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A Study of Non-Local Hughes’ Model for Pedestrian Dynamics

by Havva Yoldaş

We consider the Hughes’ model for pedestrian in one dimension and a non-local variant

of it. Non-local e↵ects of macroscopic models for tra�c flow often interpreted as the

deviation of the crowd from the desired direction. This deviation is determined by

the average density perceived by the vehicles or pedestrians and it is modeled by a

convolution operator acting on the velocity term. We perform simulations of both local

and non-local Hughes’ model for pedestrian flow by considering two di↵erent types of

convolution kernels.
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Chapter 1

Introduction

1.1 Mathematical models for collective behaviour

Mathematical modeling and simulation of tra�c flow for both vehicular and pedestrian

dynamics has become a frequent topic of research. Modeling of such complex phenomena

brings along analytic, modeling and simulation level challenges. In this section we

introduce some approaches which are used to model collective behavior of cars and

pedestrians. For other mathematical models and more detailed studies on properties of

these models we refer to [3, 9].

1.2 Microscopic models

The main assumption for microscopic models is that every single person or car is track-

able individually. The possible trajectories which every agent takes is foreseen. Micro-

scopic models can be di↵erential, if they are based on ordinary di↵erential equations, or

nondi↵erential, otherwise. Since the main work of the thesis deals with a macroscopic

model for pedestrian flow, we will not go into details of microscopic models.

1.3 Macroscopic models

The main assumption for macroscopic models for tra�c flow is that the number of

pedestrians or vehicles is large enough to be interpreted by locally averaged quantities,

such as the density ⇢ and the velocity v, which are time and space dependent variables.

The main compound in macroscopic models is the desired vector field v : ⌦ ! R2, where

⌦ is the domain agents are free to move in. The desired velocity compound is introduced

1



Chapter 1. Introduction to mathematical models for collective behaviour 2

to model the presence of a target, e.g. exit points, that people want to reach, in the case

of pedestrian flow. The desired velocity v is time-independent and is given initially.

1.3.1 First order macroscopic models

First order models consist of one conservation law of the form

@⇢

@t
+

@⇢

@x
(f(⇢)) = 0, t > 0, x 2 ⌦, (1.1)

where ⇢ represents the density and f(⇢) := ⇢v(⇢), is the flux which is given in terms of

density in order to close the model. v(⇢) is the velocity field.

The equation (1.1) is completed by an initial condition such that ⇢(0, x) = ⇢0(x). If

the domain ⌦ is bounded then there will be some boundary conditions on @⌦ for any

t > 0. (1.1) is the mass conservation equation for pedestrians or vehicles which follow

the nonlinear velocity field v(⇢) and it is conserved in time.

1.3.2 Second order macroscopic models

Second order macroscopic models for tra�c flow are usually composed of a set of partial

di↵erential equations of ⇢ and v in the following form

8
<

:

@⇢

@t

+r.(⇢v) = 0, t > 0, (x, y) 2 ⌦,

@v

@t

+ (v.r)v = a(⇢, v), t > 0, (x, y) 2 ⌦.
(1.2)

where (u,w) and (x, y) denotes the two components of v and space respectively, and

(v.r)v =

✓
u
@u

@x
+ w

@u

@y
, u

@w

@x
+ w

@w

@y

◆
.

In the equation (1.2), a is the acceleration of pedestrians or vehicles that is given in

terms of two unknowns. While, the first equation in (1.2) models the conservation

of mass, the second one accounts for the conservation of momentum. The equation

(1.2) complemented by initial conditions ⇢(0, x) = ⇢0(x), v(0, x) = v0(x) and, if ⌦ is

bounded, by some boundary conditions at @⌦ for any t > 0.

1.3.3 One-dimensional macroscopic models

In this subsection, we present commonly used mathematical models of one-dimensional

vehicular and pedestrian dynamics.
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1.3.3.1 Lighthill-Whitham-Richards (LWR) model

The conservation law for the LWR model is given by

@

@t
⇢(t, x) +

@

@x
f(t, x) = 0 (1.3)

where ⇢ is the vehicle or pedestrian density, f is the flux which is the product of tra�c

density and the tra�c speed v, i.e. f = ⇢v.

The diagram which shows the relation of dependency of the flux on tra�c conditions is

called fundamental diagram.

• Greenshields model

Greenshield’s model uses a linear relationship between tra�c speed and tra�c

density, given by

v(⇢) = v
free

✓
1� ⇢

⇢
max

◆
(1.4)

where v
free

is the speed of tra�c when the density is zero and ⇢
max

is the maximum

density of tra�c. The maximum density is the density at which there is a tra�c

jam and the speed is equal to zero.

• Greenberg model

In the Greenberg model speed-density function is given by

v(⇢) = v
free

ln

✓
⇢
max

⇢

◆
(1.5)

• Underwood model

In this model the velocity-density function is given by

v(⇢) = v
free

exp

✓
� ⇢

⇢
max

◆
(1.6)

• Di↵usion model

Di↵usion model is an extension of the Greenshield’s model where the tra�c speed

depends not only on the tra�c density but also on the density gradient. In this way,

we model the driver’s behavior where changes in tra�c density in the x-direction

a↵ect the tra�c speed. The model is given by

v(⇢) = v
free

✓
1� ⇢

⇢
max

◆
� D

⇢

✓
@⇢

@x

◆
(1.7)

whereD = ⌧v2
r

is a di↵usion coe�cient, v
r

is a random velocity and ⌧ is a relaxation

parameter.
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LWR models are constructed by combining di↵erent fundamental relationships between

speed and density with scalar conservation law. For example, LWR model with Green-

shields flow is given by

@

@t
⇢(t, x) +

@

@x
v
free

⇢

✓
1� ⇢

⇢
max

◆
= 0 (1.8)

In vehicular tra�c if the LWR model is used, tra�c density fixes the value of tra�c

speed. However, in pedestrian flow, just knowing the tra�c density does not fix the

pedestrian speed. The actual speed depends on the function of pedestrian’s movement.

For example, if pedestrians are inside a museum or in a school their movement is depen-

dent on the activity that is taking place. If however, the pedestrians are all trying to exit

from a corridor, then their speed becomes a function of density just like the vehicular

tra�c. Notice that even in a single corridor, people could be moving in both directions

at di↵erent places, but vehicular tra�c on a highway or street lane is unidirectional.

The models (Greenshields, Greenberg, Underwood etc.) only have to provide the speed

based on density, since the direction of travel is fixed. If we introduce a time-varying

scalar field that abstracts the activity that is taking place for pedestrians, we can mod-

ify the vehicular tra�c model to get pedestrian models. For example LWR pedestrian

model with Grenshields flow is given by

@

@t
⇢+

@

@x
v
free

(t, x)⇢

✓
1� ⇢

⇢
max

◆
= 0 (1.9)

where v
free

(t, x) 2 [�v
max

, v
max

], v
max

is the constant maximum possible speed. We can

make the free-flow speed to be the scalar control field in order to convert the LWR model

with Greenshields flow into a pedestrian model. The speed of a single pedestrian would

be the constant free-flow speed according to the Grenshields model. A pedestrian could

be going in the positive or negative direction with the magnitude in [0, v
max

]. Therefore

the above choice for LWR pedestrian model is very natural one. Similar argument can be

applied to the PW and AR models which will be introduced in the following subsections.

1.3.3.2 Payne-Whitham (PW) model

PW model was proposed by Payne and Whitham independently in the 1970s. In this

model, partial di↵erential equations are used to represent tra�c flow. It is a second

order macroscopic model. The model takes the form;

⇢
t

+ (⇢v)
x

= 0,

v
t

+ vv
x

=
V (⇢)� v

⌧
� (A(⇢))

x

⇢
+ µ

v
xx

⇢
.

(1.10)
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where V (⇢) is the equilibrium speed, ⌧ is relaxation time, V (⇢)�v

⌧

is the relaxation term,
(A(⇢))

x

⇢

is the anticipation term and µv

xx

⇢

is the viscosity term. The anticipation term is

similar to the pressure term in fluids and is taken as A(⇢) = c20⇢ for some constant c0.

In (1.10), the first equation models the conservation of mass and the second one is the

fluid momentum equation.

1.3.3.3 Aw-Rascle (AR) model

The AR model that is designed to model the anisotropic tra�c behavior is given by

⇢
t

+ (⇢v)
x

= 0,

[v + p(⇢)]
t

+ v[(v + p(⇢))]
x

=
V (⇢)� v

⌧
.

(1.11)

where V (⇢), the equilibrium speed, generally taken as Grenshields relationship. The

pressure term, p(⇢), is generally taken as p(⇢) = c20⇢
� , where � > 0 and c0 = 1.

1.3.4 Two-dimensional macroscopic models

In this subsection, we present two-dimensional versions of the models given in the previ-

ous subsection. The main addition in two-dimensional macroscopic models is a desired

velocity vector field that makes the actual velocity follow some movement profile. These

models can be used for pedestrian tra�c modeling.

1.3.4.1 Two-dimensional LWR model

We consider the speed-density relationship as Grenshields for the sake of illustration.

The di↵erence of this two-dimensional model from the one-dimensional one is additional

scalar field ✓(t, x, y) that specifies where people move to. See the figure 1.1 for two-

dimensional pedestrian tra�c model. The model is given by

@

@t
⇢+

@

@x
v
free

cos ✓

✓
1� ⇢

⇢
max

◆
⇢+

@

@y
v
free

sin ✓

✓
1� ⇢

⇢
max

◆
⇢ = 0 (1.12)

or in the divergence form,

@

@t
⇢(t, x, y) +r.q(t, x, y) = 0 (1.13)

where

q = v
max

✓
1� ⇢

⇢
max

◆
⇢

 
cos ✓

sin ✓

!
(1.14)
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Figure 1.1: Pedestrian flow in two-dimensions

1.3.4.2 Two-dimensional PW model

We propose a viscous two-dimensional version of the Payne-Whitham model suitable

for pedestrian modeling. In the equations, u stands for the x-component and w for the

y-component of velocity, i.e. v = (u,w). The anticipation term remains the same as it

represents isotropic tra�c pressure.

⇢
t

+ (⇢u)
x

+ (⇢w)
x

= 0,

u
t

+ uu
x

+ uu
y

=
V1(t, x, y, ⇢)� u

⌧
� (A(⇢))

x

⇢
+ µ

✓
u
xx

⇢
+

u
yy

⇢

◆
,

w
t

+ ww
x

+ ww
y

=
V2(t, x, y, ⇢)� w

⌧
� (A(⇢))

y

⇢
+ µ

✓
w
xx

⇢
+

w
yy

⇢

◆
.

(1.15)

where

V1(t, x, y, ⇢) = v
free

cos ✓

✓
1� ⇢

⇢
max

◆
, V2(t, x, y, ⇢) = v

free

sin ✓

✓
1� ⇢

⇢
max

◆
.

The anticipation term is taken as A(⇢) = c2
o

⇢.

1.3.4.3 Two-dimensional AR model

We give the formulation for two-dimensional version of the Aw-Rascle model with relax-

ation terms suitable for pedestrian modeling. The relaxation terms are modified so that

v
max

(t, x, y) and ✓(t, x, y) scalar fields can enter the dynamics to a↵ect the pedestrian
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movement.

⇢
t

+ (⇢u)
x

+ (⇢w)
x

= 0,

[u+ p(⇢)]
t

+ u[(u+ p(⇢))]
x

+ w[(u+ p(⇢))]
y

=
V1(t, x, y, ⇢)� u

⌧
,

[w + p(⇢)]
t

+ u[(w + p(⇢))]
x

+ w[(w + p(⇢))]
y

=
V2(t, x, y, ⇢)� w

⌧
.

(1.16)

where

V1(t, x, y, ⇢) = v
free

cos ✓

✓
1� ⇢

⇢
max

◆
, V2(t, x, y, ⇢) = v

free

sin ✓

✓
1� ⇢

⇢
max

◆
,

and v = (u,w).

1.4 Thesis layout

The thesis is composed of five chapters. The first chapter is an introduction to mathemat-

ical models for collective behavior. We introduced most commonly used mathematical

models for tra�c flow both for vehicular and pedestrian dynamics. They fall into two

main category; microscopic and macroscopic models. Since the main work deals with a

macroscopic model for pedestrian flow, we did not go into details of microscopic mod-

els. We explained one-dimensional and two-dimensional versions of three macroscopic

mathematical models for tra�c flow. They are known as Lighthill-Whitham-Richards

(LWR) model, Payne-Whitham (PW) model and Aw-Rascle (AR) model.

In the second chapter, we present the Hughes’ model describing the equations of motion

governing two-dimensional flow of pedestrians of both single and multiple pedestrian

types. The model proposed by Roger L. Hughes [6, 7]. Hughes’ model develops a theo-

retical framework for understanding the mechanics of pedestrian dynamics especially in

large crowds. In the first two sections, we introduce the Hughes’ model for the flow of

pedestrians of single and multiple types. Then, we give the definition of one-dimensional

version of Hughes’ model along with initial and boundary conditions. Some properties

of solutions are also derived. The study is based on [1, 10].

In the third chapter, we explain non-local version of the Lighthill-Whitham-Richards

(LWR) model ([2, 5, 8]) for tra�c flow. We define the problem with initial and boundary

conditions and we present numerical solution to it constructed by using Lax-Friedrichs

numerical scheme.

In the fourth chapter, we give simulations of one dimensional Hughes’model both the

original and the non-local version. We used the fast sweeping method to solve eikonal

equation. A finite volume scheme with Rusanov flux is used to solve the continuity
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equation numerically. We followed and improved the work [4, 5]. For the numerical so-

lution of non-local version of Hughes’ model, both Gaussian and rectangular convolution

kernels are considered in order to include e↵ects of local density change. We present the

solutions and evacuation times changing with the smoothness degree of the model.

In the last chapter, we discuss future work and possible extensions, improvements of the

numerical schemes used in the project.



Chapter 2

The Hughes’ model for pedestrian

flow

In this chapter, we introduce the Hughes’ model for pedestrian flow. The study of a

human crowd as a moving fluid is a recent topic of research. The main di↵erence of a

crowd in motion and a moving fluid is that the crowd has ability to decide its own way.

Roger L. Hughes [6, 7] derived the equations of motion governing the two-dimensional

flow of pedestrians of both single and multiple pedestrian types.

