ1(τ)











=











Ĝ0(τ)

Î0(τ)

Ŝ0
2(τ)

Ŝ0
1(τ)











= ξ(τ), ξ ∈ C1([−2τg, 0];R
4)

w(τ) =













dĜ0(τ)
dτ

dÎ0(τ)
dτ

dŜ0

2
(τ)

dτ
dŜ0

1
(τ)

dτ













−













−KxgiĜ
0(τ)Î0(τ) +

Tgh

VG

−KxiÎ
0(τ) + TiGmax

VI
f(Ĝ0(t− τg)),

1
tmax,I

Ŝ0
1(τ)−

1
tmax,I

Ŝ0
2(τ)

− 1
tmax,I

Ŝ1(τ) + ũ(τ)













, τ ∈ [−2τg, 0] (4.21)

Where:
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• Q−1 ∈ R
4x4 is the inverse matrix of the jacobian of the observability map φ defined

in equation(4.9) (see [2, 10, 11] for details), here given by

Q(x̂(t), x̂(t− τg)) =
∂φ(x̂(t), x̂(t− τg))

∂x̂(t)
, where

x̂(t) =









x̂1(t)
x̂2(t)
x̂3(t)
x̂4(t)









=











Ĝ(t)

Î(t)

Ŝ2(t)

Ŝ1(t)











(4.22)

•

Q1(x̂(t), x̂(t− τg)) =
∂φ(x̂(t), x̂(t− τg))

∂x̂(t− τg)

• the gain matrix K ∈ R
4x1 is chosen in order to assign suitable eigenvalues to the

matrix A-KB (see [2]).

• ũ(τ) in [−τg, 0] is any bounded extension of the function u(t) for negative times.

• the function ξ that initializes the observer, represents the a priori knowledge on
the system’s state.

A nice property of our observer is that, by assuming physically meaningful input signals,
a matrix K can be designed such that, if the estimation error at zero is sufficiently small,
the estimation error converges exponentially to zero (see [2]).Moreover, the decay rate
can be arbitrarily fixed by the choice of K.
Indeed, in order to close the loop from the observed state, we consider the feedback
control law:

u(t) =
−α(∗) + v(t)

− Kxgi

VI t
2

max,I

Ĝ(t)
(4.23)

where α(∗), is defined same as in (4.2) with G(t), I(t), G(t− τg), S2(t), S1(t) ,

diG(θ)
dθi

∣

∣

∣

∣

θ=t−τg

i = 1, 2

replaced respectively by Ĝ(t), Î(t), Ĝ(t− τg), Ŝ2(t), Ŝ1(t) ,

diĜ(θ)
dθi

∣

∣

∣

∣

θ=t−τg

i = 1, 2

Notice that our new control law (4.23) unlike the one in equation(4.15) those not make
use of insulin measurements.It uses the glucose and insulin estimates provided by the
observer, on the basis of only glucose measurements.
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Chapter 5

