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Chapter .

Preface

A path-dependent option is a type of exotic option in which the payoff depends not only on
the price of the underlying asset at maturity, but also on the history of the underlying’s
price till that point. Typical examples of popular exotic options are Asian options, lookback
options, barrier options, and digital options.

In the Black-Scholes market model, it is not possible to find closed-form analytical formulae
for the payoffs of most exotic options. This inspires the requirement of fast numerical
algorithms to determine the fair value of such options. Such algorithms may be clustered
into categories. Some algorithms utilise the convergence of prices calculated using a
discrete model to those of a continuous model, as a limit when the time step is reduced.
Other approaches include use of numerical methods to solve partial differential equation,
or simulation using Monte Carlo methods.

Under the Cox-Ross-Rubinstein model, Gaudenzi1, Zanette2 and Lepellere3 introduced the
singular points method. It is a numerical method to price Asian and lookback options. A
modification enables pricing of cliquet options. In the method, in each node of the binomial
tree of the underlying risky asset, the price is represented as a continuous function of the
path-dependent parameter. An advantage of this method over pre-existing methods is its
low order of computational and space complexity. It is convergent, and allows us to set a
priori upper and lower bounds on the error.

In the master’s thesis, we present an exposition on the singular points method and how it
may be used to price exotic options. We also explore the extensibility of the method to
similar types of options, like Asian options with geometric mean as opposed to arithmetic
mean, and whether it may be used for variable local volatilities and interest rates. We also
found the computational order of complexity of the method in the case of cliquet options.

Prerequisites The reader is expected to be familiar about basic Probability Theory and
Stochastic Processes. In particular, (s)he should be comfortable with probability spaces
and measures, filtrations, random variables, stochastic processes, martingales, Brownian

1http://people.uniud.it/page/marcellino.gaudenzi
2http://people.uniud.it/page/antonino.zanette
3https://www.researchgate.net/profile/Maria_Lepellere

http://people.uniud.it/page/marcellino.gaudenzi
http://people.uniud.it/page/antonino.zanette
https://www.researchgate.net/profile/Maria_Lepellere


Preface

motion, and elementary stochastic calculus. There is no strict requirement of knowledge of
financial concepts, as we introduce the required terminologies in the introductory chapters.

Note to the reader The theory part of the thesis borrows heavily from the book titled
Introduction to Stochastic Calculus Applied to Finance by Damien Lamberton and Bernard
Lapeyre [LL96], as well as from the lecture notes of Mathematical Finance authored by Prof.
Fabio Antonelli. This course was offered in the Fall semester of 2014-15 in Università
degli Studi dell’Aquila, Italy.

The chapters on the singular point method has been motivated by the series of papers
published by Gaudenzi, Zanette and Lepellere on the same topic.

Structure of the thesis In Chapter 1, we briefly discuss financial assets and financial
markets. In Chapter 2, we introduce the Cox-Ross-Rubinstein model and the Black-Scholes
model. In chapters 3 and 4, we see how the singular points method may be used to price
Asian and cliquet options, respectively.
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Chapter .

Notations

[n]: {0, 1, 2, . . . ,n}

N: {1, 2, 3, . . . }

N0: N ∪ {0}

µF: The class of all F-measurable functions.

b·c: The floor function. bxc gives the largest integer smaller or equal to x.

d·e: The ceiling function. dxe gives the smallest integer larger or equal to x.

∼: Represents the discounted value when used on top of a quantity. For example,
S̃t = e

−rtSt

Units of prices Throughout the text, we have not specified any monetary unit for the prices
of assets. This is because the theory and computations hold no matter what unit is chosen.
The only care that needs to be taken is to have all quantities in the same unit; in case not,
they should be converted to a uniform unit system.



Chapter 1.

Chapter 1

Prologue

Mathematics and finance have been intricately linked since the inception of human civil-
isations. In the span of the last two millennia, many mathematicians – from Thales of
Greece to Fibonacci, Pascal, Fermat and Bernoulli – have tried to apply their knowledge
to the domain of finance1. However, Louis Bachelier’s thesis “Théorie de la Spéculation”
(Theory of Speculation) in 1900 arguably marked the birth of modern mathematical finance.
Bachelier is credited with being the first person to derive the mathematics of Brownian
motion and to apply its trajectories for modelling stock price dynamics and calculating
option prices.

One of the most exciting innovations in the modern history of mathematical finance is rooted
in the discovery of the Brownian motion by Scottish botanist Robert Brown. In 1827, he
observed rapid oscillatory motion of microscopic particles in a fluid resulting from their
collision with atoms or molecules in the fluid. However, Bachelier was the first to define
Brownian motion mathematically, and used the one dimensional version t 7→ Bt, t > 0
to model stock price dynamics. Norbert Wiener laid down the rigorous mathematical
foundation of Browian motion, hence the parallel name of Wiener process is also used for
Brownian motion. He proved the existence of Brownian motion, and constructed the Wiener
measure which describes its probability distribution.

In 1933, in the seminal book “Foundations of the Theory of Probability”, Kolmogorov laid the
foundation of modern Probability theory from fundamental axioms. His work relied heavily
on Lebesgue’s Measure Theory, and united the previously disparate areas of probability –
discrete and continuous – into a unified theory that could be applied to both. It is in this
book that he introduced the ideas of conditional expectation and equivalent measures.

Another breakthrough in Probability theory came in 1941, when in his attempts to model
Markov processes, Kiyosi Itô (in his famous 1942 paper “On stochastic processes”) con-
structed stochastic differential equations of the form dXt = µ(Xt) dt+σ(Xt) dBt, where Bt
is a standard Brownian motion. He introduced the theory of integration over a Brownian
motion, and in 1951 gave a formula for constructing new stochastic differntial equations
from existing ones (Itô’s lemma), giving birth to Itô calculus. Itô’s lemma is one of the most
widely used mathematical formula by financial engineers today.

1Significant portions in this introductory section have been taken verbatim from the paper [AS14]



Prologue Financial instruments

At this crucial juncture, when the probability theory was ripe enough, in 1973, Fischer
Black and Myron Scholes published the paper “The Pricing of Options and Corporate
Liabilities”, and Robert Merton published the paper “On the pricing of corporate debt: the
risk structure of interest rates”. These papers together introduced a new methodology for
the valuation of financial instruments and in particular developed the Black–Scholes model
for pricing European call and put options. At the same time, another breakthrough on the
industry side was the foundation of the Chicago Board Options Exchange to become the
first marketplace for trading listed options. Even beyond the imagination of the celebrated
authors above, the market was so quick to adapt these models. By 1975, almost all traders
were valuing and hedging option portfolios by using the Black–Scholes model built in their
hand calculators.

But there were problems with the Black and Scholes model. A primary disadvantage
was that the esoteric theory was not understandable by most practitioners in the field of
finance. Moreover, it could not be used to price all kinds of options. In 1979, Cox, Ross
and Rubinstein introduced a discrete model, which is much more approachable, and yet
has the flexibility to price almost all kinds of derivatives. Yet, the exponential nature of
the complexity forbids scaling up the number of levels of the tree to any significant value,
reducing its utility.

In this chapter, we briefly discuss some fundamental ideas in finance. We shall follow this
up with a discussion on the two models mentioned.

1.1 Financial instruments

A financial instrument or a financial asset is an intangible asset whose value is derived
from a contractual claim, such as bank deposits, bonds, stocks and derivatives. Financial
assets are usually more liquid than other tangible assets, such as commodities or real
estate, and may be traded on financial markets. Every financial asset is characterised by
its return. When the return is deterministic, we call it a risk-free or riskless asset. When
the return is contingent on the market and external conditions, it is called risky. It must
be kept in mind that no instrument is fundamentally risk-free, it has only negligible risk
compared to its risky counterparts.

1.1.1 Return on an asset

Notation We will use a zero in the superscript to denote the riskless asset. For example,
S0
t denotes the price of the riskless asset at a time t. On the other hand, the absence of a

zero (or presence of another index) in the subscript means that we are referring to a risky
asset.

Return on a riskless asset – Compounding Compounding is the first idea that we must be
familiar with. Essentially, a riskless asset will increase in monetary value in a deterministic
manner if we keep it in the market. The increase depends on the compounding frequency
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Prologue Financial instruments

and the duration of investment. The term compounding is used because the interest earned
in each period also contributes to the principal in the successive periods.

Let the compounding frequency is n times per year, the total time is t, and the annual rate
of interest is r. Then

(1.1) S0
t = S

0
0

(
1 +

r

n

)bntc
,

where S0
0 is the starting value of the asset, and S0

t is the value of the asset at time t, and
b·c represents the floor function.

If the compounding is continuous, we let n→∞ to obtain

(1.2) S0
t = S

0
0e
rt.

Return on a risky asset At any point of time in the future, the value of a risky asset is not
known with certainty, so it is a random variable taking values in [0,∞). Since the values
change with time, we denote the spot price of a risky asset by the stochastic process2 (St)t,
where t ∈ [0, T ] denotes the time, T being the maturity. Since the future value of the asset
is adventitious, we use the following metrics to measure the return of the risky asset in the
given time interval.

Definition 1.1 (absolute and relative returns). The absolute return on an asset for the time
interval [0, t], t ∈ [0, T ] is given by

R̃t = St − S0,

while the relative return on the asset is given by

Rt =
St − S0

S0
.

It must be noted that relative return is usually a better indicator of the return on an asset
as compared to its absolute equivalent. This may be illustrated better by the following
example.

Example 1.1 (relative vs absolute return). Let A and B be two assets. Let their values at
t = 0 be SA0 = 5 and SB0 = 10, respectively. At time t = 1 one observes that the prices
have become SA1 = 10 and SB1 = 15.

The absolute return on both assets are equal to 5 here. On the other hand, the relative
returns are:

RA1 =
SA1 − SA0
SA0

=
5
5 = 1

RB1 =
SB1 − SB0
SB0

=
5
10 =

1
2

Thus, the asset A is more interesting to an investor, as it gives more return on investment.
If an investor were to invest an amount of 10 at t = 0, it is more profitable for him to buy
two units of asset A as compared to one unit of asset B.

2https://en.wikipedia.org/wiki/Stochastic_process
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Prologue Financial instruments

1.1.2 Common asset types

Bonds A bond is an instrument of indebtedness of the issuer to the holder. It is a debt
security, under which the issuer owes the holders a debt and, depending on the terms of the
bond, is obliged to pay them interest (the coupon) and/or to repay the principal at a later
date, termed the maturity date. Bonds can also be thought of as a loan given to the issuer
by the holder. A bond primarily has two kinds of risks, credit default risk and interest rate
risk. A bond issued by a reliable institution like the United States government is a good
illustration of a risk-free asset. This is because the probability of such an organisation
defaulting is close to zero, or in other words, the bond has negligible credit default risk.
Such bonds are only subject to fluctuations of the current interest rate, called interest rate
risk. The interest rate risk may also be nullified if the bond is held till maturity. If we
assume that the interest rate is deterministic (the fluctuations are not random), the value of
the bond is computable at any given future date, making it riskless. Such an assumption is
quite reasonable in short periods of time and for institutions with a low default risk rating.

Stocks A stock of a corporation is an ownership certificate, and constitutes the equity
stake of its owners. It represents the residual assets of the company that would be due to
stockholders after discharge of all senior claims such as secured and unsecured debt. A
share of a stock is a unit of ownership of the organisation. Stocks are inherently risky,
since the value of the organisation may change from time to time due to various internal
and external factors. This is why the value of a stock in time is represented by a stochastic
process (St)t.

Derivatives A derivative is a contract between two parties that specify conditions (starting
and termination dates, resulting values and definitions of the underlying variables, the
parties’ contractual obligations, and the notional amount) under which transactions are to
be made between the parties. The most common underlying assets include commodities,
stocks, bonds, interest rates and currencies, but they can also be other derivatives, which
adds another layer of complexity to proper valuation. Essentially, the value of a derivative
is a function of the value of the underlying asset(s). Derivatives are traded in their own
right, and a fair price must be found for a derivative at each time of its existence. This
problem is known as the pricing problem. One of the primary motivations for creation of
derivatives was to hedge one’s position from fluctuations in the market. A hedge is an
investment strategy intended to offset potential losses or gains that may be incurred by a
companion investment. Finding a hedging strategy is called the hedging problem. These
are the two problems that must be looked at when defining a market model. In this thesis,
our main focus shall be the pricing problem of a particular class of derivatives, called exotic
options.

1.1.3 Classification of derivatives

Derivatives may be classified on the basis of various factors. One important factor is
whether the risk is symmetric (shared equally), or asymmetric (taken up by only one party).
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Another factor is the nature of the function (of the underlying) that the derivative depends
on. This function may either be dependent only on the final value of the underlying
(path-independent), or on the path that it took to reach this final value (path-dependent).
The function may be discrete (digital or binary), or continuous In this section, we briefly
look at some of the more important types of derivatives. 3

Futures and forwards

Definition 1.2 (Futures and forwards). Futures and forwards are contracts between two
parties, the seller and the buyer, to exchange a certain asset at a predetermined future
time at a agreed upon price. Futures are exchange-traded derivatives (ETDs), whereas
forwards are traded over-the-counter (OTC).

Such derivatives obligate the contractual parties to the terms over the life of the contract.
Futures are in some sense ‘safer’ compared to forwards, since the involved parties must go
through standard protocols of the exchange. The contract contains the following details.

T : The maturity, or the duration of the contract

F0: The delivery price, or the price prefixed (at the initial time) at which trades must
take place at maturity

r: The rate of interest

underlying: The asset(s) of trade at maturity

S0: The initial value of the underlying asset(s)

There are, of course, other possibilities, for instance a variable interest rate, dividends
yielded by the underlying, but these may be viewed as generalisations of this simple case.

Let us assume that the compounding is continuous. We may show that under the condition
of a viable market4, the fair delivery price of a future with underlying prices (St)t∈[0,T ] at
any time t ∈ [0, T ] is given by the following equation.

(1.3) Ft = Ste
r(T−t)

Options

Definition 1.3 (option). An option or a contingent claim is a derivative which provides the
buyer the right, but not the obligation to enter the contract under the specified terms.

Thus, the owner of the option may choose whether to exercise his right or not. Thus, on
the one hand, the owner of the option bears no risk, since all the choice is his. On the
other hand, the seller of the option is obligated to honour the terms of the contract –

3A more interested reader should consult the following extensive Wikipedia articles.
• https://en.wikipedia.org/wiki/Option_(finance)#Types
• https://en.wikipedia.org/wiki/Option_style

4see Section 1.2 for definitions of the term
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Prologue Financial instruments

whether it benefits him or not – essentially making him bear all the risks. This asymmetry
is primarily what sets options apart from the futures and forwards discussed earlier. The
contract contains the following details.

T : The maturity, or the duration of the contract

K: The strike price, or the prefixed price at which trades may take place at maturity

r: The rate of interest

underlying: The asset(s) which may be traded at maturity

S0: The initial value of the underlying asset at the initial time

right: The exact right that the owner of the options has (see below)

exercise time: European or American (see below)

Options may be categorised by the right of the owner and the exercise time.

According to the right of the owner Options may be of two main types.

call: The owner has the right to buy. In this case, the price of the option at maturity
is given by cT = (ST − K)+, where (x)+ := max{0, x}.

put: The owner has the right to sell. In this case, the price of the option at maturity
is given by pT = (K− ST )+.

Of course, other complicated ownership rights may be constructed, but we shall restrict
ourselves to calls and puts.

According to the time at which the option may be exercised Again, option may be of two main
types.

European: The owner may exercise the option only at maturity

American: The owner may exercise the option at any time up to the maturity

Again, more complicated options exist, which allow exercising rights only at certain time
points, but we exclude them from out discussion.

Since American options allow for more flexibility for the owner, and thus more risk for the
seller, they are more expensive as compared to their European counterparts. Let ct,pt
denote the prices of an European call and put, and Ct,Pt denote the prices of an American
call and put, respectively. Then, we must have Ct > ct and Pt > pt.

Call-put parity Call and put prices are connected to each other. We need the following
proposition to explore the relationship.

6 of 80
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Proposition 1.1 (Equality of portfolios). In a viable and frictionless market5, if the values
of two portfolios coincide at a time T , they have to coincide at 0 ( or any other intermediate
time t).

Proof. Let us denote by P1 and P2 the two portfolios and by vt(P) the value of a
portfolio P at time t. By assumption vT (P1) = vT (P2), so we assume by contradiction that
v0(P1) > v0(P2).

Under this hypothesis it is possible to construct the following arbitrage strategy. At time 0,
one can borrow the portfolio P1 and sell it right away to buy portfolio P2. One can pocket
the difference v0(P1) − v0(P2) > 0. At t = T the values of the two portfolios coincide, so
selling P2 one gets the exact money to buy P1 to be returned to the original lender. An
profit is achieved, without investing any money, implying an arbitrage and violating the
viable market hypothesis.

Similarly, we can show that v0(P1) < v0(P2) would also enable an arbitrage opportunity.
Generalising the argument to all intermediate times t ∈ [0, T ], we get the result. �

We now look at the relationship. ST−K = (ST−K)++(ST−K)− = (ST−K)+−(K−ST )+ =

cT−pT . For any general time t, using Proposition 1.1, it holds that ct−pt = St−Ke−r(T−t).
This is known as the call-put parity.

Exotic options European options are path-independent and the simplest type of options
available. Hence, they are popularly known as vanilla options. The American options are
path-dependent. Typically, other options which are more complex in nature are collectively
called exotic options. These are usually path-dependent, and may be either European,
American or have more complex exercise times. A few such options are described in brief.

Asian: The payoff depends on the average of the underlying’s prices.

lookback: The payoff depends on one of the extrema of the underlying’s prices.

cliquet or ratchet: A series of globally or locally, capped or floored, at-the-money
options, but where the total premium is determined in advance.

barrier: The price of the underlying reaching the pre-set barrier level either springs
the option into existence (knock-in) or extinguishes an already existing option
(knock-out).

1.2 Financial Markets

The idea of financial markets is intricately linked to that of financial transactions. Analogous
to the ordinary markets, a financial market is a human construct to allow transaction between
investors. The assets in the financial market are typically financial instruments such as
bonds, stocks and derivatives discussed in the previous section. In this section we will
primarily concern ourselves with the nature of financial markets and the assumptions we

5see Section 1.2 for definitions of the terms
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make while modelling them. Some of the jargon used in the previous section will become
clear after this section.