There are two separate approaches to follow while modeling crowd dynamics. The first

approach involves treating each pedestrian individually in a discrete manner following

them walking through the domain in a computer simulation. Pedestrians can be modeled

using a granular material behavior. It is assumed that the pedestrians will try to optimize

their immediate local behavior while moving along predefined globally determined paths.

The second approach involves treating the crowd as a whole. It can be applicable only

to large crowds. Crowds are considered either as a fluid or a continuum responding to

local influences or it is assumed that individuals in the continuum move by optimizing

their behavior in order to achieve non-local objectives. Whereas the former approach

is more appropriate for small crowds, the latter gives us a better understanding of the

rules governing the overall behavior of the flow.

Hughes’ model develops a theoretical framework for understanding the mechanics of

pedestrian dynamics especially in large crowds. In the first two sections of this chapter

we introduce the Hughes’ model for the flow of pedestrians of single type and of multiple

type. Then in the last section, we present the one-dimensional version of Hughes’ model.

9
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2.1 Hughes’ model for the flow of pedestrians of single

pedestrian type

In the Hughes’ model, a pedestrian flow, in which only one type of pedestrian is consid-

ered, is described in terms of two quantities.

(i) density of the flow, ⇢, is defined as the expected number of individuals located within

unit area at a given time t and location (x, y).

(ii) velocity of the flow, (u,w), is defined as the expected velocity of individuals at a

given time t and location (x, y).

Therefore, by equating the net flow of pedestrians into a small region to the time rate

of accumulation of pedestrians in the region and letting the area of the region shrink to

zero, conservation of pedestrians implies

@⇢

@t
+

@

@x
(⇢u) +

@

@y
(⇢w) = 0 (2.1)

This equation is known as the continuity equation in fluid mechanics.

There are three hypotheses made in Hughes’ model about the pedestrian motion.

Hypothesis 1. The walking speed of the pedestrians determined merely by the density

of surrounding pedestrians, their behavioral characteristics and the ground on which

they walk.

The velocity components (u,w) of a single pedestrian is given by

u = v(⇢)�̂
x

, w = v(⇢)�̂
y

(2.2)

where �
x

and �
y

are the direction cosines of the motion and v(⇢) is the speed of the

pedestrian as a function of density. Here in this model, the density is preferably high

but not extreme and the speed of a pedestrian v(⇢) is determined in a similar manner

with the Greenshields relation (1.4) which uses a linear relationship between the density

and the speed. However, there is not any uniformly accepted form of the function

v(⇢) which relates the density and the speed since it depends on many factors related

with the situation of the pedestrians and the ground on which they are walking. But

this assumption is essential to be able to use the LWR model (1.9) for conservation of

pedestrians.

Hypothesis 2. Pedestrians have a common sense of the task (called potential) that

they face to reach their common destination, such that any two individuals at di↵erent

locations having the same potential would see no advantage of exchanging their positions.

So, the direction of a motion of the pedestrian is perpendicular to his potential, i.e. the
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direction of cosines are

�̂
x

=
�@�

@xq
(@�
@x

)2 + (@�
@y

)2
, �̂

y

=
�@�

@yq
(@�
@x

)2 + (@�
@y

)2
(2.3)

where � is the potential. This hypothesis is applicable to pedestrian flow if pedestrians

can visually access the situation. In this case, it must be assumed also that shorter

pedestrians set their direction according to taller pedestrians in the crowd since the

taller pedestrians have the overall view of the situation.

Hypothesis 3. Pedestrians seek to minimize their estimated travel time but temper

this behavior to avoid extreme densities. This tempering is assumed to be separable,

such that pedestrians minimize the product of their travel time as a function of density.

This hypothesis claims that the distance between potentials of two pedestrians must

be proportional to pedestrian speed independent on the initial position of a pedestrian

since two pedestrians on a given potential must both be at the same new potential as

each other at some later time. So, we write

1q
(@�
@x

)2 + (@�
@y

)2
= g(⇢)

p
u2 + w2 (2.4)

where � is the potential which has been scaled appropriately and g(⇢) stands for the

tempering behavior at high densities. g(⇢) is taken to be unity in general and it increases

for high densities.

Equations (2.1), (2.2), (2.3) and (2.4) combine to form the governing equations for

pedestrian flow

�@⇢

@t
+

@

@x

⇣
⇢g(⇢)v2(⇢)

@�

@x

⌘
+

@

@y

⇣
⇢g(⇢)v2(⇢)

@�

@y

⌘
= 0 (2.5a)

g(⇢)v(⇢) =
1q

(@�
@x

)2 + (@�
@y

)2
(2.5b)

Although most of the situations can be described by the equations (2.5a) and (2.5b), it

is needed to specify the boundary conditions for every particular situation. In general,

⇢ is defined on open boundaries corresponding to entrances. We automatically get the

flux, ⇢v(⇢), by specifying the density, ⇢, and the speed, v(⇢). The potential, �, is zero on

exits and the normal derivative of the potential is taken as zero on the closed boundaries.

Morever, depending on the particular situations such as queuing of smaller crowds, it is

sometimes necessary to assume additional hypotheses and to modify the above hypothe-

ses. In the original paper, these are called as local hypotheses and local modifications.

In order to study properties of solutions we define the flow of pedestrians per unit width,
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f , by

f(⇢) = ⇢v(⇢) (2.6)

The functions, v(⇢) and g(⇢) must satisfy the following properties;

(i) v(0) is finite, (ii) v(⇢
max

) = 0, (iii)
dv(⇢)

d⇢
 0,

(iv) g(⇢) � 1, (v)
dg(⇢)

d⇢
� 0.

(2.7)

where ⇢
max

is the density at which pedlock occurs. The function g(⇢) has been chosen as

unity in general. For the function v(⇢), there are several forms proposed in the literature.

We take it as linear similar to Greenshields (1.4),

v(⇢) = A�B⇢ (2.8)

where A and B are positive constants. By (2.6) and (2.8), the flux f becomes;

f(⇢) = ⇢(A�B⇢) (2.9)

so that it has the maximum value of A2/4B at ⇢ = A/2B. If the flow is less than the

maximum at a time, there are two possible states of the speed of pedestrians in the flow.

One of them is high speed of the flow in the low-density region, called supercritical flow,

and the other one is low speed of the flow in the high-density region, called subcritical

flow.

We consider the equations (2.5a) and (2.5b) at low flows in order to see the e↵ects of

supercritical and subcritical flows. In the case of a supercritical flow, spatial variations

of the potential � are negligible compared to the variations of � in ⇢. So the steady-state

form of (2.5a) takes the form;

@⇢

@x

@�

@x
+

@⇢

@y

@�

@y
⇡ 0. (2.10)

The equation (2.10) implies that lines of constant density is almost perpendicular to

lines of constant potential. The density of the flow varies slowly in the direction of the

flow.

For the subcritical flow, spatial variations in ⇢ are negligible compared to those in �. So

the equation (2.5a) takes the form of Laplace’s equation.

@2�

@x2
+

@2�

@y2
⇡ 0. (2.11)

The equation (2.11) is solvable numerically by using some techniques.
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2.2 Extension of Hughes’ model to multiple pedestrian

types

In the section 2.1 the partial di↵erential equations describing the flow of pedestrians of

a single type were introduced. There are three hypotheses made about the nature of

movements of pedestrians. In reality, instead of consisting in a single type of pedestrians,

crowds are composed of multiple pedestrian types depending on the di↵erences of walking

styles and destinations of pedestrians. In this section, the extension of Hughes’ model

to this type of pedestrian flow is discussed by stating three hypotheses.

Hypothesis 1A. The speed of pedestrians of a single type in multiple type flow is

determined by the function v(⇢) where ⇢ is the total density not the density of a single

pedestrian type.

There are many observations and studies supporting this hypothesis in the literature.

Moreover, this hypothesis is supplemented by the following two hypotheses similar to

the ones in the previous section.

Hypothesis 2A. A potential field exists for each pedestrian type such that pedestrians

move at right angles to lines of constant potential.

Hypothesis 3A. Pedestrians look for the path which minimizes their estimated travel

time. But they may alter this path in order to avoid extreme densities.

Thus, the flow of a particular type of pedestrians, type i, is given by ⇢
i

v(⇢
i

) where ⇢
i

is the density of pedestrians of particular type and v(⇢
i

) is a specified function of total

pedestrian density for pedestrians of type i. Moreover, the following equality holds,

⇢ =
NX

i=1

⇢
i

(2.12)

where N is the number of pedestrian types. The governing equations for each type of

pedestrians i is given by;

�@⇢
i

@t
+

@

@x

⇣
⇢
i

g(⇢)v2
i

(⇢)
@�

i

@x

⌘
+

@

@y

⇣
⇢
i

g(⇢)v2
i

(⇢)
@�

i

@y

⌘
= 0 (2.13a)

g(⇢)v
i

(⇢) =
1q

(@�i

@x

)2 + (@�i

@y

)2
, i = 1, ..., N. (2.13b)

where �
i

is the potential for type i of pedestrian.
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2.3 The one-dimensional Hughes’ model for pedestrian flow

In this section we define the one-dimensional version Hughes’ model for pedestrian flow,

analyze its solutions and some properties of solutions. The problem (2.15) presents a

nontrivial coupling between a scalar conservation law and an eikonal equation. It poses

some challenging questions about existence, uniqueness and numerical approximation

of solutions. Following the previous study done in [1, 4] we present solutions to one-

dimensional Hughes’ model and mention some properties of these solutions. By omitting

the y-space variable from the equations (2.5a) and (2.5b) and taking the tempering factor

g(⇢) as unity we generalize Hughes’ model for pedestrian flow in one space dimension

as,

�@⇢

@t
+

@

@x

⇣
⇢v2(⇢)

@�

@x

⌘
= 0,

v(⇢) =
1���@�
@x

���
,

(2.14)

We shorten the notation as following,

⇢
t

� (⇢v2(⇢)�
x

)
x

= 0,

v(⇢)|�
x

| = 1.
(2.15)

Here we take x 2 ⌦ :=] � 1, 1[ and the mean velocity as v(⇢) = 1 � ⇢. So the initial-

boundary value problem takes the form

⇢
t

� (⇢v2(⇢)�
x

)
x

= 0, x 2 ⌦, t � 0, (2.16a)

v(⇢)|�
x

| = 1, x 2 ⌦, t � 0, (2.16b)

⇢(0, x) = ⇢0(x) 2 [0, 1] x 2 ⌦, (2.16c)

�(t,�1) = �(t, 1) = 0, t � 0. (2.16d)

where (2.16c) is the initial condition and (2.16d) is the boundary condition. We denote

the flux as f(⇢) = ⇢v(⇢) and we assume f 2 C2([0, 1]), f 00 < 0, f(0) = 1, f(1) = 0,

and f is strictly concave. We denote the unique point in (0, 1) where f has its maximum

as ⇢̄. Then, at the boundaries ±1 we require that

Tr⇢(t, .) 2 [0, ⇢̄], x = ±1, t � 0. (2.17)

The flux in (2.16) can be written as

⇢v2(⇢)�
x

= ⇢v(⇢)sgn�
x

= f(⇢)sgn�
x

.
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Then, the zero-Dirichlet boundary condition can be stated as in the [1],

min
k2[0,T r⇢]

{�(f(Tr⇢)sgn�
x

(t, x) + f(k)sgn�
x

(t, x))sgn(x)} = 0, x = ±1 (2.18)

since the eikonal equation in (2.16b) will be solved in the semi-concave sense in the

following subsection 2.3.1, we write �
x

(�1, t) > 0 and �
x

(1, t) < 0. Thus, (2.18) becomes

min
k2[0,T r⇢]

{f(Tr⇢)� f(k) = 0}, x = ±1,

so that we can write the boundary condition (2.17) as it is.

2.3.1 Solution for the eikonal equation

In this subsection we solve the eikonal equation (2.16b) and accordingly restate the

initial-boundary value problem (2.16).

Let us assume that the density ⇢(t, .) is known in (2.16b) and further assume that

⇢(t, x) 2 [0, 1� �] for all x 2 ⌦, t � 0 for some � > 0 so that we can write (2.16b) as

|�
x

| = 1

v(⇢)
:= c(⇢) (2.19)

and � is a globally Lipschitz function on [0, 1].

We assume that the cost function c : [0, 1] ! [1,+1] is a smooth function such that

c(0) = 1 and c0(⇢) � 0.

Solutions of the equation (2.19) are the points in ⌦ in which �
x

changes its sign. Ac-

cording to the theory of Hamilton-Jacobi equations there may be more than one, in fact

infinitely may solutions (e.g. 1/v(⇢) is a constant) but we look for a unique point, ⇠,

such that �
x

> 0 in ] � 1, ⇠] and �
x

< 0 in [⇠, 1[. Following [1], the unique solution �

of (2.19) can be found in such a way that �
xx

is bounded from above in the sense of

distributions which are called semi-concave solutions for (2.19).

The physical interpretation of the solution � for (2.19) as follows. Since the boundary

points x = ±1 are the targets, it is reasonable to expect that the potential � will increase

close to x = �1 and decrease close to x = 1 as pedestrians will choose to go to boundary

points if they are close to them. But we need to show that �
x

will change its sign in the

interval ]� 1, 1[ only once. We assume for a contradiction that, for a given ⇢, following

condition holds:

�
x

(x1) > 0, �
x

(x2) < 0, �
x

(x3) > 0, and x1 < x2 < x3.

The pedestrians are located as in the figure 2.1. But this is a contradiction since the

pedestrian located in x2 cannot see the exit at x = 1 if the pedestrian located at x3
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Figure 2.1: Pedestrians are located at x1, x2 and x3. Arrows show the direction of
the exits which pedestrians take

cannot sense it since x3 is closer to the exit at x = 1 than the point x2. Thus, by this

contradiction we deduce that there must be a unique point, called turning point, ⇠(t),

at which �
x

changes its sign, i.e.

