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Through zeal, knowledge is gotten; through lack of zeal, knowledge is lost;  

let a man who knows the double path of gain and loss thus place himself that knowledge may grow. 

Siddharta Gautama  (563-623 BCE) 

  

 

 

If anyone travels on a road in search of knowledge, God will cause him to travel on one of the roads 

of Paradise. The angels will lower their wings in their great pleasure with one who seeks 

knowledge. The inhabitants of the heavens and the earth and (even) the fish in the deep waters will 

ask forgiveness for the learned man. The superiority of the learned over the devout is like that of the 

moon, on the night when it is full, over the rest of the stars. The learned are the heirs of the 

Prophets, and the Prophets leave (no monetary inheritance), they leave only knowledge, and he who 

takes it takes an abundant portion. 

Prophet Muhammad  (570-632 CE) 

 

 

 

I do not know what I may appear to the world, but to myself I seem to have been only a boy playing 

on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell 

than ordinary, whilst the great ocean of truth lay all undiscovered before me. 

Sir Isaac Newton (1642-1727 CE) 
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Abstract 

 

The novel properties of optical/electromagnetic metamaterials like left-handed-materials and 

epsilon-near zero metamaterials have been studied and have been implemented in some 

applications, i.e. superlensing, optical cloaking, nanophotonic circuits, etc. The theoretical study 

and simulation of metamaterials optical properties are important to determine the physical 

parameters of metamaterials before they will be implemented or fabricated in real case.   

This research aims to design epsilon-near-zero metamaterial by using the composite of core shell 

nanoparticles (Silver-InAs) and dielectric host medium (PMMA), and studying the properties of 

the designed epsilon-near-zero metamaterial in a specific interest frequency or wavelength.  The 

studies of the designed metamaterial’s optical properties are done based on the Maxwell Garnett 

Theory. Then, modelling and simulation of the designed epsilon-near-zero are also performed to 

study the electromagnetic interactions of unit structures of metamaterials by using an 

electromagnetic finite element solver, i.e. COMSOL Multiphysics. 

The developed theoretical and simulation calculations allow us to determine the physical conditions 

to fabricate nanoparticles in a core/shell geometry in which a semiconductor (core) is surrounded 

by a thin metal shell. We demonstrated that the epsilon-near-zero condition is completely fulfilled 

when the induced gain in the semiconductor by external electromagnetic pumping beam (with a 

photon energy greater than the semiconductor gap) compensates the metal absorption effects.   

The simulation results in COMSOL Multiphysics are able to show plasmonic resonance behaviour 

in the designed metamaterial that can change its electromagnetic response because  the full 

electromagnetic model employed in the Comsol Multiphysics program enabled us to verify the 

existence of Localized Surface Plasmon Resonances occurring between neighbouring nanoparticles. 
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CHAPTER 1 

METAMATERIALS AND THEIR PRINCIPLE USES 

 

 

1.1 - Introduction of Optical Metamaterial 
Nowadays, functional electromagnetic devices have developed spectacularly. The devices 

with novel properties like negative refractive index or zero refractive index, which were 

unimaginable before, are becoming real now. Those novel properties are able to realize 

some wonderful applications, for example to make image of small objects like DNA 

molecules so that it can be seen with eyes directly (superlensing) [1], to make objects 

become invisible (cloaking) [2] and to develop revolutionary information technology 

systems based on nanophotonic circuits [3,4]. But, there are still limitations of materials 

which are available in nature to follow those required novel processes or phenomena, so 

we need to create new structured composites of materials which are called metamaterials. 

Metamaterial is a terminology to describe a man made material which is not available in 

nature done by some engineering processes. By terminology, ‘meta’ comes from greek 

word which means beyond. So, metamaterial means ‘beyond conventional material’.  The 

technical meaning of metamaterial, especially in optical field, is an artificially structured 

material which attains its properties from the unit structure rather than the constituent materials. 

Inhomogeneity scale of metamaterial is much smaller than its constituent material, so that the 

electromagnetic response of metamaterial is expressed in terms of homogenized material parameters 

[5]. Although metamaterials commonly are used in optical field, but their applications are 

not only limited in optics, but also in mechanics, electrical engineering, material science 

and basic physics.  

Like another solid state materials, metamaterials also have structured atoms or molecules 

called ‘meta-atoms or meta-molecules’. A metamaterial is arranged by atoms/molecules 

of constituent materials which form a united and homogeneous material. The distance 

between meta-molecules is called inhomogeneities and the inhomogeneities of 

metamaterials should be less than the scale of interest wavelength (in optical context or, in 

general, electromagnetic context). Macroscopically, metamaterials are homogeny like 

another materials because the inhomogeneity of their unit structure is less than wave-
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length scale. If an electromagnetic wave is applied in metamaterial, the response is a 

representation of whole metamaterials as a homogeny material.  

Although metamaterial terminology was started to be used around year 2000 in Smith’s 

paper [6], actually metamaterial itself has existed since a long time ago. Lycurgus Cup, the 

Roman Cup done at 4AD (Figure 1.1) is one example of metamaterial. It is a glass material 

with gold nanoparticles embedded. The cup has a unique and beautiful characteristic 

such that it will reflect green light and will transmit red light when the light scatters the 

crystal [5]. But, the application of that crystal was still limited in art without sufficient 

knowledge of its physical structure. The application of metamaterials specifically in optics 

also have been found before metamaterial terminology is used, like artificially dielectric, 

‘twisted jute’ material to produce artificially chiral effect, split ring resonator, etc. 

 

Figure 1.1 The Lycurgus Cup viewed (a) in reflected light and (b) in transmitted light.  
The cup is formed by many (c) gold nanoparticles [5] 

 

Researches in metamaterial were started in left-handed material, or negative-index 

material (NIM). According to Cai in Optical Metamaterial [5], there are 3 important 

papers that open horizons and cornerstones of metamaterial research in optics, i.e. 

Vaselago’s paper [7], Simth’s observation [6], and Pendry’s work [8]. Those 3 papers are 

mostly related to left-handed materials. Left-handed material is material whose 

electromagnetic properties, i.e. electric field E, magnetic field H and wave vector k, are 

represented by left hand, instead by right hand like conventional material. Left-handed 

materials are called negative-index materials (NIM) because their left handed property is 

resulted by negative refractive index n. Initially left-handed materials were the most 

important topics in metamaterial research, indeed left-handed material is used 

interchangeably with metamaterial.  
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Now, metamaterial research is not only limited in left-handed material, but also expands 

its area to another fields.  In optical areas, there are many unusual electromagnetic 

properties that can be explored by arranging structural unit of materials, like nonlinear 

optics, optical magnetism, giant artificial chirality, super resolutions of metamaterial, 

electromagnetic cloaks of invisibility, perfect reflector, and so on [5]. Structural units 

arrangement can be done by modifying their size, shape, composition and morphology. 

The fabrication method of metamaterial’s arrangement has evolved and is able to tailor 

unit structure in nanoscale. It is also coupled by electromagnetic simulation solvers that 

are able to perform good computations of metamaterials model design, like CST 

Microstudio, COMSOL Multiphysics and many other solvers. Nanofabrication process 

and simulation process cannot be separated and support each other in metamaterial 

research and production. 

Homogeneity and isotropics are very important in designing optical devices. 

Homogeneity means that the structure of device is uniform macroscopically. Isotropic 

optical device responds scattered electromagnetic waves uniformly in all orientation and 

direction. To obtain a homogeneous and isotropic metamaterial, microscopic architectural  

strategy and exhaustive nanofabrication processes are required because metamaterial is 

arranged in its unit structure. Every single point of metamaterial’s unit structure has to be 

controlled precisely. 

Research in metamaterial area is still growing to design and fabricate homogeneous and 

isotropic  metamaterials with low dissipation and high efficiency. Although many  

metamaterials have been produced and applied, but they are still far from ideal 

requirements. Recently, most produced metamaterials, not to say all, are still anisotropic, 

high dissipative and dispersive. So that the improvements have to be done 

simultaneously, from design, computation, fabrication until experimental examination.  

Unusual optical properties of metamaterial like negative-index-metamaterial (NIM) and 

epsilon-near-zero metamaterial (ENZ) are very useful in many applications like 

electronics, control systems, signal processing and telecommunication. Optical sensings, 

miniature antennas, novel waveguides, subwavelength imaging devices, nanoscale 

photolithography are some examples. They show some prospects of metamaterial to be 

developed in future, not only in research area but also in massive industrial process. It is 

not impossible that applications of metamaterials can penetrate in renewable energy, 

agriculture, medics, and many other technological fields.  



 

  

 

1.2 - Macroscopic Properties of Optical Metamaterial

Metamaterial macroscopically responses scattered electromagnetic waves as a 

homogeneous media, although the

its unit structure, like reflection, refraction, transmission, absorption, emission, Surface 

Plasmon Polariton (SPP) excitation, etc. Homogeneity in macroscopic structure is 

occurred due to inhomogeneity

scale of interest. Then, macroscopic response of metamaterial (reflection, refraction, 

transmission, polarization, etc) is the ‘average’ response of unit structures and represents 

homogeneity of metamaterial  in macroscopic structure.

