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Today the area of partial di↵erential equation is fascinating because many real world

problems can be modelled using these equations. As the system becomes more compli-

cated so becomes the PDE associated with it. For such systems it becomes di�cult to

get the analytical solution. In the present work, we concentrate on couple of such prob-

lems inspired from biological world. We describe a model for a two-phase system which

involves a set of reaction-di↵usion equations. These equations describes the di↵usion

and the binding/unbinding processes in both layers. Additional flux continuity at the

interface and clearance conditions into systemic circulation are imposed. To solve the

system we employ a numerical scheme, compare the numerical results with the analytical

ones and later propose a new method which is very e�cient in terms of calculations and

also solves a nonlinear system (Drug-eluting stent) problem.
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Chapter 1

Introduction

1.1 Reaction-di↵usion systems and their applications

The area of partial di↵erential equation is considered to be the most applied in any

branch of Science. All beautiful phenomena in the nature can be modeled using these

equations. But, the theory of these equations seems to be even more interesting and

insightful. Formally, a partial di↵erential equation can be defined as an equation in-

volving multivariable functions and their partial derivatives. In other words, PDEs are

equations that involve rate of change with respect to continuous variables.

The PDEs can be broadly categorized into three parts: linear, semilinear and nonlinear.

They can also be divided on the basis of nature of solution such as: elliptic, parabolic and

hyperbolic. In the current work we present PDEs called as reaction-di↵usion equations.

Reaction-di↵usion (RD) equations arise naturally in systems consisting of many in-

teracting components, (e.g., chemical reactions) and are extensively used to describe

pattern-formation phenomena in variety of biological, chemical and physical systems.

In other words, RD systems are mathematical models which explain how the concen-

tration of one or more substances distributed in space changes under the influence of

two processes: local chemical reactions in which the substances are transformed into

each other, and di↵usion which causes the substances to spread out over a surface in

space. Reaction–di↵usion systems are naturally applied in chemistry. However, the sys-

tem is also useful in describing dynamical processes of non-chemical nature. Examples

are found in biology, physics, geology and ecology. Mathematically, reaction–di↵usion

systems take the form of semi-linear parabolic partial di↵erential equations. They can

be represented in the general form

@tu = Dr2u+W (u)

1
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where u(x, t) represents the concentration of one material, D is di↵usion coe�cient and

W stands for all local reactions. The solutions of RD equations express a wide range

of behaviors, including the formation of travelling waves and wave-like phenomena and

also some self-organized patterns like stripes, hexagons or more intricate structure like

dissipative solitons.

With this introduction to RD equations we proceed to reaction-di↵usion equations in

composite systems. In the following section, we describe several real life applications

where these systems are highly in use.

1.1.1 Applications of composite media in real-world problems

There are many applications in physics where the fluxes occur through layers of material.

For example, the di↵usion of solute, conduction of ion from one side of an epithelium

to the other or flow of heat from one body to another. In this section we present 3

applications from the real world, which involves system composed of multiple media.

In the first application, the model describes one dimensional heat flow through a medium

consisting of several layers of di↵erent materials. The model proposes the measurement

of heat production by muscle [1]. The system is composed of a semi-infinite medium, the

muscle, in which heat production is spatially uniform and time varying. The heat di↵uses

through layers of solution and insulation to the center of the thermal element where heat

flow is zero. In the systems composed of multiple layers, the solution is algebraically

tedious because it involves satisfying two sets of boundary conditions per layer. This

complexity makes it di�cult to understand physically what is happening, so investigators

frequently ignore the layers and analyze the flux as if the medium were homogeneous with

a set of e↵ective parameters. However, in this model, no single set of e↵ective parameters

are employed that will describe the entire time course when the medium is actually

layered. Here the flux of heat from a semi-infinite source, through three finite layers to

a central plane where the heat flow is zero, is examined. This geometry represents the

experimental measurement of heat production in muscle, where a small thermophile is

sandwiched between two relatively large muscles; hence, by symmetry there is no heat

flux at the center (Fig. 1.1). To solve this system mathematically, Laplace transforms

are employed to derive a series of transfer functions relating the temperature at each

interface to that at the next and to the rate of heat production. Moreover, analytic

expression are dervied for the time course of the initial rate of temperature change and

each of these expressions have the same form, regardless of the number of layers, hence

these phases of the response can be extrapolated to describe a general system of n layers.
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Figure 1.1: Geometry of heat di↵usion barriers for a thermopile1 with a muscle
mounted on each face. The layers are symmetrical on each side of a plane in the center
of the thermal junctions, whose half-thickness is dimension a. Covering the couples
are a layer of insulation (thickness b) and an additional layer of insulation or solution

(thickness c)

Another application of composite medium system is heat conduction in one-dimensional

heat slab [2]. The three-layer model explains the simplified case in which all heat transfer

occurs only by conduction (no radiation, no convection, no heat generation, no combus-

tion). Moreover, by observing the symmetries in the two and three-layer problems, a

n-layer solution for the one-dimensional multi-layer slab is formulated. A composite slab

consisting of three parallel layers is shown in the Fig. 1.2. Let k1, k2, k3 be thermal

conductivities, ↵1, ↵2, ↵3 be the thermal di↵usivities and d1, d2 and d3 be the thickness

of the 1st, 2nd and 3rd layers, respectively. Initially at t = 0 the three region plate

has specific, uniform temperature T0. At time t = 0 the composite slab is suddenly

heated such that the temperatures after t = 0 are fixed as T0 and T1 at the bottom and

top surfaces, respectively. Here T1 represents the “flame” temperature while T0 is the

cold “substrate” temperature. The central region of thickness d2 is the heated sample.

At the two interfaces (x = d1, x = d1 + d2), we assume that perfect thermal contact

conditions are satisfied. It is assumed that the thermal conductivity and the thermal

di↵usivity are temperature independent and uniform within each layer. The mathemat-

ical model thus given was then solved using eigenfunction expansion method. The main

advantage of this method comes when one of the slabs has thermophysical properties

radically di↵erent from those of other two, or one layer is much narrower than the other

two layers.

In the third application we consider the drug delivery problem from mathematical bi-

ology which is one of the main subjects in this work [3]. Transdermal drug delivery

(TDD) is an approach used to deliver drugs through the skin for therapeutic purposes

as an alternative to oral, intravascular, subcutaneous and transmucosal routes. TDD has
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Figure 1.2: The three-layer composite slab showing the imposed temperatures on
the two sides at the orientation of the coordinate system. The contact between the
interfaces is assumed to be thermally perfect, meaning continuity of T and @T

@x

at
x = d1 and x = d1 + d2.

several advantages compared to other delivery methods: controlled release rate, nonin-

vasive administration, less frequent dosing, and simple application without professional

medical aids. For these reasons it represents a valuable and attractive alternative to

oral administration. To describe the model, a system of partial di↵erential equations

are used which express the di↵usion and the binding/unbinding processes in both layers

(skin and drug). Moreover, to connect the both layers an additional flux continuity at

the interface and clearance conditions into systemic circulation are imposed. In the next

section, we discuss more about the mathematical aspect of the problem.

The last application is a similar problem or can be called mathematically as an extension

problem is a drug-eluting stent model and this is also part of the our current work. The

model represents drug release from an eluting stent and the subsequent transport in the

arterial wall. In order to study the complete process, a two-phase mathematical model

describing the transport of a drug between two coupled media of di↵erent properties and

extensions as a unique release system is presented. To describe the process of dissolution

and di↵usion in the polymeric matrix and di↵usion, convection and binding reaction in

the tissue layer, a system of nonlinear partial di↵erential equations has been used.

1.2 Thesis layout

The project is composed of four chapters. The first chapter is an introduction to the

thesis which contains some real life problems modeled using reaction-di↵usion equations

in composite medium. One such example is transdermal drug delivery problem which is
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one of the main topics to be dealt during the work; an introduction to this problem is

also a part of this chapter.

In the second chapter, we solve the system numerically using Crank-Nicolson scheme and

obtain the results for individual concentration levels and for total masses. The results

obtained are close to the analytical results. In this chapter, we also solve the dimen-

sionless form and from here onwards, for further analysis we use only the dimensionless

form.

The challenge in solving the problem numerically lies in finding solution at the interface,

as there is a discontinuity in the concentrations. In the third chapter, we introduce a new

formulation where the solution at the interface is calculated using a technique involving

Taylor’s expansion ([4]). We write these equations in system of the form: dU
dt = A(U),

where U is the solution vector. We solved it using a MATLAB solver ODE15s and

results obtained were more accurate and fast as compared to the previous methods.

In the fourth and last chapter, we plan to use the same technique for a nonlinear problem.

As a nonlinear problem can incorporate more functionality of the model problem, solving

it numercially would be only way to approach as finding the analytical solution becomes

impossible.

1.3 A mathematical formulation of transdermal drug de-

livery problem

In this section we consider the mathematical model of drug delivery problem. We have

already introduced the problem in the previous section, thus, in addition to that we

have a model TDD, a two-layered system composed of: (i) the vehicle (the transdermal

patch or the film of an ointment), and (ii) the skin (the stratum corneum followed by

the skin-receptor cells and the capillary bed) (Fig 1.3). The drug is encapsulated in the

vehicle, a reservoir consisting of a polymeric matrix. This is enclosed on one side with

an impermeable backing and having on the other side an adhesive in contact with the

skin. Moreover, a rate-controlling membrane shielding the polymer matrix may exist. In

this configuration, the first layer is shaped as a planar slab that is in direct contact with

the skin (the second layer). We confine our study to a simplified one-dimensional model

as most of the mass dynamics occurs along the direction normal to the skin surface.

In particular, x-axis is assumed to be normal to the skin surface and oriented with the

positive direction outwards the skin. Without loss of generality, let x = 0 be the vehicle-

skin interface and l0 and l1 the thicknesses of the vehicle and skin layers respectively
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(Fig 1.3). The vehicle and the skin are both treated from a macroscopic perspective so

that they are represented as two homogeneous media.

Figure 1.3: Cross-section of the vehicle and the skin layers, geometrical configuration
and reference system. Due to an initial di↵erence of free drug concentrations c0 and
c1, a mass flux is established at the interface and drug di↵uses through the skin. At a
distance x = l1 the skin-receptor (capillary bed) is present where all drug is assumed

to be absorbed. Figure not to scale.