Pricing of financial assets is one of the pressing aims of the subject of Financial Mathematics.
In order to do so, we need to understand and characterise the fundamental mechanisms of
the market that shape the pricing of assets. In doing so, we must note which dynamics of
the market are more fundamental and must be incorporated in every model, and which are
more debatable may be excluded from simpler models.

Viable market The term viability here refers to the fairness of a market. To interpret
viability, we need to familiarise ourselves with some definitions.

In what follows, we assume the following.

• There is a probability space (Ω,F, (Ft)t,P), endowed with the filtration (Ft)t.

• ∀t ∈ [0, T ], T ∈ [0,∞), there is one riskless asset worth S0
t = e

rt (Take S0
0 = 1).

• ∀t ∈ [0, T ], T ∈ [0,∞), there are d risky assets each worth Sit, where i ∈ {1, 2, . . . ,d}
is the index of the risky asset. These may be represented as a d-dimensional
(vector) stochastic process (S1

t,S2
t, . . . ,Sdt ).

Also, any quantity with a ‘∼’ on top denotes the discounted value of that quantity.

Definition 1.4 (investment strategy). A d + 1 dimensional (vector) stochastic process
Φ = (φt)t = (φ0

t,φ1
t, . . . ,φdt )t is called an investment strategy or trading strategy if φit is

Ft-measurable ∀i ∈ [d].

This means that there is a procedure to allocate resources within the portfolio at all times.
We shall write strategy to mean investment strategy in the rest of the document.

The following definition gives the value of a strategy at a point in time.

Definition 1.5 (value of a strategy). The value of a strategy Φ at a time t is given by
Vt(Φ) = φt · St.

Definition 1.6 (self-financing strategy). A portfolio is self-financing if its changes in value
are only due to changes in prices of the assets. This can be represented as follows.

dVt = φt · dSt ∀t ∈ [0, T ](1.4a)

=⇒ dṼt = φt · dS̃t ∀t ∈ [0, T ](1.4b)

This implies that we do not put in any fresh money in the strategy at any point of time,
apart from what is generated due to the change is values of the underlying assets.

Definition 1.7 (admissible strategy). A self-financing strategy Φ is said to be admissible
if Vt(Φ) > 0 ∀t ∈ [0, T ].

This implies that we do not run out of money at any point of time.

Definition 1.8 (arbitrage strategy). An admissible strategy Φ is said to be an arbitrage
strategy if V0(Φ) = 0 and P(VT (Φ) > 0) > 0.
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A arbitrage strategy basically means that it generates value at time T without any initial
investment. For the sake of fairness, we do not want a market in which there exist arbitrage
opportunities. The next definition addresses this issue.

Definition 1.9 (viable market, no free lunch). A market is called viable, or there is no free
lunch, if there does not exist any arbitrage strategies.

We will see in Theorem 2.1 of Chapter 2 how the financial concept of viability translates
mathematically to the existence of equivalent martingale measures.

Complete market

Definition 1.10 (hedgeable, attainable). A derivative is called hedgeable or attainable if it
can be represented as a linear combination of the basic assets at all times. Basic assets
include stocks, bonds and commodities whose prices are not directly linked to other assets
in the market.

Definition 1.11 (complete market). A market is said to be complete if all derivatives are
hedgeable.

A market is complete if the traded basic assets represent all the random factors that
influence the course of prices. If we are in complete market model, this means that, whatever
be the contract, one can always set a hedging strategy that equals the final value of the
derivative. This hedging strategy employs, by definition, only the basic assets (riskless
and risky) traded on the market. In a sense those derivatives are redundant, they do not
introduce any additional risk factor; any randomness source is represented by the basic
assets prices and it is tradeable.

This implies that the marginal probability distributions of the derivative price are uniquely
determined by the marginal distributions of the prices of the basic assets. Namely, each
derivative is replicable, so its price at all times may be written as the value of a portfolio
employing basic assets only, that is to say it is a linear combination of the prices of the
basic assets. On the other hand, in a viable market the discounted value of a portfolio is a
martingale under the risk-neutral probability, so if a contingent claim is attainable, then
its price, by the martingale property, belongs to the linear span of the basic assets’ prices
under this probability. Vice versa, if the market is incomplete, then there must be sources
of randomness that cannot be totally represented as linear combinations of the prices of
the basic tradeable assets, which means that the basic titles are not sufficient to construct
all the necessary hedging strategies.

We will see in Theorem 2.2 of Chapter 2 how the financial concept of market completeness
translates mathematically to the existence of a unique equivalent martingale measure.

Frictionless market For any transaction (sale or purchase) in the market, one usually pays
some commission. The commission is a very small fraction of the current value of the traded
assets, and it seems reasonable to assume that it is not a factor that affects the dynamics
of the prices in a direct fashion. Furthermore, the computational difficulty of including such
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transactional costs in the market is quite high. Thus, we choose to ignore such costs in the
simple market models that we shall deal with, and call the market as frictionless.

Definition 1.12 (frictionless market). A market is called frictionless if there are no transac-
tion costs.

Infinitely divisible assets In a market, usually only discrete units of assets may be bought
or sold. This would pose an additional constraint in the modelling of the market. But
it is quite evident that this constraint does in no way affect prices of individual assets.
Furthermore, markets are usually so varied that one might think to combine stocks and
bonds to a value that is roughly equivalent to a fraction of a different asset. Thus, we
ignore this constraint in our market models, and say that we may have infinitely divisible
assets in our market.

Small investor hypothesis An investor who has virtually unlimited funds might decide to
buy massive quantities of an asset to make its price rise in order to sell it later at a higher
price. We shall ignore such cases, and assume that all agents are trifling with respect to
the market dimension, meaning that they cannot influence prices uniquely by means of
their investing strategies, hence prices are determined only by the combined actions of all
agents. This assumption is called the small investor hypothesis and it is totally realistic in
bigger stock markets like for those in the United States, even though it is less so for much
smaller markets.

Borrowing Lastly, we assume that an investor may borrow assets, whether they are
financial instruments such as money, bonds and stocks, or otherwise.

10 of 80



Chapter 2.

Chapter 2

Market models

Now that we are familiar the basics of financial assets and markets, we may delve into market
models under which we may price options. Since continuous models are mathematically
more complex than their discrete time counterparts (also known as lattice models), we shall
discuss the latter first. We shall then show that under a certain mode of convergence, the
discrete model converges to the continuous one.

2.1 Discrete models – The binomial model

We start our discussion with one of the simplest model used for pricing of assets, the
binomial model. This model was first introduced by Cox, Ross and Rubinstein [CRR79] in
the paper titled Option pricing: A simplified approach in 1979. Even though it is quite
simplistic, it does contain all the necessary ingredients to construct a viable market model,
and to solve the problems of pricing and hedging of derivatives.

We assume that the following are true.

• The market is frictionless.

• All assets are infinitely divisible.

• The small investor hypothesis holds.

• The annual interest rate is constant and it is applied both for borrowing or lending,
hence there are no spreads.

In this model, we essentially have:

• two time points, t = 0 (present) and t = 1 (future), and

• two traded assets:

? the riskless asset, usually a bond, which is compounded at a constant rate of
interest r > 0, and



Market models Discrete models – The binomial model

? the risky asset, usually a stock, which may either go up with a factor u, or
down with a factor d.

The binomial model is so called because there are two times, two assets and two possible
movements of the risky asset.

We denote as S0 the value of the risky asset at time 0, and by S1 its value at time 1. Firstly,
in order to have no arbitrage opportunities, we must have d < R < u, where R := 1 + r.
Secondly, for fairness, there must exist a probability distribution (p, 1− p) – signifying the
probabilities of the up and down movements, respectively – such that the expected value of
the asset remains the same as that of the riskless asset given the same time. (See Figure
2.1.)

t = 0 t = 1
Su1 = S0u

S0

Sd1 = S0d

pu = p

pd = 1 − p

Figure 2.1. Binomial tree for the underlying

Thus, we have:

S1 =

uS0 with probability p
dS0 with probability (1 − p)

.

We may also write S1 = T1S0, where T1 is a random variable taking values in {u,d} with
associated probability distribution (p, 1 − p).

T1 =

u with probability p
d with probability (1 − p)

We want p ∈ [0, 1] such that E(S1) = S0R. This would make the system fair because the
expected gain from either asset should be the same.

E(S1) = S0R(2.1)
=⇒ puS0 + (1 − p)dS0 = S0R

=⇒ p =
R− d

u− d
(2.2)

The probability thus obtained is called the risk neutral probability, because under this
probability, on average, it is equivalent for the investor whether he invests in a risky or
a riskless asset. Note that this probability is completely objective as it is determined
completely by the parameters u, d and r. Since the probability distribution is uniquely
determinable from the market parameters, the market is viable and complete (See Theorems
2.1 and 2.2 in the next section).
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Now we impose the condition p ∈ [0, 1] to obtain

(2.3) d < R < u.

Volatility A natural way to express the risk associated with an asset is by its variance. In
the case of binomial model, at each time, the variance is associated with the gap between u
and d, the up and down factors. It is reasonable to assume that when comparing to assets,
an asset with the propensity of a higher up movement will also have a similar disposition
towards a large down movement. If it were not so, the investors would invest in the
asset with higher up movement potential, driving up the prices, and naturally recalibrating
the current value of the asset, so that the assumption is true. Thus we may reduce the
requirement of two variables u and d by expressing them as a function of only the variance
of the return Ti. This may be achieved by making the model symmetrical by setting u = d−1.
In this case, the log return is symmetrical w.r.t. the origin since log(u) = − log(d).

Moreover it is reasonable to think that this variance stays constant at each time unit, but
directly proportional to time.

Var(log(Ti)) = σ2∆T

Here σ > 0 is called the volatility of the asset, and is used as a constant of proportionality.

With this choice it is natural to take

u = eσ
√
∆T ,(2.4a)

d = e−σ
√
∆T .(2.4b)

Now we require only one parameter, σ, to get u and d, and subsequently to generate the
whole tree. The value of this parameter must be estimated from the market.

Pricing a call Let us use the above model to price a call. Recall that the pay-off of a call
is given by h(x) = (x − K)+, where K is the strike price, a fixed value specified in the
contract. Thus, we know the values of the call at maturity. Note that for financial viability,
we must have K ∈ (Sd1 ,Su1 ), implying cu1 = (Su1 −K)+ = (Su1 −K) and cd1 = (Sd1 −K)+ = 0
(See Figure 2.2). To ensure fairness, we may again write the following

c0 = E
(
c1

R

)
=

1
R

(
pcu1 + (1 − p)cd1

)
= p

cu1
R

=
R− d

u− d

uS0 − K

R

Thus we have been able to price the call uniquely at all times. This is an implication of
the completeness of the market, whose randomness is totally characterized by the unique
probability measure p.
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t = 0 t = 1
cu1 = (Su1 − K)

c0

cd1 = 0

p

1 − p

Figure 2.2. Binomial tree for the call

For the sake of completeness, we comment here that a call is also completely hedgeable in
the binomial model.

2.2 Discrete models – The Cox Ross Rubinstein model

In this section we extend the binomial model introduced in Section 2.1 to a sequence of
integer times [n] := {0, 1, . . . ,n}, n ∈ N.

Let (Ω,F, (Fi)i,P) be a finite probability space (|Ω| <∞), such that P(ω) > 0 ∀ω ∈ Ω,
endowed with a filtration (Fi)i∈[n], such that F0 is trivial (F0 = {∅,Ω}).

We assume that the following are true.

• The market is frictionless.

• All assets are infinitely divisible.

• The small investor hypothesis holds.

• The annual interest rate is constant and it is applied both for borrowing or lending,
hence there are no spreads.

• The market is viable.

• The market is complete.

From the binomial model, we have at any time i ∈ [n− 1]

Si+1 =

uSi with probability p
dSi with probability (1 − p)

.

And, Si+1 = Ti+1Si, where (Ti+1)i∈[n−1] is a sequence of independent and identically
distributed random variables taking values in {u,d} with associated probability distribution
(p, 1 − p).

Ti+1 =

u with probability p
d with probability (1 − p)
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Using the above, we may write

(2.5) Sn = s0

i∏
j=1

Tj ∀i ∈ [n].

Using exactly the same computations as in the binomial case, we again find the risk-neutral
probability as p = R−d

u−d
, such that d < R < u. Again, since the probability distribution is

uniquely determinable from the market parameters, the market is viable and complete (See
Theorems 2.1 and 2.2 in the next section).

2.2.1 Fundamental Theorems of Asset Pricing

Definition 2.1 (absolute continuity of measures). Let (Ω,F) be a measurable space, with
associated measures P and Q. The we say that P is absolutely continuous with respect to
Q, or P � Q, if ∀A ∈ F,

Q(A) = 0 =⇒ P(A) = 0.

Definition 2.2 (Equivalence of measures). Let (Ω,F) be a measurable space, with associated
measures P and Q. The we say that P is equivalent to Q, or P ∼ Q, if P � Q and Q� P.

We now need to invoke two cornerstone theorems, which will allow us to price the option
at any time step i.

Theorem 2.1 (First Fundamental Theorem of Asset Pricing). The market model is viable
if and only if there exists a probability measure P∗ equivalent to the historic probability
measure P under which the discounted prices of the basic risky assets are martingales.

Mathematically, Viable market ⇐⇒ ∃ P∗ ∼ P such that E∗(S̃i+1|Fi) = S̃i, where E∗ is
the expectation computed under P∗.

Proof. See [LL96, page 6, Theorem 1.2.7] �

Theorem 2.1 guarantees the existence of an equivalent martingale measure for viable
markets. This implies that under this probability measure, we can calculate the fair price of
an option, although they may not be unique. To ensure uniqueness, we need the subsequent
theorem.

Theorem 2.2 (Second Fundamental Theorem of Asset Pricing). The market model is
complete if and only if there exists a unique probability measure P∗ equivalent to the
historic probability measure P under which the discounted prices of the basic risky assets
are martingales.

Mathematically, Complete market ⇐⇒ ∃! P∗ ∼ P such that E∗(S̃i+1|Fi) = S̃i, where E∗

is the expectation computed under P∗.

Proof. See [LL96, page 9, Theorem 1.3.4] �
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Theorem 2.2 guarantees the uniqueness of an equivalent martingale measure for complete
markets. This implies that we can uniquely and objectively compute the fair price of an
option.

2.2.2 European options

Augmented by these theorems, we may now seek to price path-independent options in this
model. Let E∗ be the expectation computed under the risk-neutral martingale measure P∗.
If the pay-off of an option at maturity is given by the function h(x), then the price of the
option vi at any time step i is given by the following formula.

(2.6) vi = E∗(R−(n−i)h(Sn)|Fi)

In particular, the price a European call at any time i is as follows.

(2.7) ci = E∗(R−(n−i)(Sn − K)+|Fi)

t = 0 t = 1 t = 2 t = 3 t = 4

S0u
4

S0u
3

S0u
2 S0u

3d

S0u S0u
2d

S0 S0ud S0u
2d2

S0d S0ud
2

S0d
2 S0ud

3

S0d
3

S0d
4

pu

p
d

pu

p
d

pu

p
d

pu

p
d

pu

p
d

pu

p
d

pu

p
d

pu

p
d

pu

p
d

pu

p
d

Figure 2.3. A 4 step lattice (n = 4)

Computational details If we are given the contingency claim (which is the function of the
underlying as stated in the contract), and the option is of the European type, it becomes
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very simple to evaluate it value in this model. While going through the algorithm, it is
suggested to keep in mind Figure 2.3.

Algorithm 2.1: Pricing European options in Cox-Ross-Rubinstein model
Input: Claim h(x), Number of time steps n, Volatility σ
Output: The price of the option at the initial time

1 begin
2 Calculate p using Equation 2.2.
3 Calculate u and d using Equations 2.4.
4 Construct the binomial tree.
5 Use the claim to calculate the values that the option might take at maturity.
6 for i ∈ {n− 1, . . . , 0} do
7 foreach node do
8 Calculate the expected value of the option using the weighted mean of the

prices at the (i+ 1)th time which are connected to this node. The weighting is
done by the probabilities p and 1 − p.

9 return Value at time 0

2.2.3 American options

An American option can be exercised at any time i ∈ [n]. That is, at any time i, the bearer
of the option has two options – to exercise or to hold. The exercise value at any time is given
by Zi = h(Si), which in the case of a call is Zi = (Si − K)+. Let the value of the options
at a time i be denoted by Ui. We start by backward induction. At maturity, we must have
Un = Zn. The value of holding the option at the time just before the maturity (i = n− 1)
is given by the discounted risk-neutral price E∗(R−1h(Sn)|Fn−1) = E∗(R−1Un|Fn−1). The
value of the option is thus given by the maximum of these two values, or

(2.8) Un−1 = max
{
Zn−1,E∗(R−1Un|Fn−1)

}
.

By induction, we write the price of an American option at any time i ∈ [n].

(2.9)

Ui = max
{
Zi,E∗(R−1Ui+1|Fi)

}
∀i ∈ [n− 1]

Un = Zn = h(Sn).

Note that Equation 2.9 may be equivalently represented using discounted values.

(2.10)

Ũi = max
{
Z̃i,E∗(Ũi+1|Fi)

}
∀i ∈ [n− 1]

Ũn = Z̃n.

This is sufficient to understand Algorithm 2.2, which tells the mechanism of pricing American
options under the Cox-Ross-Rubinstein model. But we will go ahead with some theoretical
results regarding the American options, because we will use the results in Chapter 3.

17 of 80



Market models Discrete models – The Cox Ross Rubinstein model

Super-martingales and discounted prices The discounted prices of American options are
super-martingales under P∗, in contrast to European options. This is evinced from Equation
2.10, since Ũi > Z̃i ∀i. In fact, this is the smallest super-martingale that dominates (Zn)n
(see [LL96, Proposition 1.3.6]). Historically, Ũi is called the Snell envelope of the process
(Z̃i)i.

Stopping time The owner of an American options may exercise his/her right at any point
of time. For the decision to be fair, the owner should be able to make the choice with the
information available only till time i. To model this, we need the definition of a stopping
time.