Although metamaterials have unusual electromagnetic responses, but those responses 

must be satisfied Maxwell Equations. Maxwell Equations are equations describing 

electromagnetic interactions between source, field and m

Electromagnetic field can influence the configuration of electrons and magnetic dipoles in 

material so that polarization and magnetization in material happen. Degree of 

polarization and magnetization depends on material properties and a

itself as function of electromagnetic source. Another electromagnetic responses of incident 

field due to material properties which are known commonly are reflection, refraction, 

diffraction, transmission, absorption and emission.

There are two important dimensionless parameters that represent macroscopic material 

properties, i.e. relative permittivity 

will be shortly called permittivity 

permittivity and permeability are constant for all spatial directions and it responds 

polarization and magnetization of incident field uniformly.  On the contrary, anisotropic 

media does not respond polarization and/or magnetization uniformly for every direction 

so that there happen retardation (delay) for polarization and/or magnetization field. For 

non-magnetic material, permeability 

inside material does not exist. There are also another two macroscopic material properties 

which are derived from permittivity and permeability, i.e. refractive index 

impedance  � � ��
� . 

It is shown in figure 1.2 the clas

permittivity and permeability. That classification is based on Maxwell Equations so that 

all materials properties, both constituent and engineered material (metamaterial), has to 
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Metamaterial macroscopically responses scattered electromagnetic waves as a 

re are many complicated electromagnetic processes in 

its unit structure, like reflection, refraction, transmission, absorption, emission, Surface 

Plasmon Polariton (SPP) excitation, etc. Homogeneity in macroscopic structure is 

of metamaterial’s unit structure is less than wavelength 

scale of interest. Then, macroscopic response of metamaterial (reflection, refraction, 

transmission, polarization, etc) is the ‘average’ response of unit structures and represents 

Although metamaterials have unusual electromagnetic responses, but those responses 

must be satisfied Maxwell Equations. Maxwell Equations are equations describing 

aterial properties. 

Electromagnetic field can influence the configuration of electrons and magnetic dipoles in 

material so that polarization and magnetization in material happen. Degree of 

lso the incident field 

itself as function of electromagnetic source. Another electromagnetic responses of incident 

field due to material properties which are known commonly are reflection, refraction, 

re are two important dimensionless parameters that represent macroscopic material 

. For later passage, they 

In isotropic media, both 

permittivity and permeability are constant for all spatial directions and it responds 

polarization and magnetization of incident field uniformly.  On the contrary, anisotropic 

polarization and/or magnetization uniformly for every direction 

so that there happen retardation (delay) for polarization and/or magnetization field. For 

is always equal to 1 so that magnetization process 

side material does not exist. There are also another two macroscopic material properties 

which are derived from permittivity and permeability, i.e. refractive index  � � √	
   and 

sification of material properties respect to the real part of 

permittivity and permeability. That classification is based on Maxwell Equations so that 

all materials properties, both constituent and engineered material (metamaterial), has to 
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be satisfied by Maxwell Equations. Common transparent material like glass and polymer 

whose permittivity and permeability are positive is described in the first quadrant. Its 

electromagnetic fields, i.e. electric field E, magnetic field H and wave vector k are 

represented by right hand. In contrary, when both permittivity and permeability of 

material are negative, material will respond to transmit electromagnetic fields in opposite 

behavior such that electric field E, magnetic field H and wave vector k are represented by 

left hand. Moreover, positive permittivity material propagates electromagnetic waves 

whereas negative permittivity material cannot support propagation. Example of natural 

materials with negative permittivity and positive permeability (as described in the second 

quadrant) are metals when they respond electromagnetic waves for visible light (optical 

frequencies). Having negative permittivity, metals are not transparent and always reflect 

light.  As a note, materials used in optical domain are usually non magnetic with 

permittivity equal to 1.  

 

 

Figure 1.2 The parameter space of (relative) permittivity and permeability in real values. 
Dashed green lines represent non-magnetic material with permittivity µ=1. [5] 

 

Another kind of metamaterials which also can be created are epsilon-near zero (ENZ) 

material. ENZ material is a material whose relative permittivity is close to zero for its 

corresponding frequency or wavelength of electromagnetic wave. In figure 1.2, the 

position of this material is in the green dashed line (with relative permeability is equal to 

1) between the first and the second quadrant. By some theoretical and experimental 
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researches, there are some electromagnetic properties and applications that can be 

implemented or generated by designing suitable epsilon-near zero (ENZ) materials, i.e. 

supercoupling effect [4], nonlinear optics [9,10] and multi-beam antennas [12]. 

This research aims to design and to make a model of metamaterial which can reach ENZ 

property with metal-semiconductor nanocomposites as the nanoparticles and a polymer 

as the host medium. The structure of the model is explained below. The modeling and 

simulation of metamaterial structure and its optical response is not less important than its 

fabrication, because metamaterial structure has a small dimension and has complicated 

physical behaviors. Doing simulation can substitute expensive experimental studies to 

predict the responses before fabrication is done. 

 

1.3 -Optoelectronic Materials 

Electronic materials are classified into 3 kinds, i.e. dielectric, metal and semiconductor. 

Dielectric has a large energy gap (>5eV) between valence band and conduction bands so 

that it is required relatively high photon energies applied to dielectric to make electrons 

moving from valence band to conduction band. In contrary, energy gap in metal is very 

close (approaching zero) so electron can easily move from valence band to conduction 

band with small energy applied to metal. In electronics dielectric and metal are usually 

used as insulator and conductor, respectively.  The third category of electronic material is 

semiconductor whose energy gap is between metal and dielectric. Electrons in 

semiconductor can excite from valence band to conduction band with several amount of 

energy which is more or equal to its energy gap. 

The properties of electronic materials, i.e. insulator, conductor and semiconductor also 

have implication in optics. As it is known, light as electromagnetic wave always brings 

photon energy which is proportional to its frequency as it was discovered by Einstein. The 

photon energy of visible light is between 1.5 eV and 3 eV. Because photon energy of 

visible light cannot make excitation of electrons in dielectric, light can propagate inside 

dielectric and it looks as transparent medium. That phenomena also exists in 

semiconductors whose energy gap are higher than photon energy of light so that some 

semiconductors are considered as transparent medium in optics.  

In optics, every material has the variable called critical wavelength ��, which is the 

minimum wavelength required to make excitation of electron in the material. The critical 
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wavelength of material depends on its energy gap and the relation between them are 

expressed in equation (1.1) 

λ � �
�� (1.1) 

λ    : critical wavelength [m] 

h     : Planck constant (� 6.626 ∙ 10���  �� )   

c      : speed of light in vacuum (� 3 ∙ 10� �/� ) 

 !   : energy gap between conduction band and valence band [J, eV] 

 

1.3.1 - Optical Properties of Dielectric 

Dielectrics are very important media to propagate light because of their transparent 

behavior, as explained in the previous passages. Most of dielectrics used in optics are 

media in crystalline or amorphous form like glasses or quartz and sapphire. Some 

semiconductors also behave as dielectrics in optics and have transparent appearances. 

Transparent media are very suitable to propagate light because their critical absorbing 

band wavelengths are higher than electromagnetic wavelength in the visible range.  In 

optics, refractive index n is usually used as the parameter to see ‘transparency degree’ of 

the medium. The value of refractive index should be equal or greater than 1 and complex 

values of the refractive index means that the medium is absorbing one for certain band of 

wavelengths, while for n=1 is equivalent to free space in vacuum. 

The relationship between electrical properties of dielectric and the refractive index can be 

explained by Maxwell Equations. As written before, Maxwell equations are set of 

differential equations describing electromagnetic interaction between source and matter. 

The constitutive interactions between dielectrics and electromagnetic fields (electric and 

magnetic fields) are given in equations (1.2a) and (1.2b) 

" � ε#$ + & � ε#$ + ε#χ'$ � ε#(1 + χ')$ �  ε#ε$        (1.2a) 

* � µ#(, + -) � µ#(, + χ/,) � µ#(1 + χ/), �  µ#µ,  (1.2b) 

where: 

D   : electric displacement 

P   : polarization  

ε#  : permittivity in vacuum (� 8.85 ∙ 10�234) 
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ε    : relative permittivity, or shortly called ‘permittivity’ 

 χ' : electric susceptibility 

B    : magnetic field  

M   : magnetization 

µ#  : permeability in vacuum (� 46 ∙ 10�7H/m) 

µ    : relative permeability, or shortly called ‘permeability’ 

χ/ : magnetic susceptibility 

 

It has to be noticed that dielectrics commonly are not magnetic materials, so relative 

permeability, or shortly called ‘permeability’, is equal to 1. Then, relative permittivity, or 

‘permittivity’, is dimensionless number and might be a complex number. For isotropic 

dielectrics, permittivity is always similar in all direction and is manifested in scalar form. 