Initially, the drug is stored at maximum concentration within the vehicle in a bound

phase (e.g. nanoparticles or crystalline form) (ce): in such state, it is unable to be

delivered to the tissue. Then, a fraction of this drug (�0ce) is transferred, through a

dissolution process, to an unbound – free, biologically available – phase (c0), and con-

versely, by a binding process, a part of the free drug (�0c0) may be transferred to the

bound state (Fig. 1.4). Also, at the same time, another fraction of free drug (c1) begins

to di↵use into the adjacent skin (delivery). Similarly, in the skin – the release medium –

a part of the unbound drug (�1c1) is metabolized by the cell receptors and transformed

in a bound state (cb) (absorption), and with the reverse unbinding process (�1cb) again

in a unbound phase. Thus, the drug delivery-absorption process starts from the vehicle

and ends to the skin receptors, with bidirectional phase changes in a cascade sequence,

as schematically represented in Fig. 1.4. Local mass non-equilibrium processes, such as

bidirectional drug binding/unbinding phenomena, play a key role in TDD, with char-

acteristic times faster than those of di↵usion. Here, a linear relationship is commonly

used, as the density of binding sites far exceeds the local free drug concentration. Thus,

we have:
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Figure 1.4: A diagram sketching the cascade mechanism of drug delivery and per-
cutaneous absorption in the vehicle-skin coupled system. A unbinding (resp. binding)
reaction occurs in the vehicle (resp. in the skin) (blue arrows). In both layers, reverse
reactions (red arrows) are present in a dynamic equilibrium. Drug di↵usion occurs only

in the free phases c0 and c1.

1.4 The continuum problem

For the given problem, we consider the two layer system with domain (�l0, l1) i.e.

(�l0, 0) is the layer I(vehicle) and (0, l1) is layer II(skin).

The system in (�l0, 0) given by

@ce
@t

= ��0ce + �0c0 (1.1)

@c0
@t

= D0
@2c0
@x2

+ �0ce � �0c0 (1.2)

Similarly, in the second layer i.e. interval (0, l1) the system is given by:

@c1
@t

= D1
@2c1
@x2

� �1c1 + �1cb (1.3)

@cb
@t

= �1c1 � �1cb (1.4)

where D1 is the e↵ective di↵usivity of unbound drug, �1 � 0 and �0 � 0 are the

binding and unbinding rate constants in the skin, respectively. They can be evaluated

experimently as described in [5, 6], sometimes through the equilibrium constant K = �1
�1
.

Moreover, the di↵usion coe�cient in a composite medium can be assumed as:

D(x) =

(
D0 : x 2 (�l0, 0)

D1 : x 2 (0, l1)
(1.5)
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1.4.1 Initial conditions

ce(x, 0) = 1, c0(x, 0) = 0, cb(x, 0) = 0, c1(x, 0) = 0 (1.6)

1.4.2 Boundary and interface condtions

Since, no mass flux passes between the vehicle and the external surrounding due to the

impermeable backing and we impose a no-flux condition at x = l0 :

�D0
@c0
@x

= 0 (1.7)

For the boundary condition at the skin-receptor (capillary) boundary, the elimination

of drug by capillary system follows first-order kinetics. Therefore, at x = l1,

Kclc1 +D1
@c1
@x

= 0 (1.8)

where Kcl is the skin-capillary clearance per unit area (cm/s).

To close the two-layer mass transfer system of eqs. (1.1)-(1.4) a flux continuity condition

has to be assigned at the vehicle-skin interface:

�D0
@c0
@x

= �D1
@c1
@x

(1.9)

The concentration continuity is not guaranteed because of a di↵erent drug partitioning

between vehicle and skin. This is taken care by a suitable mass transfer coe�cient Pr

[5, 6]. Moreover, a semi-permeable rate-controlling membrane or an adhesive film or a

non-perfect vehicle-skin contact, having 1
Pm

as mass resistance, might be present at the

interface. Thus, a concentration jump may occur:

�D1
@c1
@x

= P (c0 � c1) (1.10)

with P (cm/s) the overall mass transfer coe�cient:

1

P
=

1

Pr
+

1

Pm

Equations (1.9) and (1.10) are called flux continuity and jump concentration conditions,

respectively.



Chapter 2

Finite di↵erence method for a

composite material

In this chapter, we consider the transdermal drug delivery problem, convert it to dimen-

sionless form and discretize it over space and time using Crank-Nicolson scheme. As

explained in the previous chapter, the problems consists of two media i.e. the vehicle

and skin; the drug moves from vehicle to skin which is modeled using reaction-di↵usion

equations. Moreover, the two phases are linked with a flux-continuity equation.

2.1 Dimensionless form and its discretization

We use the following variables:

x̄ =
x

l1
, t̄ =

D1

(l1)2
t, � =

Pl1
D1

l̄0 =
l0
l1
, � =

D0

D1
, c̄i =

ci
Ce

K =
Kcll1
D1

, �̄i =
�i(l1)2

D1
, �̄i =

�i(l1)2

D1
for i = 0, 1 (2.1)

and convert the problem to a dimensionless problem:

9
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2.1.1 The continuum problem

By omitting the bar for simplicity, the mass transfer problem (1.1)-(1.4) can be now

written in dimensionless form as:

@ce
@t

= ��0ce + �0c0 in (�l0, 0) (2.2)

@c0
@t

= �
@2c0
@x2

+ �0ce � �0c0 in (�l0, 0) (2.3)

@c1
@t

=
@2c1
@x2

� �1c1 + �1cb in (0, 1) (2.4)

@cb
@t

= �1c1 � �1cb in (0, 1) (2.5)

2.1.2 Initial conditions

ce(x, 0) = 1, c0(x, 0) = 0 (2.6)

cb(x, 0) = 0, c1(x, 0) = 0 (2.7)

2.1.3 Boundary conditions

No flux condition at x = l0 is:

�
@c0
@x

= 0 (2.8)

At x = 1,

Kc1 +
@c1
@x

= 0 (2.9)

At the interface x = 0 there are two conditions:

�
@c0
@x

=
@c1
@x

(2.10)

�@c1
@x

= �(c0 � c1) (2.11)

2.2 Numerical Discretization

The whole domain (�l0, 1) is subdivided in two parts, first is (�l0, 0) which is discretized

with step size h0 and (0, 1) with step size h1. The labeling of nodes is as follows: x = �l0

as i = 1, (�l0, 0) as i = 2, ..., N � 1, x = 0 as i = N and (0, 1) as i = N + 1, ...,M � 1,

x = 1 as i = M (Fig. 2.1). The interval (�l0, 0) is discretized into N points with space

step size h0 and time step size k, then the nondimensional equations (1.1) and (1.2) in

the discretized form are:
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Layer&I&(vehicle)! ! ! !!!Layer&II&(skin)!!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

N#1! N+1! &i=M&i=&1& !!N!

!

!!

!!

!!

!!

ℎ!

ℎ!

Figure 2.1: The two-phase system is divided into M points: N � 1 points in the first
layer with step size h0 and M �N points in the second layer with step size h1. i = N

is the interface point.

2.2.1 Layer I (Vehicle)

cn+1
ei � cnei

k
= ��0c

n
ei + �0c

n
0i

=) cn+1
ei = cnei(1� k�0) + �0kc

n
0i (2.12)

cn+1
0i

� cn0i
k

=
h
�✓

cn+1
0i+1

� 2cn+1
0i

+ cn+1
0i�1

h20
+ (1� ✓)�

cn0i+1
� 2cn0i + cn0i�1

h20

i

+ �0c
n
ei � �cn0i (2.13)

cn+1
0i�1

⇣
� k✓

h20
�
⌘
+ cn+1

0i

⇣
1 +

2k✓

h20
�
⌘
+ cn+1

0i+1

⇣
� k✓

h20
�
⌘

= cn0i�1

⇣k(1� ✓)

h20
�
⌘
+ cn0i

⇣
1� 2k(1� ✓)

h20
� � �0k

⌘
+ cn0i+1

⇣k(1� ✓)

h20
�
⌘
+ k�0c

n
ei

(2.14)

8i = 1, ..., N�1 and 0 < ✓ < 1.



Chapter 2. Finite Di↵erence Method for a Composite material 12

2.2.2 Layer II (Skin)

Next we examine our system in the skin side. The interval (0, 1) is discretized with step

size h1. The equations (2.4) and (2.5) in the discretised form are:

cn+1
bi

� cnbi
k

= �1c
n
1i � �1c

n
bi

) cn+1
bi

= cnbi(1� k�1) + k�1c
n
1i (2.15)

8i = N+1, ...,M .

cn+1
1i�1

⇣
� k✓

h21

⌘
+ cn+1

1i

⇣
1 +

2k✓

h21

⌘
+ cn+1

1i+1

⇣
� k✓

h21

⌘

= cn1i�1

⇣k(1� ✓)

h21

⌘
+ cn1i

⇣
1� 2k(1� ✓)

h21
� k�1

⌘
+ cn1i+1

⇣k(1� ✓)

h21

⌘
+ k�1c

n
bi

(2.16)

8i = N+1, ...,M and 0 < ✓ < 1.

2.2.3 Initial and boundary conditions

The initial conditions are:

c1ei = 1, cn0i = 0 8i = 1, ..., N � 1

c1bi = 0, c11i = 0 8i = N + 1, ...,M.

Boundary conditions: The no flux condition (2.8) at x = �l0 using central di↵erence

scheme can be discretized as (at time step n+ 1):

�
(cn+1

0i+1
� cn+1

0i�1
)

h0
= 0

=) cn+1
02 = cn+1

00 at i = 1 (2.17)

The boundary condition (2.9) at x = 1 i.e. i = M and at time step n+ 1 is:

Kcn+1
1M

+(
cn+1
1M+1

�cn+1
1M�1

2h1
) = 0

=) cn+1
1M+1

= cn+1
1M�1

� 2Kh1c
n+1
1M

(2.18)
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Conditions at the interface x = 0 : The flux continuity condition, equation (1.9) at

the interface x = 0 i.e. i = N ,

�
cn+1
0N

� cn+1
0N�1

h0
=

cn+1
1N+1

� cn+1
1N

h1

) ��h1c
n+1
0N�1

+ �h1c
n+1
0N

+ h0c
n+1
1N

� h0c
n+1
1N+1

= 0 (2.19)

and the jump concentration, equation (1.10) at x = 0 is:

�
cn+1
1N+1

� cn+1
1N

h1
= �(cn+1

0N
� cn+1

1N
)

) �h1c
n+1
0N

� (1 + �h1)c
n+1
1N

+ cn+1
1N+1

= 0 (2.20)

Note: All the boundary conditions are evaluated at time step n+ 1.