Definition 2.3 (stopping time). A random variable τ, taking values in [n] is called a stopping
time, if for any i ∈ [n],

{τ = i} ∈ Fi

An equivalent characterisation of a stopping time is {τ 6 i} ∈ Fi.

Process stopped at a stopping time A process is (Xi)i is said to be adapted to a filtration
(Fi)i if Xi is Fi-measurable ∀i.

Let (Xi)i be a process adapted to the filtration (Fi)i and let τ be a stopping time. Then,
the process stopped at τ is defined as

Xτi (ω) := Xτ(ω)∧i(ω).

On the set {τ = m}, this is equivalent to

Xτi (ω) =

Xi ∀i < m
Xm ∀i > m

.

Below we state some results without proofs. The proofs may be found in [LL96, Section
2.2.1].

Proposition 2.1 (Stopped (super) martingales are (super) martingales). If (Xi)i is an
adapted process and τ is a stopping time, then (Xτi )i∈[n] is adapted. Furthermore, if (Xi)i
is a (super) martingale, then so is

(
Xτi
)
.

Proposition 2.2. The random variable defined by τ0 = inf{i > 0 | Ui = Zi} is a stopping
time, and (Uτ0

i ) is a martingale.

We denote by Ti,n the set of stopping times taking values in {i, i+ 1, . . . ,n}. Since Ω is
finite, Ti,n is also finite. The martingale property of the process (Uτ0

i ) gives the following
result, relating the concepts of Snell envelope to the optimal stopping problem. The idea
portrayed is that if Zn represents the total winnings of a gambler after n games, then
stopping at time τ0 maximises the expected gain given F0 (the information at time 0).

Proposition 2.3. The stopping time τ0 satisfies

U0 = E∗(Zτ0 | F0) = sup
τ∈T0,n

E∗(Zτ | F0)
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Generalising the above proposition, we get
(2.11) Ui = sup

τ∈Ti,n
E∗(Zτ | Fi) = E∗(Zτi | Fi),

where τi = inf{j > i | Uj = Zj}.

Definition 2.4 (optimal stopping time). A stopping time τ is called optimal for the process
(Zi)i if
(2.12) E∗(Zτ | F0) = sup

τ∈T0,n

E∗(Zτ | F0)

Theorem 2.3. A stopping time τ is optimal if and only if both of the following hold.Uτ = Zτ(Uτi )i∈[n] is a martingale

Computational details If we are given the contingency claim, and the option is of the
American type, it becomes very simple to evaluate it in this model. The only difference with
the European options is that at each node, we select the higher value between the prices
for immediate exercise and holding the option till the next time. While going through the
algorithm, it is suggested to keep in mind Figure 2.3.

Algorithm 2.2: Pricing American options in Cox-Ross-Rubinstein model
Input: Claim h(x), Number of time steps n, Volatility σ
Output: The price of the option at the initial time

1 begin
2 Calculate p using Equation 2.2.
3 Calculate u and d using Equations 2.4.
4 Construct the binomial tree.
5 Use the claim to calculate the values that the option might take at maturity.
6 for i ∈ {n− 1, . . . , 0} do
7 foreach node do
8 Calculate the expected value of the option using the weighted mean of the

prices at the (i+ 1)th time which are connected to this node. The weighting is
done by the probabilities p and 1 − p.

9 Calculate the value of exercising the option.
10 Select the higher value among the two numbers obtained above.
11 return Value at time 0

2.3 Continuous models – the Black-Scholes model

We now consider a continuous model, meaning that the times are continuous and the prices
do not have discrete jumps, but are continuous random variables. The most famous model
is the Black-Scholes model proposed by Fischer Black and Myron Scholes in 1973 [BS73].

As in the previous chapter, we consider two assets – one riskless and one risky.
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The value of the riskless asset is proportional to the instantaneous rate of interest, the
current value of the asset, and the time. Therefore, the dynamics of the riskless asset is
given as follows.

dS0
t = rS

0
t dt(2.13)

S0
0 = 1(2.14)

Solving this initial value problem, we get

(2.15) S0
t = e

rt.

The risky asset is dependent on both deterministic and stochastic factors. The deterministic
part is proportional to the current value of the asset and the time. The non-deterministic
part is dependent on its current value and a stochastic process with zero mean and a
variance proportional to time elapsed. We choose these criteria because we do not expect
the process to have a bias on going up or down (mean zero) and we expect that the process
has a higher probability of going away from the current value with more time. It so happens
that the best candidate for such a process is a standard Brownian motion1.

Hence, Black and Scholes proposed the solution of the following stochastic differential
equation with initial value as a model for the price dynamics.

dSt = µSt dt+ σSt dBt(2.16a)
S0 = s0.(2.16b)

Here Bt is a standard Brownian motion, and µ (drift) and σ (volatility) are proportionality
constants. We shall assume that σ > 0, because if σ = 0, the process becomes deterministic,
and σ < 0 is equivalent to σ > 0 because a Brownian motion is symmetric with respect to
the time axis.

The solution to this problem is the geometric Brownian motion

(2.17) St = s0e
(µ−σ2

2 )t+σBt .

Before we proceed further in this section, we state the Radon-Nikodym Theorem and the
Girsanov theorem.

Theorem 2.4 (Radon-Nikodym). Let (Ω,F) be a measurable space, with associated σ-finite
measures P and Q such that Q� P. Then there exists an F-measurable function f such
that

Q(A) =

∫
A

fdP ∀A ∈ F

Definition 2.5 (Radon-Nikodym derivative). In Theorem 2.4, the function f is called the
Radon-Nikodym derivative of Q with respect to P, and is denoted as f = dQ

dP .

Theorem 2.5 (Girsanov). Let (Ω,F, (Ft)t,P) be a filtered probability space, (Bt)t be a
(Ft)t-Brownian motion on the bounded interval [0, T ], and θ ∈ R. Let the probability P∗
be defined by the Radon-Nikodym derivative

(2.18) dP∗
dP = eθBT−

θ2
2 T .

1For more information on Brownian motion, refer to [LL96, Section 3.1]
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Then, the following holds.

• P∗ ∼ P

• The process Zt := E
(

dP∗
dP | Ft

)
is a P-martingale

• The process Wt := Bt + θt is a P∗-Brownian motion

Proof. Refer to [LL96, Theorem 4.2.2 and Chapter 4: Exercise 19] �

First, we need to show that there exists a probability measure P∗ equivalent to P under
which the discounted share price S̃t = e−rtSt is a martingale. From Equation 2.16 and
Itô’s Lemma (see [Øks03, Theorem 4.1.2]), we get:

dS̃t = −re−rtSt dt+ e−rt dSt
= −rS̃t dt+ e−rt(µSt dt+ σSt dBt)

= (−rS̃t + µS̃t) dt+ σS̃t dBt
= S̃t((µ− r) dt+ σ dBt)

Let Wt = Bt +
µ−r
σ
t (since σ 6= 0). The we derive the following.

Wt = Bt +
µ− r

σ
t(2.19a)

=⇒ dWt = dBt +
µ− r

σ
dt

=⇒ σS̃t dWt = S̃t((µ− r) dt+ σ dBt)

=⇒ σS̃t dWt = dS̃t(2.19b)

From Theorem 2.5, with θ = µ−r
σ

, we know that there exists probability P∗ ∼ P given
by dP∗

dP = eθBt−
θ2
2 t, under which (Wt)t is a standard Brownian motion. The definition

of stochastic integral is invariant by change of equivalent probability. Therefore, from
Equation 2.19b, under the probability P∗, the discounted risky asset prices become

S̃t = s0e
σWt−

σ2
2 t(2.20a)

=⇒ St = s0e
(r−σ2

2 )t+σWt .(2.20b)

To derive a SDE under the risk-neutral probability, we use Itô’s lemma to get

(2.21) dSt
St

= r dt+ σ dWt.
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We verify that S̃t is a P∗-martingale. Recall that we denote the set of all F-measurable
functions by µF.

E∗
(
S̃t+s | Ft

)
= E∗

(
s0e

σWt+s−
σ2
2 (t+s)

∣∣ Ft)

= E∗

eσ
⊥Ft︷ ︸︸ ︷

(Wt+s −Wt) ·

∈µFt︷ ︸︸ ︷
eσWt ·

∈µF0︷ ︸︸ ︷
s0e

−σ2
2 (t+s)

∣∣∣∣∣ Ft


= s0e
σWt−

σ2
2 te−

σ2
2 s E∗

(
eσ(Wt+s−Wt)

)
= S̃te

−σ2
2 se

σ2
2 s

= S̃t

The last expectation was calculated using the fact that (Wt+s −Wt) ∼ N(0, s), and that
the moment generating function2 of N(µ,σ) is given by M(t) = eµt+

σ2t2
2 .

Remark 2.1 (Continuous dividend yield). If the risky asset pays continuous dividends, the
only modification that needs to be done is to replace r in all the equations by the effective
interest rate r− q.

Pricing the European call From Equation 2.20, we have:

ST

St
=
s0e

(r−σ2
2 )T+σWT

s0e
(r−σ2

2 )t+σWt

= e(r−
σ2
2 )

:=∆t︷ ︸︸ ︷
(T − t)+σ

:=∆Wt︷ ︸︸ ︷
(WT −Wt)

=⇒ ST = Ste
(r−σ2

2 )∆t+σ∆Wt

The value of a contingency claim then becomes

vt = E∗
(
e−r∆t h(ST )

∣∣Ft)
= E∗

(
e−r∆t h

(
Ste

(r−σ2
2 )∆t+σ∆Wt

) ∣∣Ft
)

.

Since the process (St)t is Markovian, we may write E∗(· | Ft) = E∗(· | St). By conditional
expectation, the latter is a measurable function of t and St, denoted by F(t,St). Moreover,
since St is Ft-measurable, we can treat it as a constant x. The value of the call can then be

represented by vt = F(t,St), where F(t, x) = E∗
(
e−r∆t h

(
Ste

(r−σ2
2 )∆t+σ∆Wt

) ∣∣∣St = x
)

.

By independence of increments of the Brownian motion W (∆Wt ⊥ σ(Ws : s 6 t)), the

2https://en.wikipedia.org/wiki/Moment-generating_function
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conditional expectation reduces to a simple expectation, and we write

F(t, x) = E∗
(
e−r∆t h

(
xe(r−

σ2
2 )∆t+σ∆Wt

))

For the call, we put h(x) = (x− K)+, and denote F(t, x) by c(t, x).

c(t, x) = E∗
(
e−r∆t

(
xe(r−

σ2
2 )∆t+σ∆Wt − K

)
+

)

= xE∗

eσ∆Wt−
σ2
2 ∆t1{

xe
(r−σ

2
2 )∆t+σ∆Wt>K

}


︸ ︷︷ ︸
A

+Ke−r∆t E∗

1{
xe

(r−σ
2
2 )∆t+σ∆Wt>K

}


︸ ︷︷ ︸
B

We deal with B first as it is more manageable.

B = E∗

1{
xe

(r−σ
2
2 )∆t+σ∆Wt>K

}


= P∗
(
xe(r−

σ2
2 )∆t+σ∆Wt > K

)
= P∗

(
∆Wt√
∆t

>
log K

x
− (r− σ2

2 )∆t

σ
√
∆t

)

= P∗

(
∆Wt√
∆t

< −
log K

x
− (r− σ2

2 )∆t

σ
√
∆t

)

= P∗

(
∆Wt√
∆t

<
log x

K
+ (r− σ2

2 )∆t

σ
√
∆t

)

Now, ∆Wt ∼ N(0,∆t), implying ∆Wt√
∆t

∼ N(0, 1). Writing

d	(∆t, x;K,σ, r) =
log x

K
+ (r− σ2

2 )∆t

σ
√
∆t

,

we get:

B = P∗
(
N(0, 1) < d	

)
=⇒ B = N(d	(∆t, x;K,σ, r)),

where N is the (cumulative) distribution function of the standard normal distribution, given
by

(2.22) N(x) =
1
2π

∫x
−∞ e

− z2
2 dz.
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Similarly, we may now evaluate A.

A = E∗

eσ∆Wt−
σ2
2 ∆t1{

xe
(r−σ

2
2 )∆t+σ∆Wt>K

}


= E∗
(
e
σ
√
∆t

∆Wt√
∆t

−σ2
2 ∆t1{∆Wt√

∆t
>−d	

})
=

∫∞
−d	

eσ
√
∆tz−σ2

2 ∆t
e−

z2
2

√
2π

dz

=

∫∞
−d	

1√
2π
e−

(z−σ
√
∆t)2

2 dz

=

∫∞
−d⊕

e−
y2
2

√
2π

dy

=

∫d⊕
−∞

e−
y2
2

√
2π

dy

= N(d⊕(∆t, x;K,σ, r))

The pre-penultimate step is obtained by substituting y = z− σ
√
∆t. Then the new lower

limit, denoted −d⊕, is given as follows.

−d⊕(∆t, x;K,σ, r) := −
log x

K
+ (r− σ2

2 )∆t

σ
√
∆t

− σ
√
∆t

= −
log x

K
+ (r+ σ2

2 )∆t

σ
√
∆t

=⇒ d⊕(∆t, x;K,σ, r) =
log x

K
+ (r+ σ2

2 )∆t

σ
√
∆t

Therefore, we have d±(∆t, x;K,σ, r) = log xK+(r±σ2
2 )∆t

σ
√
∆t

.

Henceforth, we shall write d± to denote d±(∆t, x;K,σ, r).

Assembling all the pieces together we obtain the famous Black-Scholes formula for a
European call.

(2.23) ct = c(t,St) = StN(d⊕) − Ke
−r∆tN(d	)

Pricing the put Employing the call-put parity, we get

(2.24) pt = p(t,St) = Ke−r∆tN(−d	) − StN(−d⊕).

Remark 2.2 (Hedging). Even though we shall not derive the hedging strategy, we comment
that in the Black-Scholes model, derivatives are hedgeable, and is determined by the so
called delta, where ∆ := ∂c

∂x
(t,St) = N(d⊕). The hedging strategy which uses the delta

is called delta hedging. In the real-world, there are other sources of risk which needs
different hedging strategies, as highlighted in the limitations of the model.
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Limitations

• Finding closed-form formulae for prices of American options and most exotic options
is not possible.

• Security prices in reality do not follow a strict stationary log-normal process.

• The risk-free interest rate is not known, and is not constant over time.

• The volatility is not constant and depends on current value of the underlying (the
curve is called the volatility smile), and on the time to maturity (the curve is called
the volatility skew ).

• The model underestimates extreme moves, yielding tail risk, which can be hedged
with out-of-the-money options.

• Its assumption of instant, cost-less trading yields liquidity risk, which is difficult
to hedge.

• Its assumption of a stationary process yields volatility risk, which can be hedged
with volatility hedging.

• Its assumption of continuous time and continuous trading yields gap risk, which
can be hedged with Gamma hedging.

Benefits In spite of its limitations, the Black-Scholes model remain one of the most useful
models in Mathematical Finance. Below are some advantages of the model.

computability: The ease of computation is one of the biggest advantages of the
model.

useful approximation: It serves as decent approximation of the real world, particularly
when analysing the direction in which prices move when crossing critical points.

basis: It serves as a benchmark for more refined models, which try to address its
drawbacks.

reversible: The model’s original output, price, can be used as an input and one of
the other variables solved for; the implied volatility calculated in this way is often
used to quote option prices.

2.3.1 Discrete and continuous – different worlds?

Even though it may seem that the Cox-Ross-Rubinstein model and the Black-Scholes
models are fundamentally different, it can be shown that as the number of time steps
increase to infinity, the former converges to the latter in distribution.

The idea is that we rescale the Cox-Ross-Rubinstein model in time and space and use the
central limit theorem. We assume

• More trading periods t ∈ iT
n
∀i ∈ [n]
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• Smaller price increments: Tni ∈
{
dn√
n
, un√
n

}
=⇒ 1

T
Varn(Tni ) = σ√

n
.

(Where un = d−1
n = eσ

√
T
n .)

• Continuous compounding

Theorem 2.6 (3). The distribution of the asset price Snn at maturity under P∗n converges to the
distribution of the log-normal random variable ST = S0e

(r−σ2
2 )T+σWT , where WT ∼ N(0, T).

Moreover, if f is a continuous function on (0,∞), such that |f(x)| 6 c(1 + x)q for some
c > 0 and 0 6 q < 2, then E∗

(
f(Snn)

)
→ E∗

(
f(ST )

)
.

The proof is quite involved, and we shall not prove it here. We refer the interested reader
to [He89] for a detailed analysis.

What is more interesting to us is that with the help of this result, we may use the Cox-
Ross-Rubinstein model to price an option, and we would know that the result is guaranteed
to converge to the Black-Scholes price, even if such a price cannot be calculated directly.

2.3.2 Black-Scholes model – other options

We have seen that it is quite easy to compute the price of European options in the Black-
Scholes model. On the other hand, pricing most other options is not so straight forward. For
most options, we do not have closed-form solutions in the Black-Scholes model. Examples
of such options include American options and most exotic options.

On the other hand, the Cox-Ross-Rubinstein, even though computationally much more
demanding, does allow pricing of all options in a straightforward manner. In fact, even
though the theoretical foundations are quite different between European and American
options, the similarity among the Algorithms 2.1 and 2.2 testifies to this fact. This is
because unlike in the Black-Scholes model, we do not calculate a closed form formula for
the prices in the Cox-Ross-Rubinstein model. Rather, we utilise the recursive procedure
that does not call for an explicit evaluation formula. This universal computability is one of
the primary advantage of discrete models. Our trust on the prices computed using discrete
models is bolstered by the fact that they do converge to the continuous models in certain
cases – a prime example being the convergence of the Cox-Ross-Rubinstein model to the
Black-Scholes one.

In light of the above, a good balance has been struck by algorithms which develop on
the discrete models in order to decrease the computational complexity by allowing for
approximations. The sacrifice in accuracy is justified by the significant improvement in
computability. One such algorithm is the singular points method introduced by Gaudenzi,
Zanette and Lepellere.

In the next two chapters, we shall deal with Asian options of the American type, and cliquet
options, respectively. These options do not lend themselves to be priced in closed-form
formulae in the Black-Scholes model. The singular points method is a viable alternative

3http://horst.qfl-berlin.de/sites/files/u4/CMM2.pdf
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method for these options, and we focus our study on its theory and extensibility, stating
also the numerical results.
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Chapter 3.