In other hand, if a dielectric is anisotropic it has different permittivity for every coordinate 

spatial direction. Thus, permittivity is manifested as a tensor matrix. The expression of 

permittivity which has complex is shown in equation 1.3a such that 	’ and 	′′ are the real 

and imaginary part of permittivity, respectively. 

Equation 1.3b shows the relationship between the medium permittivity and its refractive 

index n. If permittivity is a complex number, refractive index is also complex. The real 

part of refractive index represents the refractive and dispersion properties of the medium 

to transmitted light. In optical study, negative values of �′′represent absorption of light by 

the medium, whereas for positive values of  	′′ the medium admits energy to the light, i.e. 

represents a gain for the incident light. 

	 � 	′± :	′′ (1.3a) 

� � �′ ± :�′′ � √	 (1.3b) 

The other important thing is that dielectrics are dispersive materials, especially when they 

responds visible light. So that dielectrics have different permittivity for different 

frequency of light coming to the medium. The permittivity of medium also corresponds to 

the refractive index, since the refractive index is square root of permittivity as written in 

equation (1.3b). The relation between the refractive index and the frequency of light what 

is called dispersion relation, is expressed by the Drude-Helmholtz model as written in 

equation (1.4). A typical  example of dispersion relation ranging from ultraviolet to 

infrared is reported in the figure 1.2 



 

  

 

where: 

;<  :  the strength of component j

=< :  the resonance frequency of component j 

><  :  the damping ratio of component j

 

In the example of Figure 1.3 shows the fact that in the visible range, the real part of 

permittivity is positive and the imaginary part of dielectric is close to zero. It means that 

dielectric behaves as transparent medium without absorption/emission when 

with visible light. The resonance frequencies exist in the infrared and ultraviolet ranges. 

When the dielectric interacts with the light in the resonance frequencies, 

positive to negative or vice versa and 

refractive index is not independent respect to light frequency since permittivity depends 

on light frequency and refractive index is nothing else but the square root of permittivity. 

 

Figure 1.3 The dispersi

for typical dielectric material with resonance frequencies 

As it was mentioned above, the imaginary part of refractive index manifests degree of 

absorption of light intensity inside t

relation between the absorption coefficient 

index n’’. It can be concluded that absorption coefficient’s sign is similar with the sign of 
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As it was mentioned above, the imaginary part of refractive index manifests degree of 

absorption of light intensity inside the dielectric medium. Equation 1.5a shows the 

relation between the absorption coefficient and the imaginary part of the refractive 
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permittivity is positive and the imaginary part of dielectric is close to zero. It means that 
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As it was mentioned above, the imaginary part of refractive index manifests degree of 
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and the imaginary part of the refractive 
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n’’. By using the Beer’s law in equation 1.5b which describes the intensity of light inside 

the medium at any position z, light intensity will decrease (is absorbed) when 

negative and it will increase (light is emitted) when

intensity and the wavelength of light in the first interface between air and dielectric 

medium, respectively. Light intensity I is proportional to electric field’s square 

1.3.2- Optical Properties of Metal
As It has been explained above, metals have small energy gap between valence and 

conduction bands to the extent that electrons will move from valence band to conduction 

band although the energy applied to metal is so small (almost no gap). In optical point

view, visible light cannot propagate inside metals because the photon energy of the light 

makes electron excitation in metal. Because the only possible way for light to propagate is 

being reflected from the surface, metal looks bright and shiny. 

Interaction between metal and electromagnetic field (light) is also satisfied by the 

constitutive relation of Maxwell Equation in equation 1.2a and 1.2b. So that metals have 

permittivity, permeability, displacement and magnetic field. The relations with refract

index and absorption coefficient are also similar, although metal is not transparent. But, 

the different between metal and dielectric when they interact with light is in the electron 

displacement. In metals, electrons can move freely along the crystall

not need force to move. In contrary, electrons in dielectrics are subject to a restoring force 

so that dielectrics show resonance frequencies as a direct consequence of the effect of 

restoring force. The permittivity of metals as a fun

by the Drude Model as written in equation 1.6a and 1.6b. The magnitudes of the Drude 

Model parameters to obtain permittivity in some noble metals are given on table 1.1

	

where: 

=F : plasma frequency [rad/s]

 Γ   : damping frequency [rad/s]

Chapter 1 – Metamaterials and Their Principle Uses

10 
 

 

eer’s law in equation 1.5b which describes the intensity of light inside 

the medium at any position z, light intensity will decrease (is absorbed) when 

negative and it will increase (light is emitted) when  is positive. and 

intensity and the wavelength of light in the first interface between air and dielectric 

medium, respectively. Light intensity I is proportional to electric field’s square 

G � �HI′′
JK  

L � L# M�NO 

 

Optical Properties of Metal 
As It has been explained above, metals have small energy gap between valence and 

conduction bands to the extent that electrons will move from valence band to conduction 

band although the energy applied to metal is so small (almost no gap). In optical point

view, visible light cannot propagate inside metals because the photon energy of the light 

makes electron excitation in metal. Because the only possible way for light to propagate is 

being reflected from the surface, metal looks bright and shiny.  

action between metal and electromagnetic field (light) is also satisfied by the 

constitutive relation of Maxwell Equation in equation 1.2a and 1.2b. So that metals have 

permittivity, permeability, displacement and magnetic field. The relations with refract
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eer’s law in equation 1.5b which describes the intensity of light inside 

the medium at any position z, light intensity will decrease (is absorbed) when  is 

and are the light 

intensity and the wavelength of light in the first interface between air and dielectric 

medium, respectively. Light intensity I is proportional to electric field’s square . 

(1.5a) 

(1.5b) 

As It has been explained above, metals have small energy gap between valence and 

conduction bands to the extent that electrons will move from valence band to conduction 

band although the energy applied to metal is so small (almost no gap). In optical point of 

view, visible light cannot propagate inside metals because the photon energy of the light 

makes electron excitation in metal. Because the only possible way for light to propagate is 

action between metal and electromagnetic field (light) is also satisfied by the 

constitutive relation of Maxwell Equation in equation 1.2a and 1.2b. So that metals have 

permittivity, permeability, displacement and magnetic field. The relations with refraction 

index and absorption coefficient are also similar, although metal is not transparent. But, 

the different between metal and dielectric when they interact with light is in the electron 

ine structure and do 

not need force to move. In contrary, electrons in dielectrics are subject to a restoring force 

so that dielectrics show resonance frequencies as a direct consequence of the effect of 

ction of the light frequency is modeled 

by the Drude Model as written in equation 1.6a and 1.6b. The magnitudes of the Drude 

Model parameters to obtain permittivity in some noble metals are given on table 1.1 

(1.6a) 

(1.6b) 



 

  

 

�T  : electron density in metal

 M   : electron charge (� 1.6
 

Because electrons can move freely along the crystal, the polarization density 

an important parameter in the interaction between the metal and the electromagnetic 

field. By definition, polarization density P is the total dipole moment (vector) per

volume and it depends on the electron density inside the metal, electron charge and 

displacement. Polarization density vector 

function of time are expressed in equation 1.7a.

where: 

VWX       : the polarization density

�T    : the electron density 

YX(Z)   :  the electron displacement vector 

 WX#      : the initial electric field [V/m] 

 

Equation 1.6a shows that the damping frequency or damping constant 

imaginary part of permittivity. It is nothing else but the collision rate of electron inside 

metal crystalline. The inverse of damping constant is the collision time which is the 

average time needed when electrons collide each others. In t

damping constant  depends on the Fermi velocity 

  as written in equation 1.8. 

Table 1.1
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Because electrons can move freely along the crystal, the polarization density 

an important parameter in the interaction between the metal and the electromagnetic 

field. By definition, polarization density P is the total dipole moment (vector) per

volume and it depends on the electron density inside the metal, electron charge and 
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: the polarization density 

 

:  the electron displacement vector  

: the initial electric field [V/m]  

Equation 1.6a shows that the damping frequency or damping constant 

imaginary part of permittivity. It is nothing else but the collision rate of electron inside 

metal crystalline. The inverse of damping constant is the collision time which is the 

average time needed when electrons collide each others. In the Drude Model, the 

depends on the Fermi velocity  and the electron mean free path 

as written in equation 1.8.  

Γ � ab
c  

 

Table 1.1 Drude Parameters in Metals 

and Their Principle Uses 

Because electrons can move freely along the crystal, the polarization density  becomes 

an important parameter in the interaction between the metal and the electromagnetic 

field. By definition, polarization density P is the total dipole moment (vector) per unit 

volume and it depends on the electron density inside the metal, electron charge and 

and electron displacement vector  as the 

(1.7a) 

(1.7b) 

Equation 1.6a shows that the damping frequency or damping constant  contributes the 

imaginary part of permittivity. It is nothing else but the collision rate of electron inside 

metal crystalline. The inverse of damping constant is the collision time which is the 

he Drude Model, the 

and the electron mean free path 

(1.8) 

 



 

  

 

Although the Drude Model for metal permittivity is quite good, but it also has weakness. 