�
x

(t, x) > 0 if � 1 < x < ⇠(t), �
x

(t, x) < 0 if ⇠(t) < x < 1. (2.20)

Then we can rewrite the conservation law (2.16) as

⇢
t

� (f(⇢))
x

= 0, �1 < x < ⇠(t), (2.21)

⇢
t

+ (f(⇢))
x

= 0, ⇠(t) < x < 1. (2.22)

Thus, when we know that there exists a turning point, we can explicitly solve the eikonal

equation (2.16b) with the boundary condition (2.16d) as follows,

�(t, x) =

8
<

:

R
x

�1 c(⇢(t, y))dy �1 < x < ⇠(t),
R 1
x

c(⇢(t, y))dy ⇠(t) < x < 1.
(2.23)

Since � is continuous, for the turning point ⇠(t) we can write;

Z
⇠(t)

�1
c(⇢(t, y))dy =

Z 1

⇠(t)
c(⇢(t, y))dy. (2.24)

Since v > 0 on [0, 1), then ⇠(t) is uniquely determined.

It has been clarified from the formula (2.24) that the turning point ⇠(t) depends non-

locally on the distribution of pedestrians ⇢(t) on ⌦. So, it can be determined by using
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the initial datum ⇢0 at t = 0 by the following formula;

Z
⇠(0)

�1
c(⇢0(y))dy =

Z 1

⇠(0)
c(⇢0(y))dy. (2.25)

There are several results and studies about the proof of existence of a unique solution

for Hamilton-Jacobi type equations with discontinuous coe�cients under appropriate

compatibility conditions. Since it is not the main aim of this work, we leave it to the

reader by saying that in our problem, ⇢(t, .) being a function of bounded variation is

enough condition to have a unique solution.

2.3.2 Some properties of solutions

The equation (2.16) can be written as a scalar conservation law with discontinuous

space-time dependent flux:

⇢
t

+ F (t, x, ⇢)
x

= 0, (2.26)

where F (t, x, ⇢) = sgn(x� ⇠(t))f(⇢). Thus, the initial-boundary value problem takes its

simplest form as,

⇢
t

+ F (t, x, ⇢)
x

= 0, x 2 ⌦, t � 0,

|�
x

| = c(⇢), x 2 ⌦, t � 0,

⇢(0, x) = ⇢0(x), x 2 ⌦,

⇢(t,�1) = ⇢(t, 1) = 0, �(t,�1) = �(t, 1) = 0, t � 0.

(2.27)

We state some properties of solutions of (2.27) by following [1, 4, 10].

Definition 1. A solution ⇢ 2 L1(R+⇥⌦) of the initial-boundary value problem (2.27)

is a weak solution if for every ' 2 C1
c

(R⇥ ⌦) the following equality holds:

Z +1

0

Z 1

�1
(⇢'

t

+ F (t, x, ⇢)'
x

)dxdt+

Z 1

�1
⇢0(x)'(0, x)dx = 0. (2.28)

Moreover if we assume that ⇢ 2 C0(R+;BV (⌦) \ L1(⌦)), ⇢ is a weak solution of (2.27)

if and only if it satisfies in the weak sense

⇢
t

� (f(⇢))
x

= 0, x 2]� 1, ⇠(t)[, t > 0,

⇢
t

+ (f(⇢))
x

= 0, x 2]⇠(t), 1[, t > 0,

⇢(0, x) = ⇢0(x), x 2 ⌦,

(2.29)
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where ⇠(t) 2 C0(R+) which is implicitly defined by (2.24). The Rankine-Hugoniot

condition

f(⇢+) + f(⇢�) = ⇠0(t)(⇢+ � ⇢�) (2.30)

holds where ⇢+ = ⇢+(t) = ⇢(t, ⇠(t)+) and ⇢� = ⇢�(t) = ⇢(t, ⇠(t)�) the right and left

traces of ⇢ at x = ⇠(t).

Remark that if ⇢(t, .) is continuous at x = ⇠(t) then (2.30) gives f(⇢(t, ⇠(t))) = 0 and

therefore ⇢(t, ⇠(t)) 2 {0, 1}. Moreover, if ⇢(t, ⇠(t)) = 1, we have sgn(x � ⇠(t))f 0(⇢) < 0

and thus we have k ⇢0 k
L

1(⌦)= 1.

Definition 2. A weak solution ⇢ of the initial-boundary value problem (2.27) is an

entropy weak solution if the following Kružkov-type entropy inequality holds for all

k 2 R and for all test functions ' 2 C1
c

(R⇥ ⌦),' � 0,

0 
Z +1

0

Z 1

�1
(|⇢�k|'

t

+sgn(⇢�k)(F (t, x, ⇢)�F (t, x, k))'
x

)dxdt+

Z 1

�1
|⇢0(x)�k|'(0, x)dx

+sgn(k)

Z +1

0
(f(⇢(t, 1�))�f(k))'(t, 1)dt+sgn(k)

Z +1

0
(f(⇢(t,�1+))�f(k))'(t,�1)dt

+ 2

Z +1

0
f(k)'(t, ⇠(t))dt. (2.31)

The entropy boundary condition used here implies ⇢(t,⌥1±)  1/2.

Corollary 1. Let ⇢ 2 C0(R+;BV (⌦)\L1(⌦)) be an entropy-weak solution in the sense

of Definition 2, then the following entropy jump condition must hold for all k 2 R and

a.e. t 2 R+,

sgn(⇢+(t)� k)(f(⇢+(t))� f(k))� ⇠0(t)|⇢+(t)� k|

+ sgn(⇢�(t)� k)(f(⇢�(t))� f(k))� ⇠0(t)|⇢�(t)� k|  2f(k). (2.32)

Remark 1. If we take k  ⇢� and k  ⇢+ we get

f(⇢+) + f(⇢�)  4f(k) + ⇠0(t)(⇢+ � ⇢�). (2.33)

If we take k � ⇢� and k � ⇢+ we obtain

f(⇢+) + f(⇢�) � ⇠0(t)(⇢+ � ⇢�). (2.34)

Note that we recover the Rankine-Hugoniot condition (2.30) by taking k = 0 in the

inequalities (2.33) and (2.34). So, for k between ⇢� and ⇢+ we obtain

sgn(⇢+ � ⇢�)[f(⇢+)� f(⇢�) + ⇠0(t)(2k � ⇢+ � ⇢�)]  2f(k). (2.35)
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Proposition 1. Let ⇢ 2 C0(R+;BV (⌦) \ L1(⌦)) be an entropy-weak solution in the

sense of Definition 2 and assume ⇢+(t) 6= ⇢�(t). Then the characteristic speeds at

x = ⇠(t) must enter the switch curve x = ⇠(t) on the side of higher density, i.e.

f 0(⇢+(t))  ⇠0(t), if ⇢�(t) < ⇢+(t),

�f 0(⇢�(t)) � ⇠0(t), if ⇢�(t) > ⇢+(t).

Proof. We multiply (2.35) and use (2.30) we obtain that

f(⇢+)(k � ⇢�)� f(⇢�)(⇢+ � k)  f(k)|⇢+ � ⇢�|. (2.36)

For ⇢�  k  ⇢+ we get from (2.36) that

f(⇢+)� f(k)

⇢+ � k
 f(k) + f(⇢�)

k � ⇢�
.

Then we let k % ⇢+ and using (2.30) we obtain ⇠0(t) � f 0(⇢+(t)). So, the characteristic

lines are entering the sign change line x = ⇠(t) on the right hand side.

For ⇢+  k  ⇢� we get from (2.36) that

f(⇢�)� f(k)

⇢� � k
 f(k) + f(⇢+)

k � ⇢+
.

Then we let k % ⇢� and using (2.30) we obtain ⇠0(t)  �f 0(⇢�(t)). So, the characteristic

lines are entering the sign change line x = ⇠(t) on the left hand side.

The definition of entropy weak solution implies that the traces at x = ⇠(t) must satify the

bounds 0  ⇢(t+, ⇠(t+)±)  sup{⇢(t, y) : y 2 ⌦}. Combining this with k ⇢0 k
L

1(⌦)= 1

we deduce the following Corollary.

Corollary 2. Let ⇢ 2 C0(R+;BV (⌦) \ L1(⌦)) be an entropy weak solution of (2.27),

then

0  ⇢(t, x) k ⇢0 k
L

1(⌦) .

By the above maximum principle, we can avoid blow up in cost function c(⇢) = 1/v(⇢)

by taking initial data ⇢0(x) 2 [0, 1� �], for � > 0.

Moreover, under certain assumptions on initial data and some hypotheses, solution to

the Riemann problem around the turning point can completely be determined and it is

self-similar. For more details we refer to [1, 2].





Chapter 3

The Lighthill-Whitham-Richards

tra�c flow model with non-local

velocity

In the chapter 2, we analyzed a macroscopic model for pedestrian dynamics which is

proposed by Roger L. Hughes. According to the governing equations (2.5a)-(2.5b) of

the Hughes’ model, individuals try to minimize their travel time while avoiding the

high-density regions. But one of the important assumptions of the Hughes’ model for

flow of pedestrians is that the overall density of the crowd is known by every individual.

Moreover, all walking costs of individuals are based on the current density. But the as-

sumption of complete and continuous knowledge of the overall density is not practical in

real-world applications. Thus, by this motivation, modified versions of the macroscopic

tra�c flow models such as LWR (1.3) and Hughes (2.5) based on partial knowledge of

the overall density became a recent topic of research. These models account for the reac-

tion of drivers or pedestrians to the surrounding density of other individuals. Although

interpretation and implementation of such models in microscopic level is intuitive, their

translation to macroscopic models is quite complicated. Non-local e↵ects of macroscopic

models for tra�c flow often interpreted as the deviation of the crowd from the desired

direction. This deviation is determined by the average density perceived by the vehicles

or pedestrians and it is modeled by a convolution operator acting on the velocity term.

In this chapter, we will present a classical LWR tra�c flow model [2, 5], in which the

mean velocity is assumed to be dependent on the downstream tra�c density.

21



Chapter 3. The non-local LWR model for tra�c flow 22

3.1 Definition and well-posedness of the model

Following [2], we write the mass conservation equation for tra�c flow with non-local

mean velocity as follows;

@
t

⇢(t, x) + @
x

⇣
⇢(t, x)v(

Z
x+⌘

x

⇢(t, y)w
⌘

(y � x)dy)
⌘
= 0, (3.1)

where t 2 R+, x 2 R and ⌘ > 0. In the above equation, convolution kernel w
⌘

2
C1([0, ⌘];R+) is taken as a non-increasing function satisfying the following condition

Z
⌘

0
w
⌘

(x)dx = 1.

In this model, it is considered that the drivers will change their velocity according to

the downstream tra�c. They will react to what happens in front on them by adapting

their density with respect to the downstream density. Such behavior is modeled by the

downstream convolution product as follows;

⇢ ⇤
d

w
⌘

(t, x) =

Z
x+⌘

x

⇢(t, y)w
⌘

(y � x)dy. (3.2)

We take the velocity v(⇢) = 1� ⇢ as before and we set V (t, x) = v(⇢ ⇤
d

w
⌘

(t, x)) so that

the governing equations for tra�c flow takes the form

@
t

⇢(t, x) + @
x

(⇢(t, x)V (t, x)) = 0, (3.3)

⇢(0, x) = ⇢0(x) 2 BV (R; [0, 1]). (3.4)

In [5], the velocity function is taken as a general continuous function instead of the

specific case v(⇢) = 1� ⇢. But mainly we follow [2] here.

We consider ⇢(t, x) satisfying the following definitions;

Definition 1. A function ⇢ 2 (L1\L1\BV )(R+⇥R; [0, 1]) is a weak solution of (3.3)

and (3.4) if

Z +1

0

Z +1

�1
(⇢'

t

+ ⇢(t, x)v(⇢ ⇤
d

w
⌘

)'
x

)dxdt+

Z +1

�1
⇢0(x)'(0, x)dx = 0 (3.5)

for all ' 2 C1
c

(R2;R).
Definition 2. A function ⇢ 2 (L1\L1\BV )(R+⇥R; [0, 1]) is an entropy weak solution
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if

Z +1

0

Z +1

�1
(|⇢� k|'

t

+ |⇢� k|V '
x

� sgn(⇢� k)kV
x

')(t, x)dxdt

+

Z +1

�1
|⇢0(x)� k|'(0, x)dx � 0. (3.6)

for all ' 2 C1
c

(R2;R) and k 2 R.
Remark that the assumptions of Kružkov are not fully satisfied since the convolution

kernel !
⌘

is not continuous on R. Therefore, the uniqueness of the entropy weak solutions

is not guaranteed. Following theorem is the main result of the work [2].

Theorem 1. Let ⇢0 2 BV (R; [0, 1]) and !
⌘

2 C1([0, ⌘];R) be a non-increasing function

such that
R
⌘

0 !
⌘

(x)dx = 1. Then the Cauchy problem

8
<

:
@
t

⇢+ @
x

(⇢v(⇢ ⇤
d

!
⌘

)) = 0, x 2 R, t > 0,

⇢(0, x) = ⇢0(x), x 2 R,

admits a weak solution in the sense of Definition 1 and Definition 2, such that

min
R

{⇢0}  ⇢(t, x)  max
R

{⇢0}, for a.e. x 2 R, t > 0. (3.7)

The existence of a weak entropy solution is proved by constructing a converging sequence

of finite volume approximate solutions, defined using an adapted Lax-Friedrichs scheme.

This method does not require the convolution kernel !
⌘

to be smooth. In the next

sections, the description of the finite volume scheme used to construct approximate

solutions is given and its some properties are stated along with their proofs.