Chapter 3

Asian options

In the last chapter, we saw that exotic options usually cannot be priced in a closed-form
formula using the Black-Scholes model. The way out is by using numerical methods.
These methods range from using discrete models (which converge to continuous models, as
remarked in Chapter 2), to discretisation of the Black-Scholes PDE or using Monte Carlo
simulations.

The advantage of using the Cox-Ross-Rubinstein model is that it converges to the Black-
Scholes model as the number of time steps increases to infinity. But the exponential number
of paths (2n to be exact, where n is the number of time steps) make the method very
slow and memory intensive, making it computably impractical. A logical step would be to
modify the basic Cox-Ross-Rubinstein model to allow for approximations. In this direction,
Gaudenzi et al[GZA10] introduced a new method called the singular points method for
pricing certain path-dependent options in an efficient manner.

In this chapter, we will mainly focus on applying the singular points method to price Asian
options. In Asian options, the price is expressed as a function of some form of averaging on
the underlying’s price. Popular Asian options use the arithmetic or geometric means as the
average. Again, Asian options may be exercised only at maturity (European) or at any time
before maturity (American). They may give the owner of the option the right to either sell
(put) or buy (call). Theoretically, we will only study calls, because the framework for puts
one may be derived in the exact same way.

3.1 Literature Review

Before we go into the details of the singular points method, we shall look into the pre-
existing methods of pricing Asian options, and discuss their advantages and disadvantages
briefly. As we remarked in Section 2.3.2, Asian options with arithmetic mean cannot be
valued by closed-form formulae in the Black–Scholes model, and their valuation requires
the use of numerical methods. Here we consider a tree method for pricing these types of
options.



Asian options Literature Review

The main barrier to applying the Cox–Ross–Rubinstein method [CRR79] introduced in
Chapter 2 to Asian options with arithmetic averages is the exponential increase in the
number of paths that the underlying may take, and this increases the computational difficulty
very quickly as we increase the number of time steps.

Tree methods Alternative feasible approaches were proposed by Hull and White (1993)
[HW93], and Barraquand and Pudet (1996) [BP96]. The main idea behind their procedures is
to restrict the range of all the possible arithmetic averages to a set of representative values.
These values are selected in order to span all the possible values of the averages achievable
at each node of the tree. The price is then computed by a backward induction procedure in
which the prices associated with averages not included in the set of representative values
are obtained by interpolation. Both of these methods reduce the computational complexity
to O(n3), n being the number of steps. Nevertheless, the advantage of speed is offset by
the fact that it is difficult to control the precision of the approximations and the convergence
to the continuous value. This was highlighted by Forsyth et al [FVZ02] in 2002. Forsyth
et al also proved that a procedure of order O(n 7

2 ) is necessary in order to assure the
convergence of these algorithms.

Later, Chalasani et al (1999) [Cha+99] proposed a totally different approach, which allowed
them to obtain thin upper and lower bounds on the exact Cox–Ross–Rubinstein binomial
price for American Asian options. Their method requires a forward procedure and a
backward induction. This algorithm significantly increases the precision of the estimates
but requires a very large amount of memory and has computational complexity O(n4).

PDE based methods All of the above were tree methods. More recently, very efficient
partial differential equation (PDE)-based methods have been introduced by Vecer (2001)
[Vec01] and d’Halluin et al (2005) [dFL05]. In Vecer’s method, the price of the Asian option
is characterized by a simple one-dimensional partial differential equation which could be
applied to both continuous and discrete average Asian option. The computational complexity
is O(n2). This approach cannot be applied to American fixed-strike Asian options, which,
on the other hand, can be treated using the semi-lagrangian approach of d’Halluin et al.

Table 3.1 briefly reviews the discussion above.

Table 3.1. Pre-existing methods for Asian options

Method Type Complexity Remarks

Binomial Tree O(2n) simple, accurate, convergence to continuous
Hull & White Tree O(n3) accuracy and convergence problems

Barraquand & Pudet Tree O(n3) accuracy and convergence problems
Chalasani et al Tree O(n4) thin bounds, but very large memory

Vecer PDE O(n2) not universally applicable
d’Halluin PDE NA more general than Vecer
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A number of these algorithms has been implemented in Premia 13. Premia is a software
designed for option pricing, hedging and financial model calibration. It has been developed
by the ‘MathFi’ team in INRIA. It is provided with its C/C++ source code and an extensive
scientific documentation. More information about Premia can be found at the dedicated
website1.

3.2 The exact binomial algorithm

In what follows, we shall assume that the evolution of the prices of the risky asset (St)t is
governed by the Black-Scholes stochastic differential equation as discussed in Equation
2.21 of Chapter 2. Its solution is given by Equation 2.20b. Whenever there is a continuous
dividend yield, we modify the equation according the remark 2.1.

Consider the discrete model. If the number of time steps in the binomial tree is n, then
the corresponding time step is ∆T = T

n
. The lognormal diffusion process (Si∆T )i∈[n] is

approximated by the Cox–Ross–Rubinstein binomial process (refer Equation 2.5).

Si = s0

i∏
j=1

Tj ∀i ∈ [n].

As usual, we represent the risk-neutral probability by p = R−d
u−d

, where u = d−1 = eσ
√
∆T .

We denote the effective rate of interest in each period as R := er∆T . We note that R is not
an instantaneous quantity, but one which is constant on an interval of time.

Asian options are dependent on the average prices of the underlying risky asset. The price
of an Asian option of the American type with initial time 0 and maturity T is given by the
risk-neutral expectation calculated at an optimal stopping time (see Definiton 2.4 from
Chapter 2).

(3.1) P(0, s0,a0) = sup
τ∈T[0,T ]

E∗
(
e−rτ h(Sτ,Aτ) | S0 = s0,A0 = s0

)
The quantities used in the formula are explained below.

T[0,T ]: the set of all stopping times with values in [0, T ]

h: the payoff function, dependent on both the underlying’s price and its average

Sτ: the underlying’s price at time τ

Aτ: (some form of) the average of the price of the underlying asset over the period
[0, τ]

Let K denote the strike price. The price function may be one of the following

fixed Asian call: h(AT ) = (AT − K)+

fixed Asian put: h(AT ) = (K−AT )+

floating Asian call: h(ST ,AT ) = (ST −AT )+

1https://www.rocq.inria.fr/mathfi/Premia/
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floating Asian put: h(ST ,AT ) = (AT − ST )+

Definition 3.1 (arithmetic mean). The arithmetic mean of a set of n+ 1 numbers {Si}i∈[n]
is given by:

(3.2) An =

∑n
i=0 Si

n+ 1

In the rest of the chapter, we will assume that the average means arithmetic mean, unless
otherwise stated.

In the Cox–Ross–Rubinstein model, consider a node at time i. Let the price of the underlying
be given by x, and the arithmetic mean of the underlying till time i be given by y. There
are two possibilities for the asset price in the next time t = i+ 1, namely xu and xd. The
average corresponding to the up and down movements become:

Aui+1 =
(i+ 1)Ai + xu

i+ 2 =
(i+ 1)y+ xu

i+ 2

Adi+1 =
(i+ 1)Ai + xd

i+ 2 =
(i+ 1)y+ xd

i+ 2

Due to the Markov property of the pair of processes (St,At)t, we may use those as state
variables in our evaluation formula. The price at time 0 of the Asian option of the European
type with payoff function h(x,y) is given by v(0, s0, s0) (since a0 = s0), where the functions
v(i, x,y) can be computed by the following backward dynamic programming equations,
which are discounted risk-neutral expectation of the prices at the next time.

v(n, x,y) = h(x,y)(3.3a)

v(i, x,y) = 1
R

(
pv

(
i+ 1, xu, (i+ 1)y+ xu

i+ 2

)
(3.3b)

+(1 − p)v

(
i+ 1, xd, (i+ 1)y+ xd

i+ 2

))
∀i ∈ [n− 1]

In case of Asian options of the American type, we modify the equations accordingly.

v(n, x,y) = h(x,y)(3.4a)

v(i, x,y) = max

h(x,y), 1
R

(
pv

(
i+ 1, xu, (i+ 1)y+ xu

i+ 2

)
(3.4b)

+(1 − p)v

(
i+ 1, xd, (i+ 1)y+ xd

i+ 2

)) ∀i ∈ [n− 1]

The payoff is a function of the average, which is clearly path-dependent. Thus, the option
is path-dependent, and the corresponding price tree is non-recombinant. This makes the
classical binomial method infeasible after a small number of steps. Note that the binomial
tree for the underlying is always recombinant for constant volatility.
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3.3 The singular points method

The price of an Asian option at each instance is a continuous function of the underlying’s
average. Since the number of paths to a node in a binomial tree is finite, we have that
at each node of the underlying’s binomial tree, the option price may be represented as
a piecewise-linear, continuous, convex function of the average. We shall develop the
theoretical idea in this section. In the subsequent section, we shall see that the nature of
the function allows us to make approximations with a priori error bounds.

Definition 3.2 (singular points and singular values). Let P = (Pi)i∈[n] = ((xi,yi))i∈[n],
n ∈ N be a sequence of points such that

a =x0 < x1 < · · · < xn−1 < xn = b(3.5a)

mi+1 :=
yi+1 − yi
xi+1 − xi

6
yi+2 − yi+1

xi+2 − xi+1
= mi+2 ∀i ∈ {1, . . . ,n− 1}.(3.5b)

Let f : [a,b]→ [0,∞) be the function obtained by linear interpolation of the points in P.
From the definition of f and 3.5b, the function is continuous, piecewise-linear and convex.

Then, the elements of P are called singular points of f and the abscissae {xi}i∈[n] are
called singular values of f.

Remark 3.1. We note that the singular points characterise such a function completely. This
can be seen from the following representation of the function.

(3.6) f(x) = y0 +

n∑
i=1

[mi(min{xi, x}− min{xi−1, x})].

Where mi+1 =
yi+1−yi
xi+1−xi

represents the slope of the function between xi and xi+1.

Remark 3.2. From the conditions 3.5, we get the following inequality.

y0 < y1 < · · · < yn−1 < yn

So it is equivalent to sort points using either abscissae or ordinates.

3.3.1 Upper estimates

The following lemmas shall provide us with the necessary framework for upper and lower
estimates for approximations on the functions generated by singular points.

Lemma 3.1 (Upper estimate). Let f : [a,b] → [0,∞) be a continuous, piecewise-linear,
convex function characterised by the singular points P = ((xi,yi))i∈[n]. Then, if a point
(xj,yj), j ∈ {1, . . . ,n − 1} is removed from the sequence, the function fu : [a,b] → [0,∞)

obtained by the new sequence (Pi)i∈[n]\{j} is also continuous, piecewise-linear and convex,
and

(3.7) fu(x) > f(x) ∀x ∈ [a,b]
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A

P
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f
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A5A4A3A2A1
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Figure 3.1. Illustration of Lemma 3.1 with j = 3

Proof. By construction, ∀x /∈ (xj−1, xj+1), we have fu(x) = f(x).

Again, by construction, ∀x ∈ (xj−1, xj+1), fu(x) = (1 − t)f(xj−1) + tf(xj+1), where t =
x−xj−1
xj+1−xj−1

.

Now, we have:

xj−1 < x < xj+1

=⇒ 0 < x− xj−1 < xj+1 − xj−1

=⇒ 0 < x− xj−1

xj+1 − xj−1
< 1

=⇒ 0 < t < 1

f is convex =⇒ ∀t ∈ (0, 1), f((1 − t)xj−1 + txj+1) < (1 − t)f(xj−1) + tf(xj+1).

Thus, fu(x) > f(x) ∀x ∈ [a,b]. �

Refer to Figure 3.1 for a graphical representation of the above lemma.

3.3.2 Lower estimates

Lemma 3.2 (Lower estimate). Let f : [a,b] → [0,∞) be a continuous, piecewise-linear,
convex function characterised by the singular points P = ((xi,yi))i∈[n]. Let lj be the line
segment joining points Pj−1 and Pj. Similarly, let lj+2 be the line segment joining points
Pj+1 and Pj+2. Denote the intersection of the line segments lj and lj+2 by P̄ = (x̄, ȳ).
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Figure 3.2. Illustration of Lemma 3.2 with j = 3

Then the function fd : [a,b]→ [0,∞) characterised by (P0, . . . ,Pj−1, P̄,Pj+2, . . . ,Pn) is also
continuous, piecewise-linear and convex, and

(3.8) fd(x) 6 f(x) ∀x ∈ [a,b]

Proof. First we show the convexity of fd. We know that f satisfies the property of
increasing slopes, that is mi 6 mi+1 6 mi+2. Since fd is obtained from f by removing the
line segment lj+1, for fd we have that mi 6 mi+2, which implies that the function fd is
still convex.

Secondly, to prove the inequality, we may look at the convex function f as if it has been
obtained by removing point P̄ from the convex function fd. Then, if x̄ ∈ (xj, xj+1), we have,
using Lemma 3.1, that fd(x) 6 f(x) ∀x ∈ [a,b]. �

Refer to Figure 3.2 for a graphical representation of the above lemma.

The lemmas 3.1 and 3.2, will be used later to reduce both the computational complexity
and the memory requirement of the algorithm by removing points or edges, effectively
simplifying the function.

3.3.3 Notations and conventions

In this and subsequent sections, we shall use the convention that [n] = {0, 1, 2, . . . ,n}.
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Let the number of time steps be n. Let i denote the highlighted time step, and j represent
the number of up movements. In this way, we may represent any node by Ni,j. For example,
in Figure 3.3, the node denoted by S0u

2d would be represented as N3,2.

The price of the underlying at each node Ni,j is denoted by Si,j. Since there are j up
movements, there must be i− j down movements, and thus

(3.9) Si,j = S0u
jdi−j = S0u

ju−(i−j) = S0u
−i+2j ∀i ∈ [n], ∀j ∈ [i]

Proposition 3.1. The number of paths to a node Ni,j is
(
i
j

)
.

Proof. At each point in a path, we may choose either an up movement or a down
movement. To reach node Ni,j, we much choose j up movements among i possibilities. The
result follows immediately. �

We denote the number of singular points in a node Ni,j by Li,j, where Li,j ∈
[(
i
j

)]
. The lth

average (in ascending order) (l ∈ {1, . . . ,Li,j}) is denoted by Ali,j, and the corresponding price
by Pli,j. Thus the singular points characterising the price function are ((Ali,j,Pli,j))l∈{1,...,Li,j}.

Definition 3.3 (singular average and singular price). In the particular case of Asian options
with arithmetic mean, each Ali,j is called a singular average and each Pli,j is called a
singular price.

We recall some basic definitions and derive simple results for the maximum and minimum
attainable value of the averages on each node.

Definition 3.4 (Path). A path is a sequence (ji)i∈[n] such that ji+1 ∈ {ji, ji + 1}.

Example 3.1. In Figure 3.3, two paths are shown using red/thicker and blue/thick arrows.
The other arrows are in grey/thin. The two paths have the same value at maturity, but give
different averages.
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Figure 3.3. Different paths leading to a single destination
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Theorem 3.1 (Path inequality). Let there be two paths α and β, such that Si,jαi > Si,jβi ∀i,
where (jαi )i∈[n] and (jβi )i∈[n] denote the paths as defined above. Denote the corresponding
averages by Aα and Aβ, respectively. Then Aα > Aβ.

Proof. Clearly if Si,jαi = S
i,jβi
∀i, then Aα = Aβ.

We only need to show the result in the case of strict inequality at one time. Let Si,jαi =

S
i,jβi
∀i ∈ [n] \ {l}, and Sl,jαl > Sl,jβl .

Now, from equation 3.2, we have:

(n+ 1)Aαn,j =

l−1∑
i=0

Si,ji + Sl,jαl +

n∑
i=l+1

Si,ji

(n+ 1)Aβn,j =

l−1∑
i=0

Si,ji + Sl,jβl
+

n∑
i=l+1

Si,ji

=⇒ (n+ 1)
(
Aαn,j −A

β
n,j

)
= Sl,jαl − Sl,jβl

= Sl−1,jl−1ul − Sl−1,jl−1dl

= Sl−1,jl−1(ul − dl) > 0 (ul > dl by definition)

=⇒ Aαn,j > A
β
n,j

Iterating this procedure, we obtain the general case. �

Remark 3.3. The path α signifies a path above and β a path below in the usual depiction
of the binomial tree (the up movement shown above the down movement). Thus, a path
which never goes below another cannot have a lower arithmetic mean than the other.

Corollary 3.1. At each node N(i, j), the following hold:

(1) The minimum average possible Amin
i,j is attained by the path corresponding to the

path corresponding to the path with (i − j) down movements followed by j up
movements, and

(3.10) Amin
i,j =

S0

i+ 1

(
1 − di−j+1

1 − d
+ di−ju

1 − uj

1 − u

)

(2) The maximum average possible Amax
i,j is attained by the path corresponding to the

path with j up movements followed by (i− j) down movements, and

(3.11) Amax
i,j =

S0

i+ 1

(
1 − uj+1

1 − u
+ ujd

1 − di−j−1

1 − d

)

Proof. We show the proof only for the case of the maximum, since the case of the
minimum can be shown by using the exact same argument.

From Theorem 3.1, the result about path with the maximum average holds directly, since
there cannot be a path above the one given by j up movements followed by (i− j) down
movements.
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The subsequent formula may be derived as follows.

(i+ 1)Amax
i,j = (S0 + S0u+ S0u

2 + · · ·+ S0u
j)︸ ︷︷ ︸

up movement

+(S0u
jd+ S0u

jd2 + · · ·+ S0u
jdi−j)︸ ︷︷ ︸

down movement

= S0((1 + u+ u2 + · · ·+ uj) + ujd(1 + d+ · · ·+ di−j−1))

= S0

 j∑
k=0

uk + ujd

i−j−1∑
k=0

dk


= S0

(
1 − uj+1

1 − u
+ ujd

1 − di−j−1

1 − d

)
(Geometric series)

=⇒ Amax
i,j =

S0

i+ 1

(
1 − uj+1

1 − u
+ ujd

1 − di−j−1

1 − d

)
�

Table 3.2 summarises the discussion above.