Interband transitions, i.e. transitions of electrons from one energy state to others energy 

states when light scatters to metal happen and it are not predicted or calc

Drude Model. Interband transitions in metals influence many other things, for example 

the appearance color of metals and of course the permittivity. So that the Drude Model 

should be improved or modified to get a better model that considers a

transitions of electrons in metals. The modified Drude Model is given in equation 1.9. The 

constant offset   is an additional parameter to represent interband transitions of 

electrons in metal and it is experimentally observed. 

	(=) � 	′(B) + :	

Figure 1.4 
obtained by modified Drude Model and experiment data

 

Figure 1.4 shows the permittivity 

analytical calculation of the Drude Model and experimental results. The real part of the 

permittivity in metals is always negative because free electrons move out of phase respect 

to the driving electric field of light and most of incident light coming to the interface 

between air and metal are reflected. It is the reason why noble metals look shiny.

1.3.3- Metal-Dielectric Composites 
As it was described, metamaterials are engineered materials which a

in unit structure rather than the constituent material and the inhomogeneity of 

metamaterials is less than their interest wavelength scale. As an engineered material, 

metamaterial is a kind of composite whose unit structures are ‘cre

structures must be arranged such that it can have special optical properties. The 
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 (a)permittivity and (b)refractive index of silver 
obtained by modified Drude Model and experiment data

Figure 1.4 shows the permittivity  and the refractive index n of silver (Ag) obtained by 

analytical calculation of the Drude Model and experimental results. The real part of the 

permittivity in metals is always negative because free electrons move out of phase respect 

ic field of light and most of incident light coming to the interface 

between air and metal are reflected. It is the reason why noble metals look shiny.

 

Dielectric Composites  
As it was described, metamaterials are engineered materials which attain their properties 

in unit structure rather than the constituent material and the inhomogeneity of 

metamaterials is less than their interest wavelength scale. As an engineered material, 

metamaterial is a kind of composite whose unit structures are ‘cre

structures must be arranged such that it can have special optical properties. The 

and Their Principle Uses 

Although the Drude Model for metal permittivity is quite good, but it also has weakness. 

Interband transitions, i.e. transitions of electrons from one energy state to others energy 

states when light scatters to metal happen and it are not predicted or calculated by the 

Drude Model. Interband transitions in metals influence many other things, for example 

the appearance color of metals and of course the permittivity. So that the Drude Model 

should be improved or modified to get a better model that considers also interband 

transitions of electrons in metals. The modified Drude Model is given in equation 1.9. The 

is an additional parameter to represent interband transitions of 

BQCΓ
B(BCRΓC)  (1.9) 

 

(a)permittivity and (b)refractive index of silver  
obtained by modified Drude Model and experiment data 

and the refractive index n of silver (Ag) obtained by 

analytical calculation of the Drude Model and experimental results. The real part of the 

permittivity in metals is always negative because free electrons move out of phase respect 

ic field of light and most of incident light coming to the interface 

between air and metal are reflected. It is the reason why noble metals look shiny. 

ttain their properties 

in unit structure rather than the constituent material and the inhomogeneity of 

metamaterials is less than their interest wavelength scale. As an engineered material, 

metamaterial is a kind of composite whose unit structures are ‘created’. The unit 

structures must be arranged such that it can have special optical properties. The 
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components of metamaterial composites are optical materials available in nature that are 

divided into two kinds, i.e. metal and dielectric (electronic dielectric and semiconductor).  

So that metamaterials are also called metal-dielectric composites. 

The interaction between the metal-dielectric and electromagnetic field in unit structure of 

material is very complicated to be described by Maxwell Equations because its 

inhomogeneity scale is very small, less than a wavelength. Also there are special 

properties of metals when their dimensions are so small and they make more complicated 

problems. Therefore, in a macroscopic scale, the metamaterial structures are homogenous 

and they can be analyzed by the Maxwell Equations to study their interaction with 

electromagnetic fields.  The  Maxwell-Garnett theory (MGT) and the Bruggemann 

effective medium theory (EMT) are usually used to homogenize the unit structures’ 

inhomogeneity and calculate the effective metamaterial properties in the macroscopic 

scale [5]. 

 

1.4- Objectives of the Research 

The main goal of this research is to model epsilon-near-zero (ENZ) metamaterials. The 

metamaterial which is studied in this thesis is the composite of dielectric/insulator and 

metal/semiconductor nanoparticles. The investigation has been divided in two parts: a 

theoretical study and a simulation study. 

The specific objectives of the research are shown below:  

1. Studying the properties of the metamaterials (i.e. the composite of dielectric host 

medium and metal-semiconductor nanoparticles) which attain epsilon-near-zero 

(ENZ) by theoretical calculations in MATLAB. The constituent materials which are 

used in this research are InAs, Ag and polymethyl methacrylate (PMMA) [12] for 

the semiconductor, the metal and the dielectric host medium, respectively. 

2. Performing the simple geometry models of the composite of dielectric insulator and 

metal-semiconductor nanoparticles’ structures that represent the inhomogeinity of 

unit structures and simulating their electromagnetic response by COMSOL 

Multiphysics. 

3. Conducting comparative study based on the obtained results of theoretical 

computation and model simulation.  

. 
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CHAPTER 2 

THE DESCRIPTION OF THE NANOPARTICLE  
(METAL-SEMICONDUCTOR NANOCOMPOSITE)  

AND ANALYTICAL FORMULA 

 

 

As discussed in the previous chapter, the designed metamaterial in this research is a 

composite of metal-semiconductor nanoparticles and dielectric.  Metal semiconductor 

nanoparticles, or shortly called ‘nanoparticles’, are set of sphere nanoparticles which are 

distributed randomly in a dielectric medium. Each nanoparticle contains two main 

elements, i.e. semiconductor in the shell and metal in the core The constituent materials 

which are used in this research are InAs, Ag and polymethyl methacrylate (PMMA) for 

the semiconductor, the metal and the dielectric host medium, respectively. Based on Y. 

Zeng, et al [1] and P. Holmstrom, et al [2], the Drude Model, the Quantum Dot (QD) and 

the formula from the Maxwell Garnett Theory can be used to model the metal-

semiconductor nanoparticles. Then, to calculate the effective permittivity of the 

metamaterial (i.e. the composite of nanoparticles and dielectric host medium), the formula 

from the Maxwell Garnett Theory (MGT) can be used too. The objective of the 

metamaterial is to get the special material property, that is epsilon near zero (ENZ) when 

it interacts with the frequency of interest of the electromagnetic field.  

 

2.1–The Model of the Metal-Semiconductor Nanoparticle 

The nanoparticle which is used to be implemented in this research is a composite of metal 

and semiconductor such that the semiconductor (InAs) and the metal (Ag) are placed as 

the core with radius R1 and the shell with the radius R2, respectively (see Figure 2.1). The 

Drude Model, the Quantum Dot (QD) approach and the Maxwell Garnett Theory (MGT) 

are used to study the average optical properties and the interaction of components in the 

nanoparticle. 
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Figure 2.1

The Drude Model generally is used to model the optical properties of metal. In chapter 1, 

it has been explained that metals are a conductive materials such that electrons along the 

crystal can be excited from valence band to conduction band easily with a s

applied to it. The consequence of that property makes metals tend to reflect the light and 

their real part of permittivity is negative. Silver (Ag) is used for metal as the shell in the 

metal-semiconductor nanoparticle. Based on P. Holmstrom, e

permittivity of silver  respect to the frequency 

where: 
=F : the plasma angular frequency
vw!: the collision rate of silver
 
with the parameter values for Ag [3]:

Γw! � 3.00 ∙ 102�/� 

=F � 1.38 ∙ 102|/� 

 

InAs which is used as the core in the nanoparticle is able to compensate 

permittivity of silver in the shell. Its permittivity is modelled by Quantum Dot (QD) 

model whose function has been formulated by P. Holmstrom et al [3]  as it is written in 

equation 2.2a and 2.2b. The parameter A is related to the gain factor of

can be activated by exposing the semiconductor nanoparticles to an external pumping 

light having a frequency inside its absorption band. If the parameter A is positive, it 
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Figure 2.1 Model of the Nanoparticle 

 

The Drude Model generally is used to model the optical properties of metal. In chapter 1, 

it has been explained that metals are a conductive materials such that electrons along the 

crystal can be excited from valence band to conduction band easily with a s

applied to it. The consequence of that property makes metals tend to reflect the light and 

their real part of permittivity is negative. Silver (Ag) is used for metal as the shell in the 

semiconductor nanoparticle. Based on P. Holmstrom, et al [2], the Drude model for 

respect to the frequency  is expressed in equation 2.1. 

	w!(=) � 1 P BQC
BC�DB}~� 

: the plasma angular frequency 
the collision rate of silver 

with the parameter values for Ag [3]: 

InAs which is used as the core in the nanoparticle is able to compensate 

permittivity of silver in the shell. Its permittivity is modelled by Quantum Dot (QD) 

model whose function has been formulated by P. Holmstrom et al [3]  as it is written in 

The parameter A is related to the gain factor of 

can be activated by exposing the semiconductor nanoparticles to an external pumping 

light having a frequency inside its absorption band. If the parameter A is positive, it 

nd Analytical Formula 

The Drude Model generally is used to model the optical properties of metal. In chapter 1, 

it has been explained that metals are a conductive materials such that electrons along the 

crystal can be excited from valence band to conduction band easily with a small energy 

applied to it. The consequence of that property makes metals tend to reflect the light and 

their real part of permittivity is negative. Silver (Ag) is used for metal as the shell in the 

t al [2], the Drude model for 

is expressed in equation 2.1.  