Moreover, the drug masses are computed as integral of concentration over the corre-

sponding layer:

Mi(t) =

Z
ci(x, t)dx; i = 0, 1, e, b (2.21)

In the discrete version it can be written as:

Mj(t) =
X

i

cj(xi) ⇤ h0 j = e, 0 (2.22)

Mj(t) =
X

i

cj(xi) ⇤ h1 j = b, 1 (2.23)

The complete system: We have equation (2.14) for each i = 1, ..., N�1 and (2.16)

for i = N+1, ...,M , hence N � 1 + M � N = M � 1 equations. For i = N we have

two equations i.e. (2.19), (2.20) thus making M � 1 + 2 = M + 1 equations system to

solve. The values for c00 and c1M+1 are substituted from equations (2.17) and (2.18),

respectively. A system thus obtained can be written in the following form:

AXn+1 = BXn + kZn (2.24)

where, A and B are (M+1)⇥(M+1) size matrices and X, Z are M+1 dimension vectors

with concentration values c0, c1 and ce, cb respectively.

X =
⇣
cn+1
01 , ..., cn+1

0N�1
, cn+1

0N
, cn+1

1N
, cn+1

1N+1
, ..., cn+1

1M

⌘
, Z =

⇣
cne1 , ..., c

n
eN�1

, 0, 0, cn+1
bN+1

, ..., cn+1
bM

⌘
.

Moreover, the values of ce and cb for t = n+ 1 are updated using equations (2.12) and

(2.15), respectively which are calculated 1 after solving system (2.24).

1
See B.1 for MATLAB code
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with �1 =
2k(1�✓)

h2
0

� + �0k and �2 =
2k(1�✓)

h2
1

+ �1k.

The matrices on the both sides can be written in the form of tridiagonal matrices as:

A =

0

BBBBBBBB@

A
1

0

��h1 �h1
0 �h1

h0 �h0
��h1�1 1

0 A
2

1

CCCCCCCCA

where

A1 =

0

BBBBBBBBBBBB@

1 + k✓
h2
0
� �k✓

h2
0
� 0 · · · · · · 0

�k✓
h2
0
� 1 + 2k✓

h2
0
� �k✓

h2
0
� · · · · · · 0

0 �k✓
h2
0
� 1 + 2k✓

h2
0
� �k✓

h2
0
� · · · 0

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

0 · · · · · · �k✓
h2
0
� 1 + 2k✓

h2
0
� �k✓

h2
0
�

1

CCCCCCCCCCCCA

and

A2 =

0

BBBBBBBBB@

�k✓
h2
1

1 + 2k✓
h2
1

�k✓
h2
1

· · · · · · 0
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...

0 0 · · · �k✓
h2
1

1 + 2k✓
h2
1

�k✓
h2
1

0 0 · · · 0 �k✓
h2
1

1 + k✓
h2
1
+ kKcl✓

h2
1

1

CCCCCCCCCA

Also,

B =

0

BBBBBBBB@

B
1

0

0 0

0 B
2

1

CCCCCCCCA

where

B1 =

0

BBBBBBBBBBBB@

1��1
k(1�✓)

h2
0

� 0 · · · 0 0
k(1�✓)

h2
0

� 1��1
k(1�✓)

h2
0

� · · · · · · 0

0 k(1�✓)
h2
0

� 1��1
k(1�✓)

h2
0

� · · · 0
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...

0 · · · · · · k(1�✓)
h2
0

� 1��1
k(1�✓)

h2
0

�

1

CCCCCCCCCCCCA

and
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B2 =

0

BBBBBBBBB@

k(1�✓)
h2
1

1��2
k(1�✓)

h2
1

· · · · · · 0
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...

0 · · · · · · k(1�✓)
h2
1

1��2
k(1�✓)

h2
1

0 · · · · · · 0 k(1�✓)
h2
1

1��2 � 2kK(1�✓)
h1

1

CCCCCCCCCA

2.3 Results

The above system was solved in MATLAB using parameters values from table 2.1.

Moreover, the space domain was discretized with M = 1000, N = 50 and time step was

chosen as k = 0.1. The simulations were run for t = 0.01, 0.1, 1.

The total drug masses were obtained using the eqns. (2.22), (2.23) and it is seen from

the figure (2.2) that only Me shows an exponential decay unlike M0, M1, Mb which

increases at initial times upto a peak and later reaches to zero.

In figure (2.3), there are four plots (2.3a, 2.3b, 2.3c, 2.3d), each showing the concentration

at di↵erent times: t = 0.01, 0.1, 1. It is seen from that at given time, in the vehicle (Fig.

2.3a, 2.3b) the concentration of drug is almost constant except for the discontinuity at

the interface. And, the concentration ce reduces as the time progresses whereas cb first

increases and then starts decreasing.

On the other hand, in the skin side, at any time the drug concentration was found to

be decreasing across space (Fig. 2.3c, 2.3d).

It is important to note that the numerical results were found to be very close with the

semi-analytical results obtained in the paper [3].

Parameters
Parameter Value Units
l0 40 ⇤ 10�4 cm
l1 0.1 cm
�0 10�4 s�1

�1 1.5 ⇤ 10�4 s�1

�0 10�4 s�1

�1 10�4 s�1

D0 5⇥ 10�7 cm2/s
D1 7⇥ 10�8 cm2/s
P 10�6 cm/s
Kcl 3⇥ 10�3 cm/s

Table 2.1: Parameters for linear problem
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Chapter 3

An alternative approach for the

linear problem

In this chapter we use a new method to solve our RD problem. We adopt a finite-

di↵erence scheme that discretizes the problem spatially, a Runge-Kutta type method

with backward di↵erentiation formulas and adaptive time step. In other words, we

convert the problem in a form which can be solved using a MATLAB solver ODE15s

and compare the results with the ones obtained with the previous methods.

3.1 Numerical Discretization

Di↵erently from chapter 2, the whole domain (�l0, 1) is subdivided in two parts, (�l0, 0)

which is discretized with step size h0 and (0, 1) with step size h1. We denote x = �l0 as

i = 1, (�l0, 0) as i = 2, ..., N�1, (0, 1) as j = 2, ...,M � 1, x = 1 as j = M . Moreover,

it is important to note that the interface point x = 0 is now considered as (split into)

two points i.e. i = N (left side of interface, in red) and j = 1 (right side of interface,

in yellow). Figure 3.1 displays the new discretization with N grid points on the layer I

and M grid points on the layer II.

3.2 ODE15s formulation

In this section we convert our RD system into a form which can further be solved using

a MATLAB solver ODE15s. In order to achieve that we discretize the equations with

respect to the space as follows:

21
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Interface&&
&&&x&=&0!
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Figure 3.1: The two phase domain is divided in N+M points: layer I in N points
with step size h0 and layer II in M points with step size h1. Moreover, the discretization
di↵ers from the previous one in a manner that the point on the interface is split into
two: c

l

on the left side and c
r

on the right side of the interface as seen in two colours.

We consider our ODE system in (�l0, 0)

dcei
dt

= ��0cei + �0c0i (3.1)

dc0i
dt

= �
c0i+1 � 2c0i + c0i�1

h20
+ �0cei � �0c0i (3.2)

for i = 1, ..., N � 1 and in the interval (0, 1):

dc1j
dt

=
c1j+1 � 2c1j + c1j�1

h21
� �1c1j + �1cbj (3.3)

dcbj
dt

= �1c1j � �1cbj (3.4)

for j = 2, ...,M. The concentration values of c0 and c1 at the interface i.e. cl (left side of

interface) and cr (right side of interface), respectively, were calcuated with a method 1

derived by Hickson et al. [4]. The method makes use of the boundary conditions (2.10)

and (2.11) and hence we have:

cl =
1

⇤
{�c0N�2 [�(2�h1 + 3)] + c0N�1 [4�(2�h1 + 3)]

+ c11(8�h0)� c12(2�h0)} (3.5)

1
See appendix A.2
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and

cr =
1

⇤
{�c0N�2(2��h1) + c0N�1(8��h1)

+ c11(4(2�h0 + 3�))� c12(2�h0 + 3�)} (3.6)

with ⇤ = 9� + 6�(h0 + �h1).

As now we know the values of c0 and c1 at the interface i.e. i = N and j = 1 therefore,

now we can also calculate the bound concentration values at the interface. Hence, with

cl and cr we have:

dce�
dt

= ��0ce� + �0cl (3.7)

dcb+
dt

= �1cr � �1cb+ (3.8)

where ce� and cb+ are the concentration values at the interface i.e. at i = N (on the

left side of interface) and j = 1 (on the right side of interface), respectively.

Now, with the equations (3.1), (3.2), (3.3), (3.4), (3.7) and (3.8), we get a system of

equations of the form:
dU

dt
= A(U)

where the vector U = (ce1 , ..., ceN�1 , ce�, c01 , ..., c0N�1 , c11 , ..., c1M�1 , cb+, cb2 , ..., cbM ).

3.3 The algorithm and advantages of the new method

In this section, we present the algorithm with which we solve our ODE system and the

advantages of using the new method.

The algorithm we present, is composed of two parts or procedures. In the first procedure,

we define the parameters, assign the initial conditions, time interval. A function call to

the ODE solver is also made which in turn calls another routine “f”. Output of the

procedure is to extract individual concentrations and to plot them.

In the function call “f”, we receive parameters, initial data and time interval as inputs

and return vector dU
dt as an output. The system (3.1)-(3.4) is solved for i = 1, ...,M .

Moreover, the algorithm is given by:
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Algorithm 1 LinearODE algorithm

1: procedure Linear–ODE
2: para  define parameters
3: U0  assign initial conditions
4: T  time interval
5: Function call ODE15s(@f, U0, para)
6: Extract the output and plot
7: end procedure

1: procedure f(U0, t, para)
2: Input: U0, t, para
3: Output: dU

dt
4: Extract individual concentrations from vector U0.
5: Solve:

i = 1 (boundary condition (2.17))
@cei
@t = ��0cei + �0c0i
@c0i
@t = �

2c0i+1�2c0i
h2
0

+ �0cei � �0c0i
for i = 2 : M � 1

@cei
@t = ��0cei + �0c0i
@c0i
@t = �

c0i+1�2c0i+c0i�1

h2
0

+ �0cei � �0c0i
@c1i
@t =

c1i+1�2c1i+c1i�1

h2
1

� �1c1i + �1cbi
@cbi
@t = �1c1i � �1cbi

i = M (boundary condition (2.18))
@c1i
@t =

2c1i�1�(2+Kh2)c1i
h2
1

� �1c1i + �1cbi
@cbi
@t = �1c1i � �1cbi

to obtain dU
dt for each point in the domain.

