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1 Introduction

Time reversibility is a subject of very active research. Although classical and quantum mechanics
equations are reversible at a microscopic scale, it is known that macroscopic phenomena are
irreversible [12]. One of the reasons for this apparent irreversibility is the particularly large
number of particles that comprise macroscopic systems. In classical mechanics, the evolution
of a system is extremely sensitive to its initial conditions and the slightest error in the model
would make time reversing not possible. It would be then necessary to have an infinite amount
of information to make an accurate model and this is unrealizable with any real experimental
device.

In wave physics, the amount of information necessary to describe a wave field explicitly is limited
and depends on the shortest wavelength of the field, making it feasible and easier to perform time
reversal experiments with waves rather than with particles. However, even though reversibility
of physical phenomena is a simple idea, making it an experimental fact is far less evident.

The main idea of time reversal is to take advantage of the reversibility of wave propagation
phenomena such as it occurs in acoustics or electromagnetism, in a non-dissipative but unknown
medium in order to back-propagate signals to the sources that emitted them. In 1992, Mathias
Fink proposed an experiment consisting of the transmission of a signal through a complex
medium, a barrier composed of randomly distributed metal rods. The scattered field is then
recorded using a TRM (time reversal mirror) array, an array of N wide-band piezoelectric
transducers that perform a fine spatial sampling of the field. The N recorded signals are placed
in memory, reversed in time, and sent back through the barrier by the TRM array. The aim of
the experiment is to refocus the signal precisely, as shown in figure 1, even without not knowing
the location of the barriers.

Figure 1: Experimental setup. First step (top): the source sends a pulse through the barrier
and the scattered wave is recorded by the TRM array. Second step (bottom): the signals have
been time reversed and are retransmitted by the TRM array through the barrier with the aim
of being refocused precisely.
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There have been numerous applications of this physical principle in medical imaging or therapy,
marine acoustics, and waves in complex media, among others, see [13] and references therein.
The first mathematical analysis for a homogeneous medium can be found in [4] and for a random
medium in [8] and [11]. In this paper, we focus on stratified media.

1.1 Need for Absorbing Boundary Conditions

One of the applications for the time reversal method proposed by Jean-Paul Montagner et al.
is locating the epicenter of an earthquake. They performed time reversal imaging of seismic
sources and applied it to the great Sumatra-Andaman earthquake, see [15].

On December 26, 2004, an undersea megathrust earthquake occurred at 00:58:53 UTC, with
its epicentre off the west coast of Sumatra, Indonesia. The earthquake itself is known by the
scientific community as the Sumatra-Andaman earthquake. It had one of the longest duration
of faulting ever observed and the event lasted about 6-7 minutes. After the deconvolution of the
instrument response and a pass-band frequency filtering, 165 stations were chosen for the good
quality of their vertical records.

Figure 2: Vertical component of the time reversed field at different times for the
Sumatra-Andaman event. The absolute real time is given by t; Tr is the reversed time and
Tr = 7000s is the source initial time (t = 0s).

M. Fink et al. applied a time reversal method to the obtained data. Hence, the initial time of
the earthquake corresponds to t

0

= 0s, i.e., to a reversed time Tr = 7000s. The idea is to create
an exact time reversed replica of the earthquake. Figure 2 shows three snapshots of the time
reversed wavefield at different times Tr = 6000s, 7000s and 7500s. It is evident that the waves
do not stop after focusing but continue to propagate displaying an almost circular wavefront,
i.e., the waves should have stopped at time 7000s (t = 0s). Hence, the exact time reversed
replica of experiment is not created.
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This numerical experiment is useful to understand one problem encountered when using time
reversal methods, i.e., the incapability of refocusing the signal precisely. In figure 2, we can see
a diffraction spot around the source at time 7000s and, most importantly, the continued wave
propagation after this time. To find the reason, we take a closer look at the problem by analyzing
it by parts: forward problem data, classical time reversal method, and expected results.

Forward Problem Data

We set the initial time of the earthquake t
0

= 0s to be the time when the earthquake originated.
It is then clear that for times t < 0s we have no signal, as shown in figure 3(a). At the initial
time, the earthquake occurs and there is a sudden release of energy in the Earth’s crust, creating
seismic waves. These circular and diverging waves propagate away from the epicenter until they
exit a window chosen for the analysis.

(a) t < 0 (b) t = t0 = 0 (c) t = 1000 (d) t = 7000

Figure 3: Forward problem. (a) No seismic waves before the earthquake. (b) Earthquake
occurs and diverging seismic waves are created. (c) Seismic waves propagate and exit the chosen
window. (d) No seismic waves present in the window.

Classical Time Reversal Method

The principle of the time reversal method applied by M. Fink is to send back the forward field
and to refocus the signal precisely, even without not knowing the location of the source. However,
the converging waves do not stop after focusing but begin to diverge, as shown in figure 4(c).
This creates interference between the diverging and converging waves. Additionally, after time
Tr = 7000s, we observe diverging waves that should not exist.

(a) Tr < 0 (b) Tr = 6000 (c) Tr = 7000 (d) Tr = 7500

Figure 4: Classical time reversal method applied to the Sumatra-Andaman model. (a) No
seismic waves present. (b) Seismic waves converge towards the source. (c) Interference between
diverging and converging waves is evident. (d) Only diverging waves remain.

8



Expected Results

As we have mentioned several times before, the aim of the method is to send back the forward
field and to focus the signal precisely at the source, as shown in figure 5.

(a) Tr < 0 (b) Tr = 6000 (c) Tr = 7000 (d) Tr = 7500

Figure 5: Expected results. (a) No seismic waves present in the window. (b) Waves converge
towards the source. (c) No interference occurs and the waves converge exactly at the epicenter.
(d) No seismic waves present.

We can infer that the problem with the classical time reversal method is due to the fact that the
source is not replaced by its time reversed version, i.e., it is necessary to have a sink to absorb
all the converging front.

1.1.1 Mathematical Details

Using a simplified notation, we can write the forward problem as

Elasto(u(t, x)) = f(t)1
epicenter

, x 2 R2, t > 0,

where u(t, x) is the displacement field, f(t) is a function with compact support corresponding
to the earthquake, and Elasto represents the function for the elastic seismic wave. We consider
homogeneous Cauchy data for this model.

Using the same notation as M. Fink et al., where Tr is the reversed time, and denoting the final
time as T

f

, the time reversal problem obtained with the classical method has the form

(
Elasto(uR(Tr, x)) = 0, x 2 R2, T r > 0,

uR(0, x) = u(T
f

, x).

However, in order to acquire the expected results, the time reversal problem should be
(

Elasto(uR(Tr, x)) = f(T
f

� Tr)1
epicenter

, x 2 R2, T r > 0,

uR(0, x) = u(T
f

, x).
(1.1)

The function f is unknown and the location of the epicenter is only approximately known,
making problem (1.1) unsolvable. It is then necessary to find f by solving an inverse problem
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or use absorbing boundary conditions, i.e., non-reflecting conditions. In this paper, we take the
absorbing boundary conditions approach.

1.2 Time Reversed Absorbing Conditions

An absorbing boundary condition (ABC) is frequently used to limit the computational domain
in simulations over unbounded domains. The basic requirements for these types of boundary
conditions are stability, accuracy and computational efficiency. Accuracy refers to the true
solution satisfying the ABC. It is clearly necessary to have well posedness of the initial boundary
value problem and stability of the corresponding computational algorithm.

Depending on the desired application, absorbing boundary conditions go under many names,
e.g., radiation, far field or open. Hence, it is possible to model an unbounded domain using a
far field boundary condition on an artificial outer surface.

We are interested in the Time Reversed Absorbing Conditions (TRAC) introduced in [1], [2], and
[3]. These types of boundary conditions let us "recreate the past" without knowing the location
and properties of an inclusion present in the medium. Since inclusions tend to diffract the wave
travelling through the medium, the TRAC method makes the recreation possible by removing a
small region surrounding the scattering inclusion. This technique has two applications in inverse
problems: the reduction of the size of the computational domain and the determination of an
unknown inclusion’s location from boundary measurements. The TRAC method is designed in
both the time-dependent and harmonic domains.

In this paper, we extend the TRAC method by considering a medium composed of a stack of
two or three layers made of homogeneous media. We use the method to differentiate between
two close inclusions and one single inclusion. In contrast to many inverse problem methods, the
TRAC method does not rely on any a priori knowledge of the inclusion’s physical properties,
i.e., hard, soft and penetrable inclusions are all treated in the same way.

The outline of the paper is as follows. In the next section, we give background theory that will
be useful to understand the electric wave equation and its related terms. We also present the
basic theory of antipersonnel-mines. In Section 3, we recall the principle of the TRAC method
for the time dependent wave equation. We also define the model that will recreate the past from
boundary measurements in stratified media and we give its discretization in time and space. In
Section 4, we describe two experiments and analyze their corresponding numerical results.
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2 Background Theory

2.1 Electromagnetic Wave Equation

In this paper, we will make use of the electromagnetic wave. Its propagation through a medium
or vacuum is described by the electromagnetic wave equation, a second-order partial differential
equation derived from Maxwell’s equations. For the moment, we consider the three-dimensional
space R3 to be the propagation medium.

2.1.1 Maxwell’s Equations and Constituent Relations

In modern physics, Maxwell’s derivation of the electromagnetic wave equation has been replaced
by a more straightforward method involving the combination of the corrected version of Ampère’s
circuital law with Faraday’s law of induction. The unknowns are the electric field E(t, x), the
magnetic field H(t, x), the electrical induction D(t, x), and the magnetic induction B(t, x), at
point x 2 R3 and time t � 0. In the absence of charges and currents, these variables satisfy
Maxwell’s equations given by 8

>>>>>>>>>><

>>>>>>>>>>:

r⇥ E = �@B

@t
,

r⇥H =

@D

@t
,

r ·D = 0,

r ·B = 0.

(2.2)

The equations presented in (2.2) are written in their classical, time domain, differential form
and the physical quantities shown are related by two constitutive equations

8
><

>:

B(t, x) = µ(x)H(t, x),

D(t, x) = "(x)E(t, x),
(2.3)

where µ(x) is the magnetic permeability and "(x) is the dielectric permittivity of the medium.