3.2 A Lax-Friedrichs numerical scheme

We start by taking a space step �x such that ⌘ = N�x, for some N 2 N, and a time

step�t satisfying the Courant–Friedrichs–Lewy (CFL) conditions which will be specified

later. For j 2 Z and n 2 N, let x
j+1/2 = j�x be the cells interfaces, x

j

= (j� 1
2)�x the

cells centers and tn = n�t the time mesh. We construct a finite volume approximate

solution ⇢�x

(t, x) = ⇢n
j

for (t, x) 2 Cn

j

= [tn, tn+1[⇥]x
j�1/2, xj+1/2[. Given the piece-wise

constant approximation of the initial datum ⇢0,

⇢0
j

=
1

�x

Z
x

j+1/2

x

j�1/2

⇢0(x)dx,
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and denoting !k

⌘

:= !
⌘

(k�x) for k = 0, 1, ..., N � 1, we set

V
j

:= v
⇣
�x

N�1X

k=0

!k

⌘

⇢
j+k

⌘
= 1��x

N�1X

k=0

!k

⌘

⇢
j+k

, (3.8)

which involves a quadrature formula to approximate the convolution term. By using the

following equality

1 =

Z
⌘

0
w
⌘

(x) dx =
N�1X

k=0

Z (k+1)�x

k�x

w
⌘

(x) dx

and the fact that w
⌘

is non-increasing we obtain

1 =
N�1X

k=0

Z (k+1)�x

k�x

w
⌘

(x) dx �
N�1X

k=0

w
⌘

((k + 1)�x) ·�x

= �x ·
NX

k=1

w
⌘

(k�x)

Thus, the above discretization choice for !
⌘

implies

�x
N�1X

k=0

w
⌘

(k�x)  1 + w
⌘

(0)�x. (3.9)

We consider the following modified Lax-Friedrichs flux adapted to (3.1):

Fn

j+1/2 := g(⇢n
j

, ..., ⇢n
j+N

) =
1

2
⇢n
j

V n

j

+
1

2
⇢n
j+1V

n

j+1 +
↵

2
(⇢n

j

� ⇢n
j+1), (3.10)

where ↵ � 1 is the viscosity coe�cient. This gives the following N + 2 points finite

volume scheme

⇢n+1
j

= H(⇢n
j�1, ..., ⇢

n

j+N

), (3.11)

where

H(⇢
j�1, ..., ⇢j+N

) := ⇢
j

� �(g(⇢
j

, ..., ⇢
j+N

)� g(⇢
j�1, ..., ⇢j+N�1)

= ⇢
j

+
�↵

2
(⇢

j�1 � 2⇢
j

+ ⇢
j+1) +

�

2
(⇢

j�1Vj�1 � ⇢
j+1Vj+1), (3.12)

with ↵ = �t/�x.

It is straightforward that H(⇢, ..., ⇢) = ⇢ for all ⇢ 2 [0, 1] and the numerical flux (3.10)

satisfies the following assumptions:

Consistency:

g(⇢, ..., ⇢) = ⇢
⇣
1� ⇢�x

N�1X

k=0

!k

⌘

⌘
. (3.13)
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In particular, g(⇢, ..., ⇢) ! g(1� ⇢ ⇤
d

!
⌘

) as �x & 0 for a constant ⇢.

Lipschitz continuity: There exists  > 0 such that

|g(⇢
j

, ..., ⇢
j+N

)� g(⇢, ..., ⇢)|   max
0kN

|⇢
j+k

� ⇢| (3.14)

for ⇢, ⇢
j+k

2 [0, 1] and k = 0, ..., N . The inequality (3.9) guarantees that this is verified

for  = 2 + ↵+ !
⌘

(0)�x.

Assuming ⇢
i

2 [0, 1] for i = j � 1, ..., j +N , we compute the partial derivatives of H:

@H

@⇢
j�1

=
�

2

✓
↵+ V

j�1 + ⇢
j�1

@V
j�1

@⇢
j�1

� ⇢
j+1

@V
j+1

@⇢
j�1

◆

=
�

2

✓
↵+ v

⇣
�x

N�1X

k=0

!k

⌘

⇢
j�1+k

⌘
+ ⇢

j�1v
0
⇣
�x

N�1X

k=0

!k

⌘

⇢
j�1+k

⌘
�x!0

⌘

◆

=
�

2

⇣
↵+ 1��x

N�1X

k=0

!k

⌘

⇢
j�1+k

� !0
⌘

⇢
j�1

⌘
, (3.15a)

@H

@⇢
j

= 1� �↵+
�

2

⇣
⇢
j�1

@V
j�1

@⇢
j

� ⇢
j+1

@V
j+1

@⇢
j

⌘

= 1� �↵+
�

2
⇢
j�1v

0
⇣
�x

N�1X

k=0

!k

⌘

⇢
j�1+k

⌘
�x!1

⌘

= 1� �
⇣
↵+

1

2
�x!1

⌘

⇢
j�1

⌘
� 1� �

⇣
↵+�x

!0
⌘

2

⌘
, (3.15b)

@H

@⇢
j+1

=
�

2

⇣
↵+⇢

j�1
@V

j�1

@⇢
j+1

�V
j+1�⇢

j+1
@V

j+1

@⇢
j+1

⌘
=

�

2

✓
↵+⇢

j�1v
0
⇣
�x

N�1X

k=0

!k

⌘

⇢
j�1+k

⌘
�x!2

⌘

� ⇢
j+1v

0
⇣
�x

N�1X

k=0

!k

⌘

⇢
j+1+k

⌘
�x!0

⌘

� v
⇣
�x

N�1X

k=0

!k

⌘

⇢
j+1+k

⌘◆

=
�

2

⇣
↵� 1 +�x

N�1X

k=0

!k

⌘

⇢
j+1+k

��x!2
⌘

⇢
j�1 +�x!0

⌘

⇢
j+1

⌘
, (3.15c)

@H

@⇢
j+k

=
�

2
�x

✓
⇢
j�1!

k+1
⌘

v0
⇣
�x

N�1X

k=0

!k

⌘

⇢
j�1+k

⌘
� !k�1

⌘

⇢
j+1v

0
⇣
�x

N�1X

k=0

!k

⌘

⇢
j+1+k

⌘◆
,

=
�

2
�x(!k�1

⌘

⇢
j+1 � !k+1

⌘

⇢
j�1) k = 2, ..., N � 2 (3.15d)

@H

@⇢
j+N�1

= ��

2
�x!N�2

⌘

⇢
j+1v

0
⇣
�x

N�1X

k=0

!k

⌘

⇢
j+1+k

⌘
=

�

2
�x!N�2

⌘

⇢
j+1, (3.15e)
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@H

@⇢
j+N

= ��

2
�x!N�1

⌘

⇢
j+1v

0
⇣
�x

N�1X

k=0

!k

⌘

⇢
j+1+k

⌘
=

�

2
�x!N�1

⌘

⇢
j+1, (3.15f)

Observe that (3.15e) and (3.15f) are non-negative. Moreover the CFL condition

�t  2

2↵+�x!
⌘

(0)
�x (3.16)

ensures the positivity of (3.15b) and the assumption

↵ � 1 +�x!
⌘

(0) (3.17)

guarantees the increasing monotonicity with respect to ⇢
j+1 in (3.15c), and combined

with (3.9), guarantees the non-negativity of (3.15a). To obtain (3.16) and (3.17) we

used the fact that !k

⌘

 !
⌘

(0) for all k = 0, ..., N � 1, by non-increasing monotonicity of

!
⌘

. On the other hand, the sign of (3.15d) cannot be a-priori determined. Therefore,

the numerical scheme (3.10)-(3.11) is not monotone and classical convergence results do

not apply.

3.2.1 Maximum principle and L1 estimates

The L1 bound is the direct consequence of a maximum principle property which is

proven below by following [2].

Proposition 1. For any intial datum ⇢0
j

, j 2 Z, let ⇢
m

= min
j2Z{⇢0

j

} 2 [0, 1] and

⇢
M

= max
j2Z{⇢0

j

} 2 [0, 1]. Then the finite volume approximation ⇢n
j

, j 2 Z and n 2 N,
constructed using scheme (3.10)-(3.11) satisfies the bounds

⇢
m

 ⇢n
j

 ⇢
M

for all j 2 Z and n 2 N, under the CFL condition (3.16).

The proof is a direct consequence of the following lemma.

Lemma 1. Let 0  ⇢
m

 ⇢n
j

 ⇢
M

 1 for all j 2 Z. Then

H(⇢
m

, ⇢
m

, ⇢
m

, ⇢
j+2, ..., ⇢j+N�2, ⇢m, ⇢

m

) � ⇢
m

, (3.18)

H(⇢
m

, ⇢
m

, ⇢
m

, ⇢
j+2, ..., ⇢j+N�2, ⇢M , ⇢

M

)  ⇢
M

. (3.19)

Proof. From (3.12) we get

H(⇢
m

, ⇢
m

, ⇢
m

, ⇢
j+2, ..., ⇢j+N�2, ⇢m, ⇢

m

) = ⇢
m

+
�t

2
⇢
m

(V
j�1 � V

j+1)

= ⇢
m

+
�t

2
⇢
m

✓
v
⇣
�x

N�1X

k=0

!k

⌘

⇢
j�1+k

⌘
� v

⇣
�x

N�1X

k=0

!k

⌘

⇢
j+1+k

⌘◆
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From the mean value theorem we obtain

v
⇣
�x

N�1X

k=0

!k

⌘

⇢
j�1+k

⌘
� v

⇣
�x

N�1X

k=0

!k

⌘

⇢
j+1+k

⌘
= v0(⇠)

"
�x

N�1X

k=0

!k

⌘

(⇢
j�1+k

� ⇢
j+1+k

)

#
� 0,

for some ⇠ between �x
P

N�1
k=0 !k

⌘

⇢
j�1+k

and �x
P

N�1
k=0 !k

⌘

⇢
j+1+k

. Indeed, we observe

that

N�1X

k=0

!k

⌘

(⇢
j+1+k

� ⇢
j�1+k

) = ⇢
m

[!N�2
⌘

+ !N�1
⌘

� !0
⌘

� !1
⌘

] +
N�2X

k=1

⇢
j+k

[!k�1
⌘

� !k+1
⌘

]

� ⇢
m

[!N�2
⌘

+!N�1
⌘

�!0
⌘

�!1
⌘

]+⇢
m

N�2X

k=1

[!k�1
⌘

�!k+1
⌘

] = ⇢
m

(
NX

k=1

!k�1
⌘

�
N�2X

k=�1

!k+1
⌘

)
= 0,

where the inequality is due to the non-increasing monotonicity of !
⌘

. Inequality (3.19)

can be recovered in a similar way.

Proof of Proposition 1. We apply the mean value theorem between the points

Rn

j

= (⇢n
j�1, ..., ⇢

n

j+N

) and Rn

m

= (⇢
m

, ⇢
m

, ⇢
m

, ⇢n
j+2, ..., ⇢

n

j+N�2, ⇢m, ⇢
m

). By (3.18)

⇢n+1
j

= H(Rn

j

) = H(Rn

m

) + hrH(R
⇠

), Rn

j

�Rn

m

i � ⇢
m

+ hrH(R
⇠

), Rn

j

�Rn

m

i, (3.20)

for R
⇠

= (1� ⇠)Rn

m

+ ⇠Rn

j

, for some ⇠ 2 [0, 1].

It is now enough to observe that

@H

@⇢
j+k

(R
⇠

)(Rn

j

�Rn

m

)
k

= 0, k = 2, ..., N � 2,

since (Rn

j

�Rn

m

)
k

= 0 for k = 2, ..., N � 2. Therefore, under the assumptions (3.16) and

(3.17), we can conclude that hrH(R
⇠

), Rn

j

� Rn

m

i � 0 and therefore by (3.20) we have

proved that

⇢n+1
j

� ⇢
m

. The upper bound ⇢n+1
j

 ⇢
M

can be recovered similarly by considering

Rn

M

= (⇢
M

, ⇢
M

, ⇢
M

, ⇢n
j+2, ..., ⇢

n

j+N�2, ⇢M , ⇢
M

)

in place of Rn

m

and using (3.19).

3.2.2 BV estimates

Accurate estimates show that the approximate solutions constructed using the given

numerical scheme have bounded total variation and preserve monotonicity.
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Proposition 2: Let ⇢0 2 BV (R; [0, 1], and let ⇢�x

be given by (3.11)-(3.12). If ↵ �
1+2�xw

⌘

(0) and the CFL condition �t  2�x/(2↵+3�xw
⌘

(0)) holds, then for every

T > 0 the following discrete space BV estimate is satisfied

TV (⇢�x

(T, · ))  C(w
⌘

(0), ⇢0, T ) := e2w⌘

(0)TTV (⇢0) (3.21)

In particular, the numerical scheme (3.11)-(3.12) is monotonicity preserving.

Proof. Writing scheme (3.11)-(3.12) as:

⇢n+1
j

= ⇢n
j

� �

2

⇣
↵+ 1��x

N�1X

k=0

wk

⌘

⇢n
j+k+1 ��xw0

⌘

⇢n
j�1

⌘
�n

j�1/2

+
�

2

⇣
↵� 1 +�x

N�1X

k=0

wk

⌘

⇢n
j+k+1 +�x(w0

⌘

+ w1
⌘

)⇢n
j�1

⌘
�n

j+1/2

+
�

2
⇢n
j�1�x

N�1X

k=2

(wk�1
⌘

+ wk

⌘

)�n

j+k�1/2 +
�

2
�xwN�1

⌘

⇢n
j�1�

n

j+N�1/2,

where �n

j+k�1/2 = ⇢n
j+k

� ⇢n
j+k�1 for k = 0, ..., N . Similarly,

⇢n+1
j+1 = ⇢n

j+1 �
�

2

⇣
↵+ 1��x

N�1X

k=0

wk

⌘

⇢n
j+k+2 ��xw0

⌘

⇢n
j

⌘
�n

j+1/2

+
�

2

⇣
↵� 1 +�x

N�1X

k=0

wk

⌘

⇢n
j+k+2 +�x(w0

⌘

+ w1
⌘

)⇢n
j

⌘
�n

j+3/2

+
�

2
⇢n
j

�x
N�1X

k=2

(wk�1
⌘

+ wk

⌘

)�n

j+k+1/2 +
�

2
�xwN�1

⌘

⇢n
j

�n

j+N+1/2,

Therefore, computing the di↵erence yields:

�n+1
j+1/2 =

�

2

⇣
↵+ 1��x

N�1X

k=0

wk

⌘

⇢n
j+k+1 ��xw0

⌘

⇢n
j�1

⌘
�n

j�1/2

+
h
1� �

2

⇣
2↵��xw0

⌘

⇢n
j

+�x(w0
⌘

+ w1
⌘

)⇢n
j�1 ��x

N�1X

k=0

wk

⌘

�
j+k+3/2

⌘i
�n

j+1/2

+
�

2

h⇣
↵� 1 +�x(w0

⌘

+ w1
⌘

)⇢n
j

��x(w1
⌘

+ w2
⌘

)⇢n
j�1 +�x

N�1X

k=0

wk

⌘

�
j+k+2

⌘i
�n

j+3/2

+
�

2
�x

N�2X

k=2

h
(wk�1

⌘

+ wk

⌘

)⇢n
j

� (wk

⌘

+ wk+1
⌘

)⇢n
j�1

i
�n

j+k+1/2

+
�

2
�x

h
(wN�2

⌘

+ wN�1
⌘

)⇢n
j

� wN�1
⌘

⇢n
j�1

i
�n

j+N�1/2 +
�

2
�xwN�1

⌘

⇢n
j

�n

j+N+1/2.
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Adding and subtracting (wk