6: Calculate cl and cr a posteriori using eq. (3.5) and (3.6), respectively.
7: Return dU

dt
8: end procedure

3.3.1 Advantages

The advantages of the current method are the following:

⌥ We have an ODE even at the interface which is not a relation betwen fluxes and this

allows us to use the MATLAB solver ODE15s. This was not possible with the previous

method (chapter2).

⌥ The system is discretized by standard finite di↵erence scheme only in space and we

do not take in account the time (explicit or implicit).

⌥ The concentrations at the interface are computed more accurately and the convergence

of the method is extremely fast compared to the previous methods.
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3.4 Results

We solved the system of M+N�2 equations with M = 1000, N = 50, the dimensionless

parameters and obtain the following results 2. Moroever, the calculation for cl and cr

is done a posteriori using the equations (3.5) and (3.6). The time interval for the run is

T = 2.5. From the figures, it is seen that the individual concentrations and total masses

are almost same as obtained in the semi-analytical case in the previous chapter.

0 0.5 1 1.5 2 2.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

t

M

 

 
Me
M0
M1
Mb

Figure 3.2: Time histories of total masses obtained using ODE15s
(compare with figure 2.2)

2
See appendix B.2 for MATLAB code
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Figure 3.3: Plots of individual concentration at di↵erent times using ODE15s
(compare with figure 2.3)





Chapter 4

A nonlinear extension and

applications

In this chapter we consider another example of RD problem in composite media. This

is a nonlinear problem, an extension to the previous one where we have a mathematical

model for a “Drug-eluting stent systems” [7] [8]. The process of drug release from

an eluting stent and the subsequent transport in the arterial wall is described using

a coupled system of nonlinear RD equations. First we present the continuum model,

then discritize it and carry out the same procedure (as done in chapter 2-3) to solve the

system.

4.1 The mathematical model

A stent consists of a tubular wired mesh consisting of cross-membered struts, inserted

and then expanded in a stenosed artery. In a DES, the struts are typically covered with

a thin layer of polymer (coating) containing a therapeutic drug. The drug is directed to

the vascular wall (the release medium), aimed at healing the vascular tissue or at pre-

venting a possible restenosis by virtue of its antiproliferative action again smooth muscle

cells. Therefore, drug delivery occurs between a coupled two-layer system composed of

the coating (layer 0) and the wall (layer 1) (Fig. 4.1).

The coating is modelled as a planar slab, enclosed on one side with the imper-

meable strut and having the other side faced to the wall. A rate-controlling membrane

protecting the polymer matrix may exist at the interface. In this configuration, as most

of the mass dynamics occurs along the direction normal to the tissue surface, we restrict

our study to a simplified one-dimensional case. In particular, since the wall thickness is

very small compared to the arterial radius, a Cartesian coordinate system is used, with

29
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the x-axis normal to the layer surface and pointing outwards. Without loss of generality,

we assume that x = 0 is the interface and l0 and l1 is the thicknessess of the coating

and wall respectively, with l1 � l0 Fig. (4.1).

Figure 4.1: Cross section of a typical DES, showing the schematic drug release mech-
anism between coating (layer 0) and wall (layer 1), the geometrical configuration and
the reference system. Due to an initial di↵erence of free drug concentrations c0 and c1,
a mass flux establishes at the interface and drug di↵uses through the wall. Figure not

to scale.

4.1.1 Drug dynamics in the coating

Initially, the drug exists in a solid phase, encapsulated within the polymer matrix (e.g.

nanoparticles or crystalline form)(b0). In such a state, it becomes impossible to be

delivered to the tissue [7] [8]. When exposed to biological fluid, as in the in-vivo case,

the polymer takes up fluid, initiates the dissolution process, and passes in the free phase

(c0), providing a means for the drug to elute from the device. Since the di↵usion of

drug in the solid phase is negligible, the equations for the drug dynamics in terms of

concentrations b0 and c0 are given by:

@b0
@t

= �⇠0b
2
3
0 (S � c0) in (�l0, 0) (4.1)

@c0
@t

= D0
@2c0
@x2

+ ⇠0b
2
3
0 (S � c0) in (�l0, 0) (4.2)

whereD0 (cm2s�1) is the e↵ective di↵usion coe�cient of the solute, ⇠0 (((molcm�3)2/3s)�1)

the dissolution rate and S is the solubility limit [9].
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4.1.2 Drug dynamics in the biological tissue

The drug c0 passes through the interface towards the arterial the wall, the release

medium, the free drug (c1) undergoes di↵usion and convection due to a pressure di↵er-

ence across the wall. In addition, the drug may bind reversibly to specific components

of the cells with a saturable limit. Indeed, a fraction of it (b1) is often targeted to bind

to specific receptors on the surface of or within smooth muscle cells. Among several

di↵erent ways of modelling the binding/unbinding of a drug eluted from DES, we adopt

the non-linear saturable binding model presented in [10]. For the purposes of this pa-

per, we make the assumption that the wall comprises a single homogeneous layer with

isotropic di↵usion properties. The drug transport in the tissue is thus governed by the

advection-di↵usion reaction equations:

@c1
@t

= D1
@2c1
@x2

� v1
@c1
@x

� ↵1c1(bmax � b1) + �1b1 in (0, l1) (4.3)

@b1
@t

= ↵1c1(bmax � b1)� �1b1 in (0, l1) (4.4)

where D1 is the di↵usivity of the unbound drug and v1 (cms�1) is the magnitude of the

convection which is assumed to act in the positive x direction. In the above equations,

↵1 ((molcm�3s)�1) (resp. �1 (s�1)) is the forward (resp. backward) rate constant, and

bmax the local density of binding sites.

4.1.3 Boundary and interface conditions

In order to close the two-layer two-phase mass transfer system of equations (4.1)-(4.4),

a matching of fluxes needs to be assigned at the interface between the polymer coating

and the tissue i.e.

�D0
@c0
@x

= �D1
@c1
@x

+ v1c1 at x = 0 (4.5)

Because of a di↵erent drug partitioning between the two layers, the continuity in con-

centrations is not assured; moreover, a semi-permeable rate-controlling membrane or a

non-perfect contact might be present at the interface. Hence, we enforce that the flux

is proportional to the concentration jump [3] i.e.

�D1
@c1
@x

= P (c0 � c1) at x = 0 (4.6)
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where P (cms�1) is as defined before, the overall mass transfer coe�cient.

No mass flux passes to the outer surrounding due to the impermeable strut (x = l0):

�D0
@c0
@x

= 0 at x = �l0 (4.7)

At the other end (x = l1), it is supposed that the concentration vanishes i.e.

c1 = 0 at x = l1 (4.8)

4.1.4 Initial conditions

For initial conditions, we consider that all drug is at maximum concentration in encap-

sulated form in the coating, and rest all are zero i.e.

b0(x, 0) = B, c0(x, 0) = 0, c1(x, 0) = 0, b1(x, 0) = 0 (4.9)

4.2 The dimensionless form

In this section we convert our problem to a dimensionless form which later can be

discretized and solved using the same method as used in chapter 2. Therefore, in order

to begin we make use of the following dimensionless quantitiles:

x̄ =
x

l1
, t̄ =

D1

(l1)2
t, b̄0 =

b0
B
, S̄ =

S

B
, l̄0 =

l0
l1

c̄0 =
c0
B
, b̄1 =

b1
B
, c̄1 =

c1
B
, b̄max =

bmax

B
, � =

Pl1
D1

(4.10)

Hence, we write eq. (4.1) as :

D1B

l21

@b̄0
@ t̄

= �⇠0B
2
3 b̄

2
3
0 (BS̄ �Bc̄0)

) D1B

l21

@b̄0
@ t̄

= �⇠0B
2
3 b̄

2
3
0B(S̄ � c̄0)

) @b̄0
@ t̄

=
⇣
� ⇠0

l21
D1

B
2
3

⌘
b̄
2
3
0 (S̄ � c̄0)

) @b̄0
@ t̄

= �Da · b̄
2
3
0 (S̄ � c̄0) (4.11)
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hence we obtain the dimensionless quantity Da = ⇠0
l21
D1

B
2
3 also known as Damköhler

number1 and this we use in eq. (4.2) as :

BD1

l21

@c̄0
@ t̄

=
BD0

l21

@2c̄0
@x̄2

+
BD1

l21
Da · b̄

2
3
0 (S̄ � c̄0)

) @c̄0
@ t̄

=
D0

D1

@2c̄0
@x̄2

+Da · b̄
2
3
0 (S̄ � c̄0)

) @c̄0
@ t̄

= �
@2c̄0
@x̄2

+Da · b̄
2
3
0 (S̄ � c̄0) (4.12)

from the above equation we get � = D0
D1

. Now, from (4.3) we have:

BD1

l21

@c̄1
@ t̄

=
BD1

l21

@2c̄1
@x̄2

� v1
B

l1

@c̄1
@x̄

� ↵1Bc̄1(Bb̄max �Bb̄1) + �1Bb̄1

) @c̄1
@ t̄

=
@2c̄0
@x̄2

�
⇣
v1

l1
D1

⌘@c̄1
@x̄

�
⇣
↵1

l21
D1

B
⌘
c̄1(b̄max � b̄1) +

⇣
�1

l21
D1

⌘
b̄1

) @c̄1
@ t̄

=
@2c̄0
@x̄2

� Pe · @c̄1
@x̄

� ↵̄1c̄1(b̄max � b̄1) + �̄1b̄1 (4.13)

Thus, the above equation gives the values for ↵̄1, �̄1 and another dimensionless quantity

Pe = v1
l1
D1

known as Péclet number2. From the last two terms on the right hand side

we get the dimensionless form for eq. (4.4) i.e. :

@b̄1
@ t̄

= ↵̄1c̄1(b̄max � b̄1)� �̄1b̄1 (4.14)

Using the similar calculation we obtain the boundary and interface conditions as:

��
@c0
@x

= �@c1
@x

+ Pe · c1 at x = 0 (4.15)

�@c1
@x

= �(c0 � c1) at x = 0 (4.16)

@c0
@x

= 0 at x = �l0 (4.17)

c1 = 0 at x = 1 (4.18)

1
The Damköhler number (Da) is a ratio for determining whether di↵usion rates or reaction rates

are more ‘important’ for defining a steady-state chemical distribution over the length and time scales of

interest.

For Da >> 1 the reaction rate is much greater than the di↵usion rate distribution is said to be

di↵usion limited (di↵usion is slowest so di↵usion characteristics dominate and the reaction is assumed

to be instantaneously in equilibrium). For Da << 1 di↵usion occurs much faster than the reaction, thus

di↵usion reaches an ‘equilibrium’ well before the reaction is at equilibrium.