2.1.2 Electrical and Magnetic Properties of the Medium

The constitutive relations studied in the previous section introduced the relevant material
property parameters of permittivity and magnetic permeability. The common property known
as conductivity is not of interest for this paper, since we are not considering conduction currents.
Therefore, we will only give the definition and some basic information about this parameter.

We are interested in electric waves propagating through vacuum or subsurface materials. These
materials are usually described as dielectrics, with the parameters permittivity and conductivity
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loosely named their "dielectric properties". However, since subsurface materials possess some
form of free charge, such as conduction electrons and ions, they can be best described as lossy
dielectrics and not true dielectrics.

Permittivity and Conductivity

From the classical point of view, permittivity relates to the storage ability of capacitors since
it describes the ability of a material to store and release electromagnetic energy in the form
of electric charge. Alternatively, it can be described as the ability to restrict the flow of free
charges or the degree of polarization exhibited when forming an electric field in a material. Thus,
permittivity relates to a material’s ability to transmit an electric field and it is usually used in
terms of a nondimensional, relative permittivity term "

r

, defined by

"
r

=

"

"
0

, (2.4)

being " the permittivity of the material and "
0

the one of free space or vacuum. The latter has
a value of 8.8542⇥ 10

�12 F/m (farads per meter) and differs negligibly from the permittivity of
air. In some literature, the relative permittivity is referred to as the "dielectric constant" and
is represented by the symbol .

In the presence of free and bound water, the permittivity of subsurface materials can vary
dramatically. Additionally, as opposed to the response of vacuum, the response of materials to
external fields generally depends on the frequency of the field. This is the reason why permittivity
is often treated as a frequency angular-dependent complex function "̂(!), with real and imaginary
components,

"̂(!) = "0(!) + i"00(!),

where the real part "0(!) is related to the stored energy and the imaginary part "00(!) to the
dissipation or loss of energy within the medium. These terms depend on the angular frequency
!. In the case of lossy media, i.e., when the conduction current is not negligible, the complex
permittivity is defined as

"̂(!) = "0(!) + i
�

!
,

with � representing the conductivity of the medium and i the imaginary unit (i2 = �1). In
simple terms, conductivity describes a material’s ability to conduct or pass free electric charges
under the influence of an applied field. At low frequencies, the charge response is effectively
instantaneous, allowing the conduction current to be in phase with the electric field. Hence,
conductivity is usually represented by a real, static value �

s

measured in S/m.

Table 1 lists the relative permittivity and conductivity of some common subsurface materials
at a frequency of 100 MHz and their typical range under natural conditions. The values shown
are derived from experiment and illustrate the influence of free and bound water, i.e., the values
increase as the material gets wetter or decrease as it gets drier.
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However, although permittivity is a complex quantity, the permittivity value of a material is
often simplified to its constant, low-frequency or static real component with the loss term ignored.

Material Static Conductivity Relative Permittivity
�
s

(mS/m) "
ave

Air 0 1
Clay - dry 1-100 2-20
Clay - wet 100-1000 15-40
Concrete - dry 1-10 4-10
Concrete - wet 10-100 10-20
Freshwater 0.1-10 78(25°C)-88
Freshwater ice 1-0.000001 3
Seawater 4000 81-88
Seawater ice 10-100 4-8
Permafrost 0.1-10 2-8
Granite - dry 0.001-0.00001 5-8
Granite - fractured and wet 1-10 5-15
Limestone - dry 0.001-0.0000001 4-8
Limestone - wet 10-100 6-15
Sandstone - dry 0.001-0.0000001 4-7
Sandstone - wet 0.01-0.001 5-15
Shale - saturated 10-100 6-9
Sand - dry 0.0001-1 3-6
Sand - wet 0.1-10 10-30
Sand - coastal, dry 0.01-1 5-10
Soil - sandy, dry 0.1-100 4-6
Soil - sandy, wet 10-100 15-30
Soil - loamy, dry 0.1-1 4-6
Soil - loamy, wet 10-100 10-20
Soil - clayey, dry 0.1-100 4-6
Soil - clayey, wet 100-1000 10-15
Soil - average 5 16

Table 1: Typical values of static conductivity and relative permittivity (real component) derived
from experiment for common subsurface materials at an antenna frequency of 100MHz (table
obtained from Cassidy,Nigel J).

Magnetic Permeability

In electromagnetism, the term permeability refers to the measure of the material’s ability
to support the formation of a magnetic field within itself. Put simply, it is the degree of
magnetization that a material obtains in response to an applied magnetic field and it is usually
used in terms of a nondimensional, relative permeability term denoted by the symbol µ

r

. This
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term is given by the ratio of the medium’s permeability µ to the one of free-space µ
0

, which has
a value of 4⇡ ⇥ 10

�7 ⇡ 1.2566⇥ 10

�6 H/m. Thus,

µ
r

=

µ

µ
0

. (2.5)

It is known for ferromagnetic minerals to have significant magnetic permeabilities, which vary
greatly with the strength of the applied magnetic field. However, in most common subsurface
geological materials, the amount of ferromagnetic material is considered unimportant since it is
typically below 2%, see [9]. In these circumstances, when the magnetic effect of materials has
little effect on the wave, their magnetic permeability µ is often simplified to the free-space value.

2.1.3 Electric Wave Equation with Constant Coefficients

We consider the case where magnetic permeability and dielectric permittivity functions are
constant, i.e., µ(x) = µ and "(x) = ", 8x 2 R3, being µ and " the two positive scalars
which characterize the electromagnetic behavior of the homogeneous medium where the wave
propagates. We recall that we are working with time t � 0.

By computing the time derivate of (2.3), we get
8
>><

>>:

@B(t, x)

@t
= µ

@H(t, x)

@t
,

@D(t, x)

@t
= "

@E(t, x)

@t
.

(2.6)

Using (2.6) and Maxwell’s equations given by (2.2), we can verify that

"
@E

@t
= r⇥H, (2.7)

µ
@H

@t
= �r⇥ E. (2.8)

We focus our attention on the electric field E(t, x). By computing the time derivative of (2.7)
and using equation (2.8), we finally obtain the homogeneous form of the electromagnetic wave
equation in terms of the electric field

"
@2E

@t2
�r ·

✓
1

µ
rE

◆
= 0, (2.9)

which can be written in terms of the constant propagation speed of light c =
q

1

µ"

in the medium
and the vector Laplace operator r2. Hence, the wave equation takes the form

@2E

@t2
� c2 ·r2E = 0. (2.10)

14



We notice that equation (2.10) is time reversible, i.e., the function E(�t, x) is also a solution to
this equation due to the second order time derivative where

@2E(�t, x)

@t2
=

@2E(t, x)

@t2
.

This property also holds true for acoustic and elastic (e.g., seismic) wave equations since they
are all hyperbolic equations without dissipation. However, it is clear that it does not hold for
parabolic equations, e.g., the heat equation, due to the first order time derivative. Thus,

@E(�t, x)

@t
= �@E(t, x)

@t
6= @E(t, x)

@t
.

2.1.4 Scalar Component of the Electric Field

The electric field solved by equation (2.9) is a vector field with SI units of newtons per coulomb
(N/C) or, equivalently, volts per meter (V/m). In this paper, we will only work with one of the
components of this field and it will be represented by u. Hence, in a two-dimensional medium,
u is the scalar solution of the wave equation

"(x)
@2u(t, x)

@t2
�r ·

✓
1

µ(x)
ru(t, x)

◆
= 0, x 2 R2, t > 0, (2.11)

We recall that in a strictly homogeneous medium, the permittivity and magnetic permeability
are constants. Equation (2.11) has a form similar to the acoustic wave equation given by

1

K(x)

@2p(t, x)

@t2
�r ·

✓
1

⇢(x)
rp(t, x)

◆
= 0, x 2 R2, t > 0, (2.12)

where p(t, x) is the acoustic pressure field, ⇢(x) the density function and K(x) is known as the
bulk modulus function. The acoustic wave equation governs the propagation of acoustic waves
through a medium, i.e., it describes the evolution of the acoustic pressure as a function of time
and space. It is then clear that equation (2.11) has the form of an acoustic wave equation with
electromagnetic coefficients.

Cauchy Problem

The initial value problem for (2.11) is given by

8
>>>>>><

>>>>>>:

"(x)
@2u

@t2
�r ·

✓
1

µ(x)
ru

◆
= 0, x 2 R2, t > 0,

u(0, x) = u
0

(x), x 2 R2,

@u(0, x)

@t
= u

1

(x), x 2 R2.

(2.13)
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2.1.5 Electric Wave Equation in a Stratified Medium

We now study the case where the medium varies in a piecewise-constant manner, i.e., we consider
a stack of layers made of homogeneous media. This section begins with the case of two layers
which can be easily extended to the three-layer case.

Two Layers

The initial value problem (or, Cauchy problem) takes the form

8
>>>>>><

>>>>>>:

"(x)
@2u

@t2
�r ·

✓
1

µ(x)
ru

◆
= 0, x = (x

1

, x
2

) 2 R2, t > 0,

u(0, x) = u
0

(x), x 2 R2,

@u(0, x)

@t
= u

1

(x), x 2 R2,

(2.14)

where the propagation medium consists of two semi-infinite homogeneous media separated by
an interface at x

2

= constant = h, i.e., the magnetic permeability and dielectric permittivity
functions are defined by

"(x) =

8
><

>:

"
1

if x
2

> h,

"
2

if x
2

< h,
µ(x) =

8
><

>:

µ
1

if x
2

> h,

µ
2

if x
2

< h.
(2.15)

Additionally, for each homogeneous layer, we can obtain the corresponding propagation speeds
c
1

=

p
1/(µ

1

"
1

) and c
2

=

p
1/(µ

2

"
2

). The propagation speed function reads

c(x) =

8
><

>:

c
1

if x
2

> h,

c
2

if x
2

< h.

Three Layers

We consider now the case where we have a stack of three layers of homogeneous media separated
by two interfaces at x

2

= ↵ and x
2

= �, both constants satisfying ↵ < �. We recall that this
problem is an extension of the two-layer case. Hence, the Cauchy problem takes the same form
as (2.14) with magnetic permeability and dielectric permittivity functions given by

"(x) =

8
>>>>><

>>>>>:

"
1

if x
2

> ↵,

"
2

if x
2

2 (↵,�),

"
3

if x
2

< �,

µ(x) =

8
>>>>><

>>>>>:

µ
1

if x
2

> ↵,

µ
2

if x
2

2 (↵,�),

µ
3

if x
2

< �.