⌘

+wk+1
⌘

)⇢n
j

to the fourth term of right hand side of the above

equality, and observing that

h
(wN�2

⌘

+ wN�1
⌘

)⇢n
j

� wN�1
⌘

⇢n
j�1

i
�n

j+N�1/2 =
h
wN�2
⌘

⇢n
j

+ wN�1
⌘

�n

j�1/2

i
�n

j+N�1/2,

we obtain

�n+1
j+1/2 =

�

2

⇣
↵+ 1��xw0

⌘

(⇢n
j�1 + ⇢n

j+1)��x(w1
⌘

+ w2
⌘

)⇢n
j+2 ��x

N�2X

k=2

wk+1
⌘

⇢n
j+k

⌘
�n

j�1/2

+
h
1� �

2

⇣
2↵��xw0

⌘

⇢n
j

+�x(w0
⌘

+ w1
⌘

)⇢n
j�1 ��x

N�1X

k=0

wk

⌘

�
j+k+3/2

⌘i
�n

j+1/2

+
�

2

⇣
↵� 1 +�x(w0

⌘

+ w1
⌘

)⇢n
j

��x(w1
⌘

+ w2
⌘

)⇢n
j�1 +�x

N�1X

k=0

wk

⌘

⇢
j+k+2

⌘
�n

j+3/2

+
�

2
⇢n
j

�x

N�2X

k=2

(wk�1
⌘

� wk+1
⌘

)�n

j+k+1/2

+
�

2
�xwN�2

⌘

⇢n
j

�n

j+N�1/2 +
�

2
�xwN�1

⌘

⇢n
j

�n

j+N+1/2

It’s important to note that the first coe�cient in the summation is non-negative for �x

su�ciently small such that ↵ � 2w
⌘

(0)�x, since

�xw0
⌘

(⇢n
j�1 + ⇢n

j+1)��x(w1
⌘

+ w2
⌘

)⇢n
j+2 ��x

N�2X

k=2

wk+1
⌘

⇢n
j+k

 �xw0
⌘

+�x
N�1X

k=0

wk

⌘

 1 + 2w
⌘

(0)�x

by (3.9). A slightly stronger CFL assumption

�t  2

2↵+ 3�xw
⌘

(0)
�x

makes the second coe�cient in the summation non-negative and the third term is non-

negative if ↵ � 1 + 2�xw
⌘

(0). Thus, all the coe�cients in the above expressions are

non-negative and the formula given above guarantees that the scheme (3.11)-(3.12) is

monotonicity preserving. Next, we take the absolute values in the above expression and
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sum them over j 2 Z and this process gives

)
X

j

����n+1
j+1/2

���

=
X

j

�

2

⇣
↵+ 1��xw0

⌘

(⇢n
j�1 + ⇢n

j+1)��x(w1
⌘

+ w2
⌘

)⇢n
j+2 ��x

N�2X

k=2

wk+1
⌘

⇢n
j+k

⌘����n

j�1/2

���

+
X

j

h
1� �

2

⇣
2↵��xw0

⌘

⇢n
j

+�x(w0
⌘

+ w1
⌘

)⇢n
j�1 ��x

N�1X

k=0

wk

⌘

�
j+k+3/2

⌘i����n

j+1/2

���

+
X

j

�

2

⇣
↵� 1 +�x(w0

⌘

+ w1
⌘

)⇢n
j

��x(w1
⌘

+ w2
⌘

)⇢n
j�1 +�x

N�1X

k=0

wk

⌘

⇢
j+k+2

⌘����n

j+3/2

���

+
X

j

�

2
⇢n
j

�x

N�2X

k=2

(wk�1
⌘

� wk+1
⌘

)
����n

j+k+1/2

���+
X

j

�

2
�xwN�2

⌘

⇢n
j

����n

j+N�1/2

���

+
X

j

�

2
�xwN�1

⌘

⇢n
j

����n

j+N+1/2

���

Rearranging the terms gives

X

j

����n+1
j+1/2

��� =
X

j

����n

j+1/2

���
h
1 +

�t

2

⇣N�2X

k=2

(wk�1
⌘

� wk+1
⌘

)⇢n
j+k+1 � (w1

⌘

+ w2
⌘

)⇢n
j�2

+
N�2X

k=2

(wk�1
⌘

� wk+1
⌘

)⇢n
j�k

� (w1
⌘

+ w2
⌘

)⇢n
j+3 + wN�2

⌘

)⇢n
j+N

+ wN�1
⌘

⇢n
j+N+1 + wN�2

⌘

⇢n
j�N�1 + wN�1

⌘

)⇢n
j�N

⌘i


h
1 +

�t

2

⇣N�2X

k=2

(wk�1
⌘

� wk+1
⌘

) + 2wN�2
⌘

+ 2wN�1
⌘

⌘iX

j

����n

j+1/2

���

 (1 + 2w
⌘(0)�t)

X

j

����n

j+1/2

���

Hence we get the following estimate for the total variation

TV (⇢�x

(T, ·))  (1 + 2w
⌘

(0)�t)T/�tTV (⇢�x

(0, ·))  e2w⌘

(0)TTV (⇢0).

Following [2], we derive the following space-time BV estimate;

Corollary 1. Let ⇢0 2 BV (R; [0, 1]), and ⇢�x

be given by (3.11)-(3.12). If ↵ � 1 +

2�xw
⌘

(0) and �t  2�x/(2↵ + 3�xw
⌘

(0)), then for every T > 0 there exists C̄ =

C̄(w
⌘,

⇢0, T,↵) such that

TV (⇢�x

; [0, T ]⇥R)  C̄ (3.22)
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3.2.3 Discrete entropy inequalities

We derive a discrete entropy inequality for the approximate solution generated by the

scheme (3.11)-(3.12).

G
j+1/2(u, v) =

1

2
uV n

j

+
1

2
vV n

j+1 +
↵

2
(u� v),

F 

j+1/2(u, v) = G
j+1/2(u ^ , v ^ )�G

j+1/2(u _ , v _ )

where a ^ b = max(a, b) and a _ b = min(a, b).

Proposition 3. Let ⇢n
j

, j 2 Z, n 2 N, be given by (3.10)-(3.11). Then, if ↵ � 1

and the CFL condition (3.16) holds, for all j 2 Z, n 2 N we have

|⇢n+1
j

� |� |⇢n
j

� |+ �
⇣
F 

j+1/2(⇢
n

j

, ⇢n
j+1)� F 

j�1/2(⇢
n

j�1, ⇢
n

j

)
⌘

+
�

2
sgn(⇢n+1

j

� )(V n

j+1 � V n

j�1)  0 (3.23)

for all  2 R.
Proof. With

H̄
j

(u, v, z) = v � �(G
j+1/2(v, z)�G

j�1/2(u, v)),

from (3.16) we have that the function H̄
j

is monotone non-decreasing in its first variable,

montone non-decreasing in its second variable for ↵�  1 and (3.17) guarantees that

for ↵ � 1 it is monotone non-decreasing in its third variable. Moreover, we have the

identity

H̄
j

(⇢n
j�1 ^ , ⇢n

j

^ , ⇢n
j+1 ^ )� H̄

j

(⇢n
j�1 _ , ⇢n

j

_ , ⇢n
j+1 _ )

= |⇢n
j

� |� �
⇣
F 

j+1/2(⇢
n

j

, ⇢n
j+1)� F 

j�1/2(⇢
n

j�1, ⇢
n

j

)
⌘
.
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By monotonicity,

) H̄
j

(⇢n
j�1 ^ , ⇢n

j

^ , ⇢n
j+1 ^ )� H̄

j

(⇢n
j�1 _ , ⇢n

j

_ , ⇢n
j+1 _ )

= H̄
j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1) ^ H̄

j

(,,)� H̄
j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1) _ H̄

j

(,,)

=
���H̄

j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1)� H̄

j

(,,)
���

= sgn
⇣
H̄

j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1)� H̄

j

(,,)
⌘
⇥
⇣
H̄

j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1)� H̄

j

(,,)
⌘

= sgn
⇣
H̄

j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1)� +

�

2
(V n

j+1 � V n

j�1)
⌘

⇥
⇣
H̄

j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1)� +

�

2
(V n

j+1 � V n

j�1)
⌘

� sgn
⇣
H̄

j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1)� 

⌘
⇥
⇣
H̄

j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1)� +

�

2
(V n

j+1 � V n

j�1)
⌘

=
���H̄

j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1)� 

���+
�

2
sgn

⇣
H̄

j

(⇢n
j�1, ⇢

n

j

, ⇢n
j+1)� 

⌘
(V n

j+1 � V n

j�1)

=
���⇢n+1

j

� 
���+

�

2
sgn(⇢n+1

j

� )(V n

j+1 � V n

j�1)

from the definition of (3.11)-(3.12), we have (3.23).

3.2.4 L1 stability estimates

Since Kružkov theory cannot be applied here due to lack of regularity of the convolution

kernel !
⌘

, we prove the explicit L1 estimates that guarantees the stability of the scheme

(3.11)-(3.12).

Proposition 4. Let ⇢0, ⇢̄0 2 BV (R; [0, 1]) be two initial data, and denoted by ⇢�x

,

¯⇢�x

the corresponding approximate solutoins constructed applying the modified Lax-

Friedrichs scheme (3.11)- (3.12):

⇢n+1
j

= ⇢n
j

+
�↵

2
(⇢n

j�1 � 2⇢n
j

+ ⇢n
j+1) +

�

2
(⇢n

j�1V
n

j�1 � ⇢
j+1V

n

j+1), (3.24)

⇢̄n+1
j

= ⇢̄n
j

+
�↵

2
(⇢̄n

j�1 � 2⇢̄n
j

+ ⇢̄n
j+1) +

�

2
(⇢̄n

j�1V̄
n

j�1 � ⇢̄
j+1V̄

n

j+1), (3.25)

where we have set V n

j

= 1 ��x
P

N�1
k=0 wk

⌘

⇢n
j+k

and V̄ n

j

= 1 ��x
P

N�1
k=0 wk

⌘

⇢̄n
j+k

. Then

under the assumptions (3.16), (3.17) the following estimate holds:

||⇢�x

(T, ·)� ⇢̄�x

(T, ·)||
L

1  K(w
⌘

, ⇢0, ⇢̄0, T )||⇢0 � ⇢̄0||
L

1 (3.26)

with K(w
⌘

, ⇢0, ⇢̄0, T ) := exp(Tw
⌘

(0)(1 + 0.5min{C(w
⌘

, ⇢0, T ), C(w
⌘

, ⇢̄0, T )})).
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Proof. We subtract (3.25) from (3.24) which gives:

⇢n+1
j

� ⇢̄n+1
j

= (1� �↵)(⇢n
j

� ⇢̄n
j

) +
�↵

2
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n
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� �

2
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j+1 � ⇢̄n
j+1)V̄

n

j+1 + (⇢n
j+1(V

n

j+1 � V̄ n

j+1))

=
⇣
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2
�xw1

⌘

⇢n
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⌘
(⇢n

j
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j

) +
�
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j�1 ��xw0
⌘

⇢n
j�1)(⇢

n

j�1 � ⇢̄n
j�1)

+
�

2
(↵� V̄ n

j+1 +�xw0
⌘

⇢n
j+1 ��xw2

⌘

⇢n
j�1)(⇢

n

j+1 � ⇢̄n
j+1)

+
�

2
�x

N�2X
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(wk�1
⌘

⇢n
j+1 � wk+1

⌘

⇢n
j�1)(⇢

n

j+k

� ⇢̄n
j+k

)

+
�

2
�xwN�2

⌘

⇢n
j+1(⇢

n

j+N�1 � ⇢̄n
j+N�1) +

�

2
�xwN�1

⌘

⇢n
j+1(⇢

n

j+N

� ⇢̄n
j+N

).

A close observation shows that from (3.16) the coe�cient of the first term is positive

and from (3.17) we have the coe�cients of second and third terms positive. Therefore,

we take the absolute values in the above equality and get

|⇢n+1
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� ⇢̄n+1
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�

2
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j+N

|.

Next, we sum it over j 2 Z, rearrange the indexes and by monotonicity of w
⌘

and using

the triangular inequality

|wk�1
⌘
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⌘
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⌘
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j
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h
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⇣N�2X
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(wk�1
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+
�t

2

N�2X
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⌘
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j
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Chapter 3. The non-local LWR model for tra�c flow 34

Therefore,

k⇢�x

(T, ·)� ⇢̄�x

(T, ·)k
L

1 
⇣
1 +�t

2 + TV (⇢�x

)

2
w
⌘

(0)
⌘
T/�t

k⇢0 � ⇢̄0k
L

1

which gives us the estimate (3.26).

Proof of Theorem 1. To show the convergence of scheme (3.11)-(3.12) to a weak solution

of 3.1, we apply the classical procedure of Lax-Wendro↵ theorem following [2]. Thanks

to Proposition 1 and Corollary 1, we can apply Helly’s theorem, stating that there

exists a subsequence, still denoted by ⇢�x

, that converges to some ⇢ 2 (L1 \ L1 \
BV )(R+ ⇥ R; [0, 1]) in the L1

loc

-norm.