2
The Péclet number is defined as the ratio of the rate of advection of a physical quantity by the

flow to the rate of di↵usion of the same quantity.
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By omitting the bar for simplicity, we write our system (4.11)-(4.14) as:

@b0
@t

= �Da · b
2
3
0 (S � c0) in (�l0, 0) (4.19)

@c0
@t

= �
@2c0
@x2

+Da · b
2
3
0 (S � c0) in (�l0, 0) (4.20)

@c1
@t

=
@2c0
@x2

� Pe · @c1
@x

� ↵1c1(bmax � b1) + �1b1 in (0, 1) (4.21)

@b1
@t

= ↵1c1(bmax � b1)� �1b1 in (0, 1) (4.22)

4.3 Solving the full coupled system

In this section we convert our problem in a discretized form. As in the chapter 3 we

divide our domain (�l0, 0) and (0, 1) with step size h0 and h1 respectively (Fig. 3.1).

Hence, we have the eq. (4.19)-(4.22) in discrete form as:

@b0i
@t

= �Da · b
2
3
0i
(S � c0i) (4.23)

@c0i
@t

= �
c0i+1 � 2c0i + c0i�1

h20
+Da · b

2
3
0i
(S � c0i) 8i = 1, ..., N � 1. (4.24)

@c1i
@t

=
c1i+1 � 2c1i + c1i�1

h21
� Pe · ci+1 � ci�1

2h1
� ↵1c1i(bmax � b1i) + �1b1i (4.25)

@b1i
@t

= ↵1c1i(bmax � b1i)� �1b1i 8i = 2, ...,M. (4.26)

At x = 0 no unique value for concentration exists and no derivative can be computed

across the interface, due to a possible discontinuity. An alternative procedure is devised

to get the concentration values across the interface 3 which makes use of the boundary

conditions (4.5) and (4.6) [4] and hence we have:

cl =
1

⇤

⇣
�(3 + 2h1(�+ Pe))[4c0N�1 � c0N�1 ] + 2h0�[4c11 � c12 ]

⌘
(4.27)

cr =
1

⇤

⇣
(3� + 2h0�)[4c11 � c12 ] + 2�h1�[4c0N�1 � c0N�1 ]

⌘
(4.28)

where ⇤ = 9� + 6�(�h1 + h0) + 2h1Pe · (3� + 2h0�). With equations (4.23)-(4.28) our

system of PDEs reduces to a system of nonlinear ODE’s:

dU

dt
= A(U)

where the vector U = (b01 , ..., b0N�1 , b0�, c01 , ..., c0N�1 , c11 , ..., c1M�1 , b1+, b12 , ..., b1M ). Here,

the values b0� and b1+ denote the bound concentration values for b0 (left hand side of

interface) and b1 (right hand side of interface), respectively. Since we know we know cl

3
See appendix A.3.
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and cr from (4.27) and (4.28) therefore, these values can be easily computed from the

following equations:

@b0�
@t

= �Da · b
2
3
0�(S � cl) (4.29)

@b1+
@t

= ↵1cr(bmax � b1+)� �1b1+ (4.30)

Moreover, the drug masses are computed as integral of concentratoin over the corre-

sponding layer:

Mj(t) =

Z
j(x, t)dx; j = b0, b1, c0, c1; (4.31)

In the discrete version it can be written as:

Mj(t) =
X

i

j(xi) ⇤ h0 j = b0, c0 (4.32)

Mj(t) =
X

i

j(xi) ⇤ h1 j = b1, c1 (4.33)

4.4 Results

As before, we solve the system of M+N�2 equations with M = 1000, N = 50 in

MATLAB 4, the parameters given in the table 4.1 and obtain the results shown in the

figures 4.3, 4.2a and 4.2b. Moroever, the calculation for cl and cr is done a posteriori

using the equations (4.27) and (4.28). The time interval for the run is T = Tmax = 4

for obtaining the individual concentration profile and for the total masses profile it was

chosen as T = 100. The figures 4.2a and 4.2b show growth and decay of total masses in

the coating and in the wall respectively. And, Figure 4.3 has four subfigures, 4.3a, 4.3b,

4.3c and 4.3d showing the concentration profiles of c0, b0, c1 and b1 at di↵erent times:

t = 0.1, Tmax/2, Tmax, respectively.

Moreover, we also examined the dependence of the maximum level of total masses on

parameter ⇠0 which in turn determines the Damköhler number (Da). We varied the

values of ⇠0 from 10�3 to 1 ((molcm3)2/3s)�1 and observed that as the value of ⇠0 or Da

increases the reaction term gets dominated and hence the accumulation of drug in the

wall also increases (Table 4.2).

4
See appendix B.3 for MATLAB code



Chapter 4. A nonlinear extension and applications 36

Parameters
Parameter Value Units
l0 10�3 cm
l1 0.05 cm
B 10�4 mol cm�3

S B/10 mol cm�3

bmax 3.66⇥ 10�7 mol cm�3

↵1 2⇥ 106 (molcm�3s)�1

⇠0 1(varied) ((molcm3)2/3s)�1

�1 1.5 ⇤ 10�4 s�1

v1 5⇥ 10�6 cms�1

D0 10�12 cm2/s
D1 10�7 cm2/s
P 10�6 cm/s

Table 4.1: Parameters for the nonlinear drug-eluting stent problem

Table 4.2: Maximum values for the total masses of drug concentration in coating and
wall for di↵erent values of ⇠0. Mb0(= 0.02) is constant and does not have a peak.

Values of peak of total masses w.r.t varying ⇠0
⇠0 Da Mc0 Mc1 Mb1
10�3 0.05386 5.2⇥ 10�4 3.09⇥ 10�6 3.55⇥ 10�4

10�2 0.5386 0.00152 3.42⇥ 10�5 0.00184
10�1 5.386 0.001829 8.2194⇥ 10�5 0.00261
1 53.86 0.001929 8.2617⇥ 10�5 0.00262
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Figure 4.3: Plots of individual concentration at di↵erent times for
the drug eluting stent problem





Appendix A

Calculations of the concentration

values at interface

A.1 General case of an interface problem

First we do the calculation steps done for a general problem [4] and then we move on

to the drug delivery problem [3] and drug eluting stent problem [8]. Therefore, to begin

with we consider the following diagram (Fig. A.1) where we have xi as the interface

between layer i and layer i+1. The domain is descretized with step size h0.

Figure A.1: Finite di↵erence scheme indexing, where i denotes the layer, j denotes
the spatial discretization, and b± denote the points slightly to the positive (right)
or negative (left) sides of the interface. h0 is the distance between the inner spatial
discretization, h1 is the distance between U

j�1 and the interface, and h2 is the distance
between the interface and U

j+1.

41
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Now, for this system we have the matching conditions as:

ki
@Ui

@x
= Hi(Ui+1 � Ui) (A.1)

ki+1
@Ui+1

@x
= Hi(Ui+1 � Ui) (A.2)

where, ki and Hi are the conductivities and contact transfer coe�cient, respectively.

As we see in the figure that the interface point is now split into two points and for these

we have two di↵erent values of concentrations Ub� and Ub+, values to the left and right

side of the interface, respectively. With this convention we write the equations (A.1),

(A.2) as:

ki
@Ub�
@x

= Hi(Ub+ � Ub�)

ki+1
@Ub+

@x
= Hi(Ub+ � Ub�) (A.3)

Taylor series approximations are taken for Uj�1, Uj�2, Uj+1 and Uj+2 in terms of Ub�

and Ub+ respectively:

Uj�1 ⇡ Ub� � h1
@Ub�
@x

+
h21
2

@2Ub�
@x2

Uj�2 ⇡ Ub� � (h0 + h1)
@Ub�
@x

+
(h0 + h1)2

2

@2Ub�
@x2

Uj+1 ⇡ Ub+ + h2
@Ub+

@x
+

h22
2

@2Ub+

@x2

Uj+2 ⇡ Ub+ + (h0 + h2)
@Ub+

@x
+

(h0 + h2)2

2

@2Ub+

@x2

These, combined with eq. (A.3) give 6 equations with 6 unknowns. We solve this system

using MATLAB symbolic calculations1 that yields:

Ub� =
1

⇤i
{Uj�1[h

3
0 + h0h

2
1 + h20h1 + 2h20h2 + h21h2 + h30h2k2 + h20h

2
2k2 + h21h

2
2k2 + 4h0h1h2

+ 2h0h1h
2
2k2 + h0h

2
1h2k2 + 2h20h1h2k2]

+ Uj�2[�h0h
2
1 � 2h21h2 � h21h

2
2k2 � h0h

2
1h2k2]

+ Uj+1[h
3
0h1k1 + h20h

2
1k1 + h21h

2
2k1 + h0h1h

2
2k1 + 2h0h

2
1h2k1 + 2h20h1h2k1]

+ Uj+2[�h21h
2
2k1 � h0h1h

2
2k1]} (A.4)

1
See appendix B.4
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with ⇤i is given by:

⇤i = h0{2h2(h0 + 2h1) + h0(h0 + 2h1) +
Hi

ki
[h0h1(h0 + h1) + 2h1h2(h0 + h1)]

+
Hi

ki+1
[h0h2(h0 + h2) + 2h1h2(h0 + h2)]} (A.5)

where k1 =
Hi
ki

and k2 =
Hi
ki+1

which are di↵erent from ki and ki+1.

Similar expression is obtained for Ub+. We simplify the above expression and obtain:

Ub� =
1

⇤i
Uj�1[(h0 + h1)

2(h2 + h22
Hi

ki+1
) + h0h2

Hi

ki+1
(h20 + 2h21) + h20(h0 + h1 + h2) + h0h

2
1

+ 2h0h1h2(1 + h0
Hi

ki+1
)]

+ Uj�2[�
h21
ki+1

{(ki+1 + h2Hi)(h0 + h2) + h2ki+1}]

+ Uj+1[
Hi

ki+1
{h1(h0 + h1)(h0 + h2)

2}]

+ Uj+2[�h1h
2
2
Hi

ki
(h0 + h1)] (A.6)

with

⇤i =
h0

kiki+1
{[(h0 + h2)(h0 + 2h1)h2ki + (h0 + h1)(h0 + 2h2)h1ki+1]Hi

+ (h0 + 2h1)(h0 + 2h2)kiki+1} (A.7)

A.2 Drug delivery problem

This section considers the transdermal drug delivery problem (chapter 2) and describes

the similar calculations as done in previous section. The calculations will be di↵erent

because in the current problem we have di↵erent interface conditions as compared to

the previous section.