(2.16)
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The corresponding propagation speed function has the form

c(x) =

8
>>>>>>>><

>>>>>>>>:

c
1

=

r
1

µ
1

"
1

if x
2

> ↵,

c
2

=

r
1

µ
2

"
2

if x
2

2 (↵,�),

c
3

=

r
1

µ
3

"
3

if x
2

< �.

2.1.6 Plane Wave Reflection/Transmission at a Dielectric Interface

Since we are dealing with stratified media, let us introduce the concept of plane wave reflection
and transmission at a dielectric interface. In the physics of wave propagation, a plane wave is
a constant-frequency wave whose wavefronts are infinite parallel planes of constant amplitude
normal to the phase velocity vector. These waves are particular solutions of the wave equation.

In general, a wave experiences partial transmittance and partial reflectance when the medium
through which it is propagating changes. We consider the case where a plane wave travels
through a homogeneous medium and encounters an interface with a different medium. At the
interface, a portion of the wave is reflected while the remainder of the wave is transmitted, as
shown in figure 6.

Figure 6: Geometry of a reflection/transmission problem.

By enforcing the electromagnetic field boundary conditions at the media interface, the reflected
and transmitted waves can be determined. We then solve for the reflection coefficient � and
transmission coefficient ⌧ , given by

� =

⌘
2

� ⌘
1

⌘
2

+ ⌘
1

, ⌧ =

2⌘
2

⌘
2

+ ⌘
1

, (2.17)
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where ⌘
1

and ⌘
2

are the wave impedances of the electromagnetic wave in the first and second
medium, respectively. The wave impedance corresponds to the ratio of the transverse components
of the electric and magnetic fields traveling through a medium and it has the form

⌘ =

r
i!µ

� + i!"
. (2.18)

In the case of a dielectric medium, equation (2.18) reduces to

⌘ =

r
µ

"
. (2.19)

2.2 Anti-Personnel Mines

Anti-personnel mines are a form of mines, which, as the name implies, are designed for use
against enemy personnel and are activated by pressure, tripwire or remote detonation. They are
designed to kill or injure as many victims as possible. Hence, humans are the target as opposed
to anti-tank mines, which are designed for use against vehicles.

There are several-hundred different kinds of anti-personnel mines in use by many countries which
can be classified in numerous ways. However, they all fit into two basic categories: fragmentation
and blast.

2.2.1 Fragmentation Mines

Fragmentation mines are designed to project fragments in all directions or in one direction
(directional fragmentation mines), causing shrapnel wounds to nearby personnel. These mines
can cause injury up to 200 meters away and kill at closer distances with fragments which are
either glass or metal. Fragmentation mines can be bounding or ground-based. The latter are
not of interest for this paper.

Bounding mines are designed to be used in open areas and are usually buried with only a
small part of the igniter protruding from the ground, making these mines pressure or tripwire
activated. These mines are also referred to as "Bouncing Betty". When activated, a small
propelling charge launches the body of the mine about one meter into the air. The mine then
ignites a main charge, spraying fragmentation and causing injury around the person’s waist,
head and chest.

This type of mine is designed to be buried and it usually contains a large amount of steel, making
it relatively easy to detect with metal detectors. However, it is common for other minimum metal
mines to be planted in the same minefield, which complicates the demining process.
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2.2.2 Blast Mines

Anti-personnel blast mines, the most common type of mine, are typically pressure activated, i.e.,
they are triggered when the victim steps on the pressure plate. The minimum weight needed to
activate them ranges from 2.27 to 10.87 kg (Ackenhusen et al., 2001). These mines are buried
at shallow depths in the soil, rarely deeper than 10 cm, and are designed to destroy an object
in close proximity, such as a person’s foot or leg. The targeted object is meant to break into
fragments, which can cause secondary damage, such as infection and amputation. Hence, the
primary purpose of a blast mine is to injure, rather than kill, the victim in order to increase the
logistical (mostly medical) burden on the opposing force.

Blast mines are usually small enough to be carried in one hand. They typically are cylindrical
in shape, 5.1-12.7 cm in diameter, and 3.8-7.6 cm in height (Horowitz et al., 1996). Generally,
they contain 30-200 g of explosives (Ackenhusen et al., 2001) and their casing may be made of
plastic, wood, or sheet metal. Although plastic-encased blast mines are sometimes referred to
as "nonmetallic mines", nearly all of them contain some metal parts which are usually the firing
pin and a spring/washer mechanism, weighing a gram or so (Horowitz et al., 1996).
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3 Modeling

We consider an incident wave uI , characterized by a propagation speed c, impinging on an
inclusion D placed in a homogeneous medium. The inclusion has several physical properties
which are different from the ones found in the surrounding medium. The propagation speed in
the medium is constant and is denoted by c

0

.

We now introduce the total field uT , which can be decomposed into the incident and scattered
fields, i.e., uT = uI + uS . For the moment, we consider the problem to be in d dimensions, with
d = 1, 2, 3, and assume that the total field satisfies

8
>>>>><

>>>>>:

@2uT

@t2
� c2�uT = 0, x 2 Rd, t � 0,

(uT � uI)(t, x) satisfies a Sommerfeld condition at 1,

homogeneous initial conditions,

(3.20)

with the Sommerfeld radiation condition ensuring that the scattered wave is only outgoing at
infinity. We recall that this is a condition for the frequency domain problem.

Let ⌦ denote a bounded domain that surrounds the inclusion D and let �
R

be the boundary that
encloses the domain, as shown in figure 7. We assume that the incident wave uI is generated by
a point source such that after a time T

f

, the total field uT is negligible in ⌦. Additionally, we
also assume that we have recorded the value of the total field uT on the boundary �

R

.

Figure 7: Domain geometry for the generic model.

We consider the field uT
R

= uT (T
f

�t, x) to be the total time reversed field that satisfies the wave
equation in (3.20). Our aim is to reconstruct the time reversed field uT

R

from the measurements
on �

R

. For this purpose, we derive a boundary value problem (BVP) whose solution is the
time reversed field. It is necessary to point out that neither the exact location nor the physical
properties of the inclusion are known. However, we do have knowledge of the physical properties
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of the surrounding medium, which, as we had already mentioned in the beginning of this section,
has a constant propagation speed c

0

. Thus, the time reversed total field uT
R

satisfies

@2uT
R

@t2
� c2

0

�uT
R

= 0, (t, x) 2 (0, T
f

)⇥ ⌦ \D. (3.21)

We impose Dirichlet boundary conditions on �

R

equal to the time reversed recorded fields, i.e.,
uT
R

(t, x) = uT (T
f

� t, x) on �

R

. It is also necessary to impose homogeneous initial conditions.
However, we lack a boundary condition on the inclusion’s boundary in order to define a well-posed
BVP for the time reversed field uT

R

in ⌦\D. It was mentioned before that the shape and location
of the inclusion D are not known. In addition, the type of boundary condition for the hard or
soft inclusion is not known either.

In order to overcome these difficulties, the classical approach solves problem (3.21) in the entire
domain ⌦, assuming that there is no inclusion D, see [15] and references therein. We denote
this approximate time reversed solution by wT

R

, which satisfies the equation

@2wT

R

@t2
� c2

0

�wT

R

= 0, (t, x) 2 (0, T
f

)⇥ ⌦,

with Dirichlet boundary conditions on �

R

equal to the time reversed recorded fields. Additionally,
we impose the usual homogeneous initial conditions. It is easily verified that the approximate
time reversed solution wT

R

differs from uT
R

. Hence, we look for another method.

3.1 Principle of the TRAC Method

We decide to use the approach given in [1, 2, 3] to derive a boundary value problem whose
solution is the time reversed scattered field uS

R

. The approach is based on the introduction of a
subdomain B enclosing the body D, as shown in figure 7. This subdomain allows us to overcome
the unknown inclusion’s parameters. However, it is necessary to determine a specific boundary
condition for uS

R

on the boundary @B so that the solution to this problem will coincide with uS
R

in the restricted domain ⌦ \B.

In order to derive the boundary condition for uS
R

, we first note that the scattered field uS is a
solution to the problem

8
>>>>>>>>>><

>>>>>>>>>>:

@2uS

@t2
� c2�uS = 0, x 2 Rd \D, t � 0,

uS(t, x) = �uI(t, x), x 2 @D,

uS(t, x) satisfies a Sommerfeld condition at 1,

homogeneous initial conditions.
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When the subdomain B is introduced, the scattered field uS satisfies an exact absorbing boundary
condition (ABC) on the boundary of B, i.e., ABC

�
uS
�
= 0 on @B. The ABC that we consider

is the Bayliss-Turkel first order condition BT

1, in a three-dimensional space, see [6] and [7].
Applied to the scattered field, this condition reads

ABC

�
uS
�
:=

@uS

@t
+ c

@uS

@r
+ c

uS

r
= 0, x 2 @B, (3.22)

being r the radial coordinate with the origin at the center of B. For simplicity, we have assumed
that B is a sphere of radius ⇢. If we time reverse equation (3.22) using uS

R

(t, x) = uS(T
f

� t, x),
we get the expression

� @uS
R

@t
+ c

@uS
R

@r
+ c

uS
R

r
= 0, x 2 @B. (3.23)

We notice that on the boundary of B, @/@r = �@/@n, where n is the outward normal to the
restricted domain ⌦ \B. The time reversed absorbing boundary condition (TRAC) is obtained
by multiplying equation (3.23) by �1. Thus,

TRAC

�
uS
R

�
:=

@

@t

�
uS
R

(t, ·)
�
+ c

@

@n

�
uS
R

(t, ·)
�
� c

r

�
uS
R

(t, ·)
�
, (3.24)

where the minus sign before the last term makes this condition different from the BT

1 absorbing
boundary condition. Using this TRAC, we can now derive a boundary value problem whose
solution is the time reversed scattered field uS

R

, given by
8
>>>>>>>>>><

>>>>>>>>>>:

@2uS
R

@t2
� c2

0

�uS
R

= 0, (t, x) 2 (0, T
f

)⇥ ⌦ \B

TRAC

�
uS
R

�
= 0, x 2 @B,

uS
R

(t, x) = uS(T
f

� t, x), x 2 �

R

,

homogeneous initial conditions.