Let � 2 C1
c

(R2) and then multiply (3.11) by �(tn, x
j

) and sum it over j 2 Z and n 2 N
and this process yields

X

n

X

j

�(tn, x
j

)(⇢n+1
j

� ⇢n
j

) = ��
X

n

X

j

�(tn, x
j

)(g(⇢n
j

, ..., ⇢n
j+N

)� g(⇢n
j�1, ..., ⇢

n

j+N�1))

Summation by parts gives

X

j

�(0, x
j

)⇢0
j

+
X

n

X

j

(�(tn, x
j

)� �(tn�1, x
j

))⇢n
j

+ �
X

n

X

j

(�(tn, x
j+1)� �(tn, x

j

))g(⇢n
j

, ..., ⇢n
j+N

) = 0 (3.27)

Next we multiply the above equation by �x

�x
X

j

�(0, x
j

)⇢0
j

+�x�t
X

n

X

j

�(tn, x
j

)� �(tn�1, x
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)

�t
⇢n
j

+�x�t
X

n

X

j

�(tn, x
j+1)� �(tn, x

j

)

�x
g(⇢n

j

, ..., ⇢n
j+N

) = 0. (3.28)

By strong L1

loc

convergence of ⇢�x

�! ⇢, it is easy to see that the first two terms in

(3.28) converge to

Z +1

�1
⇢0(x)�(0, x)dx+

Z + inf

0

Z +1

�1
⇢(t, x)�

t

(t, x)dxdt
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as � & 0. Concerning the last term, since ⇢n
j

2 [0.1] we observe that
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, ⇢0, T )�x, (3.29)

where C 0(w
⌘

, ⇢0, T ) = w
⌘

(0)C(w
⌘

, ⇢0, T )/2 for T � tn. Therefore, writing the last term

in (3.28) as
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By consistency, the first term in the above expression converges to

Z 1

0

Z +1

�1
⇢(t, x)v(⇢ ⇤

d

w
⌘

(t, x)�
x

(t, x)dxdt,

and the second term can be bounded using (3.29) in the following way:

Set T > 0 and R > 0 such that �(t, x) = 0 for t > T and |x| > R, and let n
T

2 N
and j0, j1 2 Z such that T 2 ]n

T

�t, (n
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k1C 0(w
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, ⇢0, T )2RT�x, (3.30)
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which tends to zero when �x & 0. For the entropy condition, we carry out the

same steps as above to show that (3.23) converges to (3.6). We multiply (3.23) by

�x�(tn, x
j

) � 0 and then summing by parts yields
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We follow the same steps as above and observe that as �x & 0 the first three terms in

the sum converge to
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�1
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Writing third term as
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The first in the above expression can be controlled by C(w
⌘

, ⇢0)�x, and the second

converges to

�
Z +1

0

Z +1

�1
sgn(⇢n

j

� )V
x

(t, x)�(t, x)dxdt, (3.32)

providing the entropy inequality (3.6).



Chapter 4

Numerical simulations

In the original Hughes’ model (Chapter 2) it is assumed that the overall density of the

crowd is known by every individual and all walking costs of pedestrians are based on the

current density. In order to include non-local e↵ects which enable pedestrians react to

the density of their surrounding area, convolution operator acting on the velocity term

considered in mathematical models. In the previous chapter, we introduced the LWR

model with non-local flux term which models reaction of drivers to downstream tra�c

flow. In this chapter, we give the formulation of non-local Hughes’ model for pedestrian

dynamics along with one-dimensional numerical simulations of both the original version

of Hughes’ model and the version with non-local flux term.

4.1 Numerical implementation of the Hughes’ model

In this section, we analyze the numerical solution of the nonlinear conservation laws

specifically the Hughes’ model in one dimension with given initial condition and Dirichlet

boundary conditions. The work is based on [4, 5, 11].

First, we recall the Hughes’ model for macroscopic pedestrian flow in one space dimension

⇢
t

(t, x)�
✓
⇢(t, x)v(⇢(t, x))

�
x

|�
x

|

◆

x

= 0, x 2 ⌦, t � 0, (4.1a)

|�
x

| = c(⇢(t, x)), x 2 ⌦, t � 0, (4.1b)

in the spatial domain ⌦ =]�1, 1[. In the above equations, for x 2 ⌦, t � 0, ⇢ = ⇢(t, x) 2
[0, 1] is the normalized crowd density, v(⇢) = (1� ⇢) is the velocity, c(⇢) = 1/v(⇢) is the

cost function and f(⇢) = ⇢(1�⇢) is the flux term. We assume that c : [0, 1[! [1,+1[ is

a smooth function such that c(0) = 1 and c0(⇢) � 0 for ⇢ 2 [0, 1[. Equations (4.1) must

37
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be completed with an initial condition such that

⇢(0, x) = ⇢0(x) 2 BV (R), x 2 ⌦. (4.2)

We consider the Dirichlet boundary conditions as

⇢(t,�1) = ⇢(t, 1) = 0, �(t,�1) = �(t, 1) = 0, t > 0 (4.3)

where x = ±1 represent the exit locations. Given an initial datum (4.2) and homoge-

neous Dirichlet boundary conditions (4.3) we solve (4.1) in an iterative manner at each

time step. The algorithm has two steps;

1. For a given ⇢ we solve the eikonal equation (4.1b) by the Fast Sweeping Method.

2. For a given � we solve the nonlinear conservation law (4.1a) by using a Finite

Volume Scheme with the Rusanov flux.

4.1.1 The fast sweeping algorithm for the eikonal equation (4.1b)

In this subsection, we explain the algorithm 1 which is used in order to solve the eikonal-

type equation (4.1b). The method is given in [11]. In our case the model is only in

one dimension but reader may refer to [11] for the generalized version of the method.

Godunov upwind di↵erence scheme used to discretize the partial di↵erential equation at

interior grid points of the spatial domain. The upwind di↵erencing at the interior grid

point i reads as

[(�h

i

� �h

xmin

)+]2 = c(⇢
i

)2h2, i = 2, ..., N � 1, (4.4)

where �h

i

= �(x
i

), �h

xmin

= min(�h

i�1,�
h

i+1) and

(�h

i

� �h

xmin

)+ =

8
<

:
�h

i

� �h

xmin

, �h

i

� �h

xmin

> 0

0, �h

i

� �h

xmin

 0

In order to enforce the boundary conditions �(±1) = 0 we assign exact values at bound-

ary grid points x = ±1. At the interior grid points we assign su�ciently large positive

values which will be updated later.

At each grid point x
i

whose value is not fixed during the initialization, we compute the

solution �̄ of (4.13) from the current values of its neighbors �h

i±1. Then we update the

distance value at grid i as

�new

i

= min{min{�
i�1,�i+1}+ c(⇢

i

)h,�
i

}
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For the final step to solve (4.13) we use two Gauss-Seidel iterations with 2 sweeping

orderings,

i = 1 : N, i = N : 1

since there are only two directions for the characteristics in one dimension, i.e. from left

to right and from right to left.

Algorithm 1 The fast sweeping algorithm for the Hughes’ model

1: procedure Initialization
2: Assign exact values at grid points on the boundaries for i = 1 and i = N .
3: Assign large positive values at interior grid points, for i = 2, ..., N � 1.
4: end procedure

1: procedure Discretization
2: Use Godunov upwind di↵erence scheme at interior grid points

[(uh
i

� uh
xmin

)+]2 = c(⇢
i

)2h2, i = 2, ..., N � 1,

where uh
i

= u(x
i

), uh
xmin

= min(uh
i�1, u

h

i+1) and (x)+ =

(
x, x > 0,

0, x  0.
3: end procedure

1: procedure Iterations
2: For each interior grid x

i

for i = 2, ..., N � 1, compute the solution ū by 2.
3: Update uh

i

, as unew
i

= min{uold
i

, ū}.
4: Sweep the whole domain with the ordering i = 1 : N .
5: Sweep the whole domain with the ordering i = N : 1.
6: end procedure

4.1.2 Rusanov scheme for the solution of (4.1a)

Once we have the solution for the eikonal equation (4.1b), the next step is to construct

the solutions for (4.1a) by using a finite volume scheme with the Rusanov flux as it is

described in [4]. In this subsection we describe the algorithm 2 which solves numerically

the equation (4.1a).

We divide the domain ⌦ =] � 1, 1[ in to N � 1 uniform cells I
i

= [x
i�1/2, xi+1/2] with

�x = 2
N�1 and x

i

= i�x, i = 1, ..., N � 1 are the center points of the cells.

We set k
i±1/2 = sgn(�n

x

(x
i±1/2)) where

�n

x

(x
i+1/2) '

�n(x
i+1)� �n(x

i

)

�x
.
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Here the superscript n denotes the iteration in time.

For the numerical flux we use the following Rusanov scheme

hn
i+1/2 = h(⇢n

i

, ⇢n
i+1) =

1

2
(f(⇢n

i

)+f(⇢n
i+1))+

1

2
max{|f 0(⇢n

i

)|, |f 0(⇢n
i+1)|}(⇢ni �⇢n

i+1) (4.5)

which is known to be robust.

We ensure the monotonicity of the scheme by transposing the arguments when k
i+1/2

Algorithm 2 The finite volume scheme for the Hughes’ model

1: procedure Initialization
2: Divide the domain ⌦ into N � 1 uniform cells.
3: Specify the grid point locations, i.e. x

i

= i�x, i = 1, ..., N � 1 are the center
points of the cells.

4: Initialize the time n = 0.
5: Set the initial flux as 0.
6: Calculate the initial mass as ⇢

i

⇥ h, where h is the grid size.
7: end procedure

1: procedure Iterations
2: while current mass is more than 99% of the initial mass do
3: Calculate k

i±1/2 = sgn(�n

x

(x
i±1/2)) where �n

x

(x
i+1/2) '

�

n(x
i+1)��

n(x
i

)
�x

. Here
Algorithm 1 is used to solve the eikonal equation.

4: Update the new flux according to 3 given by the Rusanov scheme (4.5).
5: Calculate the upper bound for �t by using (4.8) and set �t accordingly.
6: Update ⇢

i

by (4.7).
7: Calculate the current mass.
8: end while
9: end procedure

1: procedure Plotting
2: Store the final time T

f

and the density ⇢
new

after while loop.
3: Plot the density profile.
4: end procedure

changes its sign,

h
j+1/2 =

8
<

:
h(⇢n

i

, ⇢n
i+1), if k

i+1/2  0,

h(⇢n
i+1, ⇢

n

i

), if k
i+1/2 > 0.

(4.6)

Finally, we update ⇢
i

at each time iteration by

⇢n+1
i

= ⇢n
i

� �tn

�x
(k

i+1/2hi+1/2 � k
i�1/2hi�1/2) (4.7)

where �tn = tn+1� tn is chosen to satisfy the following CFL (Courant-Friedrichs-Lewy)

condition

�tn < 0.5
�x

max{max
j

{|f 0(⇢n
j

)|, |⇠̇n|}}
(4.8)
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where |⇠̇n| is estimated by each time step by taking the derivative of (2.24) which gives,

˙⇠(t)(c(⇢�) + c(⇢+)) = �
Z

⇠(t)

�1
c(⇢(t, y))

t

dy +

Z 1

⇠(t)
c(⇢(t, y))

t

dy. (4.9)

From the above equality (4.9) we obtain the upper bound as

|⇠̇n|  1

2
|
X

j

(1� ⇢n
j

� ⇢n
j+1)(c(⇢

n

j

)� c(⇢n
j+1))|. (4.10)

In the inequality (4.8), the coe�cient 0.5 is chosen to avoid interactions of ⇠n with the

cell boundaries since at each time step ⇠n = ⇠(t) is forced to be located at the middle of

the cell it belongs to.

4.2 Numerical implementation of the Hughes’ model with

non-local velocity term

In this section, we give the formulation of the Hughes’ model for pedestrian flow with

non-local flux term and we analyze the numerical solution of it in one dimension with

given initial conditions and Dirichlet boundary conditions.

We start by defining the non-local Hughes’ model for pedestrian flow in one space di-

mension

⇢
t

(t, x) +
⇣
⇢(t, x)v(⇢(t, x) ⇤ !

⌘

(x, ⌘))
⌘

x

= 0, x 2 ⌦, t � 0, (4.11a)

|�
x

| = c(⇢(t, x)) =
1

v(⇢(t, x) ⇤ !
⌘

(x, ⌘))
, x 2 ⌦, t � 0, (4.11b)

⇢(0, x) = ⇢0(x), x 2 ⌦, (4.11c)

⇢(t,�1) = ⇢(t, 1) = 0, �(t,�1) = �(t, 1) = 0, t > 0. (4.11d)

where ⌦ =]� 1, 1[ is the spatial domain and ⌘ > 0. Above, the convolution kernel !
⌘

2
C1([0, ⌘];R+) is a non-increasing function such that

R
⌘

�⌘

!
⌘

(x)dx = 1. In the numerical

simulations we used di↵erent kernels in order to study the e↵ects of the convolution

kernel to the evacuation time. The convolution product in (4.11a) is defined as

⇢ ⇤ w
⌘

(t, x) =

Z
x+⌘

x

⇢(t, y)w
⌘

(y � x)dy. (4.12)

Moreover, in the above equations, ⇢ = ⇢(t, x) 2 [0, 1] is the normalized crowd density,

v(⇢) = (1 � ⇢) is the velocity, c(⇢) = 1/v(⇢(t, x) ⇤ !
⌘

(x, ⌘)) is the cost function and

f(⇢) = ⇢(1 � ⇢) is the flux term. The two exit points are located in the x = ±1. The

methods that are used to implement the solution of the problem (4.17) are the same as
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the methods that were used for the original Hughes’ model in one space dimension (4.1).

Therefore, there are two main steps;

1. For a given ⇢ we solve the eikonal equation (4.11b) by the Fast Sweeping Method.

Here, the cost function is considered as c(⇢ ⇤ !
⌘

) instead of c(⇢).

2. For a given � we solve the nonlinear conservation law (4.11a) by using a finite

Volume Scheme with the Rusanov flux.

4.2.1 The fast sweeping algorithm for the eikonal equation (4.11b)

In this subsection, we explain the algorithm 3 which is used to solve the eikonal-type

equation (4.11b). The method is one dimensional case proposed in in [11]. Godunov

upwind di↵erence scheme used to discretize the partial di↵erential equation at interior

grid points of the spatial domain.