Thus, at the interface from eq. (2.10) and (2.11) we have:

�
@c0
@x

=
@c1
@x

�@c1
@x

= �(c0 � c1) (A.8)

where the parameters are same as defined as in chapter 3 . The point on the left hand

side of interface corresponding to c0 is denoted by cb� and the same on right hand side

of interface is called as cb+. The two-phase domain is discretized with a step size of h0
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and h1 as shown in the Fig. (3.1). This notation converts eq. (A.8) as:

@cb+
@x

� �
@cb�
@x

= 0

@cb+
@x

+ �(cb� � cb+) = 0 (A.9)

As before, the Taylor’s series approximaiton is:

c0N�1 ⇡ cl � h0
@cl
@x

+
h20
2

@2cl
@x2

c0N�2 ⇡ cl � 2h0
@cl
@x

+ 2h20
@2cl
@x2

c11 ⇡ cr + h1
@cr
@x

+
h21
2

@2cr
@x2

c12 ⇡ cr + 2h1
@cr
@x

+ 2h21
@2cr
@x2

Again, combining the equations above and eq. (A.9) we have a 6 ⇥ 6 system which we

solve using MATLAB symbolic calculations2 as we did before and obtain :

cl =
1

⇤
{�c0N�2 [�(2�h1 + 3)] + c0N�1 [4�(2�h1 + 3)]

+ c11(8�h0)� c12(2�h0)} (A.10)

and

cr =
1

⇤
{�c0N�2(2��h1) + c0N�1(8��h1)

+ c11(4(2�h0 + 3�))� c12(2�h0 + 3�)} (A.11)

with ⇤ = 9� + 6�(h0 + �h1).

A.3 Drug-eluting stent problem

In this section, we perform same calculations for the drug-eluting stent problem. As we

have seen from chapter 4 that the interface conditions are given from eq. (4.15) and

(4.16) as:

��
@c0
@x

= �@c1
@x

+ Pe · c1 at x = 0 (A.12)

�@c1
@x

= �(c0 � c1) at x = 0 (A.13)

2
See appendix B.4
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The parameters and concentration values cl, cr are same as defined in the chapter 4.

With this we write the above equations as:

��
@cl
@x

= �@cr
@x

+ Pe · cr at x = 0 (A.14)

�@cr
@x

= �(cl � cr) at x = 0 (A.15)

The Taylor series apporixmation for c0N�1 , c0N�2 , c11 and c12 in terms of cl and cr (Fig.

3.1) are expressed as:

c0N�1 ⇡ cl � h0
@cl
@x

+
h20
2

@2cl
@x2

c0N�2 ⇡ cl � 2h0
@cl
@x

+ 2h20
@2cl
@x2

c11 ⇡ cr + h1
@cr
@x

+
h21
2

@2cr
@x2

c12 ⇡ cr + 2h1
@cr
@x

+ 2h21
@2cr
@x2

From these equations and from (A.14), (A.15) we have a system of 6 equations and 6

unknowns, which upon solving with MATLAB symbolic calculations3 gives:

cl =
1

⇤

⇣
�(3 + 2h1(�+ Pe))[4c0N�1 � c0N�1 ] + 2h0�[4c11 � c12 ]

⌘

cr =
1

⇤

⇣
(3� + 2h0�)[4c11 � c12 ] + 2�h1�[4c0N�1 � c0N�1 ]

⌘

where ⇤ = 9� + 6�(�h1 + h0) + 2h1Pe · (3� + 2h0�).

3
See appendix B.4
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MATLAB codes

B.1 Code for chapter 2

Following MATLAB code is used for solving the drug delivery problem and obtaining

the results in chapter 2:

%% The codes solves the dimensionless form drug delivery problem (linear)

%% Results displayed in chapter 2

close all;

clear all;

%% Parameters

tic

fprintf(’\n \n Program running ... ’);

M = 1000; %mesh size

N = 50;

l_0 = 40*10^ -4; %length of domain in layer I in centimeters

l_1 = .1; %length of domain in layer II in centimeters

h_1 = l_0/N; % space step size in layer I

h_2 = l_1/(M-N); % space step size in layer II

k = 0.1; % time step size

theta = 0.3;

beta_0 = 1*10^ -4;

beta_1 = 1.5*10^ -4;

delta_0 = 1*10^ -4;

delta_1 = 1*10^ -4;

D_0 = 5*10^ -7; % Diffusion parameter in layer I

D_1 = 7*10^ -8; % Diffusion parameter in layer II

K_cl = 3*10^ -3;

P = 1*10^ -6;

T = 2.5*10^5*4/7; % Set Time of run

T = round(T);

Tk = T/k;

TL = D_1*T/l_1^2;

num= 0;

Ce = 1;

ce = ones(N-1 ,1); % defined with initial data and one dimension less than c0

47
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% since we don ’t take it ’s value at the interface

ce = ce*Ce;

c0 = zeros(N,1); % defined with initial data

cb = zeros(M-N,1); % one dimension less than c1 because we don ’t consider it on interface

c1 = zeros(M-N+1,1); % defined with initial data

A1 = zeros(M+1,M+1); % tridiagonal matrix on LHS

B1 = zeros(M+1,M+1); % tridiagonal matrix on RHS

mcb = zeros(Tk ,1); % Total mass for cb

mce = zeros(Tk ,1); % Total mass for ce

mc1 = zeros(Tk ,1); % Total mass for c1

mc0 = zeros(Tk ,1); % Total mass for c0

%% dimensionaless parameters

h_1L = h_1/l_1;

h_2L = h_2/l_1;

kL = k*D_1/l_1^2;

l_0L = l_0/l_1;

phi = P*l_1/D_1;

gamma = D_0/D_1;

K = K_cl*l_1/D_1;

dum1 = l_1^2/D_1;

beta_0L = beta_0*dum1;

beta_1L = beta_1*dum1;

delta_1L = delta_1*dum1;

delta_0L = delta_0*dum1;

ceL = ce/Ce;

c0L = c0/Ce;

c1L = c1/Ce;

cbL = cb/Ce;

%% Main

%definition of A(for phase I)

dum2 = kL*theta*gamma/h_1L ^2;

A1(1,1) = 1 +2* dum2;

A1(1,2) = -2*dum2;

for i = 2 : N-1

A1(i,i-1) = -dum2;

A1(i,i) = A1(1,1);

A1(i,i+1) = A1(i,i-1);

end

% Nth row(for the interface)

dum3 = gamma*h_2L;

A1(N,N-1) = -dum3;

A1(N,N) = dum3;

A1(N,N+1) = h_1L;

A1(N,N+2) = -h_1L;

% N+1 th row(for the interface)

dum4 = phi*h_2L;

A1(N+1,N) = dum4;

A1(N+1,N+1) = -dum4 - 1;

A1(N+1,N+2) = 1;
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% for the remaining part(for phase II)

dum5 = kL*theta/h_2L ^2;

for i = N+2:M

A1(i,i-1) = -dum5;

A1(i,i) = 1 + 2*dum5;

A1(i,i+1) = A1(i,i-1);

end

A1(M+1,M) = -2*dum5;

A1(M+1,M+1) = 1+2* dum5 +2*kL*K*theta/h_2L;

%% For the RHS matrix B

dum6 = kL*(1-theta)*gamma/h_1L ^2;

B1(1,1) = 1 - 2*dum6 - delta_0L*kL; % use of delta_0

B1(1,2) = 2*dum6;

for i = 2 : N-1

B1(i,i-1) = dum6;

B1(i,i) = B1(1,1); % use of delta_0

% B1(i,i) = B1(1,1) - dum6; % use of delta_0

B1(i,i+1) = B1(i,i-1);

end

% Nth row(for the interface)

% N+1 th row(for the interface)

% for the remaining part(for phase II)

dum7 = kL*(1-theta)/h_2L ^2;

for i = N+2:M

B1(i,i-1) = dum7;

B1(i,i) = 1 - 2*dum7 - beta_1L*kL; % use of beta_1

B1(i,i+1) = B1(i,i-1);

end

B1(M+1,M) = 2*dum7;

B1(M+1,M+1) = 1-beta_1L*kL- 2*dum7 - 2*kL*K*(1-theta )/h_2L;

%% for the vector on the RHS

t = 0;

while t<TL-kL

z = zeros(M+1 ,1);

z(1:N-1) = kL*beta_0L*ceL (1:N-1); % use of beta_0

z(N,1) = 0;

z(N+1,1) = 0;

z(N+2:M+1) = kL*delta_1L*cbL (1:M-N); %use of delta_1

% the unknown vector x

x = zeros(M+1 ,1); %composed of c0 and c1

x = c0L;

x(N+1:M+1) = c1L (1:M-N+1);

%% Final expression

z;

x = A1\B1*x + A1\z;

c0L (1:N) = x(1:N);

c1L (1:M-N+1) = x(N+1:M+1);

%update cb

for i = 1 : M-N
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cbL(i) = cbL(i)*(1-kL*delta_1L )+ kL*beta_1L*c1L(i);

end

%update ce

for i = 1 : N-1

ceL(i) = ceL(i)*(1-kL*beta_0L) + delta_0L *kL*c0L(i);

end

t = t+kL;

num = num +1;

mce(num) = sum(ceL (:))* h_1L;

mc0(num) = sum(c0L (:))* h_1L;

mcb(num) = sum(cbL (:))* h_2L;

mc1(num) = sum(c1L (:))* h_2L;

end

%% Plots

x1=linspace (0,1,M-N+1);

x2=linspace (0,1,M-N);

x3=linspace(-l_0L ,0,N-1);

x4=linspace(-l_0L ,0,N);

ts = linspace(0,T,Tk);

plot(x1 ,c1L)

figure;

plot(x2 ,cbL)

figure;

plot(x3 ,ceL)

figure;

plot(x4 ,c0L)

figure;

plot(ts ,mcb ,’r’,ts, mce ,’g’, ts, mc0 , ’b’, ts , mc1 , ’k’)

axis ([0 T 0 0.04])

fprintf(’\n \n Program terminated !!’);

toc

B.2 Code for chapter 3

Following MATLAB code solves the drug delivery problem with the new method that

uses the MATLAB solver ODE15s in it:

%% The program solves the drug delivery problem using MATLAB ode solver ODE 15s

tic;

close all;

clear all;

fprintf(’\n \n Program running ... ’);