(3.25)

In [2, 3], a numerical procedure for inclusion identification was deduced from the formulation:

When the subdomain B encloses the inclusion D, then the solution in the restricted domain ⌦\B
must be equal to the time reversed solution. Conversely, if the computed solution differs notably
from the time reversed solution, it shows that the ball B does not enclose the inclusion D.

As we had already mentioned before, the TRAC is not the standard BT

1 absorbing boundary
condition. In addition, it contains an "anti absorbing" term

�
�c uS

R

/r
�
. Therefore, a natural

concern arises about the well-posedness of the BVP (3.25). Although a general theory for the
TRAC has not been developed, in the next section we present the proof of an energy estimate for
a similar problem in a special geometry. It is important to point out that after performing many
tests and computations, the authors of the method have never encountered stability problems.
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Equation (3.24) shows the definition of the first order TRAC in three dimensions. The time
reversed absorbing condition in a two-dimensional space, based on the corresponding BT

1 for
this space (see [6, 7]), is given by

@uS
R

@t
+ c

@uS
R

@n
� c

uS
R

2r
= 0. (3.26)

We have assumed so far that the surface B is a sphere or a circle. This assumption simplifies the
model and it is usually sufficient to find an approximate location of the object enclosed by the
surface. However, in the case of an elongated inclusion, the subdomain B can take the form of an
ellipse or spheroidal surface. Absorbing boundary conditions for these cases have been developed
in [5], [16], and [17], and, for more general surfaces, in [16, 17]. As shown above, a first order
TRAC method simply reverses the sign of the non-differentiated term of the corresponding first
order absorbing boundary condition. For a general bounding surface in two dimensions, the first
order TRAC is therefore

TRAC

�
uS
R

�
:=

@

@t

�
uS
R

(t, ·)
�
+ c

@

@n

�
uS
R

(t, ·)
�
� c

2

�
uS
R

(t, ·)
�
, (3.27)

where  is the curvature of the bounding surface B.

3.2 Energy Estimate

Let the trial subdomain B
⇢

be a ball of a radius ⇢, and denote by r the radial coordinate with
the origin at the center of B

⇢

. In addition, let g be a real-valued function on @B
⇢

, and u the
solution of the problem

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@2u

@t2
� c2�u = 0, in ⌦ \B

⇢

,

u = 0, on �

R

,

@u

@t
+ c

✓
@u

@n
� u

⇢

◆
= g, on @B

⇢

,

u = u
0

,
@u

@t
= u

1

, at t = 0.

(3.28)

Proposition 3.1 If ⌦ is a ball of radius R concentric to B
⇢

, we have the following energy
estimate written for the BVP (3.28) in spherical coordinates (r, ✓,�):

1

2

d

dt

"ZZZ
r2 sin�

✓
@u

@t

◆
2

+ c2 sin�

✓
@(ru)

@r

◆
2

+ c2 sin�

✓
@u

@�

◆
2

+

c2

sin�

✓
@u

@✓

◆
2

#

+

ZZ

r=⇢

c⇢2 sin�

✓
@u

@t

◆
2

=

ZZ

r=⇢

c⇢2 sin�
@u

@t
g.

(3.29)
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Proof. The Laplacian in spherical coordinates (r, ✓,�) has the form

� =

1

r2
@

@r

✓
r2

@(·)
@r

◆
+

1

r2 sin2 �

@2

@✓2
(·) + 1

r2 sin�

@

@�

✓
sin�

@

@�
(·)
◆
. (3.30)

The energy estimate is based on an equivalent formulation of the Laplacian (3.30), given by

� =

1

r

@2

@r2
(r ·) + 1

r2 sin2 �

@2

@✓2
(·) + 1

r2 sin�

@

@�

✓
sin�

@

@�
(·)
◆
. (3.31)

We multiply (3.28) by @u/@t and integrate by parts (recall that dV = r2 sin� dr d✓ d�). Only
the computation for the term arising from the radial derivative is shown since it is the only non
classical one. Hence, we have

�
ZZZ

c2

r

@2

(ru)

@r2
@u

@t
r2 sin� dr d✓ d� =

ZZZ
c2
@(ru)

@r

@2

(ru)

@r@t
sin� dr d✓ d�

�
ZZ

c2
@(ru)

@t

@(ru)

@r
sin� d✓ d�

�
r=R

r=⇢

.

The boundary term at r = R vanishes due to the homogeneous Dirichlet condition on �

R

. Thus,
we decide to focus our attention on the term at r = ⇢. We have

ZZ

r=⇢

c2
@(ru)

@t

@(ru)

@r
sin� d✓ d� =

ZZ

r=⇢

c⇢
@(ru)

@t
c

✓
@u

@r
+

u

⇢

◆
sin� d✓ d�.

We know that at r = ⇢, the equality @/@r = �@/@n holds. Using this equality and the second
boundary condition in (3.28), we can verify that
ZZ

r=⇢

c⇢
@(ru)

@t
c

✓
@u

@r
+

u

⇢

◆
sin� d✓ d� =

ZZ

r=⇢

c⇢
@(ru)

@t

✓
@u

@t
� g

◆
sin� d✓ d�

=

ZZ

r=⇢

c⇢2
✓
@u

@t

◆
2

sin� d✓ d��
ZZ

r=⇢

c⇢2
@u

@t
g sin� d✓ d�.

By rewriting the right-hand side of equation (3.31), we find the energy estimate (3.29).

Remark 3.2 The energy estimate (3.29) is not the standard energy estimate because of the
term (@(ru)/@r)2. We obtain this term by using an equivalent formulation of the Laplacian in
spherical coordinates, as mentioned in the proof. This energy estimate proves the well-posedness
of the TRAC method but is not physically interpretable.
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3.3 Recreating the Past

The TRAC method’s capacity to recreate the past when the line of receivers �

R

is continuous
and encloses the bounded domain ⌦, as shown in figure 8(a), was proved in [2] and [3]. For a
domain B arbitrarily located in ⌦, we solve the problem

8
>>>>>>>>>><

>>>>>>>>>>:

@2vS
R

@t2
� c2

0

�vS
R

= 0, (t, x) 2 (0, T
f

)⇥ ⌦ \B

TRAC

�
vS
R

�
= 0, x 2 @B,

vS
R

(t, x) = uS(T
f

� t, x), x 2 �

R

,

homogeneous initial conditions,

(3.32)

with an adhoc artificial boundary condition on the remaining part of the external boundary.
When B encloses the object D, we know from the previous section that the solution in the
restricted domain ⌦ \B coincides with the time reversed solution.

(a) Full aperture (b) Partial aperture

Figure 8: Two configurations of the source-receiver array (SRA). (a) The line of receivers encloses
the bounded domain ⌦. (b) The aperture is reduced.

The TRAC method also proved to be quite insensitive to the level of noise in the data. A
Gaussian noise was added by replacing on �

R

, the recorded scattered field uS with

uS = (1 + Coeff ⇤ randn) ⇤ uS , (3.33)

where randn satisfies a centered reduced normal law and Coeff is the level of noise.

In an attempt to come closer to reality, we now consider a partial aperture, as in figure 8(b), and
a finite number of receivers spaced by a fraction of the central wavelength �. In order to create
synthetic data, equation (3.32) is approximated by the FreeFem++ package, which implements
a finite element method in space (see [14]).
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3.4 Numerical Approximation

In this section, we study the forward and time reversed boundary value problems for the
configuration shown in figure 9. Due to the complexity of these problems, it is necessary to
use numerical techniques to find their approximate solutions. Thus, for each BVP, we derive a
variational formulation and, subsequently, discretize in time and space.

Figure 9: Model geometry.

3.4.1 Forward Problem

Consider the domain ⌦ ⇢ R2 to be a closed disk of radius R. The total field satisfies
8
>>>>>><

>>>>>>:

"(x)
@2uT

@t2
�r ·

✓
1

µ(x)
ruT

◆
= 0, x = (x

1

, x
2

) 2 ⌦, t 2 (0, T
f

),

@uT

@t
+ c(x)

@uT

@n
+ c(x)

uT

2R
= f(t), x 2 @⌦,

homogeneous Cauchy data,

(3.34)

where the function f(t) has compact support in time and is defined as

f(t) =

8
><

>:

[1� 2⇡2

(!t� 1)

2

] exp(�⇡2

(!t� 1)

2

) if t 2 (0, T
s

) and x = xS 2 R2,

0 elsewhere,
(3.35)

being ! the frequency of the wave, T
s

the duration of the source signal, and xS = (xS
1

, xS
2

) the
source’s coordinates.
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The functions "(x), µ(x) and c(x) are the dielectric permittivity, magnetic permeability and
propagation speed, respectively, as seen in section 2.1. For the moment, we define

"(x) =

8
><

>:

"
0

if x 2 ⌦ \D,

"
D

if x 2 D,
µ(x) =

8
><

>:

µ
0

if x 2 ⌦ \D,

µ
D

if x 2 D,
(3.36)

and the corresponding propagation speed function as

c(x) =

8
>>><

>>>:

c
0

=

r
1

µ
0

"
0

if x 2 ⌦ \D,

c
D

=

r
1

µ
D

"
D

if x 2 D.

In Section 4, we will extend the previous definitions to the case where there are several layers
of homogeneous media and the object D is surrounded by one of these layers.

Variational Formulation

In order for uT to be in H1

(⌦), we assume that the function f is at least in H�1

(⌦), i.e.,
the dual Sobolev space of H1

(⌦). We will denote the test function space by V , defined as
V = H1

0

(⌦) =

�
v : ⌦ ! R : v,rv 2 L2

(⌦) and v = 0 on @⌦
 
. Multiplying the wave equation

in (3.34) by a test function v 2 V and integrating over ⌦, we have

ZZ

⌦

"
@2uT

@t2
v �

ZZ

⌦

r ·
✓
1

µ
ruT

◆
v = 0.

Performing an integration by parts on the second integral (divergence theorem), we obtain

ZZ

⌦

"
@2uT

@t2
v +

ZZ

⌦

1

µ
ruT ·rv �

Z

@⌦

1

µ

@uT

@n
v = 0.