(2.1) 

InAs which is used as the core in the nanoparticle is able to compensate the negative 

permittivity of silver in the shell. Its permittivity is modelled by Quantum Dot (QD) 

model whose function has been formulated by P. Holmstrom et al [3]  as it is written in 

 semiconductor and 

can be activated by exposing the semiconductor nanoparticles to an external pumping 

light having a frequency inside its absorption band. If the parameter A is positive, it 
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indicates a positive gain and the electromagnetic wave passing th

semiconductor is amplified. On the other hand, if the value of A is negative, the 

semiconductor will absorb part of the energy of electromagnetic wave passing inside the 

semiconductor. 

 

	�Iw�

� �
 

where: 

A : the gain factor 

f   : the oscillator strength for the QD interband transition

�� : the carrier of the carrier distribution functions in the QD conduction band

�a : the carrier of the carrier distribution functions in the QD valence band

���: the QD core volume (�
�#: the mass of electron 

=# : the resonance frequency of QD

 

with the parameters values for InAs [3]:

	� � 12.8 

>�� � 1.519 ∙ 1023/� 

=# � 2.279269 ∙ 102�/� 

 
2.2 – Model for the Metamaterial Used in the Numerical Simulations

The designed metamaterial is a composite between the nanoparticles and the dielectric 

host medium. The nanoparticles are placed distributively inside 

that this metamaterial composite attains its objective, i.e. specifically epsilon

(ENZ) material. The nanoparticles with permittivity 

medium with permittivity 

to zero. Figure 2.2 shows the geometry of the model of 

COMSOL Multiphysics which includes two air layers such that metamaterial is 

sandwiched between air layers. 
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f   : the oscillator strength for the QD interband transition 

: the carrier of the carrier distribution functions in the QD conduction band

ier of the carrier distribution functions in the QD valence band
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: the resonance frequency of QD 

with the parameters values for InAs [3]: 

Model for the Metamaterial Used in the Numerical Simulations

The designed metamaterial is a composite between the nanoparticles and the dielectric 

host medium. The nanoparticles are placed distributively inside the 

that this metamaterial composite attains its objective, i.e. specifically epsilon

(ENZ) material. The nanoparticles with permittivity  are distributed inside the host 

medium with permittivity  to reach the average permittivity of the metamaterial close 

to zero. Figure 2.2 shows the geometry of the model of the metamaterial designed in 

COMSOL Multiphysics which includes two air layers such that metamaterial is 

sandwiched between air layers.  

nd Analytical Formula 

indicates a positive gain and the electromagnetic wave passing through the 

semiconductor is amplified. On the other hand, if the value of A is negative, the 

semiconductor will absorb part of the energy of electromagnetic wave passing inside the 

(2.2a) 
(2.2b) 

: the carrier of the carrier distribution functions in the QD conduction band 

ier of the carrier distribution functions in the QD valence band 

Model for the Metamaterial Used in the Numerical Simulations 

The designed metamaterial is a composite between the nanoparticles and the dielectric 

 host medium such 

that this metamaterial composite attains its objective, i.e. specifically epsilon-near-zero 

are distributed inside the host 

ivity of the metamaterial close 

metamaterial designed in 

COMSOL Multiphysics which includes two air layers such that metamaterial is 
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Figure 2.2 The Geometry Model of Metamaterial 

 

2.3 – The Effective Permittivity of Material Composite 

Compound of two or more constituent materials in a composite will respond to an 

electromagnetic field (light) as the average response from a material which is called the 

effective medium and is determined by its elements’ properties. In metamaterials, the 

composite is usually made of dielectric (insulator or semiconductor) and metal. Two most 

famous and widely used methods to obtain the effective medium are the Maxwell Garnett 

Theory (MGT) and the Bruggemann effective medium theory (EMT).  MGT and EMT 

come from the basic principles, but they use different assumptions for the composite 

topology.  

 
Figure 2.3. Electric Field along material’s composite 
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The effective medium theory of a material composite is based on the Lorentz local field 

expression which describes the electromagnetic responses of a material in microscopic 

point of view.  Figure 2.3 shows the Lorentz local field description in the Lorentz space 

and we are interested in studying only the response of the electric field in the dipole of 

small particle.  The dipole is assumed to be a sphere with radius R. There are 3 electric 

field components in the Lorentz space: the external electric field

field  (due to polarization charges P lying at the external surfa

the electric field lying on the Lorentz surface 

Lorentz field   are the summation of those 3 components and the summation of 

 is nothing else but the macroscopic electric field 

written in the following  equations 2.3.

The equation 2.3 can be simplified to become the equation 2.4 which represent the Lorentz 

field in macroscopic point of view. In equation 2.5 and 2.6, it is shown that polarization P 

depends on polarizability of one dipole in molecule 

Lorentz electric field  and and dielectric constant or (relative) permeability 

polarizability  depends on the type of molecule. Then, after combining equation 2.5 

and 2.6, Clausius-Mossotti R

property in microscopic scale, i.e. the polarizability 

material properties in macroscopic scale, i.e. dielectric constant 

�
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The effective medium theory of a material composite is based on the Lorentz local field 

ribes the electromagnetic responses of a material in microscopic 

point of view.  Figure 2.3 shows the Lorentz local field description in the Lorentz space 

and we are interested in studying only the response of the electric field in the dipole of 

icle.  The dipole is assumed to be a sphere with radius R. There are 3 electric 

field components in the Lorentz space: the external electric field , the depolarization 

(due to polarization charges P lying at the external surface on the medium) and 

the electric field lying on the Lorentz surface  (due to the polarization P). The total 

summation of those 3 components and the summation of 

but the macroscopic electric field E. The Lorentz Field relation is 

written in the following  equations 2.3. 

�� � �� + �� + �� 

�� + �� � � 

�� � P �
�K  

�� � �
��K  

The equation 2.3 can be simplified to become the equation 2.4 which represent the Lorentz 

field in macroscopic point of view. In equation 2.5 and 2.6, it is shown that polarization P 

depends on polarizability of one dipole in molecule , the density of the dipoles N, 

and and dielectric constant or (relative) permeability 

depends on the type of molecule. Then, after combining equation 2.5 

Mossotti Relation is obtained to see the relation between the material 

property in microscopic scale, i.e. the polarizability  and the dipoles density N; and the 

material properties in macroscopic scale, i.e. dielectric constant . 

�� � � + �
��K     

� � �G�� � �G �� + �
��K� 

& � ε#χ'$ � ε#(1 P ε)$ 
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nd Analytical Formula 

The effective medium theory of a material composite is based on the Lorentz local field 

ribes the electromagnetic responses of a material in microscopic 

point of view.  Figure 2.3 shows the Lorentz local field description in the Lorentz space 

and we are interested in studying only the response of the electric field in the dipole of 

icle.  The dipole is assumed to be a sphere with radius R. There are 3 electric 

, the depolarization 

ce on the medium) and 

(due to the polarization P). The total 

summation of those 3 components and the summation of  and 

Lorentz Field relation is 

(2.3a) 

(2.3b)  

(2.3c) 

(2.3d) 

The equation 2.3 can be simplified to become the equation 2.4 which represent the Lorentz 

field in macroscopic point of view. In equation 2.5 and 2.6, it is shown that polarization P 

sity of the dipoles N, 

and and dielectric constant or (relative) permeability . The 

depends on the type of molecule. Then, after combining equation 2.5 

elation is obtained to see the relation between the material 

and the dipoles density N; and the 

(2.4) 

(2.5) 
(2.6) 
(2.7a) 
(2.7b) 
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The next step is using the Clausius

it should be assumed that there are two constituent materials forming the composite in 

such a way that the volume ratio between first material with permittivity 

material with permittivity 

called the Maxwell-Garnett Theory (MGT). The molecules of the first material are 

distributed randomly in the composite. So that the material with big volume (the second 

material) behaves as a mediu

the polarizability function in equation 2.7b should be modified into Clausius

relation and polarizability in equations 2.8 and 2.9, respectively. 

 

Figure 2.3 TEM images of typical metal

a) MGT geometry and b) EMT geometry. The bright and the dark 

areas represent the host medium and the nanoparticles, 

respectively. 