%% Parameters

N = 50; % mesh size in layer I

M = 1000; % mesh size in layer II

l_0 = 40*10^ -4; % length of domain in layer I in centimeters

l_1 = .1; % length of domain in layer II in centimeters

h_1 = l_0/N; % space step size in layer I

h_2 = l_1/M; % space step size in layer II

beta_0 = 1*10^ -4;
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beta_1 = 1.5*10^ -4;

delta_0 = 1*10^ -4;

delta_1 =1*10^ -4;

D_0 = 5*10^ -7; % Diffusion parameter in layer I

D_1 = 7*10^ -8; % Diffusion parameter in layer II

K_cl= 3*10^ -3;

P = 1*10^ -6;

T = 1;

h1 = h_1/l_1;

h2 = h_2/l_1;

para = [N M l_0 l_1 h_1 h_2 beta_0 beta_1 delta_0 delta_1 D_0 D_1 K_cl P];

%% Setting the Initial condition

v0 = [ones(1,N),zeros(1,N-1),zeros(1,M-1),zeros(1,M)];

tspan = [0; T];

%% Call of the function ODE15s

[t,v] = ode15s(@funlin ,tspan ,v0,’options ’,para);

%% recording value at t = 0.01

t1=t(t >0.01);

a=min(t1);

b=find(t==a);

vT1 = v(b,:);

vT1 = vT1 ’;

v1T1=vT1(1:N,:);

v2T1=vT1(N+1:2*N-1,:);

v3T1=vT1(2*N:2*N-1+M-1,:);

v4T1=vT1(2*N-1+M:2*N-2+2*M,:);

%% recording the values for t = 0.1

t1=t(t >0.1);

a=min(t1);

b=find(t==a);

vT2 = v(b,:);

vT2 = vT2 ’;

v1T2=vT2(1:N,:);

v2T2=vT2(N+1:2*N-1,:);

v3T2=vT2(2*N:2*N-1+M-1,:);

v4T2=vT2(2*N-1+M:2*N-2+2*M,:);

%% Recording values of ce and c0 at time T

it = size(t);

vT = v(it(1) ,:);

vT = vT ’;

v1T=vT(1:N,:); %ce

v2T=vT(N+1:2*N-1,:); %c0

v3T=vT(2*N:2*N-1+M-1,:); %c1

v4T=vT(2*N-1+M:2*N -2+2*M,:); %cb

v = v’;

v1=v(1:N,:);

v2=v(N+1:2*N-1,:);

v3=v(2*N:2*N-1+M-1 ,:);

v4=v(2*N-1+M:2*N-2+2*M,:);
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%% Plot

x1 = linspace (0,0.04,N);

x2 = linspace (0,0.04,N-1);

x3 = linspace (0,1,M-1);

x4 = linspace (0,1,M);

% subplot (2,2,1);

figure;

x1 = -x1;

v1T = v1T *10^5;

v1T = round(v1T);

v1T = v1T *10^ -5;

plot(x1 ,v1T ,’b’,x1,v1T1 ,’g’,x1 ,v1T2 ,’r’);

legend(’T=1’,’T=0.01’,’T=0.1’,’Location ’,’Best ’);

xlabel(’x’);

ylabel(’conc ce ’);

title(’plot for ce ’);

axis ([ -0.04 0 0 1])

% xlim ([ -0.04 0])

figure;

% subplot (2,2,2);

x2 = -x2;

v2T = v2T *10^5;

v2T = round(v2T);

v2T = v2T *10^ -5;

plot(x2 ,v2T ,’b’,x2,v2T1 ,’g’,x2 ,v2T2 ,’r’);

legend(’T=1’,’T=0.01’,’T=0.1’,’Location ’,’Best ’);

xlabel(’x’);

ylabel(’conc c0 ’);

title(’plot for c0 ’);

axis ([ -0.04 0 0 0.2])

figure;

% subplot (2,2,3);

plot(x3 ,v3T ,’b’,x3,v3T1 ,’g’,x3 ,v3T2 ,’r’);

legend(’T=1’,’T=0.01’,’T=0.1’,’Location ’,’Best ’);

xlabel(’x’);

ylabel(’conc c1 ’);

title(’plot for c1 ’);

axis ([0 1 0 0.05])

figure;

% subplot (2,2,4);

plot(x4 ,v4T ,’b’,x4,v4T1 ,’g’,x4 ,v4T2 ,’r’);

legend(’T=1’,’T=0.01’,’T=0.1’,’Location ’,’Best ’);

xlabel(’x’);

ylabel(’conc cb ’);

title(’plot for cb ’);

axis ([0 1 0 0.05])

s1 = sum(v1)*h1;

s2 = sum(v2)*h1;

s3 = sum(v3)*h2;

s4 = sum(v4)*h2;

figure;

plot(t,s1 ’,’b’,t,s2’,’r’,t,s3’,’g’,t,s4 ’,’k’)

legend(’Mc0 ’,’Mb0 ’,’Mc1 ’,’Mb1 ’)

xlabel(’time ’);

ylabel(’Total mass ’);
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title(’Total Mass v/s Time ’)

fprintf(’\n \n Program terminated !!’);

toc;

function dUdt = gun(t,U,para)

%% Extract the parameters

N = para (1);

M = para (2);

l_0 = para (3);

l_1 = para (4);

h_1 = para (5);

h_2 = para (6);

beta_0 = para (7);

beta_1 = para (8);

delta_0 = para (9);

delta_1 = para (10);

D_0 = para (11);

D_1 = para (12);

K_cl = para (13);

P = para (14);

%% dimensionaless parameters

h1 = h_1/l_1;

h2 = h_2/l_1;

% k = k*D_1/l_1 ^2;

% l_0 = l_0/l_1;

phi = P*l_1/D_1;

gamma = D_0/D_1 ;

K = K_cl*l_1/D_1;

dum1 = l_1 ^2/D_1;

beta_0 = beta_0*dum1;

beta_1 = beta_1*dum1;

delta_1 = delta_1*dum1;

delta_0 = delta_0*dum1;

Lambda = 9*gamma +6*phi*(h1+gamma*h2);

chi = gamma/h1^2;

psi = 1/h2^2;

%% extracting the value of concentration

len1 = N;

len2 = M;

len3 = 2*N;

len4 = 2*M;

ce = U(1:len1 ,:);

c0 = U(len1 +1:len3 -1,:);

c1 = U(len3:len3+len2 -2,:);

cb = U(len3+len2 -1: len3+len4 -2,:);

% Main

%% At the boundary i = 1

i = 1;

dUdt(i,:) = -beta_0*ce(i)+ delta_0*c0(i);

dUdt(len1+i,:) = chi *(2*c0(i+1) -2*c0(i))+ beta_0*ce(i)-delta_0*c0(i);
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%% Inside the drug layer

for i = 2 : len1 -2

dUdt(i,:) = -beta_0*ce(i)+ delta_0*c0(i);

dUdt(len1+i,:) = chi*(c0(i+1)- 2*c0(i)+ c0(i -1))+ beta_0*ce(i)-delta_0*c0(i);

end

%% The LHS interface point N-1

i = len1 -1;

dUdt(i,:) = -beta_0*ce(i)+ delta_0*c0(i);

cl = (gamma *(2* phi*h2+3)*(-c0(N -2)+4* c0(N -1))...

+2* phi*h1*(4*c1(2)-c1 (3)))/ Lambda;

%the interface point i = N

dUdt(len1+i,:) = chi*(cl- 2*c0(i)+ c0(i -1))+ beta_0*ce(i)-delta_0*c0(i); % for i = N-1

%evaluting ce at interface

i = len1;

dUdt(i,:) = -beta_0*ce(i)+ delta_0*cl;

%% The RHS interface point 1

cr = (2* gamma*phi*h2*(4*c0(N-1)-c0(N -2))...

+(2* phi*h1+3* gamma )*(4* c1(1)-c1 (2)))/ Lambda;

i = 1;

dUdt(len3+len2 -2+i,:) = beta_1*cr-delta_1*cb(i);

i = 2;

j = i-1;

dUdt(len3 ,:) = psi*(c1(j+1)-2*c1(j)+cr)-beta_1*c1(j)+ delta_1*cb(i);

dUdt(len3+len2+i-2,:) = beta_1*c1(j)-delta_1*cb(i);

%% Inside the skin layer

for i = 3 : len2 -1

j = i-1;

dUdt(len3+i-2,:) = psi*(c1(j+1)-2*c1(j)+c1(j-1))- beta_1*c1(j)+ delta_1*cb(i);

dUdt(len3+len2+i-2,:) = beta_1*c1(j)-delta_1*cb(i);

end

%% At boundary i = M

i = len2;

j = i-1;

dUdt(len3+i-2,:) = psi *(2*c1(len2 -2) -(2+K*h2)*c1(len2 -1))- beta_1*c1(j)+ delta_1*cb(i);

dUdt(len3+len2+i-2,:) = beta_1*c1(j)-delta_1*cb(i);

B.3 Code for chapter 4

Following code solves the drug eluting stent problem:

%% Call of function ODE15s

% function RD
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tic

close all;

clear all;

fprintf(’\n \n Program running ... ’);

%% Parameters

N = 50; % mesh size in layer I

M = 1000; % mesh size in layer II

l_0 = 10^ -3; % length of domain in layer I in centimeters

l_1 = .05; % length of domain in layer II

h_1 = l_0/N; % space step size in layer II

h_2 = l_1/M; % space step size in layer II

bmax = 3.66*10^ -7;

B = 10^ -4; %Initial concentration value

S = B/10;

gamma_0 = 1;

D_0 = 10^ -12; % Diffusion parameter in layer I

D_1 = 10^ -7; % Diffusion parameter in layer II in centimeters

alpha_1 = 2*10^6;

beta_1 = 5.2*10^ -3;

v_1 = 5*10^ -6;

K_cl= 3*10^ -3;

P = 1*10^ -6;

T = 7; % Total time of run

h1 = h_1/l_1;

h2 = h_2/l_1;

para = [N M l_0 l_1 h_1 h_2 alpha_1 beta_1 D_0 D_1 K_cl P bmax ...