Table 3.2. Summary of notations

Symbol Range Formula Description

i [n] highlighted time step
j [i] number of up movements
Ni,j node fixed by (i, j)
Si,j [0,∞) Eq 3.9 value of the underlying at node Ni,j
Li,j

[(
i
j

)]
number of singular points in node Ni,j

l {1, . . . ,L} index for points in ascending order of averages
Amin
i,j [0,∞) Eq 3.10 minimum average attainable for node Ni,j

Amax
i,j [0,∞) Eq 3.11 maximum average attainable for node Ni,j
Ali,j

[
Amin
i,j ,Amax

i,j

]
Eq 3.2 lth singular average of node Ni,j

Pli,j price corresponding to the average Ali,j
(Ali,j,Pli,j) lth singular point of node Ni,j

3.4 Fixed-strike Asian options of the European type

We start with the simplest case. For this type of option, the pay-off at maturity is dependent
only on (some type of) average AT at maturity T and a fixed constant K, and is given by
the following function.

(3.12) PT = (AT − K)+

In each node of the binomial tree, we have a set of possible averages depending on the
paths which may be taken to arrive at the node, and prices corresponding to each of those
averages. We shall show that these points satisfy condition 3.5, so the price function is
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piecewise-linear, convex and continuous, and is completely characterised by these points.
In essence, we consider not only averages that are effectively achievable but all the possible
averages between the minimum and maximum realized at that point. This gives us the
continuous representation of prices. The intuitive idea is that as the time step is reduced
to zero, this function converges to the price function of the continuous time model.

We start with the prices at maturity, and proceed using backward iteration. The exact
details are explained below.

At maturity (i = n)

From equations 3.10 and 3.11, putting i = n, we get

Amin
n,j =

S0

n+ 1

(
1 − dn−j+1

1 − d
+ dn−ju

1 − uj

1 − u

)

Amax
n,j =

S0

n+ 1

(
1 − uj+1

1 − u
+ ujd

1 − dn−j−1

1 − d

)

In defining the price function, we note that three cases may arise.

• j ∈ {0,n}
In this case, there can be only one path to these nodes, so there is only one
average, implying one price and one singular point.

• j /∈ {0,n} and K ∈ (Amin
n,j ,Amax

n,j )

In this case, the price function is characterised by three singular points (Li,j = 3),
(Aln,j,Pln,j)l∈{1,2,3}, since we need to compare the averages with the fixed strike
price K. The points are as follows.

(3.13)
(A1
n,j,P1

n,j) = (Amin
n,j , 0)

(A2
n,j,P2

n,j) = (K, 0)
(A3
n,j,P3

n,j) = (Amax
n,j ,Amax

n,j − K)

• j /∈ {0,n} and K /∈ (Amin
n,j ,Amax

n,j )

In this case, the price function is characterised by only two singular points (Li,j = 2),
(Aln,j,Pln,j)l∈{1,2}, which are as follows.

(3.14)
(A1
n,j,P1

n,j) = (Amin
n,j , (Amin

n,j − K)+)

(A2
n,j,P2

n,j) = (Amax
n,j , (Amax

n,j − K)+)

Lemma 3.3 (Price function at maturity (i < n)). At each node at maturity, the price
function vn,j :

[
Amin
n,j ,Amax

n,j

]
→
[
(Amin
n,j − K)+, (Amax

n,j − K)+

]
defined as vn,j(A) = (A − K)+

is continuous, piecewise-linear and convex.
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Proof. The singular points satisfy the conditions 3.5. So for each A ∈
[
Amin
n,j ,Amax

n,j

]
, the

price function vn,j(A) characterised by the singular points is continuous, piecewise-linear
and convex by remark 3.1. �

Before maturity (i < n)

Lemma 3.4 (Price function at any node). At any node Ni,j, the price function vi,j :[
Amin
i,j ,Amax

i,j

]
→ [0,∞) is continuous, piecewise-linear and convex.

Proof. We shall prove this using backward induction, the base case at maturity being
true by virtue of Lemma 3.3. We now consider step i = n− 1. Let Au and Ad respectively
represent the averages after an up and down movement corresponding to an average A.
From equation 3.2, we get

Au =
(i+ 1)A+ S0u

−i+2j+1

i+ 2(3.15a)

Ad =
(i+ 1)A+ S0u

−i+2j−1

i+ 2(3.15b)

Since the options is of the European type, applying the no-arbitrage condition, the price
function vi,j :

[
Amin
i,j ,Amax

i,j

]
→ [0,∞) is obtained by considering the discounted expectation

value.

(3.16) vi,j(A) =
1
R

[
pvi+1,j+1(Au) + (1 − p)vi+1,j(Ad)

]
From equation 3.15, we get that Au and Ad are linear functions of A. Thus, vi+1,j+1(Au) =

vn,j+1(Au) and vi+1,j(Ad) = vn,j(Ad) are piecewise-linear convex continuous functions of
Au and Ad respectively. Thus, vi+1,j+1 and vi+1,j may be seen as a linear combination of
the above functions, and is thus piecewise-linear, convex and continuous itself. Again, from
equation 3.16, we get that vi,j is a convex combination of such functions, and the proof is
complete.

We showed that if at time i+ 1, if the price function is continuous, piecewise-linear and
convex, so is it for time i. Since this is true for i+ 1 = n, the same logic applied iteratively
proves that the functions retain the characteristics for all i ∈ [n]. �

Remark 3.4. From Lemma 3.4, we see that the price function may be characterised by
singular points.

3.4.1 Evaluation of singular points

The evaluation of singular points for any node Ni,j is done by the following algorithm,
which works in a backward fashion in time, starting from the maturity.

We note that for the only influencing nodes for the node Ni,j are Ni+1,j+1 and Ni+1,j. Thus
we need to calculate the price of the option for each singular average belonging to either
of these nodes.
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Up movement First we take each singular average Ali+1,j belonging to Ni+1,j and project
it to Ni,j via the following relation.

(3.17) Bl =
(i+ 2)Ali+1,j − S0u

−i+2j−1

i+ 1
Thus, Bl is that average which after a down movement of the asset gives us the average
Ali+1,j.

Next, we note that Bl is an increasing function of l, since a higher average at time step i
would yield a higher average at time i+ 1. This in turn implies the following:

• BLi+1,j = Amax
i+i,j ∀j

• B1 /∈
[
Amin
i+i,j,Amax

i+i,j

]
∀j ∈ {1, . . . , i− 1}

Each Bl ∈
[
Amin
i,j ,Amax

i,j

]
becomes the singular average of Ni,j.

In this way, we have determined the first coordinate of the singular points. We need to
determine the second coordinate, or the prices vi,j(Bl), ∀Bl ∈

[
Amin
i,j ,Amax

i,j

]
, in order to

determine the singular points completely. The idea is to calculate the discounted expected
value of the price corresponding to each average Bl at Ni,j. In order to be able to do this,
we need the prices corresponding to the average projected to the node Ni+1,j+1.

We consider an up movement of the underlying asset from node Ni,j. In this case, Bl
transforms into the average Blu =

(
(i+ 1)Bl + S0u

−i+2j+1) /(i+ 2). Clearly, this average
cannot belong to the set of averages associated with the node Ni+1,j+1. Thus, we need to
find the index s such that Blu ∈

[
Asi+1,j+1,As+1

i+1,j+1

]
. In the intervals the price function is

linear, and thus we have

(3.18) vi+1,j+1

(
Blu

)
=
Ps+1
i+1,j+1 − P

s
i+1,j+1

As+1
i+1,j+1 −A

s
i+1,j+1

(
Blu −Asi+1,j+1

)
+ Psi+1,j+1.

We follow this up by calculating the price associated with the singular value Bl by evaluating
the discounted expectation value.

(3.19) vi,j(B
l) =

1
R

[
pvi+1,j+1

(
Blu

)
+ (1 − p)vi+1,j

(
Ali+1,j

)]
.

Figure 3.4 depicts the idea.

t = i t = i+ 1

Blu

Bl

Ali+1,j

Step 2

Step 1

Figure 3.4. Up movement
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Down movement We now proceed to formulate the theory for the downward movement in
the exact same fashion. Define the new average Cl at the node Ni,j via the relation

(3.20) Cl =
(i+ 2)Ali+1,j+1 − S0u

−i+2j+1

i+ 1

Again, we note that

• C1 = Amin
i,j ∀j

• CLi+1,j+1 /∈
[
Amin
i,j ,Amax

i,j

]
∀j ∈ {1, . . . , i− 1}

• Cld =
(
(i+ 1)Cl + S0u

−i+2j−1) /(i+ 2)

Each Cl ∈
[
Amin
i,j ,Amax

i,j

]
becomes the singular average of Ni,j.

For vi,j(Cl), ∀Cl ∈
[
Amin
i,j ,Amax

i,j

]
, we now have the following.

(3.21) vi+1,j+1

(
Cld

)
=
Ps+1
i+1,j − P

s
i+1,j

As+1
i+1,j −A

s
i+1,j

(
Cld −A

s
i+1,j

)
+ Psi+1,j

(3.22) vi,j(C
l) =

1
R

[
pvi+1,j+1

(
Ali+1,j+1

)
+ (1 − p)vi+1,j

(
Cld

)]
Figure 3.5 depicts the idea.

t = i t = i+ 1

Ali+1,j+1

Cl

Cld

Step 1

Step 2

Figure 3.5. Down movement

Aggregation Now we have the singular points for both up and down movements. We sort
these points in ascending order of the first coordinate, i.e. the averages Bl and Cl that
belong to

[
Amin
i,j ,Amax

i,j

]
. These is an exhaustive list of all the singular points in the node

(by construction). We note that Li,j 6 Li+1,j + Li+1,j+1 − 2.

This procedure is applied to all nodes, starting from maturity and proceeding backwards.
At the ‘edge’ nodes Ni,0 and Ni,i, there is only one singular point whose price is given as
follows

P1
i,0 =

1
R

[
pP1
i+1,0 + (1 − p)P1

i+1,1

]
(3.23a)

P1
i,i =

1
R

[
pP1
i+1,i+1 + (1 − p)P

Li+1,i
i+1,i

]
(3.23b)
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Thus we have a complete description of the price function at each node of the binomial tree.
The price P1

0,0 is exactly the binomial price relative to the tree with n steps of a fixed-strike
European call option.

3.5 Fixed-strike Asian options of the American type

We now consider the American case. At maturity we have the same situation as in the
European case. The price function is vn,j(A) = (A − K)+ for A ∈ [Amin

n,j ,Amax
n,j ], and it is

characterized by the same singular points.

Consider the step i = n− 1. At the node Ni,j, we first compute, by using the procedure
described in the previous section (European case), the singular points associated with this
node, thus obtaining the continuation value function vcn,j(A) (note that this is nothing but
vn,j(A) in the European case). But now, we must also account for exercise rights at this
time. Thus, we have

(3.24) vn,j(A) = max{A− K︸ ︷︷ ︸
exercise

, vcn,j(A)︸ ︷︷ ︸
hold

}.

Note that vi,j(A) is still a piecewise-linear convex function, since maximum is a convex
function, and the composition of two convex function is convex. For this reason, we can again
characterize it by its singular points. In order to compute the singular points associated
with the American case, we first remark that the slopes characterizing the piecewise-linear
convex function vci,j(A) are all smaller than 1.

Proposition 3.2 (boundedness of slope). The slopes characterizing the piecewise-linear
convex function vci,j(A) are all smaller than 1, ∀A ∈

(
Ali,j,Al+1

i,j

)
∀l ∈ {1, 2, . . . ,Li,j}.

Of course, at the singular points, due to piecewise linearity, the function is not differentiable
and thus admits no slope.

Proof. First, note that differentiating Equations 3.15 with respect to A, we get
dAu
dA =

dAd
dA =

i+ 1
1 + 2 < 1.

Now, we differentiate vci,j with respect to A in Equation 3.16 to get

dvci,j
dA =

1
R

(
p

dvi+1,j+1
dA + (1 − p)

dvi+1,j
dA

)
=

1
R

(
p

dvi+1,j+1
dAu

dAu
dA + (1 − p)

dvi+1,j
dAd

dAd
dA

)
=

1
R

i+ 1
1 + 2

(
p

dvi+1,j+1
dAu

+ (1 − p)
dvi+1,j
dAd

)
Now, let i = n − 1. Then vi+1,· = vn,·. Clearly, from Section 3.4 (the price function at
maturity), in each of the three cases, the price function can have a slope of either 0 or
1. In the above equation, considering r > 0, we have R > 1, and consequently, R−1 < 1.
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Also, p, 1 − p ∈ [0, 1]. Putting all the inequalities in the last expression of dvci,j
dA , we obtain

dvcn−1,j
dA < 1.

Clearly, the slope in any previous time i < n− 1 can never be equal to unity by the exact
same logic. The proof is complete by backward induction. �

Hence there are two possible cases, as follows.

(1) Amax
i,j −K 6 vci,j(A

max
i,j ). This implies that vi,j ≡ vci,j. The singular points remain the

same.

(2) Amax
i,j − K < vci,j(A

max
i,j ). This case has two subcases, as follows.

(a) Amin
i,j − K > vci,j(A

min
i,j ). This implies that vi,j(A) = (A− K), ∀A ∈ [Amin

i,j ,Amax
i,j ],

so the only singular points points are
(
Amin
i,j ,Amin

i,j − K
)

and
(
Amax
i,j ,Amax

i,j − K
)

.

(b) Amin
i,j − K < vci,j(A

min
i,j ). This means that there is a unique average Ā at which

point the continuation value equals the early exercise. Let j0 be the largest
index such that Aj0i,j < Ā. The new set of singular points becomes (see Figure
3.6 for a graphical representation){(

A1
i,j,P1

i,j

)
,
(
Aj0i,j,P

j0
i,j

)
,
(
Ā, Ā− K

)
,
(
Amax
i,j ,Amax

i,j − K
)}

We can repeat the same procedure iteratively for i = n− 2, . . . , 0. At the final step, we get
only one singular point, which gives us P1

0,0, the exact American binomial price relative to
the tree with n steps.

Remark 3.5 (computational complexity – European vs. American). If we use approximations
(as explained in the next section), the number of singular points in the American case can
never be greater than the European case (even though right now we cannot determine
the theoretical complexity of even the European case). Thus, the American procedure
cannot be slower than the European one. In case we also take approximations into account,
the American case is expected to be faster heuristically, but cannot be proved in general.
Figure 3.6 illustrates this. Abar is inserted, and all points except for the last, is removed.
Thus, if the number of points after Abar is huge, this would remove all those points. This is
not possible in the European case.

Remark 3.6 (put). For an Asian put, the exact same procedure has to be followed.

Remark 3.7 (floating). In this case, we modify the procedure as follows: at maturity the
singular points depend not on the strike K but rather on the underlying value at each node
Si,j. Therefore the new singular points are obtained by replacing K by Si,j. The backward
procedure is the same as before, just properly taking into account the new intrinsic values.

Remark 3.8 (lookback options). Lookback options can also be similarly priced. In fact, in
this case the algorithm admits several simplifications. We shall not study lookback options
in this thesis. The interested reader should refer to [GZA10, Section 4].
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K Ā
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Figure 3.6. American case: Ā inserted, A4 removed

3.6 Approximation

The above sections introduced the singular points method, a procedure to evaluate the
exact binomial price of an Asian option. Since for any node Ni,j, we have that Li,j 6
Li+1,j + Li+1,j+1 − 2, the resulting algorithm has exponential complexity, same as that of
the binomial method.

Where this method shines, though, is its ability to use approximations to drastically reduce
the order of complexity from exponential to polynomial time. The singular points method
can be used to obtain upper and lower bounds of the binomial price at a fraction of the
computational cost. Moreover, we can specify a priori bounds on the error. We shall see
that these are just simple consequences of Lemmas 3.1 and 3.2.

3.6.1 Upper bound

In order to obtain an upper bound, we remove selected points from each node. That this is
a upper estimate of the exact binomial price is guaranteed by Lemma 3.1.

Removal of points may be done on the basis of various criteria. One such method is as
follows.

Consider the set of singular points C associated with the node Ni,j and the corresponding
price value function vi,j(A). Let vui,j(A) be the price value function obtained by removing a
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point
(
Ali,j,Pli,j

)
from C. We have

(3.25) vui,j(A) − vi,j(A) 6 εl ∀A ∈
[
Amin
i,j ,Amax

i,j

]
,

where

(3.26) εl = v
u
i,j

(
Ali,j

)
− vi,j

(
Ali,j

)
=
Pl+1
i,j − Pl−1

i,j

Al+1
i,j −Al−1

i,j

(
Ali,j −A

l−1
i,j

)
+
(
Pl−1
i,j − Pli,j

)
.

Therefore, given any tolerance h > 0, we may remove a point
(
Ali,j,Pli,j

)
only if εl <

h. Repeating this procedure sequentially at each node of the tree, while avoiding the
elimination of two consecutive singular points, we can conclude that the upper estimate
thus obtained differs from the exact binomial value by at most nh.

3.6.2 Lower bound

The computational procedure is quite similar to the procedure of approximation using upper
bounds. The theoretical foundation of this part is given by Lemma 3.2. If we remove the
points

(
Al−1
i,j ,Pl−1

i,j

)
and

(
Ali,j,Pli,j

)
, and add the point (x̄, ȳ) as described in Lemma 3.2,

the new function is never greater than the original one, and the differences between the
values at any point is bounded over by δl, that is

(3.27) vi,j(A) − v
d
i,j(A) 6 δl ∀A ∈

[
Amin
i,j ,Amax

i,j

]
,

where

(3.28) δl = vi,j(A) − v
d
i,j(A) =

Pli,j − P
l−1
i,j

Ali,j −A
l−1
i,j

(
x̄−Al−1

i,j

)
+
(
Pl−1
i,j − ȳ

)
.

Again, we allow for the operation only if δl < h.