 

Equation 2.8 shows the modified Clausius

such that host permittivity 

is not the free space anymore, but it is the host material. Then, 

in equation 2.7b is also modified into equation 2.9. 

includes the filling factor f because the microscopic polarization due to dipole moment 

only happens in the first material. Substituting equation 2.9 into equation 2.8 gives the 

effective permittivity function of material composite which is

the Maxwell Garnett theory (MGT) in equation 2.12.
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Clausius-Mosotti relation for the composite material. First of all, 

it should be assumed that there are two constituent materials forming the composite in 

such a way that the volume ratio between first material with permittivity 

material with permittivity  are small enough (see Figure 2.3a). This assumption is 

Garnett Theory (MGT). The molecules of the first material are 

distributed randomly in the composite. So that the material with big volume (the second 

material) behaves as a medium. Then, the Clausius-Mosotti relation in equation 2.7a and 

the polarizability function in equation 2.7b should be modified into Clausius

relation and polarizability in equations 2.8 and 2.9, respectively.  

TEM images of typical metal-dielectric composites in 

a) MGT geometry and b) EMT geometry. The bright and the dark 

areas represent the host medium and the nanoparticles, 

Equation 2.8 shows the modified Clausius-Mosotti relation for whole composite material 

st permittivity  substitute constant 1 in equation 2.7a, because the medium 

free space anymore, but it is the host material. Then, the polarizability function 

in equation 2.7b is also modified into equation 2.9. The modified polariza

filling factor f because the microscopic polarization due to dipole moment 

only happens in the first material. Substituting equation 2.9 into equation 2.8 gives the 

effective permittivity function of material composite which is also called 

the Maxwell Garnett theory (MGT) in equation 2.12. 

�N
��K�  � ��� 

�R3�  

nd Analytical Formula 

composite material. First of all, 

it should be assumed that there are two constituent materials forming the composite in 

such a way that the volume ratio between first material with permittivity  and second 

are small enough (see Figure 2.3a). This assumption is 

Garnett Theory (MGT). The molecules of the first material are 

distributed randomly in the composite. So that the material with big volume (the second 

Mosotti relation in equation 2.7a and 

the polarizability function in equation 2.7b should be modified into Clausius-Mosotti 

 

dielectric composites in 

a) MGT geometry and b) EMT geometry. The bright and the dark 

areas represent the host medium and the nanoparticles, 

Mosotti relation for whole composite material 

substitute constant 1 in equation 2.7a, because the medium 

polarizability function 

modified polarizability equation 

filling factor f because the microscopic polarization due to dipole moment 

only happens in the first material. Substituting equation 2.9 into equation 2.8 gives the 

also called the formula of 

(2.8) 
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As it is described, MGT is based on assumption that no dipole moment happens in the 

second material, so the second material behaves as a medium. But, this assumption is only 

satisfied when the total volume of the first material is small enough respect to the second 

material and there is no dipole moment due to the interaction between two or more 

nanoparticles, or in the special condition such that there is no dipole moment in the 

second material. If the assumption of MGT cannot be required, the equation 2.11 must be 

modified into equation 2.13. Equation 2.13 uses 

second material behave similarly which have dipole moments each other and the host

medium is the composite. So that the effective permittivity of the composite 

else but the host permittivity 

Bruggemann effective medium theory (EMT) (see Figure 2.3b for a 

composite).  By deriving equation 2.13, the effective permittivity of 

EMT is obtained as written in equation 2.17 and 2.18. It should be noticed that the total 

filling fraction must be equal to 1. The effective m

be applied to composites with more than two constituent materials and their expressions 

are shown in equations 2.19a and 2.19b.
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�¡R3� � 
	 � 	� �¡(2R3�)R3� (2��)

�¡(2��)R� (3R�)    
 

As it is described, MGT is based on assumption that no dipole moment happens in the 

second material, so the second material behaves as a medium. But, this assumption is only 

when the total volume of the first material is small enough respect to the second 

material and there is no dipole moment due to the interaction between two or more 

nanoparticles, or in the special condition such that there is no dipole moment in the 

d material. If the assumption of MGT cannot be required, the equation 2.11 must be 

modified into equation 2.13. Equation 2.13 uses the assumption that both the first and the 

second material behave similarly which have dipole moments each other and the host

medium is the composite. So that the effective permittivity of the composite 

else but the host permittivity . This modified assumption model is called the 

Bruggemann effective medium theory (EMT) (see Figure 2.3b for a sketch of the resulting 

composite).  By deriving equation 2.13, the effective permittivity of the

EMT is obtained as written in equation 2.17 and 2.18. It should be noticed that the total 

filling fraction must be equal to 1. The effective medium equation based on EMT can also 

be applied to composites with more than two constituent materials and their expressions 

are shown in equations 2.19a and 2.19b. 

��� 
�R3�  � �¡N¡

��K�  + �CNC
��K�     

G2 � ��K� �¡
�¡

�¡�� 
�¡R3�  

G3 � ��K� �C
�C

�C�� 
�CR3�  

��� 
�R3�  � �2 �¡�� 

�¡R3�  + �3 �C�� 
�CR3�  

�2 + �3 � 1 
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(2.9a) 

(2.9b) 

(2.10) 
(2.11) 
(2.12) 

As it is described, MGT is based on assumption that no dipole moment happens in the 

second material, so the second material behaves as a medium. But, this assumption is only 

when the total volume of the first material is small enough respect to the second 

material and there is no dipole moment due to the interaction between two or more 

nanoparticles, or in the special condition such that there is no dipole moment in the 

d material. If the assumption of MGT cannot be required, the equation 2.11 must be 

assumption that both the first and the 

second material behave similarly which have dipole moments each other and the host 

medium is the composite. So that the effective permittivity of the composite  is nothing 

. This modified assumption model is called the 

sketch of the resulting 

the medium based on 

EMT is obtained as written in equation 2.17 and 2.18. It should be noticed that the total 

edium equation based on EMT can also 

be applied to composites with more than two constituent materials and their expressions 

(2.13) 

(2.13b) 
(2.13c) 
(2.14) 
(2.15) 
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	 � 	� (2.16) 
�2 �¡��

�¡R3� + �3 �C��
�CR3� � 0 (2.17) 

	 � 2
� ¢(3�2 P 1)	2 + (3�2 P 1)	3 ± £�(3�2 P 1)	2 + (3�3 P 1)	3�3 + 8	2	3¤ (2.18)

  
∑ �D �^��

�^R3� � 0D  (2.19a) 
∑ �DD � 1 (2.19b) 

 

 

2.4 – The Effective Permittivity of the Metal-Semiconductor 
Nanocomposite (the Nanoparticle) 

 

Figure 2.4 Model of the Nanoparticle 

The metal-semiconductor nanoparticle as shown in figure 2.4 is a composite between the 

semiconductor InAs in the core and the metal Ag in the shell. The effective permittivity 

from the Maxwell Garnet Theory (MGT) can be used to obtain its effective permittivity of 

this nanoparticle such that the metal Ag behaves as a host medium. Although the volume 

of InAs can be larger than the volume of the host medium Ag, but the MGT assumption is 

still valid in this case because the metal Ag will not give dipoles moment, since Ag is not a 

separate molecule and always behaves as a medium. Moreover, InAs is not distributed 

inside the medium Ag so there is only one dipole moment. The effective permittivity of 

each metal-semiconductor nanoparticle is written below in the equation 2.20a and 2.20b. 

	IF(�, ¦, =#) � 	w!. �§¨~©(2R3ª)R�~�(2�ª)
�§¨~©(2�ª)R�~�(3Rª)   (2.20a) 
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where: 

ρ : the fraction of the total nanoparticle volume occupied by the core material (InAs QD)

R2: the radius of the core (InAs QD)

R3: the radius of the shell (Ag)

 

2.5 – The Effective Permittivity of the 

of the Nanoparticles and the Dielectric Host Medium)

As it is described, metal-semiconductor nanoparticles, or shortly called the nanoparticles, 

with permittivity  are distributed randomly inside the dielectric host 

permittivity . This composite is later called the metamaterial. When, the filling fraction 

of the nanoparticles f is small enough, t

metamaterial  is obtained based on th

equation 2.21. 

where: 

�IF : the total volume of the nanoparticles

��  : the volume of the host dielectric medium

 

2.6 – The Statistical Approach

The dimensions and parameters of the nanoparticlesdistributed in the host dielectric, i.e.  

the radius of the core R1, the radius of the shell R2, the core volume fraction  

resonance frequency of quantum dot semiconductor 

semiconductor A But in reality it is very difficult to fabricate nanoparticles which are 

distributed inside the host dielectric host medium having the same 

and , A. So that it is important to use the statistical method to study the effects of the 

parameter distributions in the metamaterial property, i.e. the effective permittivity of the 

metamaterial. 
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ρ � ¡®
C® 

: the fraction of the total nanoparticle volume occupied by the core material (InAs QD)

: the radius of the core (InAs QD) 

: the radius of the shell (Ag) 

The Effective Permittivity of the Metamaterial (the Composite 

of the Nanoparticles and the Dielectric Host Medium)

semiconductor nanoparticles, or shortly called the nanoparticles, 

are distributed randomly inside the dielectric host 

. This composite is later called the metamaterial. When, the filling fraction 

of the nanoparticles f is small enough, the expression of the effective permittivity of the 

is obtained based on the Maxwell-Garnett Theory (MGT) as written in 

	T�� � 	� �¨Q(2R3�)R3� (2��)
�¨Q(2��)R� (3R�)  