Algorithm 3 The fast sweeping algorithm for the non-local Hughes’ model

1: procedure Initialization
2: Assign exact values at grid points on the boundaries for i = 1 and i = N .
3: Assign large positive values at interior grid points, for i = 2, ..., N � 1.
4: Calculate the convolution product ⇢

i

⇤ !
⌘

i

for a given ⇢0.
5: Update ⇢

i

with the convolution product value ⇢
i

⇤ !
⌘

i

in order to calculate the
cost function c(⇢

i

⇤ !
⌘

i

) = 1/v(⇢
i

⇤ !
⌘

i

).
6: end procedure

1: procedure Discretization
2: Use Godunov upwind di↵erence scheme at interior grid points

[(uh
i

� uh
xmin

)+]2 = c(⇢
i

⇤ !
⌘

i

)2h2, i = 2, ..., N � 1,

where uh
i

= u(x
i

), uh
xmin

= min(uh
i�1, u

h

i+1) and (x)+ =

(
x, x > 0

0, x  0
3: end procedure

1: procedure Iterations
2: For each interior grid x

i

for i = 2, ..., N � 1, compute the solution ū by 2.
3: Update uh

i

, as unew
i

= min{uold
i

, ū}.
4: Sweep the whole domain with the ordering i = 1 : N .
5: Sweep the whole domain with the ordering i = N : 1.
6: end procedure

The upwind di↵erencing at the interior grid point i reads as

[(�h

i

� �h

xmin

)+]2 = c(⇢
i

⇤ !
⌘

i

)2h2, i = 2, ..., N � 1, (4.13)
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where �h

i

= �(x
i

), �h

xmin

= min(�h

i�1,�
h

i+1) and
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> 0
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 0

In order to enforce the boundary conditions �(±1) = 0 we assign exact values at bound-

ary grid points x = ±1. At the interior grid points we assign su�ciently large positive

values which will be updated later.

At each grid point x
i

whose value is not fixed during the initialization, we compute the

solution �̄ of (4.13) from the current values of its neighbors �h

i±1. Then we update the

distance value at grid i as

�new

i

= min{min{�
i�1,�i+1}+ c(⇢

i

⇤ !
⌘

i

)h,�
i

}

For the final step to solve (4.13) we use two Gauss-Seidel iterations with 2 sweeping

orderings,

i = 1 : N, i = N : 1

since there are only two directions for the characteristics in one dimension, i.e. from left

to right and from right to left.

There is only a small di↵erence between the algorithms 1 and 3. In the original Hughes’

model given by (4.1), it is assumed that the global distribution of all other individuals

⇢(t, x) is known to every pedestrian. By taking ⇢
i

as the input of the cost function

c(⇢
i

) in the equation (4.13) we consider all walking costs based on the current density.
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Figure 4.1: Gaussian convolution
kernel
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Figure 4.2: Rectangular convolution
kernel

It means that pedestrians are able to react to changes in the global density. But in

the practical situations, instead of complete perception of the global density, partial
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knowledge of the density limited to the neighborhood of the pedestrian is more realistic.

In order to model the limited perception of the density we took the cost function in

(4.13) as c(⇢
i

⇤ !
⌘

i

) where !
⌘

i

is the convolution kernel.

We consider first !
⌘,Gau

as a Gaussian kernel;

!
⌘,Gau

(x, ⌘) =
1

⌘
e
�
⇡(x� µ)2

⌘2 . (4.14)

The graph of a Gaussian function is a characteristic symmetric bell curve shape as in the

figure 4.1. The parameter 1
⌘

is the height of the curve’s peak and the quantity defined

as � :=
⌘p
2⇡

controls the width of the bell. We consider the position of the center of the

peak as 0, i.e. we use a symmetric Gaussian kernel. In our simulations, x is the domain

⌦ =]� 1, 1[, and � values are ranging from 0.01 to 1.0.

Moreover, we considered a rectangular convolution kernel !
⌘,rect

(x, ⌘) (see figure 4.2)

defined as

!
⌘,rect

(x, ⌘) =

8
>>><

>>>:

0, if |x| > ⌘

2 ,

1
2⌘ , if x = ⌘

2 ,

1
⌘

, if |x| < ⌘

2 .

(4.15)

where the parameter ⌘ is the horizontal width of the rectangular. We may write (4.15)

as

!
⌘,rect

(x, ⌘) =
1

⌘
�{�⌘/2,⌘/2}(x).

Thus the convolution product takes the form,

⇢ ⇤ w
⌘,rect

(t, x) =
1

⌘

Z
x+⌘/2

x�⌘/2
⇢(t, y)dy (4.16)

In the simulations ⌘ is ranging from 0 to 1.5.

4.2.2 Rusanov scheme for the solution of (4.11a)

In this subsection we give the algorithm 4 which solves the equation (4.11a). We refer

to the section 4.1.2 for more explanation. Only di↵erence between the algorithms 2

and 4 is that in the second one the cost function is taken as c(⇢
i

⇤ !
⌘

i

) where !
⌘

i

is

the convolution kernel. As it is defined in the previous section, we considered both the

Gaussian kernel and the rectangular kernel for the simulations. For this reason, as a part

of the Initialization process in the algorithm 4, we specified � value for the Gaussian

kernel and the width ⌘ for the rectangular kernel.
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Algorithm 4 The finite volume scheme for the non-local Hughes’ model

1: procedure Initialization
2: Divide the domain ⌦ into N � 1 uniform cells.
3: Specify the grid point locations, i.e. x

i

= i�x, i = 1, ..., N � 1 are the center
points of the cells.

4: Initialize the time n = 0.
5: Set the initial flux as 0.
6: Calculate the initial mass as ⇢

i

⇥ h, where h is the grid size.
7: Specify � value for the Gaussian kernel and the width ⌘ value for the rectangular

kernel.
8: end procedure

1: procedure Iterations
2: while current mass is more than 99% of the initial mass do
3: Calculate k

i±1/2 = sgn(�n

x

(x
i±1/2)) where �

n

x

(x
i+1/2) '

�

n(x
i+1)��

n(x
i

)
�x

. Here,
Algorithm 3 is used to solve the eikonal equation.

4: Update the new flux according to 3 given by the Rusanov scheme (4.5).
5: Calculate the upper bound for �t by using (4.8) and set �t accordingly.
6: Update ⇢

i

by (4.7).
7: Calculate the current mass.
8: end while
9: end procedure

1: procedure Plotting
2: Store the final time T

f

and the density ⇢
new

after while loop.
3: Plot the density profile.
4: end procedure

4.3 Results

In this section we present the results obtained for three di↵erent initial data for the

density ⇢. Initial data are selected so that the initial masses are all same for three of

the initial data sets. First initial datum ⇢0,1 we considered is of Riemann type;

⇢1(0, x) = ⇢0,1 =

8
<

:
0.1, if x  0

0.7, if x > 0
(4.17)

Second initial datum ⇢0,2 is of more general type;

⇢2(0, x) = ⇢0,2 =

8
>>>>>>><

>>>>>>>:

0.8, if � 0.8  x < �0.5,

0.6, if � 0.3  x  0.3,

0.4, if 0.4  x < 0.9,

0, elsewhere

(4.18)
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The last initial datum ⇢0,3 we considered is the following;

⇢3(0, x) = ⇢0,3 =

8
>>><

>>>:

0.85, if � 1  x  �0.2,

0, if � 0.3 < x  0.6,

0.3, if 0.6 < x  1

(4.19)
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Figure 4.3: ⇢0,1
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Figure 4.4: ⇢0,2
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Figure 4.5: ⇢0,3

In the simulations, first we implemented the numerical solution of the Hughes’ model

for pedestrian crowd dynamics with the initial data shown in the figures 4.6, 4.7 and

4.12 and homogeneous Dirichlet boundary conditions. Then, a localized smooth variant

of the same model was considered.

It is observed that a convolution term in the cost function allows pedestrians to move

according to knowledge of the density around them rather than the perception of the

global density. In other words, by considering a Gaussian or a rectangular type of kernel,

decisions of pedestrians will get a↵ected more by the changes in the density of the closer

areas to themselves than the global changes. This is a more realistic approach for large

groups of pedestrians.

Based on a given initial data, we are able to obtain the best � or ⌘ value for the con-

volution kernels which a↵ects the further movements of pedestrians. For the Gaussian

kernel the range we considered for the � value is from 0.01 to 1. The optimal values for

� which gives the shortest evacuation time are 0.2 for ⇢0,1, 0.1 for ⇢0,2 and 0.03 for ⇢0,3.

On the other hand, the optimal width values ⌘ for the rectangular kernel are 0.9 for ⇢0,1,

0.9� 1.0� 1.1 for ⇢0,2 and 0.1 for ⇢0,3 ant the range of ⌘ considered is from 0 to 1.5.

The figure 4.6 shows the one-dimensional simulation of Hughes’ model (4.1) with ⇢0,1.

Evacuation time represents the time required to empty 99% of the initial mass. The

figures 4.8 and 4.10 shows the simulations with the same initial data considering respec-

tively a Gaussian and a rectangular kernel. The parameters � = 0.2 and ⌘ = 0.9 are the

values at which the evacuation time is shortest. We called them as optimal values. We

explain the figures 4.7, 4.9, 4.11 for ⇢0,2 and the figures 4.12, 4.13, 4.14 for ⇢0,3 similarly.
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Figure 4.6: ⇢0,1 without convolution
Time = 2.4975
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Figure 4.7: ⇢0,2 without convolution
Time = 2.1698
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� = 0.2, Time = 2.4065
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Figure 4.9: ⇢0,2 with !⌘,Gauss

� = 0.1, Time = 1.9576
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Figure 4.10: ⇢0,1 with !⌘,rect

⌘ = 0.9, Time = 2.3588
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Figure 4.11: ⇢0,2 with !⌘,rect

⌘ = 0.9� 1.0� 1.1, Time = 1.9476
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Figure 4.12: ⇢0,3 without convolu-
tion, Time = 3.1531
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Figure 4.13: ⇢0,3 with !⌘,Gauss

� = 0.03, Time = 3.0544
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Figure 4.14: ⇢0,3 with !⌘,rect

⌘ = 0.1, Time = 3.0524

Moreover, in the figures 4.15, 4.17, 4.19, 4.16, 4.18 and 4.20 we see the plots of evacu-

ation time versus change in either � or ⌘ values. In the graphs, horizontal lines show

evacuation time of local version of Hughes’ model. It is seen from the figures that there

exist an optimal value for the non-local model which makes evacuation time shorter than

the one with the original model. However, that value is not the same for all types of

initial data.

In the tables 4.1 and 4.2 we see the change in evacuation time depending on the width

of kernel considered. We can compare evacuation time for all three of the initial data

from the figures 4.1 and 4.2. We can deduce from the figures that optimal time is highly

dependent on the initial data. Although, we have taken the initial mass as same for all

three di↵erent initial data, because of initial distribution of mass the evacuation time is

di↵erent for all three of them.

In addition, as we see in the figure 4.21, width of 6 ⇥ � of the Gaussian kernel covers
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Table 4.1: Evacuation time with respect to � of the Gaussian kernel

Evacuation Time

� ⇢0,1 ⇢0,2 ⇢0,3
0.01 2.4926 2.1613 3.1144
0.02 2.4882 2.1526 3.0734
0.03 2.4882 2.1427 3.0544

0.04 2.4834 2.1336 3.0914
0.05 2.4822 2.1096 3.1584
0.06 2.4804 2.0766 3.2244
0.07 2.4752 2.0386 3.2883
0.08 2.4752 2.0066 3.3043
0.09 2.4716 1.9786 3.3063
0.1 2.4682 1.9576 3.3133
0.2 2.4065 1.9606 3.7512
0.3 2.4236 1.9646 4.2511
0.4 2.5874 1.9696 4.8380
0.5 2.7095 1.9796 5.2320
0.6 2.7921 1.9846 5.2709
0.7 2.8461 1.9896 5.2709
0.8 2.8791 1.9946 5.2709
0.9 2.9061 1.9946 5.2709
1.0 2.9261 1.9986 5.2709

without conv 2.4975 2.1698 3.1531

Table 4.2: Evacuation time with respect to ⌘ of the rectangular kernel

Evacuation Time

⌘ ⇢0,1 ⇢0,2 ⇢0,3
0 2.4975 2.1698 3.1531
0.1 2.4856 2.1460 3.0524

0.2 2.4752 2.0936 3.1934
0.3 2.4682 1.9896 3.2913
0.4 2.4613 1.9476 3.3563
0.5 2.4517 1.9606 3.5243
0.6 2.4417 1.9666 3.6793
0.7 2.4261 1.9606 3.8052
0.8 2.3898 1.9556 3.9262
0.9 2.3588 1.9476 4.0762
1.0 2.4055 1.9476 4.3241
1.1 2.4804 1.9476 4.5841
1.2 2.5533 1.9506 4.8110
1.3 2.6235 1.9556 5.0240
1.4 2.6875 1.9646 5.2180
1.5 2.7513 1.9746 5.2709

without conv. 2.4975 2.1698 3.1531
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Figure 4.15: ⇢0,1, Gaussian kernel
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Figure 4.16: ⇢0,1, rectangular kernel
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Figure 4.17: ⇢0,2, Gaussian kernel
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Figure 4.18: ⇢0,2, rectangular kernel
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Figure 4.19: ⇢0,3, Gaussian kernel
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Figure 4.20: ⇢0,3, rectangular kernel

almost same width of ⌘ of the rectangular kernel. We took the values of � and ⌘ which

gives the optimal time for ⇢0.2.

The MATLAB codes which are used in this section can be found in the Appendix A.
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Figure 4.21: Comparison of width of Gaussian kernel and width of rectangular kernel,
� = 0.1, ⌘ = 1.1
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Figure 4.22: Comparison of evacuation time with respect to initial data in the case
of a Gausssian kernel
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Figure 4.23: Comparison of evacuation time with respect to initial data in the case
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Chapter 5

Conclusion and future work

Main aim of the thesis is the study of the non-local version of the Hughes’ model. We

implemented the numerical solutions of both the original and the non-local versions of

one-dimensional Hughes’ model by using MATLAB environment. E↵ect of the con-

volution kernels to the evacuation time was investigated. We considered two di↵erent

functions as convolution kernel in the simulations. They are the Gaussian function given

by (4.14) and a rectangular pulse function given by (4.15).

Based on our observations, we proposed an alternative version to the non-local model

considering some modifications of the rectangular convolution kernel. In the previous

simulations (Chapter 4) symmetric rectangular kernel was used. Here we consider non-

symmetric rectangular kernel modeling the behavior of looking at the direction of closer

exit more than the other direction. Another modification we make is that width of the

rectangular kernel is decreasing near exits, approaching dirac-delta function on the exit

points x = ±1. This is a reasonable assumption since at the points which are closer

to the exits, by using a rectangular kernel with a constant width we have to take into

account the density information of the points beyond the exits at x = ±1.