An implementation methodology is as follows. At each node Nij, we consider the starting
four points

(
A1
i,j,P1

i,j

)
,
(
A2
i,j,P2

i,j

)
,
(
A3
i,j,P3

i,j

)
,
(
A4
i,j,P4

i,j

)
. Calculate δ3. If δ3 < h, we add

the point (x̄, ȳ) and remove the points corresponding to
(
A2
i,j,P2

i,j

)
and

(
A3
i,j,P3

i,j

)
. The

procedure will continue by considering the four new points (x̄, ȳ),
(
A4
i,j,P4

i,j

)
,
(
A5
i,j,P5

i,j

)
,(

A6
i,j,P6

i,j

)
and proceeding in the exact same way. On the other hand, if δ3 > h, then we

do not remove any points and the procedure will continue by considering the four new
points

(
A2
i,j,P2

i,j

)
,
(
A3
i,j,P3

i,j

)
,
(
A4
i,j,P4

i,j

)
,
(
A5
i,j,P5

i,j

)
. The procedure is repeated until all

the singular points of the node has been taken into account.

Remark 3.9 (Convergence). We know that Jiang and Dai (2005) [JD04] proved the conver-
gence of the exact binomial algorithm for European/American path-dependent options to
the Black-Scholes prices, with rate of convergence of O(∆T). The possibility of obtaining
estimates of the exact binomial price with an error control allows us to prove easily the
convergence of our method to the continuous value. By choosing h to depend on n so
that nh(n)→ 0, we have that the corresponding sequences of upper and lower estimates
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converge to the continuous price value. Moreover, the choice h(n) = O( 1
n2 ) guarantees

that the order of convergence is O(∆T).

Remark 3.10 (Computational complexity – theoretical considerations). The key issue in
assessing the theoretical complexity of the algorithm lies in the upper and lower bound
computation. Since the number of singular points eliminated depends on various factors,
and we do not control the number of singular points directly, it is difficult to theoretically
calculate the order of complexity of the algorithm. The dependence of number of singular
points and their nature (closeness, convexity) on the initial data might be a fruitful area of
research, and this in turn might give us clues as to how the problem of finding complexity
theoretically might be tackled. Nevertheless, the numerical results indicate that the method
is quite competitive in practice.
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3.7 The program

3.7.1 Algorithm

Algorithm 3.1: Pricing cliquet options using the singular points method
Input:

Contract details
time to maturity: T , strike price: K
type: arithmetic/geometric, call/put, European/American, fixed/floating

Details of the underlying asset
initial price: s0, volatility: σ, continuous dividend rate: q

Market parameters – spot interest rate: r
Computational parameters – time steps: n, error bound: h

Output: The price of the option at the initial time
1 begin
2 Set ∆T ,u,p from the formulae in Section 3.2.
3 Compute the singular points at maturity using Equation 3.13 and 3.14.
4 for i ∈ {N− 1, . . . , 0} do
5 Evaluate P1

i,0 and P1
i,i by Equation 3.23 with the early exercise.

6 forall the Ni,j, j ∈ {1, . . . , i− 1} do
7 Using Equation 3.17, ∀Ali+1,j,∀l ∈ {1, . . . ,Li+1,j}, compute Bl.
8 ∀Bl ∈

[
Amin
i,j ,Amax

i,j

]
, compute vci,j(Bl) by Equations 3.18 and 3.19.

9 Using Equation 3.20, ∀Ali+1,j+1,∀l ∈ {1, . . . ,Li+1,j+1}, compute Cl.
10 ∀Cl ∈

[
Amin
i,j ,Amax

i,j

]
, compute vci,j(Cl) by Equations 3.21 and 3.22.

11 Sort the averages {Bl}l ∪ {Cl}l ∈
[
Amin
i,j ,Amax

i,j

]
to obtain the set of Li,j singular

points.
12 Compute the American price according to Section 3.5 and obtain a new set of

singular points with a new cardinality denoted, for simplicity, by Li,j again.
13 switch upper or lower do Approximation
14 case upper bound
15 Follow Section 3.6.1
16 case lower bound
17 Follow Section 3.6.2
18 return P1

0,0 // the upper or lower estimate of the exact binomial price

with error smaller that nh.
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3.7.2 Implementation

The algorithm was implemented in Python 3.5.0 (2015-09-13).

# ==================================================================== #

__author__ = "Sudip Sinha"

from math import exp, sqrt, isclose

# -------------------------------------------------------------------- #

# @profile

def asian_call_sp( r: float, # Market

s0: float, sigma: float, q: float, # Underlying

k: float, t: float, am: bool = True, # Derivative

n: int = 25, h: float = 0., ub: bool = True

# Computation

) -> list:

"""Prices of an Asian call option using the singular point method"""

# Time period

dt = t / n

# Effective interest rate

R = exp( (r - q) * dt )

# Up and down factors

u = exp( sigma * sqrt( dt ) )

d = 1. / u

# Risk neutral probability, discounted by R

p_u = (R * u - 1) / (u * u - 1) / R

p_d = 1. / R - p_u

assert p_u >= 0. and R * p_u <= 1., "Probability!"

# Singular points for nodes N(i+1,*)

# Start from maturity

now = [[]] * (n + 1)

# Singular points for N(n,0)

a = s0 / (n + 1) * (1 - d ** (n + 1)) / (1 - d)

now[0] = [(a, max( a - k, 0. ))]

# Singular points for N(n,n)

a = s0 / (n + 1) * (1 - u ** (n + 1)) / (1 - u)
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now[-1] = [(a, max( a - k, 0. ))]

# Singular points for N(n,j)

for j in range( 1, n ):

a_min = s0 / (n + 1) * ((1 - d ** (n - j + 1)) / (1 - d)

+ d ** (n - j - 1) * (1 - u ** j) /

(1 - u))

a_max = s0 / (n + 1) * ((1 - u ** (j + 1)) / (1 - u)

+ u ** (j - 1) * (1 - d ** (n - j)) /

(1 - d))

if k < a_min:

now[j] = [(a_min, a_min - k), (a_max, a_max - k)]

elif k > a_max:

now[j] = [(a_min, 0), (a_max, 0)]

else:

now[j] = [(a_min, 0), (k, 0), (a_max, a_max - k)]

# Singular points for N(i,j) i != n

for i in range( n - 1, -1, -1 ):

nxt = now

now = [[]] * (i + 1)

for j in range( i + 1 ):

a_min = s0 / (i + 1) * ((1 - d ** (i - j + 1)) / (1 - d) +

d ** (i - j - 1) * (1 - u ** j) /

(1 - u))

a_max = s0 / (i + 1) * ((1 - u ** (j + 1)) / (1 - u) +

u ** (j - 1) *

(1 - d ** (i - j)) / (1 - d))

if a_min > a_max:

(a_min, a_max) = (a_max, a_min) # Jugaad

# 'B'

sp_b = list( ) # Initialize sp_b

for (a, v_a) in nxt[j]:

b = ((i + 2) * a - s0 * u ** (-i + 2 * j - 1)) / (i + 1)

assert len( nxt[j + 1] ) > 0, "len( nxt[j+1] ) == 0"

# Get b_up for b in [a_min, a_max]

if a_min <= b <= a_max \
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or isclose( b, a_min ) \

or isclose( b, a_max ):

b_up = ((

(i + 1) * b + s0 * u ** (-i + 2 * j + 1)) /

(i + 2))

nxt_nd = nxt[j + 1]

v_b_up = 0

if isclose( b_up, nxt_nd[-1][0] ):

v_b_up = nxt_nd[-1][1]

elif isclose( b_up, nxt_nd[0][0] ):

v_b_up = nxt_nd[0][1]

else:

for kb in range( len( nxt_nd ) - 1 ):

if nxt_nd[kb][0] <= b_up < nxt_nd[kb + 1][0]:

v_b_up = (

(nxt_nd[kb + 1][1] - nxt_nd[kb][1]) /

(nxt_nd[kb + 1][0] - nxt_nd[kb][0]) *

(b_up - nxt_nd[kb][0]) + nxt_nd[kb][1])

break

sp_b.append( (b, p_u * v_b_up + p_d * v_a) )

# 'C'

sp_c = list( ) # Initialize sp_c

for (a, v_a) in nxt[j + 1]:

c = ((i + 2) * a - s0 * u ** (-i + 2 * j + 1)) / (i + 1)

assert len( nxt[j] ) > 0, "len( nxt[j] ) == 0"

# Uniqueness check: Check if 'C' is not in the set of 'B'.

# Not required since we eliminate close points later.

# Get c_dn for c in [a_min, a_max]

if a_min <= c <= a_max \

or isclose( c, a_min ) \

or isclose( c, a_max ):

c_dn = ((

(i + 1) * c + s0 * u ** (-i + 2 * j - 1)) /

(i + 2))

nxt_nd = nxt[j]

v_c_dn = 0

if isclose( c_dn, nxt_nd[-1][0] ):

v_c_dn = nxt_nd[-1][1]

elif isclose( c_dn, nxt_nd[0][0] ):
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v_c_dn = nxt_nd[0][1]

else:

for kc in range( len( nxt_nd ) - 1 ):

if nxt_nd[kc][0] <= c_dn < nxt_nd[kc + 1][0]:

v_c_dn = (

(nxt_nd[kc + 1][1] - nxt_nd[kc][1]) /

(nxt_nd[kc + 1][0] - nxt_nd[kc][0]) *

(c_dn - nxt_nd[kc][0]) + nxt_nd[kc][1])

break

sp_c.append( (c, p_u * v_a + p_d * v_c_dn) )

# Aggregate 'B's and 'C's.

now_nd = sorted( sp_b + sp_c, key = lambda sp_l:sp_l[0] )

# Remove singular points very close to each other.

l = 0

while l < len( now_nd ) - 1:

if isclose( now_nd[l + 1][0], now_nd[l][0] ):

if (now_nd[l][0] - s0) == min(now_nd[l][0] - s0,

now_nd[l + 1][0] - s0):

del now_nd[l + 1]

else:

del now_nd[l]

l += 1

# American

if am:

if a_max - k <= now_nd[-1][1]:

pass # Same as the European case

elif now_nd[0][1] <= a_min - k:

now_nd = [(a_min, a_min - k), (a_max, a_max - k)]

else:

for l in range( len( now_nd ) - 1 ):

if isclose( now_nd[l][0], now_nd[l][1] ):

now_nd = now_nd[0:l + 1]

now_nd.append( (a_max, a_max - k) )

break

if (now_nd[l][0] - k <= now_nd[l][1]) \

and (now_nd[l + 1][1] <=

now_nd[l + 1][0] - k):

# Find the point of intersection

# x = ((a2 - a1) * k - (a2 * v1 - a1 * v2)) /

# ((A2 - v2) - (A1 - v1))

a_int = (

((now_nd[l + 1][0] - now_nd[l][0]) * k +
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(now_nd[l + 1][0] * now_nd[l][1] -

now_nd[l][0] * now_nd[l + 1][1])) /

((now_nd[l + 1][0] - now_nd[l][0]) -

(now_nd[l + 1][1] - now_nd[l][1])))

now_nd = now_nd[0:l + 1]

now_nd.extend(

[(a_int, a_int - k),

(a_max, a_max - k)] )

break

# Approximations

if h > 0.: # and (i < n - 1):

if ub: # Lemma 1

l = 1

last_point_removed = False

while l < len( now_nd ) - 1:

if last_point_removed:

last_point_removed = False

l += 1

continue

eps = ((now_nd[l + 1][1] - now_nd[l - 1][1]) /

(now_nd[l + 1][0] - now_nd[l - 1][0]) *

(now_nd[l][0] - now_nd[l - 1][0]) +

(now_nd[l - 1][1] - now_nd[l][1]))

if eps < h: # Remove this point

del now_nd[l]

last_point_removed = True

else:

l += 1

if not ub: # Lemma 2

l = 1

while l < len( now_nd ) - 2:

m1 = ((now_nd[l][1] - now_nd[l - 1][1]) /

(now_nd[l][0] - now_nd[l - 1][0]))

m2 = ((now_nd[l + 2][1] - now_nd[l + 1][1]) /

(now_nd[l + 2][0] - now_nd[l + 1][0]))

x_bar = (((m2 * now_nd[l + 1][0] -

m1 * now_nd[l - 1][0]) -

(now_nd[l + 1][1] - now_nd[l - 1][

1])) /

(m2 - m1))

y_bar = (m1 * (x_bar - now_nd[l - 1][0]) +

now_nd[l - 1][1])

dlt = ((now_nd[l + 1][1] - now_nd[l][1]) /
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(now_nd[l + 1][0] - now_nd[l][0]) *

(x_bar - now_nd[l][0]) +

now_nd[l][1] - y_bar)

if dlt < h: # Remove l-1 and l and add x_bar

now_nd[l] = (x_bar, y_bar)

del now_nd[l + 1]

l += 1

now[j] = now_nd

return now[0][0][1]

# ==================================================================== #
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3.8 Extensibility

Let us recapitulate the conditions required for the singular points method to work in the
case of Asian options with arithmetic mean.

• The ability to calculate the upper and lower bounds of the mean for all nodes of
the tree.

• The recombinant nature of the tree for the underlying. Note that the tree for the
option prices are not recombinant.

• Convexity and piecewise-linearity of the price function on the mean of the under-
lying.

• Constant volatility

Keeping these in mind, let us look at the possibility of extending the singular points method
to the following cases:

(1) Asian options with geometric mean and fixed volatility.

(2) Asian options with arithmetic mean and local volatility.

Geometric mean and fixed volatility In the case of geometric options, we have a closed form
formula under the Black-Scholes market model. Let us try to extend the singular points
method to this case.

Firstly, we show that the result about the maximum and minimum paths still hold in the
geometric case.

Definition 3.5 (Geometric mean). The geometric mean of the risky asset’s prices (Si)i∈[n]
is given by:

(3.29) Gn =

 n∏
i=0

Si

 1
n+1

Lemma 3.5. At each node N(i, j), the following hold:

(1) The maximum average possible Gmax
i,j is attained by the path corresponding to the

path with j up movements followed by (i− j) down movements.

(2) The minimum average possible Gmin
i,j is attained by the path corresponding to the

path corresponding to the path with (i − j) down movements followed by j up
movements.

Proof. The proof is the same as Corollary 3.1, with A replaced by G and relevant
modifications. �

One of the central ideas behind the singular points method is that the price of the option
is a convex, piecewise-linear function of the average A. But in the geometric case, this no
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longer holds true. For example, take a node Ni,j with i = n− 1. The price function given
by vi,j(G), with G ∈ [Gmin,Gmax], can be calculated by the discounted expectation value.

vi,j(G) =
1
R

[
pvi+1,j+1(Gu) + (1 − p)vi+1,j(Gd)

]
(3.30)

Gu =
(
Gi+1S0u

−i+2j+1
) 1
i+2 ∝ G i+1

i+2(3.31)

Gd =
(
Gi+1S0u

−i+2j−1
) 1
i+2 ∝ G i+1

i+2(3.32)

Clearly, the final function vi,j is not linear in G. Rather it is piecewise-concave. Thus we
cannot use the singular points method in this case.

Arithmetic mean with local volatility In this case, the tree for the underlying is not recom-
binant, so we do not have more than one singular point in one (non-recombining) node.
Essentially, we cannot use the singular points method for local volatility models.

3.9 Results and conclusion

We assume that the initial value of the stock price is s0 = 100, the maturity is T = 1, the
force of interest rate is r = 0.1 and the continuous dividend yield is q = 0.03. We will
consider two choices for volatility, σ = 0.2 and σ = 0.4, and two choices for the strike,
K = 90 and K = 110. The time steps (n) taken into consideration are 10, 25, 50, 100, 200
and 400.

All simulations were run on a computer with the following specifications.

Table 3.3. Computer specifications

Item Details

Processor Intel R©Celeron R©N2840 @ 2.16GHz (2 CPUs)
Architecture 64-bit
Memory 4 GB
Operating system Arch Linux
Python v3.5.0 (2015-09-13)

Table 3.4 highlights the prices obtained using the binomial method (n = 10 and n = 25),
and the singular points method for the aforementioned time steps.

By comparing our results with the exact binomial value obtained for n = 10, we can confirm
that the method gives correct results. In fact, from Table 3.4 and also [GZA10, Tables 1 – 2
and 4 – 7], we observe that the prices are monotonically increasing with respect to the
number of time steps, and seem to gradually converge towards a limiting value.
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Table 3.4. Results for Asian options

K = 90 K = 110

n σ = 0.2 σ = 0.4 σ = 0.2 σ = 0.4

Bin 10 14.5912 17.8033 2.5100 6.6523
25 15.1535 18.6786 2.6270 7.3451

SP

10 14.5925 17.8068 2.5090 6.6511
25 15.1535 18.6785 2.6270 7.3449
50 15.3524 19.0420 2.6673 7.4563

100 15.4732 19.2696 2.6886 7.5174
200 15.5453 19.4065 2.6996 7.5502
400 15.5861 19.4845 2.7053 7.5674

Concluding remarks Thus, we have seen that the singular points method fails to be
generalised, its shortcomings being the inability to deal with Asian options with geometric
mean and to deal with local volatility cases. Nevertheless, it is quite efficient in its domain.
It is comparatively fast, having experimental order of complexity O(n3). It also allows
specification of a priori error bounds, both upper and lower. Numerical results reported by
[GZA10] shows that the method outperforms alternative algorithms, and may be viewed as
an improvement on previous tree methods.
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Chapter 4

Cliquet options

A forward start option is an option that starts at a specified future date (called the
determination date), with an expiration date set further in the future1. A forward start
option starts at a specified date in the future; however, the premium is paid in advance,
and the time of expiration is established at the time the forward start option is purchased.
Since the asset price at the start of this option is not known a priori, it is common to
specify that the strike price will be set in the future so that the option is initially at the
money or a certain percentage in the money or out of the money.

The payoff of a forward start call option with time to expiration T and such that the strike
is determined at the money at time u is given by (ST − Su)+

2.

A cliquet option or a ratchet option is an exotic option consisting of a series of consecutive
forward start options. The first such option is active immediately, and once it expires
the second comes into existence, and so on. Each option is struck at-the-money when it
becomes active. Therefore, such an option periodically settles and resets its strike price at
the level of the underlying during the time of settlement. Investors can opt to receive their
payout either when each option expires or wait until the entire time has elapsed.

Usually, the return on a cliquet option is capped and floored. The capping and flooring
may be local or global (or both). The motivation behind bounding the return is to pro-
vide the investor safety against downside risks, yet allowing significant upside potential.
Consequently, the investor is also constrained from having unbounded gains. Capping the
maximum ensures that the payoff is never too extreme and therefore that the value of the
contract is not too outrageous. Some variants of cliquet options are as follows:

Reverse cliquet: Amounts to a cash flow minus a capped cliquet of puts.