� � �̈ Q
�̈ QR�   

: the total volume of the nanoparticles 

: the volume of the host dielectric medium 

The Statistical Approach 

The dimensions and parameters of the nanoparticlesdistributed in the host dielectric, i.e.  

the radius of the core R1, the radius of the shell R2, the core volume fraction  

resonance frequency of quantum dot semiconductor , the gain factor of quantum dot 

semiconductor A But in reality it is very difficult to fabricate nanoparticles which are 

distributed inside the host dielectric host medium having the same values of R

, A. So that it is important to use the statistical method to study the effects of the 

parameter distributions in the metamaterial property, i.e. the effective permittivity of the 

nd Analytical Formula 

(2.20b) 

: the fraction of the total nanoparticle volume occupied by the core material (InAs QD) 

Metamaterial (the Composite 

of the Nanoparticles and the Dielectric Host Medium) 

semiconductor nanoparticles, or shortly called the nanoparticles, 

are distributed randomly inside the dielectric host medium with 

. This composite is later called the metamaterial. When, the filling fraction 

he expression of the effective permittivity of the 

Garnett Theory (MGT) as written in 

(2.21a) 

(2.21b) 

The dimensions and parameters of the nanoparticlesdistributed in the host dielectric, i.e.  

the radius of the core R1, the radius of the shell R2, the core volume fraction  , the 

, the gain factor of quantum dot 

semiconductor A But in reality it is very difficult to fabricate nanoparticles which are 

values of R1, R2,  

, A. So that it is important to use the statistical method to study the effects of the 

parameter distributions in the metamaterial property, i.e. the effective permittivity of the 
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There are two parameters which are taken into account their parameter distributions, i.e. 

the core volume fraction 

. We do not consider the parameter distributions of R

parameters have been covered with 

nanoparticles, since it is not so difficult to make uniform doping rate for pumping. 

Gaussian model is used to describe the parameter distributions in the

written in the equation 2.22 where 

the core volume fraction, respectively; 

value of the QD resonance frequecy, respectively

distribution of parameters in the Maxwell Garnett Theory (MGT), the effective 

permittivity of the metamaterial can be obtained as writte

2.23c. 

G(ρ° P
 

± ²ρ° ± ²ω#° ´ �¨Q
�¨Q

 

µB(�, ¦|	� , ω#, ∆ρ, ∆ω
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arameters which are taken into account their parameter distributions, i.e. 

 and the resonance frequency of quantum dot semiconductor 

. We do not consider the parameter distributions of R1 and R

parameters have been covered with  The gain factor A is expected to be thesame for all 

nanoparticles, since it is not so difficult to make uniform doping rate for pumping. 

Gaussian model is used to describe the parameter distributions in the

written in the equation 2.22 where  and  are the mean value and the deviate value of 

the core volume fraction, respectively;  and  are the mean value and the deviate 

value of the QD resonance frequecy, respectively. Then, after inducing the Gaussian 

distribution of parameters in the Maxwell Garnett Theory (MGT), the effective 

permittivity of the metamaterial can be obtained as written in equation 2.23a, 2.23b and 

( P ρ, ω#° P ω#) � 2
¸∆¹∆ºK e�»¼½]¼

∆¼ ¾C
e�´¿K½ ]¿K∆¿ À
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´ ¨Q(B,w,ª½,B°K)�� 
¨Q(B,w,ª½,B°K)R3�  G(ρ° P ρ, ω#° P ω#)À � 2

� » �Sbb�
�SbbR3

ω#) � ± ²ρ° ± ²ω#° ´ �¨Q(B,w,ª½,B°K)�� 
�¨Q(B,w,ª½,B°K)R3�  G(ρ° P ρ, ω
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arameters which are taken into account their parameter distributions, i.e. 

and the resonance frequency of quantum dot semiconductor 

and R2 because those 

The gain factor A is expected to be thesame for all 

nanoparticles, since it is not so difficult to make uniform doping rate for pumping.  

Gaussian model is used to describe the parameter distributions in the nanoparticles as 

are the mean value and the deviate value of 

are the mean value and the deviate 

. Then, after inducing the Gaussian 

distribution of parameters in the Maxwell Garnett Theory (MGT), the effective 

n in equation 2.23a, 2.23b and 
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CHAPTER 3 

THEORETICAL CALCULATION  
IN MATLAB 

 

Theoretical calculation aims to design the nanoparticles composite metamaterial to reach 

Epsilon Near Zero (ENZ) based on the theory. There are two kinds of approaches, i.e. 

nanoparticles with same dimensions and nanoparticles with different dimensions (radius) 

(statistical method). Maxwell Garnett Formula is used to analyze the first approach.  

Maxwell Garnett Formula assumes nanoparticles in random condtions media. Matlab is 

used to perform this theoretical calculation. 

 

3.1–MATLAB Overview [1] 

MATLAB  is a comprehensive program which works with matrix formulation. It 

has several tools for programming, like numerical calculation and programming. 

MATLAB is not only very interactive to the user, but also  the user can find many features 

which are easy to handle and are faster than the other traditional programming like 

Fortran, C or C++. One example of Matlbab’s eminency is the user does not have to define 

variable type. 

MATLAB contains 5 main components, i.e. Desktop Tools and Development 

Enivironment, Mathematical Function Library, the Language, Graphics, and External 

Interfaces. Desktop Tools and Development Environment is like the desktop of operating 

system in personal computer to guide user to start a program or using interface. 

MATLAB’s language is a high level matrix language which controls flow statements, 

functions, data structure, input/output and object oriented programming features. 

Mathematical Function Library consists several mathematical function from elementary 

function like sine and cosine until advanced function like matrix invers, eigenvalues and 

Fast Fourier transform (FFT).  Graphics are useful to perform the vector/matrix array in 

the graphic display, both 2D and 3D, such that the user can set the performance of it as it 

is needed to display. Then, external interfaces can be used to do interaction between 

MATLAB and others programming tools like Fortran, C/C++. 
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Figure 3.1 MATLAB Desktop 

 

3.2–MATLAB Implementation in Calculation of the Metamaterial 

Variables 

There are some fundamental theoretical equations which are used to compute the 

metamaterial properties, as it has been described in Chapter 2, i.e.: 

• The effective permittivity of silver (Ag) by Drude Model 

	w!(=) � 	Â + BQC
BC�DB}~�  (3.1) 

	Â � 1 

Γw! � 3.00 ∙ 102�/� 

=F � 1.38 ∙ 102|/� 

• The effective permittivity of the InAs Quantum Dot: 

	�Iw�(=) � 	� + � BKC
(BC�BKC)�3DE��  (3.2) 

	� � 12.8 
>�� � 1.519 ∙ 1023/� 
=# � 2.279269 ∙ 102�/� 

• The effective permittivity of the metal-semiconductor nanoparticle 

	IF(�, ¦, =#) � 	w!. �§¨~©(2R3ª)R�~�(2�ª)
�§¨~©(2�ª)R�~�(3Rª)  (3.3a) 

ρ � ¡®
C® (3.3b)   

 

• The effective permittivity of the metamaterial 

	T�� � 	� �¨Q(2R3�)R3� (2��)
�¨Q(2��)R� (3R�)  (3.4a) 

� � �̈ Q
�̈ QR�  (3.4b) 
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3.2.1–MATLAB Computation Results 

• Permittivity of Ag (by Drude Model) 
The computational result of permittivity 

 

    
Figure 3.2 Computation Result for the Permittivity of Silver in Several Range of Wavelength 

    
• Permittivity of InAs (by Quantum Dot Model) 

The result: 
A � 3.203320623998E-03 (gain factor) 

    
Figure 3.3 Computation Result for the Permittivity of InAs in Several Range of Wavelength 

    
    

0 100 200 300 400 500 600 700 800 900
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

X: 827.1
Y: -4.744

λ [nm]

ε Ag

X: 827.2
Y: -35.05

700 720 740 760 780 800 820 840 860 880 900

12

12.5

13

13.5

14

X: 826.2
Y: 13.94

λ [nm]

R
e(

ε Q
D

)

X: 827.4
Y: 11.62

700 720 740 760 780 800 820 840 860 880 900
0

0.5

1

1.5

2 X: 826.9
Y: 2.362

λ [nm]

Im
( ε

Q
D

)



 

  

 

• Permittivity of the Metal

 � 0.498272867240438 (filling fraction)

The result: 
 

Figure 3.4 Computation Result for the Permittivity of the Metal
nanoparticles in Several Range of Wavelength
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Permittivity of the Metal-Semiconductor Nanoparticle (Ag-InAs) 

0.498272867240438 (filling fraction)  

Computation Result for the Permittivity of the Metal
nanoparticles in Several Range of Wavelength 
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Computation Result for the Permittivity of the Metal-semiconductor 
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• Permittivity of the Metamaterial (the Composite of Nanoparticles and Host 

Dielectrics) by Fixed Methods 

	� � 2.2022 (the host dielectric constant) 

f = 0.02 (the filling fraction) 

 

The result: 

    
    