We use the absorbing boundary condition to replace the normal derivative term and get

ZZ

⌦

"
@2uT

@t2
v +

ZZ

⌦

1

µ
ruT ·rv +

Z

@⌦

1

cµ

@uT

@t
v +

Z

@⌦

1

2µR
uT v =

Z

@⌦

1

cµ
f(t)v. (3.37)

Hence, we want to find the solution to the following problem:

find uT 2 V such that 8v 2 V,

ZZ

⌦

"
@2uT

@t2
v +

ZZ

⌦

1

µ
ruT ·rv +

Z

@⌦

1

cµ

@uT

@t
v +

Z

@⌦

1

2µR
uT v =

Z

@⌦

1

cµ
f(t)v.

(3.38)
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Fully Discrete Problem

The variational formulation naturally leads to a semi-discrete problem by approximating the
space V by a nonempty finite dimensional space V

h

⇢ V . Since we will use the finite element
method, we take V

h

to be a space of piecewise linear polynomial functions and problem (3.38)
then takes the following form:

find uT
h

2 V
h

such that 8v
h

2 V
h

,

ZZ

⌦

"
@2uT

h

@t2
v
h

+

ZZ

⌦

1

µ
ruT

h

·rv
h

+

Z

@⌦

1

cµ

@uT
h

@t
v
h

+

Z

@⌦

1

2µR
uT
h

v
h

=

Z

@⌦

1

cµ
f(t)v

h

.
(3.39)

Let N be the dimension of V
h

and ' = ('
l

)

l2[1,N ]

a basis of V
h

, where '
l

is a P 1-function
vanishing everywhere except on the vertex l. Hence, uT

h

is decomposed on the basis as

uT
h

(x) =
NX

l

U
l

'
l

(x) 8x 2 ⌦.

We now focus on time discretization, where we choose to use centered finite difference schemes.
The interest in these schemes is not only the stability they provide but the symmetry they have,
which is useful for time reversal techniques. We fix a time step � and denote

�
uT
h

�
n

(x) ⇡ uT (n �t, x).

Time-discretizing the equation in (3.39) gives
ZZ

⌦

"
�
uT
h

�
n+1

v
h

� 2

ZZ

⌦

"
�
uT
h

�
n

v
h

+

ZZ

⌦

"
�
uT
h

�
n�1

v
h

+ �t2
ZZ

⌦

1

µ

�
ruT

h

�
n ·rv

h

+

�t

2

Z

@⌦

1

cµ

�
uT
h

�
n+1

v
h

� �t

2

Z

@⌦

1

cµ

�
uT
h

�
n�1

v
h

+ �t2
Z

@⌦

1

2µR

�
uT
h

�
n

v
h

= �t2
Z

@⌦

1

cµ
fnv

h

.

(3.40)

Matrix Form of the Problem

Consider a discretization mesh T
h

for ⌦, conforming around the object D. We define the column
vector UT

= (U
1

, U
2

, ..., U
N

)

t. In order to give the matrix form of (3.40), we introduce

• M , which denotes the matrix associated with the bilinear form : (u, v) 7�!
ZZ

⌦

"uv, i.e.,

it is the mass matrix M
i,j

=

ZZ

⌦

"'
i

'
j

• A, the matrix associated with the bilinear form : (u, v) 7�!
ZZ

⌦

1

µ
ru ·rv
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• B
out

, the matrix associated with the bilinear form : (u, v) 7�!
Z

@⌦

1

cµ
uv

• C
out

, the matrix associated with the bilinear form : (u, v) 7�!
Z

@⌦

1

2µR
uv

where B
out

represents the mass matrix on the boundary and C
out

a curvature term. Thus,
8
>>>>>>>>><

>>>>>>>>>:

(M + �t/2B
out

)

�
UT

�
n+1

=

�
2M � �t2A� �t2C

out

� �
UT

�
n

+ (�M + �t/2B
out

)

�
UT

�
n�1

+ �t2B
out

fn

h

,

�
UT

�
0

= 0,

�
UT

�
1

= 0.
(3.41)

3.4.2 Time Reversed BVP

Consider the domain ⌦ ⇢ R2 to be a closed disk of radius R, as in the case of the forward
problem. Using the TRAC method, we can derive a boundary value problem whose solution is
the time reversed total field uT

R

(t, x) = uT (T
f

� t, x).

As seen in Section 3.3, since uT
R

= uI
R

+ uS
R

, we can deduce that TRAC

�
uT
R

� uI
R

�
= 0

or, equivalently, TRAC

�
uT
R

�
= TRAC

�
uI
R

�
. The TRAC is derived from the BT

1 absorbing
boundary condition, and, under the assumption that BT

1 is exact, we obtain the time reversed
problem. Hence, for a disk B of radius ⇢ arbitrarily located in C, the time reversed total field,
which will be denoted for simplicity by uTr

= uT
R

, satisfies

8
>>>>>>>>>><

>>>>>>>>>>:

"(x)
@2uTr

@t2
�r ·

✓
1

µ(x)
ruTr

◆
= 0, in (0, T

f

)⇥ C\B,

@uTr

@t
+ c(x)

@uTr

@n
� c(x)

uTr

2⇢
=

@uIr

@t
+ c(x)

@uIr

@n
� c(x)

uIr

2⇢
, on (0, T

f

)⇥ @B,

uTr

(t, x) = uT (T
f

� t, x), on (0, T
f

)⇥ @C,

homogeneous Cauchy data,

(3.42)

where "(x) and µ(x) are defined by (3.36), with x = (x
1

, x
2

). The time reversed incident function
is also denoted for simplicity by uIr = uI

R

.

Remark 3.3 The first order ABC is not exact. When we compute the forward data (where we
also use an ABC on @B), we have to record the value of uT on a line of receivers @C, being C
the disk whose boundary contains the receivers, strictly inside the domain ⌦\D. Hence, the time
reversed BVP will be computed on a truncated domain C\B. We note that we shall encounter
problems by solving the time reversed BVP since BT

1 is not an exact condition.
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Variational Formulation

Let v 2 V , with V = H1

(C\B) such that v vanishes on @C. We multiply the wave equation in
(3.42) by this test function and subsequently integrate over C\B to obtain

ZZ

C\B
"
@2uTr

@t2
v �

ZZ

C\B
r ·

✓
1

µ
ruTr

◆
v = 0,

which, after some manipulation, takes the form

ZZ

C\B
"
@2uTr

@t2
v +

ZZ

C\B

1

µ
ruTr ·rv �

Z

@B

1

µ

@uTr

@n
v = 0.

We use the first boundary condition in (3.42) to replace the normal derivative term and get

ZZ

C\B
"
@2uTr

@t2
v +

ZZ

C\B

1

µ
ruTr ·rv +

Z

@B

1

cµ

@uTr

@t
v �

Z

@B

1

2µ⇢
uTrv

=

Z

@B

1

cµ

@uIr

@t
v �

Z

@B

1

2µ⇢
uIrv +

Z

@B

1

µ

@uIr

@n
v.

(3.43)

Fully Discrete Problem

We use a finite element method with P 1-elements to discretize in space, as in the forward problem
presented in Section 3.4.1. The space V is approximated by a nonempty finite dimensional space
V
h

⇢ V , consisting of piecewise linear polynomial functions. Let N be the dimension of V
h

and
' = ('

l

)

l2[1,N ]

a basis of V
h

, where '
l

is a P 1-function vanishing everywhere except on the
vertex l. Hence, uTr

h

2 V
h

is decomposed on the basis as

uTr

h

(x) =
NX

l

U r

l

'
l

(x) 8x 2 C\B.

We now choose to use centered finite difference schemes for time-discretizing. Let � be the time
step and

�
uTr

h

�
n

(x) ⇡ uTr

(n �t, x). The time discretization gives

ZZ

C\B
"
�
uTr

h

�
n+1

v
h

� 2

ZZ

C\B
"
�
uTr

h

�
n

v
h

+

ZZ

C\B
"
�
uTr
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�
n�1

v
h

+ �t2
ZZ

C\B

1

µ

�
ruTr

�
n ·rv

+

�t
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Z

@B

1

cµ

�
uTr

h

�
n+1

v
h

� �t

2

Z

@B

1

cµ

�
uTr

h

�
n�1

v
h

� �t2
Z

@B

1

2µ⇢

�
uTr

h

�
n

v
h

=

�t

2

Z

@B

1

cµ

�
uIr

�
n+1

v
h

� �t

2

Z

@B

1

cµ

�
uIr

�
n�1

v
h

� �t2
Z

@B

1

2µ⇢

�
uIr

�
n

v
h

+ �t2
Z

@B

1

µ

✓
@uIr

@n

◆
n

v
h

,

(3.44)
where uIr is already known.
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Dirichlet Boundary Condition

We now focus our attention on the Dirichlet boundary condition. This is a condition used at
every time step and it is therefore preferable to use a penalty approach for it. First, we consider
the stationary problem 8

><

>:

r ·
✓
1

µ
ru

◆
= 0, in C,

u = g, on @C.
(3.45)

The aim of the penalization method is to minimize the functional associated to problem (3.45).
Let ✏ be the parameter of penalization. The associated functional has the form

J : H1

(C) �! R

v 7�! 1

2

ZZ

C

1

µ
|rv|2 + 1

2✏

Z

@C
(v � g)2 .

Thus, u is a solution in H1

(C) of the problem
ZZ

C

1

µ
ru ·rv +

1

✏

Z

@C
uv =

1

✏

Z

@C
gv 8v 2 H1

(C). (3.46)

We need to inject the penalized term into the iterative scheme. This is imposed implicitly and
we consider D

out

to be the matrix associated with the bilinear form : (u, v) 7�!
Z

@C
uv.

Normal Derivative

A main problem encountered in the discretization is computing the normal derivative. The
approach we decided to take is to express with volume integrals the term

�t2
Z

@B

1

µ

✓
@u

@n

◆
n

v.

We recall that u satisfies

"(x)
@2u

@t2
�r ·

✓
1

µ(x)
ru

◆
= 0, in (0, T

f

)⇥ C\B.