Digital cliquet: The forward-starting options are digital options.

The following example, copied verbatim from Investopedia3, provides a good illustration.

1http://www.math.umn.edu/~spirn/5076/Lecture16.pdf (Page 5)
2http://www.stat.nus.edu.sg/~stalimtw/MFE5010/PDF/L2forward.pdf
3http://www.investopedia.com/terms/c/cliquet.asp

http://www.math.umn.edu/~spirn/5076/Lecture16.pdf
http://www.stat.nus.edu.sg/~stalimtw/MFE5010/PDF/L2forward.pdf
http://www.investopedia.com/terms/c/cliquet.asp
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Example 4.1. A three-year cliquet option with a strike of 1000 would expire worthless on
the first year if the underlying was to be 900. This value (900) would then be the new
strike price for the following year and should the underlying on the settlement be 1200,
the contract holder would receive a payout and the strike would reset to this new level.
Higher volatility provides better conditions for investors to earn profits.

Literature review The literature for pricing of cliquet options is primarily based on partial
differential equations (PDE) techniques. Notable mentions include Wilmott’s finite difference
(FD) approach in a non-linear uncertain volatility model (UVM) in 2002 [Wil02]. Later
in 2006, Windcliff et al.[WFV06] explored a variety of modelling alternatives, including
jump diffusion models, local volatility and UVM models, again using finite differences
methods. They compared the use of a running sum of returns formulation to an average
return formulation. Methods for grid construction, interpolation of jump conditions, and
application of boundary conditions were also compared.

Lattice method Gaudenzi et al[GZ11] introduced a discrete method for pricing cliquet
options in the Cox Ross Rubinstein model [CRR79] introduced in Chapter 2. This singular
points method is faster than the alternative lattice based approaches available, while
retaining a fair bit of flexibility to handle varying volatilities and rates of interest. Most of
the chapter is inspired by this paper.

The central idea of the method, as we saw in Chapter 3, is to give, at every monitoring
date, a continuous representation of the cliquet option price as a piecewise-linear function
of the sum of the returns over the corresponding period. This function is characterized
only by a set of points, called singular points, which can easily be computed recursively
by backward induction. Although the number of singular points grows rapidly at every
monitoring date, it is possible to reduce their number drastically in a straightforward way,
controlling the error involved by the elimination procedure at the same time. Moreover, the
error control process leads automatically to the convergence of the approximations to the
continuous value.

4.1 Cliquet contracts and models

Just as in the case of Asian options, we shall assume that the evolution of the prices of
the risky asset (St)t is governed by the Black-Scholes stochastic differential equation as
discussed in Equation 2.21 of Chapter 2. Its solution is given by Equation 2.20b. Whenever
there is a continuous divident yield, we modify the equation according the remark 2.1.
Moreover, we shall consider the discrete model setup exactly as described in the beginning
of Section 3.2 of Chapter 3.

Let T be the maturity of the cliquet contract. Let the payoffs depend on the N preordained
observation times t1, t2, . . . , tN (t0 = 0). At these observation times, the value of the
underlying are (Si)i,Si = Sti , i ∈ [N]. The returns for the time interval (ti−1, ti] are given
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by

(4.1) Ri =
Si − Si−1

Si−1
=

Si

Si−1
− 1 .

During each time interval, the return is capped and floored locally by the quantities Cloc
and Floc. In other words, we consider the quantity max{Floc, min{Cloc,Ri}} rather than the
return itself. The sum of these quantities till time ti is called the ‘running sum’ and is
given by

(4.2) Zi =

i∑
k=1

max{Floc, min{Cloc,Rk}}.

We also consider a global cap Cglob and floor Fglob. Thus, the expression for the payoff
finally becomes

(4.3) payoff = notional · max{Fglob, min{Cglob,ZN}}.

For ease of notation, we take notional = 1.

We note that the case Cglob > NCloc is equivalent to Cglob = NCloc. Similarly, the case
Fglob < NFloc is equivalent to Fglob = NFloc. In general, we may write the following.

Fglob = max{NFloc, Fglob}
Cglob = min{NCloc,Cglob}

We assume that the difference between two observation times is constant and we denote
by m the number of steps of the binomial tree in every period (so that the total number of
steps of the binomial tree is n = mN).

4.2 The singular points method for cliquet options

The binomial method may always be used to price any option, including path-dependent
ones. The binomial method looks through all possible paths of the underlying in order to
price the option. The number of possible paths are 2mN. Thus, the method is inherently
extremely computationally expensive due to the exponential dependence of the number
of paths on m and N. The theoretical computational complexity is O(mN), as in [GZ11,
Page 128].

A modification of the singular points method described in the previous chapter solves this
problem for cliquet options by the process of approximation. The method of approximation
selectively removes certain paths that would be normally considered, but which do not
affect the result in a significant manner. This may be done by putting an a priori error
bound while removing points. The method turns out to be significantly faster and memory
efficient compared to known binomial techniques. Moreover, its flexible is evinced by the
fact that it is adaptable for varying interest rate and volatility in each observational period.

The price function in the cliquet case is not necessarily convex due to the presence of a
global cap (see Figure 4.1), as opposed to the Asian case. Since the algorithm starts from
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maturity, it follows that we cannot assume convexity at any point of time. It was primarily
the convexity of the price functions in the Asian case that allowed us to obtain simple
upper and lower bounds of the exact binomial price. Nevertheless, in the case of cliquet
options, the singular points approach still provides an efficient binomial framework, even in
the absence of convexity of the price functions, as we shall see.

We redefine singular points to exclude the constraint of convexity. The reader is advised to
keep in mind the ideas introduced in Section 3.3.3 of Chapter 3.

Definition 4.1 (singular points and singular values). Let P = (Pi)i∈[n] = ((xi,yi))i∈[n],
n ∈ N be a sequence of points such that a = x0 < x1 < · · · < xn−1 < xn = b ∀i ∈ [n].

Let f : [a,b]→ [0,∞) be the function obtained by linear interpolation of the points in P.
The definition of f ensures that the function is continuous and piecewise-linear.

Then, the elements of P are called singular points of f and the abscissae {xi}i∈[n] are
called singular values of f.

Remark 4.1 (characterisation). Note that the singular points characterise such a function
completely, even without the requirement of convexity. This is clear from 3.1.

4.2.1 The method

Our aim is to look at every possible value taken by the running sum Z within the bounds
[Floc,Cloc] for each time interval t1, . . . , tN. If we know the price function at maturity, we
may use a backward procedure (in time) in order to obtain a continuous representation
of the cliquet price as a piecewise-linear function of the running sum Z. Since it is
piecewise-linear and continuous, the function may be represented using its singular points.
Thus, we see an evolution of singular points as we go back in time. Since the number of
singular points may be significantly high for any computer, we shall introduce an error
controlled approximation procedure to reduce the number of singular points.

Let the number of singular points at each observational time ti be Li, where i ∈ {1, . . . ,N}.
For each singular point l ∈ {1, . . . ,Li}, the abscissa is called the singular running sum Zli
and the ordinate is called the singular price Pli . Thus, the singular points are denoted by

(Zli,Pli) ∀l ∈ {1, . . . ,Li}

At maturity At maturity (tNobs = T ), for every running sum Z, the price of the cliquet
option VN(Z) as function of Z, is given by

(4.5) VN(Z) = max{Fglob, min{Cglob,Z}}

We note the following.

(1) VN(Z) is a continuous and piecewise-linear function

(2) VN(Z) is defined in the interval [NFloc,NCloc]
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(3) There are only four points where the function changes slope, namely NFloc, Fglob,
Cglob and NCloc. This is because if Z < Fglob, the price is constant. Same can
be said about Z > Cglob. Thus the four numbers enumerated above form the
complete set of singular running sums at maturity (LN = 4).

Focusing further on point 3 above, we note down the singular running sums and corre-
sponding prices.

Table 4.1. Singular points at maturity

l ZlN PlN

1 NFloc Fglob
2 Fglob Fglob
3 Cglob Cglob
4 NCloc Cglob

A more visual representation of the price function at maturity is given in Figure 4.1.

Z

P

S1 S2

S3 S4

FlocN Fglob Cglob ClocN

Fglob

Cglob

Figure 4.1. The price function at maturity

The penultimate time step We consider the time step N − 1. If the running sum at time
tN−1 is denoted by Z, then the corresponding price depends on the possible returns of the
underlying asset during the time interval [tN−1, T ].

We revisit equation 4.1 once more. Now we note that since the number of time steps in
each interval is m, there will be m up movements or down movements of the asset. Thus,
there are m+ 1 possible outcomes, given by Si = u−m+2jSi−1, j ∈ [m]. Corresponding to
these cases, there are also m+ 1 returns, given by
(4.6) Rj = u

−m+2j − 1 j ∈ [m]

Since the probability of an up movement in time ∆T is p, we have that the probability of
each return is distributed binomially, and is given by

(4.7) pj =

(
m

j

)
pj(1 − p)m−j
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The above derivations assume that there has been no local flooring or capping of the returns.
In the case of such bounds, the actual possibilities are fewer in number, and we need to
put bounds on j. We can do this in the following fashion.

In the case of a local floor, we must have

Floc > u−m+2jmin − 1
=⇒ log(Floc + 1) > (−m+ 2jmin) log(u) . . . (log is monotonic)

=⇒ log(Floc + 1)
log(u) > (−m+ 2jmin) . . . (u > 1 =⇒ log(u) > 0)

=⇒ jmin 6
log(Floc + 1)

2σ∆T +
m

2 . . . (u = eσ∆T )

=⇒ jmin =

⌊
log(Floc + 1)

2σ∆T +
m

2

⌋
. . . (j ∈ [m])

Where b·c denotes the floor function.

Similarly, in the case of local cap, we have

Cloc 6 u−m+2jmax − 1
=⇒ log(Cloc + 1) 6 (−m+ 2jmax) log(u) . . . (log is monotonic)

=⇒ log(Cloc + 1)
log(u) 6 (−m+ 2jmax) . . . (u > 1 =⇒ log(u) > 0)

=⇒ jmax >
log(Cloc + 1)

2σ∆T +
m

2 . . . (u = eσ∆T )

=⇒ jmax =

⌈
log(Cloc + 1)

2σ∆T +
m

2

⌉
. . . (j ∈ [m])

Where d·e denotes the ceiling function.

We represent by j0 the number of possibilities of the return after enforcing the local floor
and cap. Summarising

jmin =

⌊
log(Floc + 1)

2σ∆T +
m

2

⌋
(4.8a)

jmax =

⌈
log(Cloc + 1)

2σ∆T +
m

2

⌉
(4.8b)

j0 = jmax − jmin(4.8c)

∀j 6 jmin, the return is Floc, and ∀j > jmax, the return is Cloc. For the other indices, the
return remains unchanged.

We shift the indices from {jmin, . . . , jmax} to {0, . . . , j0} by putting j ′ = j − jmin. Table 4.2
highlights the shifted indices, and the corresponding returns and probabilities.

Remark 4.2 (shifted indices). Note that the j ′s represents the indices of the possible paths
that can actually be taken respecting the constraints of the local floor and cap, whereas j
represents the indices of all possible paths without respect to any constraints. Thus, we
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Table 4.2. Shifted returns and probabilities

Range(j) j ′ R ′j p ′j

j 6 jmin 0 Floc
∑jmin
k=0 pk

{jmin + 1, . . . , jmax − 1} j− jmin Rj+jmin pj+jmin

j > jmax j0 Cloc
∑m
k=jmax

pk

are more interested in the shifted indices. Similarly, p ′j represents the probability of taking
the path j ′, and R ′j represents the corresponding return.

Now we focus on how to determine the price function at time tN−1. Recall that at maturity,
the function VN(Z) giving the price of the cliquet option as a function of the running sum Z
at maturity, is the piecewise linear function whose singular points are presented in Table
4.1. At the penultimate time step tN−1, we must have Z ∈ [(N− 1)Floc, (N− 1)Cloc]. Note
that Z is the running sum till the penultimate time step. The price function at this time is
given as a discounted conditional expectation of the price function at maturity given the
information at penultimate time. Thus

(4.9) VN−1(Z) = e
−m∆T

j0∑
j=0

[
p ′jVN(Z+ R ′j)

]
,

where p ′j and R ′j are given in Table 4.2.

Since VN is piecewise-linear and continuous, and the above is just a linear combination
of such functions, the resulting function is also piecewise-linear and continuous, and thus
may be completely represented by singular points. The next logical step is of course to
figure out a method to compute these singular points.

From equation 4.9, we note that each singular point l at maturity may have j0 + 1 possible
returns, given by

(4.10) Bl,j = Z
l
N − R ′j j ∈ [j0]

Then the maximum number of singular points at time tN−1 is (j0 + 1)LN. But not all the
running sums at time tN−1 would belong to the interval [(N − 1)Floc, (N − 1)Cloc. All
the Bl,j which belong to the interval become the abscissa of a singular point at time tN−1.
The corresponding singular price is determined by formula 4.9. The term VN(Bl,j + R

′
k),

required by the formula, is computed using linearity of the price function at maturity. We
just need to figure out the interval l0 such that (Bl,j + R

′
k) ∈ [Zl0N,Zl0+1

N ], and evaluate
VN(Bl,j + R

′
k) by linear interpolation of the extrema. Such an interpolation gives not an

approximation by the exact value due to the piecewise-linear nature of the original function.

Finally, the singular points thus obtained are sorted in ascending order on the basis of the
running sums. This ordered sequence of singular points ((ZlN−1,PlN−1))l, l ∈ {1, . . . ,LN−1}

completely characterises the price function at time VN−1(Z).

At all times The previous argument may be applied iteratively in a backward fashion at
each step N − 2,N − 3, . . . , 1, 0 to obtain the singular points at each time step. At time
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0, there is only one singular point (0,P1
0), and P1

0 provides the exact binomial price of
the cliquet option. The equality of this price and the exact binomial price is proved in
Proposition 4.1.

Proposition 4.1 (The singular points method gives the binomial price). Pl0 coincides with
the exact binomial price with n time steps of the cliquet option.

Proof. Let the running sum Zi1,...,ik =
∑k
j=1 R

′
ij
, (i1, . . . , ik) ∈ [j0]

k,k ∈ {1, . . . ,N}, and
associate them to the prices Pi1,...,ik . Then the exact binomial price Qn of the cliquet option
is given by

Qn = e−rT
j0∑

i1,...,iN=0

(
p ′i1 · · · · · p

′
iN

max
{
Fglob, min

{
Cglob,Zi1,...,iN

}})
,

where p ′ik is the probability of actually taking the path ik at the time interval k. This
expression can be computed backward.

At maturity, set Pi1,...,iN = max
{
Fglob, min

{
Cglob,Zi1,...,iN

}}
.

Along the tree the prices Pi1,...,ik ,k ∈ [N− 1], are evaluated by the backward formula

Pi1,...,ik = e
−r TN

j0∑
j=0

p ′jPi1,...,ik,j

Finally, we get Qn = e−r
T
N

∑j0
j=0 p

′
jPj.

We now prove the result by backward induction. At maturity, for every choice of the
running sum Z = Zi1,...,iN , the price Pi1,...,iN coincides with the value of the option vN(Z).
By construction (Equation 4.9), this holds true also for every running sum evaluated at step
N− 1, and iteratively, at all the nodes of the tree. Thus, the price Qn coincides with the
price P1

0 determined by the singular points algorithm. �

Remark 4.3 (Generalisation). The method is easily generalised to cases with (discrete)
time-varying interest rates and volatilities. In other words, for each observed time interval
[ti−1, ti] denoted by i ∈ {1, 2, . . . ,N}, we can take different values of ri,σi. The technique
requires modification only for the computation of the probabilities p ′ and the returns R ′
which have to be evaluated at every observation time by using the corresponding ri and σi.

In fact, we may even take varying local floors and caps, denoted Floci ,Cloci . In this case,
we also have to compute jmin, jmax, j0 for each period individually.

Remark 4.4 (Computational dependence on volatility). The time of computation of the pure
binomial method for cliquet options is strongly dependent on the volatility. In fact the total
number of paths needed to determine the price is mN. Because of the presence of the
global cap and floor, the number of paths can be reduced to (j0+1)N, where j0 = jmax − jmin.
But j0 is strictly dependent on σ (see Equation 4.8) and the difference in the computational
time between large and small volatilities becomes very high (see also Table 4.3).
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4.2.2 Approximation

The method demonstrated in Section 4.2.1 gives us the actual binomial price of the cliquet
option. But as was mentioned earlier, the computational complexity of the method is
theoretically the same as that of the binomial method, which is mN. But contrary to
the binomial method, the singular point method enables us to use precise, efficient and
controlled approximation to accelerate the procedure significantly. Thus its efficacy become
apparent when we have time and memory constraints, or we wish to substantially increase
the number of intermediate time steps.

The prime idea of the approximation procedure is to remove singular points in a controlled
manner in order to simplify the computations. To this end, we fix a given maximal level
h > 0 of the error in each period. Now, we eliminate singular points in a fashion so that
the function after deletion of the points (Ṽi) is different from the original function by less
than (h) at each point. This may be achieved as follows.

Start with the point (Z1
i ,P1

i). Find the largest index l > 1 such that the distances between
the straight line joining (Z1

i ,P1
i) and (Zli,Pli) and the points (Z2

i ,P2
i), (Z3

i ,P3
i), . . . , (Zl−1

i ,Pl−1
i )

are always less than h. Note that this, coupled with the fact that the original func-
tion is piecewise-linear, ensures that the differences in the values of the functions for
any value of the running sum would be bounded over by h. Now delete the points
(Z2
i ,P2

i), (Z3
i ,P3

i), . . . , (Zl−1
i ,Pl−1

i ). The point (Zli,Pli) now becomes the second singular
point, and we continue the procedure iteratively starting with this point till we cover all
the points. Figure 4.2 elaborates on this graphically. The elimination of points S3 to S6
gives function V1 (bold, blue), which has maximum error 6 h. Elimination of points S3 to
S7 gives function V2 (dashed, red), which has maximum error > h. Thus we choose V1 as
the approximation function.