Simulations, Conclusion and
Proposal for Further Studies

5.1 Simulations

We carried out simulations on a virtual patient. The parameters for our model were
estimated from the data gotten from an IVGTT experiment done in the department
of metabolic disease of the Catholic University of Rome, on a person with Body Mass
Index (BMI) ≈ 50 ( Obese Patient) (see [22]). Below the estimated values are re-
ported interms of their original scale (they refer to the glucose-insulin regulatory sys-
tem): Gb = 5.611, Ib = 93.669, Tgh = KxgiIbGbVg = 0.003, TiGmax = KxiIbVIf(Gb) =
1.573, γ = 3.205, VG = 0.187, Kxi = 1.211x10−2, G⋆ = 9, τg = 24, VI = 0.25, Kxgi =
3.11x10−5, tmax,I = 55. (The value of tmax,I is taken from [40]).
The parameters indicate high normal glycemia and a substantial degree of insulin re-
sistance (Kxgi << 10−4. Because of the moderate hyperglycemia, obesity and insulin
resistance, it is certain that the patient is a prediabetes patient. He is expected to de-
velop type 2 diabetes mellitus sooner than later.
With the zeal to have the estimate of our model parameters for adiabetic patient, we took
our virtual diabetic patient to be the Obese patient above, one or two years after after
the above estimates were made, assuming that he hasn’t carry on any effective therapy.
Within this peroid, in this case, the natural progression of the disease will determine the
failure of pancreatic insulin secretion and , in the face of insulin resistance, a dropping
insulin concerntration, thus giving rise to the emergence of severe hyperglycemia and
the establishment of a state of frank type 2 Diabetes Mellitus. Hence the Tigmax of the
person will be bound to reduce to 15% of its “ normal” value. There by pushing Ib and
Gb to take new values.
We used the following estimates in our simulation: TiGmax = 0.236, Gb = 10.66, Ib =
49.29, Tgh = 0.003, γ = 3.205, VG = 0.187, Kxi = 1.211x10−2, G⋆ = 9, τg = 24, VI =
0.25, Kxgi = 3.11x10−5, tmax,I = 55
The reference signal was chosen such that the plasma glucose decreases exponentially
from 10.66 to a steady value of 5.
We made use of the following assumptions:
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• Firstly, we assumed that the subject was at rest before the start of the experiment

• Secondly we assummed no malfunction of the insulin infusion device

• Lastly, We assumed not to have complete knowledge of the virtual patient and
hence have to rely on the observer for certain measurements.

In addition to the estimates above the following inputs were used:

5.1.1 Inputs:

• eigen values of Observer: : −0.5× 10−9









4
1
2
3









• eigen values of Controller: :









−0.0027
−0.028
−0.029
−0.030









• System’s History: : X(τg) =









10.66
49.29
0
0









and X̂(τg) =









20
61
10.5
10.5









for τ ∈ [−τg, 0] where

X(τ) =









G(τ)
I(τ)
S2(τ)
S1(τ)









and X̂(τ) =











Ĝ(τ)

Î(τ)

Ŝ2(τ)

Ŝ1(τ)











The Observer and Controller gain matrice were calculate using the Ackerman formula.

5.1.2 Results

From 5.1.2 above it can be seeen that our control law works perfectly well as a reasonable
plasma glycemia is reached within the first 500 minutes of the simulation.?? shows that
our observer is capable of estimating all the state variables using the plasma glycemia.
The simulation is done such that if the designed control law happens to be negative, a
zero control input is given to the system.

5.2 Conclusion and Proposal for Further Studies

In this thesis, we formulated a time- delay observer model-based feedback control law, to
track a desired plasma glucose evolution. The designed controller gives local assymptotic
convergence the tracking error, according to the theory of feedback linearization with

33



0 500 1000 1500 2000
5

6

7

8

9

10

11

12

13

14

15

t (min)

G
lu

co
se

 le
ve

ls
 (

m
M

)

 

 
Actual
Estimate
Desired

Figure 5.1: Actual, and Observed plasma Glycemia, compared with the desired glucose
reference
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Figure 5.2: Actual, and Observed plasma Insulinemia, compared with the desired insulin
reference

delay cancellations. We assumed having knowledge of only glycemis measurements.
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Figure 5.3: The dynamics of the actual, and Observed quantity of insulin in the inac-
cessible insulin depot
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Figure 5.4: The dynamics of the actual, and Observed quantity of insulin in the inac-
cessible insulin depot
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Figure 5.5: Insulin infusion

Thus our feed back control law is based on the use of a non linear observer for discrete-
delay systems, in order to prevent the need for insulin measurements. Simulations
have been performed on a virtual patient, and reported. The simulations shows high
performance of the proposed control law and observer.
Our model has not taken into account exogenous glucose intake. The next thing to do,
which my supervisor and I are already looking at, is to include exogenous glucose intake
in our model, perform simulations to see how our designed controller reacts to a sudden
intake of glucose after the high glycemia of our virtual have been brought to steady state
value.In the future, we equally intend to test our control law on heterogenous virtual
patients.
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