Thus, for all time independent test functions w 2 H1

(C\B), we get

ZZ

C\B
"
@2u

@t2
w +

ZZ

C\B

1

µ
ru ·rw =

Z

@C

1

µ

@u

@n
w +

Z

@B

1

µ

@u

@n
w.
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Since v|@B belongs to H
1
2
(@B) as trace of a function H1

(C\B), we obtain

Z

@B

1

µ

@u

@n
v =

ZZ

C\B
"
@2u

@t2
w +

ZZ

C\B

1

µ
ru ·rw, (3.47)

with w 2 H1

(C\B) being a prolongation of v|@B that vanishes on the boundary @C and is time
independent. Time-discretizing equation (3.47) gives

�t2
Z

@B

1

µ

✓
@u

@n

◆
n

v =

ZZ

C\B
" (u)n+1w � 2

ZZ

C\B
" (u)nw

+

ZZ

C\B
" (u)n�1w + �t2

ZZ

C\B

1

µ
(ru)n ·rw.

However, a new difficulty arises in our space discretization with the finite element method since
w has constraints on the boundaries.

Matrix Form of the Problem

Consider a conforming discretization mesh T
h

for C\B and a fixed spacing step h. We define
the column vector UTr

= (U r

1

, U r

2

, ..., U r

N

)

t and set

• M , which denotes the mass matrix M
i,j

=

ZZ

C\B
"'

i

'
j

• A, the matrix A
i,j

=

ZZ

C\B

1

µ
r'

i

·r'
j

• B, the matrix B
i,j

=

Z

@B

1

cµ
'
i

'
j

• C, the matrix C
i,j

=

Z

@B

1

2µ⇢
'
i

'
j

Although we keep the same notations as in the forward problem, it is important to keep in mind
that the integration domain is different. The matrix form of (3.42) is given by
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

✓
M +

1

✏
D

out

+

�t

2

B

◆�
UTr

�
n+1

=

�
2M � �t2A+ �t2C

� �
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�
n
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✓
�M +
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2

B

◆�
UTr

�
n�1

+

�t

2

B
�
U Ir

�
n+1 � �t

2

B
�
U Ir

�
n�1 � �t2C

�
U Ir

�
n

+

1

✏
D

out

�
UTr

�
Nt�(n+1)

+ Fn

�
UTr

�
0

= 0,

�
UTr

�
1

= 0,

(3.48)
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where we denote by Fn the discretization of the normal derivative in P 1. Using matrix notation,
each element Fn

i

, i = 1, 2, ..., N , of this column vector has the form

Fn

i

=

8
><

>:

⇣
M

�
UTr

�
n+1 � 2M

�
UTr

�
n

+M
�
UTr

�
n�1

+ �t2A
�
UTr

�
n

⌘

i

if i 2 @B,

0 if i /2 @B.

A similar analysis can be used to obtain the matrix form of the scattered field problem. We
use FreeFem++, a language dedicated to the finite element method, to solve system (3.48). In
section 4 we present the numerical results that we obtained.

3.5 Criteria

As seen in Section 3.1, if the subdomain B encloses the object D, then the TRAC method is able
to recreate the past. On the other hand, when the subdomain does not enclose D, the solution
of equation (3.32) does not coincide with the time reversed scattered field uS

R

= uS(T
f

� t, x).
This property was used in [1, 2, 3] to locate the inclusion by means of a trial and error procedure.
The idea is to modify the location, shape and size of B, with the purpose of approximating the
inclusion’s location and volume by trial and error. The method relies on mathematical criteria
which make it possible to determine if the computed solution of equation (3.32) corresponds to
the time reversed scattered field uS

R

or not, and, most importantly, without knowing uS
R

.

In [1, 2, 3], three different criteria were introduced in order to assert that the subdomain B does
not enclose D. However, one of them only works for the full aperture case. We will therefore
focus on the remaining two since they are effective for a partial aperture.

3.5.1 Absorbing Boundary Condition Criterion

This criterion is derived from the use of absorbing boundary conditions. Indeed, the basis of the
method is the time reversed scattered field satisfying TRAC(uS

R

) = 0, at any point outside the
inclusion D. In problem (3.32), this relation is used on the boundary of the artificial subdomain
B in order to compute vS

R

. If the subdomain B encloses D, both uS
R

and vS
R

coincide. Hence,
we have

TRAC(vS
R

) = 0,

at any point outside the inclusion (up to approximation errors due to the absorbing condition
and the numerical scheme). Thus, we introduce the criterion

J
ABC

(B) :=

����

✓
@

@t
� c

0

@

@r

◆
vS
R

����
L

1
((0,Tf )⇥⌦\B)����

✓
@

@t
� c

0

@

@r

◆
uI

����
L

1
((0,Tf )⇥⌦)

, (3.49)
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being r the radial coordinate with the origin at the center of B. Taking into consideration
that this center is somewhat arbitrary, the curvature term in (3.24) was dropped since it could
become very large when B is small.

When the trial domain B encloses D, the criterion J
ABC

(B) should be small. Alternatively,
when part or all of inclusion D is outside B, J

ABC

(B) should be significantly larger than the
enclosed case. We notice that this criterion is normalized with respect to the strength of the
incident field uI . Since the computed time reversed scattered field vS

R

depends on the aperture
of the SRA, a full aperture will give a stronger signal than a partial aperture. Thus, in order to
obtain comparable results, we introduce a relative criterion

Jrel

ABC

(B) :=

J
ABC

(;)
J
ABC

(B)

, (3.50)

where J
ABC

(;) is the criterion computed in the absence of a trial domain B.

3.5.2 Cross-Correlation Criterion

This criterion is inspired from reverse time migration techniques (see [10]). It consists in the
cross-correlation of the incident field uI with the time reversed scattered field vS

R

. In classical
applications of earth imaging, the following integral is computed as a function of x 2 ⌦:

f(x) =

Z
t=Tf

t=0

vS
R

(T
f

� t, x)⇥ uI(t, x)dt. (3.51)

The function f images the discontinuities of the propagation speed c(x). In this paper, we
introduce the related criterion

J
CC

(B) :=

���
R
t=Tf

t=0

vS
R

(T
f

� t, .)⇥ uI(t, .)dt
���
L

1
(⌦\B)���

R
t=Tf

t=0

|uI(t, .)|2 dt
���
L

1
(⌦)

, (3.52)

where vS
R

is the solution to problem (3.32). When the trial domain B encloses D, there is no
discontinuity to be imaged in ⌦ \ B and the criterion J

CC

(B) should be small. Alternatively,
when part of inclusion D is outside B, the function f images this part and J

CC

(B) is significantly
larger than the enclosed case. As for the previous criterion, we define a relative criterion

Jrel

CC

(B) :=

J
CC

(;)
J
CC

(B)

, (3.53)

where J
CC

(;) still refers to the case where there is no trial domain B.
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4 Numerical Results

In this section we present several numerical experiments done with the software FreeFem++.
All tests have been performed in a two-dimensional computational domain, specifically, in a disk
with an absorbing condition on its external boundary simulating an otherwise infinite domain.

4.1 Two Layers

The aim of our first experiments is to investigate the ability of the TRAC method to discriminate
a single object from two distinct but close objects buried in dry sand, as shown in figure 10.

(a) One inclusion (b) Two close inclusions

Figure 10: Setup for a two-layered medium.

The propagation medium ⌦ consists of two homogeneous layers made up of sand and air, i.e.,
we define ⌦ = ⌦

a

[ ⌦

s

. We consider problem (3.32) with the propagation medium speed (now
denoted by c

2l

) not a constant but piecewise constant

c
2l

=

8
>>><

>>>:

c
0

=

r
1

µ
0

"
0

if x 2 ⌦

a

,

cs =

r
1

µs"s
if x 2 ⌦

s

.

In section 2.1.2, we gave the values for the dielectric permittivity and magnetic permeability
of free space or vacuum ("

0

⇡ 8.85 ⇥ 10

�12 F/m and µ
0

⇡ 12.57 ⇥ 10

�7 H/m, respectively).
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We recall that these values differ negligibly from the ones in air. Additionally, the relative
permittivity term was defined in equation (2.4) and the relative permeability in (2.5). Table 2
presents both absolute and relative values for five materials considered in our tests.

Material Superscript "
r

" = "
r

"
0

µ
r

µ = µ
r

µ
0

Air a 1.0 8.85⇥ 10

�12 1 12.57⇥ 10

�7

Iron f 1.0 8.85⇥ 10

�12 10,000 12.57⇥ 10

�3

Plastic p 1.5 1.33⇥ 10

�11 1 12.57⇥ 10

�7

Dry sand s 3.0 2.66⇥ 10

�11 1 12.57⇥ 10

�7

Wet sand w 5.8 5.13⇥ 10

�11 1 12.57⇥ 10

�7

Table 2: Values for the dielectric permittivity and magnetic permeability of five materials.

Material Superscript c
r

c = c
r

c
0

⌘

Air a 1 3.00⇥ 10

8 376.87
Iron f

p
1/10000 3.00⇥ 10

6 37,687.40
Plastic p

p
1/1.5 2.45⇥ 10

8 307.43
Dry sand s

p
1/3.0 1.73⇥ 10

8 217.38
Wet sand w

p
1/5.8 1.24⇥ 10

8 156.53

Table 3: Impedances and propagation speeds in five selected materials, with c
0

⇡ 3.00⇥ 10

8.

The propagation speeds for sand, iron and plastic are defined in table 3. An iron object buried
in the sand acts like a "hard" inclusion, with a speed ratio given by

cf

cs
=

cf
r

cs
r

=

r
3

10000

⇠ 0.017 << 1,

whereas plastic objects are penetrable with a speed ratio close to 1, since

cp

cs
=

cp
r

cs
r

=

p
2 ⇠ 1.41.

The reflection and transmission coefficients for air and sand can be obtained using equation
(2.17) and data in table 3. Thus, we have

�

a,s

=

⌘s � ⌘a

⌘s + ⌘a
⇡ �0.27, ⌧a,s =

2⌘s

⌘s + ⌘a
⇡ 0.73,

where a negative reflection coefficient means that the reflected wave receives a ⇡ phase shift.