Since at each N the upper bound for the error is h, if we repeat the approximation procedure
at every observational time, the total error infused in the price of the option is bounded by
Nh.

Remark 4.5 (Comparison with Asian options). While using approximations for Asian options,
the error bound was nh, where n was the number of time steps considered for computation
(refer to Section 3.6 of Chapter 3). But in the case of the cliquet options, the error
depends only on the h and the number of observations - precluding any dependence on
the computational parameters. This technique gives a precise approximation of the price
without considering upper and lower estimates.

The following proposition proves that the approximation of the price obtained by this method
does converge to the price of the cliquet option in the continuous model. The proposition
and proof is directly from .

Proposition 4.2 (Convergence to the continuous model). Let us denote by Qhn the approxi-
mation of the price evaluated with n time steps and with maximal level of error at every
monitoring date h = h(n). If h(n)→ 0 as n→∞, then Qh(n)n converges to the price of
the cliquet option in the continuous model.
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Z

P

S1 S2

S3
S4

Z1 Z2 Z3 Z4

Fglob

Cglob

S5

S6

S7

S8 S9

Z5 Z6 Z7 Z9Z8

V1
V2

6 h

>h

Figure 4.2. Approximation procedure

We skip the proof of the proposition since it is not the main focus of our exposition. The
proof is mathematically delicate, and needs a general result on the weak convergence of
stochastic processes. This is a generalisation of what we saw in Section 2.3.1 of Chapter
2. The result may be found in [Kus84] and [KD92], and we refer the interested reader to
[GZ11, Proposition 2] for a rigorous proof.
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4.3 The program

4.3.1 Algorithm

Algorithm 4.1: Pricing cliquet options using the singular points method
Input:

Contract details
time to maturity: T
number of observations: N
local floor and cap: Floc,Cloc
global floor and cap: Fglob,Cglob

Details of the underlying asset
initial price: s0, volatility: σ, continuous dividend rate: q

Market parameters – spot interest rate: r
Computational parameters – time steps within each observed period: m

Output: The price of the option at the initial time
1 begin
2 Update Fglob and Cglob using Equations 4.4.
3 Set ∆T ,u,p from the formulae in Section 4.1.
4 Compute the returns and probabilities using Equation 4.6 and Equation 4.7.
5 Compute jmin, jmax, j0 (Equations 4.8) and shifted returns (Table 4.2).

// Si and S+ denotes the current (ith) and next ((i+ 1)th) list of

singular points.

6 SN ← {(NFloc, Fglob), (Fglob, Fglob), (Cglob,Cglob), (NCloc,Cglob)} // Table 4.1.

7 S+ ← SN

8 for i ∈ {N− 1, . . . , 0} do
9 Si ← ∅, L+ ← length(S+)

10 forall the (l, j) ∈ [L+]× [j0 + 1] do
11 Compute Bl,j using Equation 4.10, replacing N by i.
12 if (Bl,j + R

′
k) /∈ [Zl0N,Zl0+1

N ] then
13 Continue // to the next item in the loop

14 Find l0 such that (Bl,j + R ′k) ∈ [Zl0i+1,Z
l0+1
i+1 ].

15 Evaluate Vi+1(Bl,j + R
′
k) by linear interpolation of the extrema.

16 Evaluate Vi(Bl,j) by using Equation 4.9, replacing N by i.
17 Si ← Si ∪ (Bl,j,VN−1(Bl,j))

18 Approximate as described in Section 4.2.2.
19 S+ ← Si

20 return (Si)1,2 // Singular price at time 0
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4.3.2 Implementation

The algorithm was implemented in Python 3.5.0 (2015-09-13).

mymath.py This file contains the
(
n
k

)
function.

# ==================================================================== #

__author__ = "Sudip Sinha"

from math import factorial

# -------------------------------------------------------------------- #

# @profile

def choose( n: int, r: int ):

"""Number of ways of choosing r objects among n."""

assert (type( n ) == int

and type( r ) == int and

0 <= r <= n), \

"n = {n} and r = {r} must be non-negative integers".format(

n = n, r = r )

if r > (n / 2):

r = n - r

c = 1

for i in range( n, n - r, -1 ):

c *= i

return c // factorial( r )

# ==================================================================== #

cliquet.py This file contains the function cliquet_sp, which returns the price of the cliquet
option at time 0.

# ==================================================================== #

__author__ = "Sudip Sinha"

from math import exp, log, sqrt, ceil, floor, isclose

from mymath import choose

# -------------------------------------------------------------------- #
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# @profile

def cliquet_sp( r: float, q: float, sigma: float, t: float,

f_loc: float, c_loc: float, f_glob: float, c_glob: float,

N: int, m: int, h: float = 0. ) -> float:

"""Price of a cliquet option using the singular point method"""

err_p = "ERROR: p_u must be a probability! " + \

"We must have dt < ( sigma ** 2 / ( r - q ) ** 2 ). " + \

"You may want to decrease the time interval."

# Time period for each option

n = m * N

dt = t / n

# Checks

f_glob = max( N * f_loc, f_glob )

c_glob = min( N * c_loc, c_glob )

# Singular points for maturity (go to the nxt)

now = [(N * f_loc, f_glob),

(f_glob, f_glob),

(c_glob, c_glob),

(N * c_loc, c_glob)]

if f_glob == N * f_loc:

now = now[1:]

if c_glob == N * c_loc:

now = now[:-1]

# Uniqueness of sigma

if type( sigma ) == float:

unique_v = True

assert dt < (sigma ** 2 / (r - q) ** 2), err_p

elif type( sigma ) == list and len( sigma ) == N:

unique_v = False

sigma_list = sigma

else:

raise ValueError

# Uniqueness of r

if type( r ) == float:

unique_r = True

elif type( r ) == list and len( r ) == N:

unique_r = False

r_list = r

else:
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raise ValueError

# Unique f_loc and c_loc

unique_fc = True

if unique_r:

# Effective interest rate for observable time periods

R_N = exp( (r - q) * t / N )

# Effective interest rate for computational time periods

R_n = exp( (r - q) * t / n )

if unique_v:

u = exp( sigma * sqrt( dt ) ) # Up factor

# d = 1. / u

if unique_r and unique_v:

# Risk neutral probability

p_u = (R_n * u - 1) / (u * u - 1)

p_d = 1. - p_u

assert 0. <= p_u <= 1., err_p

if unique_v and unique_r and unique_fc:

# Possible range of return

j_min = max( 0, floor(

log( f_loc + 1 ) / (2 * sigma * sqrt( dt )) + m / 2 ) )

j_max = min( m, ceil(

log( c_loc + 1 ) / (2 * sigma * sqrt( dt )) + m / 2 ) )

j0 = j_max - j_min

# prb denotes p'

prb = [0 for j in range( j0 + 1 )]

prb[0] = 0

for j in range( 0, j_min + 1 ):

prb[0] += choose( m, j ) * (p_u ** j) * (p_d ** (m - j))

prb[j0] = 0

for j in range( j_max, m + 1 ):

prb[j0] += choose( m, j ) * (p_u ** j) * (p_d ** (m - j))

for j in range( j_min + 1, j_max ):

prb[j - j_min] = choose( m, j ) * (p_u ** j) * (

p_d ** (m - j))

assert isclose( sum( prb ), 1. ), "Sum of PMF must be unity."

# ret denotes R'

ret = [0 for j in range( j0 + 1 )]

ret[0] = f_loc
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ret[j0] = c_loc

for j in range( j_min + 1, j_max ):

ret[j - j_min] = u ** (-m + 2 * j) - 1

# Come back from the nxt, one step at a time.

for i in range( N - 1, -1, -1 ):

nxt = now

now = []

# Checks

if not unique_v or not unique_r:

if not unique_r:

r = r_list[i]

# Effective interest rate for observable time periods

R_N = exp( (r - q) * t / N )

# Effective interest rate for computational time periods

R_n = exp( (r - q) * t / n )

if not unique_v:

sigma = sigma_list[i]

# Up factor

u = exp( sigma * sqrt( dt ) )

# Possible range of return

j_min = max( 0, floor(

log( f_loc + 1 ) / (

2 * sigma * sqrt( dt )) + m / 2 ) )

j_max = min( m, ceil(

log( c_loc + 1 ) / (

2 * sigma * sqrt( dt )) + m / 2 ) )

j0 = j_max - j_min

assert dt < (sigma ** 2 / (r - q) ** 2), err_p

# Risk neutral probability

p_u = (R_n * u - 1) / (u * u - 1)

p_d = 1. - p_u

assert 0. <= p_u <= 1., err_p

# prb denotes p'

prb = [0 for j in range( j0 + 1 )]

prb[0] = 0

for j in range( 0, j_min + 1 ):

prb[0] += choose( m, j ) * (p_u ** j) * (p_d ** (m - j))

prb[j0] = 0

for j in range( j_max, m + 1 ):

prb[j0] += choose( m, j ) * (p_u ** j) * (

p_d ** (m - j))
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for j in range( j_min + 1, j_max ):

prb[j - j_min] = choose( m, j ) * (p_u ** j) * (

p_d ** (m - j))

assert isclose( sum( prb ),

1. ), "Sum of PMF must be unity."

# ret denotes R'

ret = [0 for j in range( j0 + 1 )]

ret[0] = f_loc

ret[j0] = c_loc

for j in range( j_min + 1, j_max ):

ret[j - j_min] = u ** (-m + 2 * j) - 1

# Obtain a sorted list for B

b_list = []

for l in range( 0, len( nxt ) ):

for j in range( 0, j0 + 1 ):

b = nxt[l][0] - ret[j]

if (i * f_loc) <= b <= (i * c_loc):

close = False

for rsz in b_list:

if isclose( rsz, b ):

close = True

break

if not close:

b_list.append( b )

b_list = sorted( b_list )

for b in b_list:

v = 0

for k in range( 0, j0 + 1 ):

# Running sum Z corresponding to B at the nxt time step.

rszp = b + ret[k]

if rszp <= nxt[0][0]:

vk = nxt[0][1]

elif rszp >= nxt[-1][0]:

vk = nxt[-1][1]

else:

for idx in range( 0, len( nxt ) ):

if nxt[idx][0] <= rszp < nxt[idx + 1][0]:

vk = (nxt[idx][1] +

(nxt[idx + 1][1] - nxt[idx][1]) /

(nxt[idx + 1][0] - nxt[idx][0]) *

(rszp - nxt[idx][0]))

v += prb[k] * vk
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v /= R_N

now.append( (b, v) )

# Approximations

if h > 0.:

l = 0 # l is the starting index

while l < len( now ) - 2:

approx = True

for j in range( len( now ) - 1, l + 1, -1 ):

slope = (now[j][1] - now[l][1]) / (

now[j][0] - now[l][0])

for k in range( l + 1, j ):

approx = True

delta = abs(

slope * (now[k][0] - now[l][0]) +

now[l][1] - now[k][1] )

if delta >= h:

approx = False

break

if approx:

break

if approx and j > l + 1:

del now[l + 1:j]

l += 1

return now[0][1]

# ==================================================================== #
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4.4 Results and conclusions

In this section, we provide some numerical results that we have obtained from our program,
along with the reported values of the same from [GZ11, Section 4]. They compare the
results with other techniques, namely Monte Carlo and the finite difference method of
Windcliff et al[WFV06]. In all the experiments, the number of time steps considered were
10, 20, 50, 100, 200, 500 and 1000. The cases considered are as follows:

(1) Constant volatility of σ = 0.2

(2) Constant volatility of σ = 0.02, in order to test the efficiency of the methods for
low volatility cases

(3) Varying volatility for each observational period, as σ(i) = 0.05+ 0.04i, i = 1, . . . , 8.
(This is denoted by Var in the σ column of Table 4.3.) The contract maturity is of
2 years, with quarterly monitoring dates.

In order to obtain corroboration with the continuous value, we also report the price obtained
by using Monte Carlo method with 1,000,000 of trials, along with the values in the 95%
confidence interval.

The specifications of the cliquet contract for the cases with constant volatility are as follows.

• Floc = 0,Cloc = 0.08, Fglob = 0.16,Cglob =∞
• T = 5 years

• N = 5

• r = 0.03

All simulations were run on a computer with the specifications given in Table 3.3 of Chapter
3. All times were measured to 3 significant digits in seconds using the timeit module of
python, run from the terminal.

Table 4.3 highlights the results.

Remark 4.6 (Computational dependence on volatility). The computational time of the pure
binomial method for cliquet options is strongly dependent on the volatility. In fact the total
number of paths needed to determine the price is mN. Because of the presence of the
global cap and floor, the number of paths can be reduced to (j0 + 1)N. But j0 is strictly
dependent on σ (see Equation 4.8), and the difference in the computational time between
large and small volatilities becomes very high, as is evinced from the constant volatility
cases in Table 4.3.

Remark 4.7 (Computational complexity). We remarked earlier that although the computa-
tional complexity of the algorithm without approximation is the same as that of the binomial
model, enabling approximations decreases the complexity to a polynomial time algorithm.
In fact, the Figure 4.3 corroborates exactly to this. The blue dots denotes the time taken to
run the algorithm for constant volatility of σ = 0.2. The brown bold curve is a quadratic

4∞ means time taken is more than an hour.
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Table 4.3. Results for cliquet options

σ m
Price Time (s)4

Bin SP MC Bin SP

0.2

10 0.165661911 0.165661911

0.174106
(0.17398 –
0.17423)

0.000561 0.000555
20 0.172300056 0.172300056 0.000671 0.000675
50 0.172501269 0.172501269 0.00185 0.00175

100 0.172501269 0.173927464 0.00413 0.00297
200 0.173716366 0.173716366 0.0165 0.00828
500 0.173922597 0.173922671 0.0875 0.0437

1000 0.174051949 0.174051983 2.38 0.183

0.02

10 0.151234115 0.151234416

0.150525
(0.150472 –
0.150578)

0.128 0.0295
20 0.149734212 0.149734992 1.01 0.199
50 0.150228984 0.150230185 7.96 0.868

100 0.150386306 0.150387954 70 2.36
200 0.150465004 0.150466828 600 6.09
500 0.150508871 0.150510526 ∞ 24.2

1000 0.150522368 0.150524027 ∞ 55

Var

10 0.188738321 0.188738321

0.226169
(0.225978 –
0.226360)

0.00258 0.00253
20 0.192927333 0.192927296 0.0153 0.0139
50 0.192650261 0.192650204 0.510 0.0638

100 0.193452450 0.193452358 2.43 0.162
200 0.193657595 0.193657617 14.6 0.364
500 0.193742799 0.193742732 3600 1.11

1000 0.193776040 0.193776165 ∞ 2.97

function of the number of time steps m, whereas the green dash-dot curve is an exponential
function of the same. We varied the parameters so that the curves fits the data. We see
that the quadratic function serves as an upper bound for the running time for most data
points in the plot, except for a few points, which may be treated as outliers. Thus, we
may conclude that the computational complexity of the algorithm is O(m2) in this case. In
fact, our experiments show that this is indeed the general trend. Thus, even though we
have not found out the theoretical complexity of the algorithm, in practice the algorithm is
competitive.

Note that for the Asian case, the experimental complexity is O(n3), whereas in the cliquet
case, it is O(m2). (Recall that in the cliquet case, n = Nm, where we can consider N as
constant as it is specified in the contract.)

Concluding remarks We note that, in all cases, the difference between the prices in
obtained by the singular points method and the binomial method is significantly smaller
than the theoretical value of N · 10−6. Moreover, as in the case examined NCloc < Cglob
(which is equivalent to NCloc = Cglob), the price functions Vi(Z) are always convex and
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Figure 4.3. Timing the singular point method for cliquet option with constant
volatility σ = 0.2. The quadratic curve provides a pragmatic bound for the runtimes.
The exponential curve is too conservative.

this implies that the approximation procedure will provide an upper estimate of the exact
binomial value.

Thus, the singular points method is quite capable in pricing cliquet options in a Black-
Scholes framework with piecewise constant interest rates and volatilities. The implemen-
tation is quite simple, and the price obtained by the method converges to the price of
continuous model. In absence of approximation, the price matches the exact binomial price.
The ability to set a priori error bounds differentiates it from the alternative algorithms.

Numerical comparisons indicate that the method is accurate both for standard and small
volatilities, and that it avoids the computational problems arising from the application of
the standard binomial method. For small volatilities and large numbers of observation
times in particular, the improvement with respect to the binomial standard technique is
very significant. Experimental results show that the computational complexity in practice is
around O(m2).

76 of 80



Chapter 5.

Chapter 5

Epilogue

In the thesis, our main focus was to develop the ideas behind the pricing of options, and
to study two particular classes of path-dependent exotic options, namely Asian options
and cliquet options. We saw that these options do not lend themselves to be priced under
the Black-Scholes framework, and we have to resort to alternative ways of pricing them.
They can be priced in the Cox-Ross-Rubinstein model, but the complexity is exponential
with respect to the number of time steps, and is infeasible in practice. The singular points
method is a new lattice based method which has the same theoretical complexity as the
Cox-Ross-Rubinstein model. But it excels in allowing for approximations, and this reduces
the complexity from exponential time to polynomial time of very low orders.

Albeit similar in the basic structure, the theory of how the singular points method may be
applied for Asian options and cliquet options are quite different, as are the corresponding
algorithms. On the one hand, in the case of Asian options, we saw that the algorithm
neither did generalise for Asian options with geometric mean, nor for local volatility models.
Moreover, the pre-existing algorithms (some lattice-based) were quite competitive to this
method.

On the other hand, for cliquet options, the method was able to handle cases of variable rates
of interest, volatility, and local caps and floors with ease. The algorithm is extremely fast
in this case, and does in fact outdo most other competing algorithms in terms of simplicity,
ease of implementation and low memory requirement. Furthermore, this seems to be one of
the very few tree lattice-based methods available to price cliquet options.

As a further research, it might be interesting to explore on the possibility of customising
the method for other exotic option types. It would also be interesting to conduct a
further study on the theoretical complexity of the algorithm, especially the dependence
of the number, closeness and removability of singular point with respect to initial data
(S0,K, T ,σ, r, Floc,Cloc, Fglob,Cglob) and the computational parameters (m,h).

In conclusion, the method is quite specific; its implementation depends very much on the
type of option. Nevertheless, it is a significant leap in the domain of tree methods because
of its inherent advantages over other methods.
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