B S gamma_0 v_1]; %17 element array

%% Setting the Initial condition

v0 = [ones(1,N),zeros(1,N-1),zeros(1,M-1),zeros(1,M)];

tspan = [0; T];

options = odeset(’RelTol ’,1e-6,’Abstol ’,1e -10);

%% Call of the function ODE15s

[t,v] = ode15s(@funNonlin ,tspan ,v0,’options ’,para);

%% Recording values of ce and c0 at time T

% recording value at t = T/2

t1=t(t>T/2);

a=min(t1);

b=find(t==a);

vT1 = v(b,:);

vT1 = vT1 ’;

v1T1=vT1(1:N,:); %b0

v2T1=vT1(N+1:2*N-1,:); %c0

v3T1=vT1(2*N:2*N-1+M-1,:); %c1

v4T1=vT1(2*N-1+M:2*N-2+2*M,:); %b1

% recording value at t = 0.1

t1=t(t >0.1);

a=min(t1);

b=find(t==a);

vT2 = v(b,:);

vT2 = vT2 ’;

v1T2=vT2(1:N,:); %b0
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v2T2=vT2(N+1:2*N-1 ,:); %c0

v3T2=vT2 (2*N:2*N-1+M-1,:); %c1

v4T2=vT2 (2*N-1+M:2*N-2+2*M,:); %b1

% recording the values for t = 0

v0 = v0 ’;

v1T0=v0(1:N,:);

v2T0=v0(N+1:2*N-1,:);

v3T0=v0(2*N:2*N-1+M-1 ,:);

v4T0=v0(2*N-1+M:2*N -2+2*M,:);

%% Recording values of ce and c0 at time T

it = size(t);

vT = v(it(1) ,:);

vT = vT ’;

v1T=vT(1:N,:); %ce

v2T=vT(N+1:2*N-1,:); %c0

v3T=vT(2*N:2*N-1+M-1,:); %c1

v4T=vT(2*N-1+M:2*N -2+2*M,:); %cb

v = v’;

v1=v(1:N,:);

v2=v(N+1:2*N-1,:);

v3=v(2*N:2*N-1+M-1,:);

v4=v(2*N-1+M:2*N-2+2*M,:);

%% Plots for individual concentrations

x1 = linspace (-0.02,0,N);

x2 = linspace (-0.02,0,N-1);

x3 = linspace (0,1,M-1);

x4 = linspace (0,1,M);

plot(x1 ,v1T ,’b’,x1,v1T1 ,’g’,x1 ,v1T2 ,’r’);

legend(’t=T_{max}’,’t=T_{max}/2’,’T=0.1’,’Location ’,’Best ’);

xlabel(’x’);

ylabel(’conc b0 ’);

title(’plot for b0 ’)

axis ([ -0.02 0 0 1])

figure;

plot(x2 ,v2T ,’b’,x2,v2T1 ,’g’,x2 ,v2T2 ,’r’);

legend(’t=T_{max}’,’t=T_{max}/2’,’T=0.1’,’Location ’,’Best ’);

xlabel(’x’);

ylabel(’conc c0 ’);

title(’plot for c0 ’);

figure;

plot(x3 ,v3T ,’b’,x3,v3T1 ,’g’,x3 ,v3T2 ,’r’);

legend(’t=T_{max}’,’t=T_{max}/2’,’T=0.1’,’Location ’,’Best ’);

xlabel(’x’);

ylabel(’conc c1 ’);

title(’plot for c1 ’);

figure;
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plot(x4 ,v4T ,’b’,x4,v4T1 ,’g’,x4 ,v4T2 ,’r’);

legend(’t=T_{max}’,’t=T_{max}/2’,’T=0.1’,’Location ’,’Best ’);

xlabel(’x’);

ylabel(’conc b1 ’);

title(’plot for b1 ’);

s1 = sum(v1)*h1; %b0

s2 = sum(v2)*h1; %c0

s3 = sum(v3)*h2; %b1

s4 = sum(v4)*h2; %c1

%% checking the peaks of total masses

s11 = max(s1);

c = find(s1==s11);

t11 = t(c);

s12 = max(s2);

c = find(s2==s12);

t12 = t(c);

s13 = max(s3);

c= find(s3==s13);

t13 = t(c);

s14 = max(s4);

c = find(s4==s14);

t14 = t(c);

figure;

plot(t,s1 ’,’b’,t,s2’,’r’)

hold on;

plot(t11 ,s11 ,’ro ’,t12 ,s12 ,’bo ’)

legend(’Mb0 ’,’Mc0 ’)

xlabel(’time ’);

ylabel(’Total mass ’);

title(’Total Mass v/s Time ’)

figure;

plot(t,s3 ’,’g’,t,s4’,’k’)

hold on;

plot(t13 ,s13 ,’ko ’,t14 ,s14 ,’go ’)

legend(’Mc1 ’,’Mb1 ’)

xlabel(’time ’);

ylabel(’Total mass ’);

title(’Total Mass v/s Time ’)

fprintf(’\n \n Program terminated !!’);

toc

function dUdt = funNonlin(t,U,para)

%% Extract the parameters

N = para (1);

M = para (2);

l_0 = para (3);

l_1 = para (4);
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h_1 = para (5);

h_2 = para (6);

alpha_1 = para (7);

beta_1 = para (8);

D_0 = para (9);

D_1 = para (10);

K_cl = para (11);

P = para (12);

bmax = para (13);

B = para (14);

S = para (15);

gamma_0 = para (16);

v_1 = para (17);

%% dimensionaless parameters

h1 = h_1/l_1;

h2 = h_2/l_1;

l_0 = l_0/l_1;

phi = P*l_1/D_1;

xi = D_0/D_1 ;

K = K_cl*l_1/D_1;

dum1 = l_1^2/D_1;

alpha_1 = alpha_1*dum1*B;

beta_1 = beta_1*dum1;

v_1 = v_1*l_1/D_1;

exp = 2/3;

gamma_0 = gamma_0*dum1*B^exp;

S = S/B;

bmax = bmax/B;

Lambda = 9*xi+6* phi*(xi*h2+h1)+2*h2*v_1 *(3*xi+2*h1*phi);

chi = xi/h1^2;

psi = 1/h2^2;

%% extracting the value of concentration

len1 = N;

len2 = M;

len3 = 2*N;

len4 = 2*M;

b0 = U(1:len1 ,:);

c0 = U(len1 +1:len3 -1,:);

c1 = U(len3:len3+len2 -2,:);

b1 = U(len3+len2 -1: len3+len4 -2,:);

% cut off round off errors

for i=1: len1

if (b0(i) <= 10^-12), b0(i)=0; end;

end

dUdt = zeros(len4 ,size(U,2));

%% Main

% At the boundary i = 1

i = 1;

dUdt(i,:) = -gamma_0 *(b0(i).^exp ).*(S-c0(i));

dUdt(len1+i,:) = chi *(2*c0(i+1)-2*c0(i))+ gamma_0 *(b0(i).^exp ).*(S-c0(i));
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%% Inside the drug layer

for i = 2 : len1 -2

dUdt(i,:) = -gamma_0 *(b0(i).^ exp ).*(S-c0(i));

dUdt(len1+i,:) = chi*(c0(i+1)- 2*c0(i)+ c0(i -1))+ gamma_0 *(b0(i).^ exp ).*(S-c0(i));

end

%% The LHS interface point N-1

i = len1 -1;

dUdt(i,:) = -gamma_0 *(b0(i).^ exp ).*(S-c0(i));

argl1 = (3+2* h2*(phi+v_1))*xi/Lambda;

argl2 = 2*h1*phi/Lambda;

cl=argl1 *(4*c0(N-1)-c0(N -2))+ argl2 *(4*c1(2)-c1 (3));

%the interface point i = N

dUdt(len1+i,:) = chi*(cl - 2*c0(i)+ c0(i -1))+ gamma_0 *(b0(i).^ exp ).*(S-c0(i));

%evaluting ce at interface

i = len1;

dUdt(i,:) = -gamma_0 *(b0(i).^exp ).*(S-cl);

%% The RHS interface point 1

argr2 = (3*xi+2*h1*phi)/ Lambda;

argr1 = 2*xi*h2*phi/Lambda;

cr=argr2 *(4*c1(1)-c1(2))+ argr1 *(4*c0(N-1)-c0(N -2));

i = 1;

dUdt(len3+len2 -2+i,:) = alpha_1*cr.*(bmax -b1(i))-beta_1*b1(i);

i = 2;

j = i-1;

dUdt(len3 ,:) = psi*(c1(j+1)-2*c1(j)+cr)-v_1*(c1(j+1)-cr )/(2* h2)-alpha_1*c1(j)...

.*(bmax -b1(i))+ beta_1*b1(i);

dUdt(len3+len2+i-2,:) = alpha_1*c1(j).*(bmax -b1(i))-beta_1*b1(i);

%% Inside the skin layer

for i = 3 : len2 -1

j = i-1;

dUdt(len3+i-2,:) = psi*(c1(j+1) -2*c1(j)+c1(j-1))-v_1*(c1(j+1)-c1(j -1))...

/(2*h2)-alpha_1*c1(j).*(bmax -b1(i))+ beta_1*b1(i);

dUdt(len3+len2+i-2,:) = alpha_1*c1(j).*(bmax -b1(i))-beta_1*b1(i);

end

%% At boundary i = M

i = len2;

j = i-1;

dUdt(len3+i-2,:) = -alpha_1*c1(j).*(bmax -b1(i))+ beta_1*b1(i);

dUdt(len3+len2+i-2,:) = alpha_1*c1(j).*(bmax -b1(i))-beta_1*b1(i);

B.4 Code for symbolic calculations

Following code is used for solving the 6⇥ 6 system of unknowns:

%% The program solves the linear system with enteries of matrix as variables
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syms g p h0 h1 h2 h3 a b c d H k1 k2

%k1 = k_i and k2 = k_i+1, the conductivities

% for the Hickson ’s paper

A = [-H H -k1 0 0 0; -H H 0 -k2 0 0;...

1 0 -h1 0 h1^2/2 0; 1 0 -(h0+h1) 0 (h0+h1 )^2/2 0;...

0 1 0 h2 0 h2 ^2/2; 0 1 0 h0+h2 0 (h0+h2 )^2/2;];

% for the drug delivery problem

% g = gamma and p = phi (in the dimensionless form)

C = [0 0 -g 1 0 0; p -p 0 1 0 0;...

1 0 -h1 0 h1^2/2 0; 1 0 -(h0+h1) 0 (h0+h1 )^2/2 0; ...

0 1 0 h3 0 h3 ^2/2; 0 1 0 (h3+h2) 0 (h3+h2 )^2/2];

% a = U_j -1, b = U_j -2, U_j+1, U_j+2,

B = [ 0; 0; a; b; c; d];

% The solution vector is composed of U_b -(Ist element), U_b+, dU_b -,/dx ,...

% dU_b+,/dx , d^2U_b -,/dx^2, d^2U_b+,/dx^2( last element of the vector)

A\B; %Solves A*x = B system and yields the solution vector

C\B; %Solves C*y = B system and yields the solution vector
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