We consider a source located at 10� from the center of the computational disk, with � the source
signal wavelength. Since we have two layers, this wavelength is obtained using the relation

� =

min (ca, cs)

⌫
,
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where ⌫ = 2⇡/! is the frequency of the source (3.35) set at 5 GHz. The length of the
source-receiver array (SRA) is approximately 5.7� and the spacing between the receivers is �/4,
i.e., we have 23 receivers. We study the case of quite far apart inclusions and close inclusions,
corresponding to d = 3�/2 and d = �/2, respectively, being d the distance between the inclusions.
For both iron and plastic objects, we aim to distinguish two inclusions (D = D

1

[D
2

) from one
inclusion (D = D

1

[D
2

[D
3

), as shown in figure 4.1.

(a) One inclusion (b) Two close inclusions

Figure 11: Geometric configuration for a single inclusion and two distinct inclusions.

4.1.1 Iron Objects

We plot in figure 11 the values of the function f defined in (3.51) for d = 3�/2. The first row
corresponds to two distinct inclusions whereas the second row to a single inclusion. When there
is no trial domain, we can see that the cross-correlation function f images clearly the edges
of the inclusions, as shown in figure 11(b). However, when the trial domain B encloses the
inclusions (top left picture), there is nearly no image, as expected. In addition, when a part
of the inclusion is not embedded in B, it is correctly imaged as an illumated edge (bottom left
picture). This illustrates the principle of the TRAC method. Thus, we are able to distinguish
between one single inclusion and two close ones.

In figure 12, we show the same configuration of plots for a smaller d equal to �/2. When there
is no trial domain, the imaging function f is not able to distinguish if there are two inclusions
or one, as seen in 11(b). This is due to the proximity of the inclusions. However, in the case of
the trial domain enclosing the inclusions (top left picture), the function f is in fact significantly
smaller than in the case where B leaves outside part of the inclusion. Note that due to the
proximity of the inclusions, we have used trial domains made of two ellipses instead of balls.
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(a) B made of 2 components (b) B = ;

Figure 12: Imaging function (3.51) in a two-layered medium for distant iron objects, d = 3�/2.

(a) B made of 2 components (b) B = ;

Figure 13: Imaging function (3.51) in a two-layered medium for close iron objects, d = �/2.
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In order to interpret the previous results from a more quantitative point of view, we give in
tables 4 and 5 the values of the criteria Jrel

ABC

and Jrel

CC

for various levels of noise and trial
domains B. The first four rows of the tables correspond to the case where the trial domain B is
an ellipse that encloses the object D. In the four middle rows, D

2

is outside the trial domain B,
and, in the last four rows, the trial domain consists of two ellipses that contain the inclusions
D

1

and D
2

, but not D
3

in the case of a single inclusion. We point out that in the latter case,
an origin to the trial domain cannot be uniquely defined. Hence, we cannot use the notion of
radial derivative at any point in the computational domain and the criterion J

ABC

is not clearly
defined for this case. This is the reason why we put crosses in the tables when the trial domain
B is not simply connected.

Jrel

ABC

Jrel

CC

Trial Domain Noise level 2 Inclusions 1 Inclusion 2 Inclusions 1 Inclusion

0% 8.91 14.21 5.26 10.28
10% 8.05 10.35 5.23 10.19
20% 5.95 8.54 5.18 10.54
30% 5.43 7.26 5.49 9.93
0% 1.33 1.70 1.04 0.99
10% 1.32 1.72 1.04 1.00
20% 1.32 1.81 1.04 1.01
30% 1.40 1.74 1.07 1.00
0% ⇥ ⇥ 3.69 1.09
10% ⇥ ⇥ 3.67 1.09
20% ⇥ ⇥ 3.84 1.11
30% ⇥ ⇥ 3.73 1.10

Table 4: Results of two relative criteria in the case of distant iron objects, d = 3�/2. Comparison
in distinguishing one inclusion from two inclusions for several trial domains.

As seen in Section 3.5, a relative criterion close to one aims to indicate that the trial domain B

does not enclose the object D. Alternatively, a significant value for this criterion should indicate
that the trial domain B encloses D. For distant iron objects (see table 4), both criteria work
as expected, although criterion Jrel

CC

has the advantage to be reliable in all of the cases. Thus,
the TRAC method is able to distinguish a simply connected inclusion from an inclusion made
of two distant components. In addition, when the distance d becomes smaller, i.e., d = �/2, we
get similar results (see table 5), and when the trial domain leaves part of the inclusion outside,
the values in the bottom right part of table 5 indicate that it is harder but not impossible to
distinguish one inclusion from two close inclusions.
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Jrel

ABC

Jrel

CC

Trial Domain Noise level 2 Inclusions 1 Inclusion 2 Inclusions 1 Inclusion

0% 16.42 16.31 9.29 9.39
10% 14.53 14.30 9.30 9.27
20% 7.12 10.54 9.66 9.31
30% 8.13 7.44 9.69 9.15
0% 1.43 2.06 0.91 1.02
10% 1.43 2.06 0.91 1.02
20% 1.42 2.05 0.91 1.02
30% 1.44 2.13 0.91 1.02
0% ⇥ ⇥ 3.52 2.14
10% ⇥ ⇥ 3.56 2.12
20% ⇥ ⇥ 3.55 2.17
30% ⇥ ⇥ 3.60 2.10

Table 5: Results of two relative criteria in the case of close iron objects, d = �/2. Comparison
in distinguishing one inclusion from two inclusions for several trial domains.

4.1.2 Plastic Objects

We now consider plastic objects, which have small reflectivity, i.e., the reflection coefficient for
plastic and sand �

p,s

= �0.17. Figures 14 and 13 are arranged in the same way as figures 11
and 12, respectively. We first focus our attention on distant plastic objects (figure 14). When
there is no trial domain B, the cross-correlation function f images the edges of the inclusions.
The main difference with the iron objects is that plastic inclusions are penetrable and we can
therefore image their back part, although this is barely noticeable in figure 14 due to the relatively
small values of the imaging function. Plots in figure 14(a) illustrate the principle of the TRAC
method. When the trial domain B encloses the objects (top left picture), there is no significant
image. Otherwise, the edges of the part of the inclusion not embedded in B are correctly imaged
(bottom left picture). Once again, we are able to distinguish between one single inclusion and
two close ones.

Figure 13 shows the case of close plastic objects. Due to the proximity of the inclusions, it is
difficult to distinguish two inclusions from one in the absence of a trial domain. When the trial
domain B encloses the objects (top left picture), there are no visual imaging values present in
the plot. However, when B leaves part of the inclusion (part of D

3

) on the outside, we can see
a very softly illuminated edge corresponding to the not enclosed part (bottom left picture).

The results from the quantitative analysis are given in tables 6 and 7, organized in the same
way as tables 4 and 5, respectively. These tables give the values of the criteria Jrel

ABC

and Jrel

CC

for various levels of noise and trial domains B. For distant plastic objects (see table 6), the
values are very similar to the ones obtained for the iron objects. This is an interesting result
due to the fact that plastic inclusions are penetrable and iron ones are not. In addition, both
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criteria Jrel

ABC

and Jrel

CC

work as expected, the latter having the advantage of being reliable in all
situations. The TRAC method is able to distinguish a simply connected penetrable inclusion
from one made of two components. When the distance d is smaller (d = �/2), it is harder but
still possible to distinguish one inclusion from two close ones, as seen in table 7. If we compare
the values located in the bottom right part of table 7 with the corresponding ones found in the
one-layer case presented in [2] and [3], we notice that the difficulty to distinguish between one
single inclusion and two close ones increases with the presence of an additional layer, as expected.

Jrel

ABC

Jrel

CC

Trial Domain Noise level 2 Inclusions 1 Inclusion 2 Inclusions 1 Inclusion

0% 8.80 12.36 5.24 8.55
10% 7.57 10.21 5.21 8.41
20% 5.48 6.41 5.21 8.61
30% 3.82 4.06 5.07 8.01
0% 1.33 1.64 0.99 0.95
10% 1.33 1.64 0.99 0.94
20% 1.35 1.74 0.99 0.94
30% 1.28 1.67 1.00 0.94
0% ⇥ ⇥ 3.26 1.01
10% ⇥ ⇥ 3.28 1.01
20% ⇥ ⇥ 3.28 1.01
30% ⇥ ⇥ 3.35 1.01

Table 6: Results of two relative criteria in the case of distant plastic objects, d = 3�/2.
Comparison in distinguishing one inclusion from two inclusions for several trial domains.

Jrel

ABC

Jrel

CC

Trial Domain Noise level 2 Inclusions 1 Inclusion 2 Inclusions 1 Inclusion

0% 12.58 11.89 8.43 8.76
10% 9.88 10.54 8.49 8.51
20% 9.12 8.69 8.47 8.69
30% 6.48 5.26 8.27 9.24
0% 1.42 1.84 0.90 1.10
10% 1.40 1.82 0.90 1.10
20% 1.44 1.85 0.91 1.11
30% 1.39 1.90 0.90 1.12
0% ⇥ ⇥ 3.22 2.17
10% ⇥ ⇥ 3.28 2.17
20% ⇥ ⇥ 3.20 2.19
30% ⇥ ⇥ 3.22 2.19

Table 7: Results of two relative criteria in the case of close plastic objects, d = �/2. Comparison
in distinguishing one inclusion from two inclusions for several trial domains.
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(a) B made of 2 components (b) B = ;

Figure 14: Imaging function (3.51) in a two-layered medium for close plastic objects, d = �/2.

(a) B made of 2 components (b) B = ;

Figure 15: Imaging function (3.51) in a two-layered medium for distant plastic objects, d = 3�/2.
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Iron Objects Plastic Objects
Trial Domain Noise level 2 Inclusions 1 Inclusion 2 Inclusions 1 Inclusion

0% 23.04% 41.48% 3.98% 6.64%
10% 23.07% 41.64% 3.97% 6.62%
20% 22.99% 42.18% 3.99% 6.61%
30% 23.46% 41.63% 4.07% 6.56%
0% 4.38% 4.04% 0.76% 0.78%
10% 4.41% 4.09% 0.76% 0.79%
20% 4.43% 4.00% 0.77% 0.77%
30% 4.28% 4.19% 0.80% 0.82%
0% 22.12% 41.68% 4.02% 7.00%
10% 22.19% 41.63% 4.02% 7.02%
20% 22.09% 41.70% 4.02% 7.00%
30% 21.91% 41.69% 4.07% 6.98%
0% 6.24% 38.00% 1.22% 6.54%
10% 6.29% 38.08% 1.21% 6.55%
20% 5.98% 38.13% 1.22% 6.55%
30% 6.29% 37.98% 1.22% 6.52%

Table 8: Non relative criterion J
CC

(3.52) for distant iron vs. plastic objects in a two-layered
medium. Comparison in distinguishing one inclusion from two for several trial domains.