We refer to the non-local model with initial and homogeneous Dirichlet boundary condi-

tions given by (4.17) and the symmetric rectangular convolution kernel given by (4.14).

For a given turning point ⇠ 2]� 1, 1[, we define the shift towards an exit point from the

location of a pedestrian as

x
shift

(x, ⇠) =

8
<

:
��, x < ⇠,

+�, x > ⇠.
(5.1)

where x 2 ⌦ =]� 1, 1[ and � > 0. For the sake of simplicity we take � = ⌘/2, where ⌘ is

width of the rectangular convolution kernel. Thus, the center of the convolution kernel

53
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x
center

becomes

x
center

(x, ⇠) = x+ x
shift

(x, ⇠) =

8
<

:
x� ⌘

2 , x < ⇠,

x+ ⌘

2 , x > ⇠.
(5.2)

We define the convolution product on both sides of the turning point as

⇢ ⇤ !
⌘,rect

(x, ⌘) = ⇢
⇠

(x) =

8
<

:

1
⌘

R
x

x�⌘

⇢(z)dz, x < ⇠,

1
⌘

R
x+⌘

x

⇢(z)dz, x > ⇠.
(5.3)

Moreover, ⇢ needs to be extended as 0 in [�1� ⌘,�1] and [1, 1 + ⌘] to define the above

convolution product (5.3). In order to find the solution of the eikonal equation (4.11b)

we need to have a turning point ⇠ such that

Z
⇠

�1
c(⇢

⇠

)dx =

Z 1

⇠

c(⇢
⇠

)dx (5.4)

for given parameters ⌘ > 0 and for ⇢(x) 2 L1(] � 1, 1[; [0, 1]). Note that the equation

(5.4) depends ⇠ on implicitly. We define an auxiliary function such that

'(⇠) =

Z
⇠

�1
c(⇢

⇠

)dx�
Z 1

⇠

c(⇢
⇠

)dx.

We know that the mapping

⇠ ! '(⇠) =

Z
⇠

�1
c(⇢

⇠

)dx�
Z 1

⇠

c(⇢
⇠

)dx

is a continuous quantity being sum of continuous functions. Notice that

'(�1) = �
Z 1

�1
c(⇢�1)dx < 0, '(1) =

Z 1

�1
c(⇢+1)dx > 0.

If ' is strictly monotone, then there exits a unique solution to '(⇠) = 0. Moreover,

giving a proof of this argument can be a part of future work. Numerical simulations and

possible extensions of the model such that ⌘ ! 0 as x ! ±1 can also be considered.



Appendix A

MATLAB codes

Eikonal equation solver for (4.1b)

%% STEP 1: Given rho , solve the eikonal equation by the fast sweeping method

function [k, turn] = eikonal(rho , N)

% h grid size

% N number off cells

% domain ]-1,1[

h = 2/(N-1);

u = zeros(N+1 ,1);

% cost function

cost = @(x) (1./(1 -x));

%% assigning random big values to the grid points inside the domain

for i=2:N

u(i) = 500;

end

%% first sweeping

for i=2:N

u(i) = min( min ( u(i+1),u(i-1) )+ (cost(rho(i -1)))*h, u(i));

end

%% second sweeping

for i=N:-1:2

u(i) = min( min(u(i+1),u(i-1))+ (cost(rho(i -1)))*h, u(i));

end

%% defining k

k = -sign(u(2:N+1)-u(1:N));

%% turning point

for i=1:N-1

if k(i) ~= k(i+1)

turn = i;

end

end

55
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Eikonal equation solver for (4.11b) with a Gaussian kernel

%% STEP 1: Given rho , solve the eikonal equation by the fast sweeping method

function [k, turn , z] = eikonal_conv(rho , N, sigma)

% h grid size

% N number off cells

% domain interval ]-1,1[

h = 2/(N-1);

u = zeros(N+1 ,1);

cost = @(x) (1./(1 -x));

%% assigning big values to the grid points inside the domain

for i=2:N

u(i) = 500;

end

x = -1:h:1;

%% calculating the values for the Gaussian kernel

Gauss = normpdf (x, 0, sigma );

Gauss = Gauss ./sum(Gauss);

%% convolution

z = conv(rho , Gauss , ’same’);

rho = z;

%% first sweeping

for i=2:N

u(i) = min( min ( u(i+1),u(i-1) )+ (cost(rho(i -1)))*h, u(i));

end

%% second sweeping

for i=N:-1:2

u(i) = min( min(u(i+1),u(i-1))+ (cost(rho(i -1)))*h, u(i));

end

%% defining k

k = -sign(u(2:N+1)-u(1:N));

%% turning point

for i=1:N-1

if k(i) ~= k(i+1);

turn = i;

end

end

Eikonal equation solver for (4.11b) with a rectangular kernel

%% STEP 1: Given rho , solve the eikonal equation by the fast sweeping method

function [k, turn , z] = eikonal_rect(rho , N, width)

% h grid size

% N number off cells

% domain interval ]-1,1[
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h = 2/(N-1);

u = zeros(N+1 ,1);

cost = @(x) (1./(1 -x));

%% assigning big values to the grid points inside the domain

for i=2:N

u(i) = 500;

end

x = -1:h:1;

%% calculating the values for the rectangular kernel

Kernel = rectpuls(x, width);

Kernel = Kernel ./sum(Kernel );

%% convolution

z = conv(rho , Kernel , ’same’);

rho = z;

%% first sweeping

for i=2:N

u(i) = min( min ( u(i+1),u(i-1) )+ (cost(rho(i -1)))*h, u(i));

end

%% second sweeping

for i=N:-1:2

u(i) = min( min(u(i+1),u(i-1))+ (cost(rho(i -1)))*h, u(i));

end

%% defining k

k = -sign(u(2:N+1)-u(1:N));

%% turning point

for i=1:N-1

if k(i) ~= k(i+1);

turn = i;

end

end

Solution to (4.1) with ⇢0,1 Riemann type initial data

%% STEP 2: Given u(solution to the eikonal eqn), solve the nonlinear conservation

law with Rusanov flux

% Riemann type initial data

close all

clear all

clc

%% defining functions

cost = @(x) (1 ./(1-x));

f = @(x) (x.*(1-x));

df = @(x) (1-2*x);

h = @(x,y) ((0.5*(f(x)+f(y)))+(0.5*( max(abs(df(x)),abs(df(y)))).*(x-y)));

N=1001; %% number of cells: N-1
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%% coordinates of cell center and end points

xmax = 1;

xmin = -1;

x = linspace(xmin , xmax , N);

xcenter = 0.5*(x(1:N-1)+x(2:N));

delta_x = x(2)-x(1); %% cell size

t=0; %% initial time

%% defining rho

rhoL =0.1;

rhoR =0.7;

for i=1: N-1

if i <= (N -1)/2

rho(i,1) = rhoL;

elseif i> (N -1)/2

rho(i,1) = rhoR;

end

end

RHO = rho;

flux = zeros(1,N);

%% initial mass

mass0 = delta_x * sum(rho);

%%%% necessary only if convolution term is considered in the cost function

%% specify the sigma value for the Gaussian

%% sigma = 0.2;

j=1; %time

mass = mass0;

t=0;

T=t;

while mass >= 0.01*( mass0) %% condition for 99% of the crowd is getting emptied

%% calling eikonal function to get k

[k, turn] = eikonal(rho ,N);

%%%% [k, turn , conv_rho] = eikonal_conv(rho ,N,sigma );

% in the case that convolution term is considered

k = k’;

%% update flux according to k value

for i=2: turn

flux(i) = h(rho(i),rho(i-1));

end

for i=turn +1:N-1

flux(i) = h(rho(i-1), rho(i));

end

flux (1) = f(rho (1));

flux(N) = f(rho(N -1));

flux = k .*flux;

%% upper bound for delta t

ub = (0.5)* abs(sum((1-rho (1:N-2)-rho(2:N -1)).*( cost(rho(1:N-2))- cost(rho(2:N -1)))));

y = df(rho);

denominator = max(max(abs(y)),ub);
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delta_t = (0.4999)*( delta_x )/( denominator );

%% rho update

rho_new = rho - (delta_t/delta_x )*( flux (2:N)-flux (1:N-1))’;

RHO = [RHO rho_new ];

rho = rho_new;

mass = delta_x*sum(rho);

t = t + delta_t;

T = [T t];

tp(j) = turn; % turning points

j= j+1;

end

tp= (tp - (N -1)/2)./(N/2); % scaling for the turning points

fprintf(’iteration number : %d\n’,t );

%% ploting the solution

figure (1)

[C, h] =contourf (xcenter , T, RHO’, 64);

set(h, ’LineColor ’, ’none’);

%% plot the turning curve

hold on

plot(tp , T(2:j), ’w’);

ylabel(’Time’);

xlabel(’Space: ]-1,1[’);

Solution to (4.17) with ⇢0,1 Riemann type initial data by considering a Gaussian kernel

%% Given u(soln to eikonal eqn), solve the nonlinear conservation law with Rusanov scheme

% Riemann type initial data

close all

clear all

clc

%% define functions

cost = @(x) (1 ./(1-x));

f = @(x) (x.*(1-x));

df = @(x) (1-2*x);

h = @(x,y) ((0.5*(f(x)+f(y)))+(0.5*( max(abs(df(x)),abs(df(y)))).*(x-y)));

N=1001; %% number of cells: N-1

%% coordinates of cell end points

xmax = 1;

xmin = -1;

x = linspace(xmin , xmax , N);

xcenter = 0.5*(x(1:N-1)+x(2:N));

delta_x = x(2)-x(1); %% cell size

t=0; %% initial time

Tf = 0.5; %% final time

%% defining rho

rhoL =0.1;

rhoR =0.7;

for i=1: N-1

if i <= (N -1)/2
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rho(i,1) = rhoL;

elseif i> (N -1)/2

rho(i,1) = rhoR;

end

end

mass0 = delta_x*sum(rho);

RHO = rho;

%% specify the sigma value for the Gaussian

sigma = 0.2;

tic

t=0; %time

j=1;

T=t;

mass=mass0;

while mass >= 0.01* mass0 %t <= Tf

%% call eikonal function to get k

[k, turn , conv_rho] = eikonal_conv(rho ,N,sigma );

k = k’;

%% update flux according to k value

for i=2: turn

flux(i) = h(rho(i),rho(i-1));

end

for i=turn +1:N-1

flux(i) = h(rho(i-1), rho(i));

end

flux (1) = f(rho (1));

flux(N) = f(rho(N -1));

flux = k .*flux;

%% upper bound for delta t

y = df(rho);

ub = (0.5)* abs(sum((1-rho (1:N-2)-rho(2:N -1)).*( cost(conv_rho (1:N-2))- cost(conv_rho (2:N -1)))));

denominator = max(max(abs(y)),ub);

delta_t = (0.4999)*( delta_x )/( denominator );

%% rho update

rho_new = rho -( delta_t/delta_x )*( flux (2:N)’-flux (1:N-1)’);

RHO = [RHO rho_new ];

rho = rho_new;

%% mass update

mass = delta_x*sum(rho);

t = t + delta_t;

T = [T t];

tp (j) = turn; % turning point

j= j+1;

end

toc

tp;

tp = (tp - (N -1)/2)./(N/2);

fprintf(’Evacuation time: %d\n’, t);

figure (1)
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[C, h] =contourf(xcenter , T, RHO’ ,64);

set(h, ’LineColor ’, ’none’);

hold on

plot(tp , T(2:j), ’w’);

ylabel(’Time’);

xlabel(’Space: ]-1,1[’);

Solution to (4.17) with ⇢0,1 Riemann type initial data by considering a rectangular

%% Given u(soln to eikonal eqn), solve the nonlinear conservation law with Rusanov scheme

% Riemann type initial data

close all

clear all

clc

%% define functions

cost = @(x) (1 ./(1-x));

f = @(x) (x.*(1-x));

df = @(x) (1-2*x);

h = @(x,y) ((0.5*(f(x)+f(y)))+(0.5*( max(abs(df(x)),abs(df(y)))).*(x-y)));

N=1001; %% number of cells: N-1

%% coordinates of cell end points

xmax = 1;

xmin = -1;

x = linspace(xmin , xmax , N);

xcenter = 0.5*(x(1:N-1)+x(2:N));

delta_x = x(2)-x(1); %% cell size

t=0; %% initial time

Tf = 0.5; %% final time

%% defining rho

rhoL =0.1;

rhoR =0.7;

for i=1: N-1

if i <= (N -1)/2

rho(i,1) = rhoL;

elseif i> (N -1)/2

rho(i,1) = rhoR;

end

end

mass0 = delta_x*sum(rho);

RHO = rho;

%% specify the width value for the rectangular kernel

width = 0.9;

tic

t=0; %time

j=1;

T=t;

mass=mass0;

while mass >= 0.01* mass0 %t <= Tf
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%% call eikonal function to get k

[k, turn , conv_rho] = eikonal_rect(rho ,N,width );

k = k’;

%% update flux according to k value

for i=2: turn

flux(i) = h(rho(i),rho(i-1));

end

for i=turn +1:N-1

flux(i) = h(rho(i-1), rho(i));

end

flux (1) = f(rho (1));

flux(N) = f(rho(N -1));

flux = k .*flux;

%% upper bound for delta t

y = df(rho);

ub = (0.5)* abs(sum((1-rho (1:N-2)-rho(2:N -1)).*( cost(conv_rho (1:N-2))- cost(conv_rho (2:N -1)))));

denominator = max(max(abs(y)),ub);

delta_t = (0.4999)*( delta_x )/( denominator );

%% rho update

rho_new = rho -( delta_t/delta_x )*( flux (2:N)’-flux (1:N-1)’);

RHO = [RHO rho_new ];

rho = rho_new;

%% mass update

mass = delta_x*sum(rho);

t = t + delta_t;

T = [T t];

tp (j) = turn; % turning point

j= j+1;

end

toc

tp;

tp = (tp - (N -1)/2)./(N/2);

fprintf(’Evacuation time: %d\n’, t);

figure (1)

[C, h] =contourf(xcenter , T, RHO’ ,64);

set(h, ’LineColor ’, ’none’);

hold on

plot(tp , T(2:j), ’w’);

ylabel(’Time’);

xlabel(’Space: ]-1,1[’);
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