Iron Objects Plastic Objects
Trial Domain Noise level 2 Inclusions 1 Inclusion 2 Inclusions 1 Inclusion

0% 26.81% 30.35% 4.61% 6.25%
10% 26.87% 30.24% 4.61% 6.22%
20% 26.91% 30.36% 4.63% 6.31%
30% 26.86% 29.91% 4.58% 6.26%
0% 2.88% 3.23% 0.55% 0.71%
10% 2.89% 3.26% 0.54% 0.73%
20% 2.79% 3.26% 0.55% 0.73%
30% 2.77% 3.27% 0.55% 0.68%
0% 29.44% 29.67% 5.09% 5.66%
10% 29.40% 29.67% 5.11% 5.67%
20% 29.62% 29.64% 5.09% 5.67%
30% 29.42% 29.40% 5.11% 5.59%
0% 7.61% 14.19% 1.43% 2.88%
10% 7.55% 14.28% 1.40% 2.87%
20% 7.59% 13.97% 1.45% 2.88%
30% 7.46% 14.27% 1.42% 2.85%

Table 9: Non relative criterion J
CC

(3.52) for close iron vs. plastic objects in a two-layered
medium. Comparison in distinguishing one inclusion from two for several trial domains.
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In the previous numerical experiments, we have used the same methodology to obtain and
present results, for both hard and penetrable inclusions. Moreover, from a quantitative point
of view, we observe that the values of the criteria are very similar in both cases of iron and
plastic objects. This is due to the normalization based on the criteria obtained in the absence
of a trial domain B, see equation (3.53). If one is interested in differentiating iron objects from
plastic ones, it is sufficient to consider the non relative criterion J

CC

, defined by (3.52), since the
strength of the field scattered by an iron mine is much larger than the one scattered by a plastic
mine. We report in tables 8 and 9 the values of the non relative criterion J

CC

in the case of
iron and plastic objects for d = 3�/2 and d = �/2, respectively. The first four rows correspond
to the classical approach, i.e., when B = ;. One observes a factor of five between the iron and
plastic objects for the same geometric configuration.

4.2 Three Layers

The objective of the experiments presented in this section is to test the ability of the TRAC
method to locate an object buried in dry sand. For more realistic experiments, we now consider
the object to be an iron blast mine 10 cm wide and 4 cm tall. As seen in Section 2.2.2, blast mines
are usually buried at a depth of 10 cm. As only principal effects are analysed, the mine model
is kept simple and the interior design is not accounted for. We consider a two-dimensional
domain, consisting of three homogeneous layers made up of air, dry sand and wet sand, i.e.,
⌦ = ⌦

a

[ ⌦

s

[ ⌦

w

. The mine is buried in the middle layer, as shown in the detailed geometric
configuration presented in figure 15.

Figure 16: Setup for a three-layered medium.
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We consider problem (3.32) with the propagation medium speed (now denoted by c
3l

) not a
constant but piecewise constant

c
3l

=

8
>>>>>>>><

>>>>>>>>:

c
0

=

r
1

µ
0

"
0

if x 2 ⌦

a

,

cs =

r
1

µs"s
if x 2 ⌦

s

.

cw =

r
1

µw"w
if x 2 ⌦

w

.

The reflection and transmission coefficients for air and dry sand were given in Section 4.1. Now
we need to estimate the coefficients for dry and wet sand, given the additional layer present in
the medium. Thus, we have

�

s,w

=

⌘w � ⌘s

⌘w + ⌘s
⇡ �0.16, ⌧ s,w =

2⌘w

⌘w + ⌘s
⇡ 0.84,

where the negative reflection coefficient means that the reflected wave receives a ⇡ phase shift.

We consider an SRA source located at a height of 10 cm above the air-dry sand interface. The
length of the SRA is approximately 35 cm and the spacing between the receivers is 5 cm, i.e.,
we have 8 receivers. The configuration can be seen in figure 15. The source signal has a central
frequency ⌫ = 2⇡/! of 1.5 GHz and the wavelength is given by

� =

min (ca, cs, cw)

⌫
.

In addition, we refine the mesh with respect to the maximal frequency ⌫
max

= 3.0 GHz, allowing
us to have a bigger spectrum compared to the one corresponding to the central frequency.

4.2.1 Shifting the Enclosing Ellipse

With our experiments, we aim to determine how the cross-correlation criterion is influenced by
the position of an ellipse B, which encloses part or all of the mine D. We take a new coordinate
system with origin O0 and axis lines x0 and y0, and define a shift � such that the center of the
ellipse is in (x0

c

, y0
c

) = (�0.05+0.10�, 0), as shown in figure 16. Several tests are then performed
by varying the values of �, i.e., shifting the ellipse along the horizontal axis x0.

In figure 18, we plot the values of the cross-correlation function f , defined in (3.51), for different
values of �. Figure 18(a) refers to the case when more than half of the inclusion is not embedded
in B, since � = �1/2. The plot shows that the edges of the part not embedded in B are correctly
imaged. It is evident that as the shift increases, the ellipse encloses more area of the mine and
the function f becomes gradually smaller. In the bottom left figure, the mine is centered inside
the ellipse and there is no longer a significant image.
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Figure 17: Setup for the mine and ellipse in a new coordinate system.

For a quantitative point of view, we give the absolute and relative values of the cross-correlation
criterion in tables 10 and 11, respectively, for the same shifts used to obtain the plots previously
discussed. It is clear that as the shift increases, the relative criterion Jrel

CC

also increases, as shown
in figure 17. Although only the case with zero noise was graphed, we can infer from table 11
that the rest of the cases behave in a similar way. This means that as the ellipse B encloses more
area of the mine, the relative value of the criterion increases, and when the mine is completely
enclosed, the relative criterion has a good value. These results are based on the configuration
shown in figure 16. Hence, the term "increase" applies for this setup. Independently, we can
state that the relative criterion Jrel

CC

is indeed influenced by the position of the trial domain.

J
CC

(B)

Shift � Noise 0% Noise 10% Noise 20% Noise 30%

- 1/2 11.39 11.37 11.35 11.35
- 1/4 9.81 9.83 9.87 9.77
- 1/8 8.99 8.95 9.02 8.89
- 1/16 8.50 8.49 8.57 8.61
- 1/32 8.23 8.26 8.21 8.16
+ 1/32 7.65 7.66 7.69 7.77
+ 1/16 7.34 7.38 7.38 7.30
+ 1/8 6.71 6.70 6.71 6.63
+ 1/4 6.24 6.25 6.27 6.20
+ 1/2 4.83 4.84 4.80 4.81

Table 10: Non relative criterion J
CC

(3.52) for an iron mine enclosed by the ellipse B, in a
three-layered medium. The ellipse’s center is shifted by � along the horizontal axis.
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Jrel

CC

(B)

Shift � Noise 0% Noise 10% Noise 20% Noise 30%

- 1/2 1.17 1.18 1.18 1.18
- 1/4 1.36 1.36 1.35 1.37
- 1/8 1.49 1.49 1.48 1.50
- 1/16 1.57 1.57 1.56 1.55
- 1/32 1.62 1.62 1.63 1.64
+ 1/32 1.75 1.74 1.74 1.72
+ 1/16 1.82 1.81 1.81 1.83
+ 1/8 1.99 2.00 1.99 2.01
+ 1/4 2.14 2.14 2.13 2.16
+ 1/2 2.77 2.76 2.78 2.78

Table 11: Results of the relative criterion Jrel

CC

(3.53) for an iron mine enclosed by an ellipse B,
in a three-layered medium. The ellipse’s center is shifted by � along the horizontal axis.

Figure 18: Relative criterion Jrel

CC

(noise 0%) as a function of �.
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(a) � = �1/2 (b) � = �1/4

(c) � = �1/8 (d) � = �1/16

(e) � = �1/32 (f) � = 1/32

(g) � = 1/16 (h) � = 1/8

(i) � = 1/4 (j) � = 1/2

Figure 19: Imaging function (3.51) in a three-layered medium for an iron mine buried in sand
and enclosed by an ellipse B. The ellipse’s center is shifted by � along the horizontal axis.
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5 Conclusions

This scientific memoir is a continuation and extension of earlier work done in [1], [2], and [3],
in which the time reversed absorbing conditions (TRAC) were introduced and used for partial
and full apertures. These conditions allow us to recreate the past without knowing the exact
location and properties of an inclusion, which diffracts the wave travelling through the medium
where it is placed. The TRAC method makes the recreation possible by removing a small region
surrounding the scattering inclusion. In this paper, we extend the TRAC method by considering
stratified media, specifically, two and three layers made of homegeneous media. Previous work
was done using a single homogeneous layer as a medium. However, the goal of this method is
to apply it in reality, and it was therefore necessary to perform more realistic tests.

First, we consider the medium to be made up of a layer of air and another of dry sand. The
TRAC method is then useful to discriminate a single object from two distinct but close ones
buried in the sand. With the addition of the air layer, in comparison to the work done in [1], we
notice that the difficulty to distinguish between one single inclusion and two close ones separated
by a small distance of d = 3�/2 increases, as expected. However, for the rest of the test cases,
the results are similar to the ones in [1].

With a configuration consisting of three layers of air, dry sand and wet sand, we get closer to
reality. In addition, we consider the object to be a mine and use realistic measures for the setup
of the domain. We find that the relative criterion Jrel

CC

is directly influenced by the position of
the trial domain enclosing part or all of the mine. As in the case with two layers, the method
has proved to be quite insensitive with respect to noise in the data.

We stress that in constrast to many inverse problem methods, the TRAC method does not rely
on any a priori knowledge of the physical properties of the inclusion. Hard, soft and penetrable
inclusions are treated in the same way. We can conclude that the tests in stratified media were
successful and worked as expected.
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