    
Figure 3.5 Computation Result for the Permittivity of the Metamaterial Permittivity and Its 
Modulus in Several Range of Wavelength by Fixed Methods 
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• Permittivity of the Metamaterial (the Composite of Nanoparticles and Host 
Dielectrics) by Fixed Methods
	� � 2.2022 (the host dielectric constant)

f = 0.02 (the filling fraction)

Figure 3.6a Computation Result for the Permittivity of the Metamaterial Permittivity and 

Its Modulus in Several Range of Wavelength by Statistical Methods when 

 
 
 
 

Figure 3.6b Computation Result for the Permittivity of the Metamaterial Permittivity and

Modulus in Several Range of Wavelength by Statistical Methods when 
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Metamaterial (the Composite of Nanoparticles and Host 
Dielectrics) by Fixed Methods 

(the host dielectric constant) 

f = 0.02 (the filling fraction) 

Computation Result for the Permittivity of the Metamaterial Permittivity and 

Its Modulus in Several Range of Wavelength by Statistical Methods when 

Computation Result for the Permittivity of the Metamaterial Permittivity and

Modulus in Several Range of Wavelength by Statistical Methods when 
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Metamaterial (the Composite of Nanoparticles and Host 

 
Computation Result for the Permittivity of the Metamaterial Permittivity and 

Its Modulus in Several Range of Wavelength by Statistical Methods when  
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Figure 3.6b Computation Result for the Permittivity of the Metamaterial Permittivity and Its 

Modulus in Several Range of Wavelength by Statistical Methods when     
    
    
3.2.2 - Numerical Computation of in MATLAB to Obtain ENZ Metamaterial by 

Fixed Method and by Statistical Method

To reach the metamaterial with epsilon

metamaterial have to be set such that 

becomes zero or relatively close to zero. The independent variables of the metamaterial 

which determines the effective permittivity are InAs’ gain factor (A), the filling factor of 

the nanoparticle ( ), the filling factor of the metamaterial (f) and the wavelength 

it is seen in Figure 3.5 and 3.6 , there exists dispersion of the effective permittivity respect 

to the wavelength and it is impossible to get epsilon

we have to determine in which specific wavelength we want to get epsilon

MATLAB is able to make numerical computation to determine those independent 

variables based to get the goal, i.e. epsilon 

of MATLAB numerical computation to obtain the optimal value of 

fixed method and by statistical method are shown in table 5.1 and table 5.2.
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Computation Result for the Permittivity of the Metamaterial Permittivity and Its 

Modulus in Several Range of Wavelength by Statistical Methods when 

Numerical Computation of in MATLAB to Obtain ENZ Metamaterial by 
Fixed Method and by Statistical Method 

To reach the metamaterial with epsilon-near-zero (ENZ), the independent variables of the 

metamaterial have to be set such that the effective permittivity of the metamaterial 

becomes zero or relatively close to zero. The independent variables of the metamaterial 

which determines the effective permittivity are InAs’ gain factor (A), the filling factor of 

), the filling factor of the metamaterial (f) and the wavelength 

it is seen in Figure 3.5 and 3.6 , there exists dispersion of the effective permittivity respect 

to the wavelength and it is impossible to get epsilon-near-zero for all wa

we have to determine in which specific wavelength we want to get epsilon

MATLAB is able to make numerical computation to determine those independent 

variables based to get the goal, i.e. epsilon -near-zero, as seen in the appen

of MATLAB numerical computation to obtain the optimal value of 

fixed method and by statistical method are shown in table 5.1 and table 5.2.
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Computation Result for the Permittivity of the Metamaterial Permittivity and Its 

 

Numerical Computation of in MATLAB to Obtain ENZ Metamaterial by 

zero (ENZ), the independent variables of the 

the effective permittivity of the metamaterial 

becomes zero or relatively close to zero. The independent variables of the metamaterial 

which determines the effective permittivity are InAs’ gain factor (A), the filling factor of 

), the filling factor of the metamaterial (f) and the wavelength  . As 

it is seen in Figure 3.5 and 3.6 , there exists dispersion of the effective permittivity respect 

zero for all wavelength. So that 

we have to determine in which specific wavelength we want to get epsilon-near-zero. 

MATLAB is able to make numerical computation to determine those independent 

zero, as seen in the appendix. The results 

 A,R1 and R2 by 

fixed method and by statistical method are shown in table 5.1 and table 5.2. 
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Table 5.1The optimal Parameters to Reach ENZ in 827 nm by fixed 

Filling 

Fraction (F) 
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Table 5.1The optimal Parameters to Reach ENZ in 827 nm by statistical method (
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The optimal Parameters to Reach ENZ in 827 nm by fixed 

 A R1 [nm] 

0.4983 3.203E-03 5 

0.5010 3.175E-03 5 

0.5037 3.149E-03 5 

0.5063 3.123E-03 5 

0.5087 3.098E-03 5 

0.5112 3.075E-03 5 

0.5135 3.052E-03 5 

0.5157 3.030E-03 5 

0.5179 3.009E-03 5 

 

 

The optimal Parameters to Reach ENZ in 827 nm by statistical method (

 A R1 [nm] 

0.5010 3.175E-03 5 

0.5092 3.262E-03 5 

0.523 2.262E-03 5 

http://www.mathworks.com 
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The optimal Parameters to Reach ENZ in 827 nm by fixed method 

R2 [nm] 

6.306876 

6.295296 

6.284194 

6.273537 

6.263302 

6.253461 

6.243992 

6.234878 

6.226095 

The optimal Parameters to Reach ENZ in 827 nm by statistical method (  

R2 [nm] 

6.295296 

6.261435 

6.205871 



 

 

CHAPTER 4 

COMSOL SIMULATION 

 

 

4.1 – Introduction of COMSOL Multiphysics 

COMSOL Multiphysics is a solver to simulate physical models based on partial 

differential equation (PDE) by Finite Element Method (FEM). One of its excellences is it 

can solve any physical problems in the same time for 1 dimension until 3 dimensions 

geometry with Cartesian or spherical coordinate. The physical systems handled by 

COMSOL Multiphysics is ranging from electrics, acoustics, structural mechanics, heat 

transfer, MEMS, RF until chemical engineering and earth science. Because of its user 

friendly  with CAD application, COMSOL Multiphysics becomes popular to be used by 

engineering, scientist and students for academic or industrial purposes[1].  

In this chapter, the physical model of COMSOL Multiphysics which is used is only the 

electromagnetic waves interface (EWI), since the optical system of the metamaterial has 

been covered by this model. By the electromagnetic model which is encountered in 

COMSOL, simulation process can be done. Simulation is the important and the effective 

way to study the microscopic electromagnetic response. It is very difficult, not to say 

impossible, doing microscopic electromagnetic study by analytical calculation because it 

has complicated boundary value problems. It is expected that simulation in specific model 

(geometry and physical system) which represents the real condition is able to analyze the 

inhomogeinity of the metamaterial in this research, i.e. the composite of the dielectric and 

the metal-semiconductor nanocomposite.  

 

 

 

 

 



 

  

 

4.2 – Electromagnetic Waves Interface (EWI) Model in COMSOL 

Multiphysics 

Electromagnetic waves interface model aims to solve the electric field problem for time 

harmonic domain in the linear medium. The studies (simulations) which are able to be 

done by this model are frequency domain, eigenfrequency, mode analysis and boundary

mode analysis. The frequency domain study is used to find the solution in single input 

frequency or multiple input frequencies. The eigenfrequency study is able to get the 

resonance frequency and its eigenmodes in cavity problems. The mode analysis is capable 

to find allowed propagating modes and its transmission line for 2D cross

waveguides. Then, boundary mode analysis is applied to study the boundaries 

representing waveguide ports and only the electric field variant of the time harmonic 

equation can to be solved. To make simulation for our metamaterial model, the frequency 

domain study is selected be

metamaterial in different frequencies of electromagnetic waves (light).

The Maxwell Equationsare the core of the EWI model to solve the electric field 

governing Maxwell equation w

written in equation 4.1. 

 

Å Æ (


where: 


 : the relative permeability

	 : the relative permittivity 

Ç: the conductivity 

È: the frequency of electromagnetic wave [Hz]

É: the speed of light in air/vacuum

 

For nonmagnetic and linear materials with 

index of material,  equation 4.1a can be written in equation 4.2.
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Electromagnetic Waves Interface (EWI) Model in COMSOL 

 

Electromagnetic waves interface model aims to solve the electric field problem for time 

linear medium. The studies (simulations) which are able to be 

done by this model are frequency domain, eigenfrequency, mode analysis and boundary

mode analysis. The frequency domain study is used to find the solution in single input 

nput frequencies. The eigenfrequency study is able to get the 

resonance frequency and its eigenmodes in cavity problems. The mode analysis is capable 

to find allowed propagating modes and its transmission line for 2D cross

ndary mode analysis is applied to study the boundaries 

representing waveguide ports and only the electric field variant of the time harmonic 

equation can to be solved. To make simulation for our metamaterial model, the frequency 

domain study is selected because we want to analyze the electromagnetic response of the 

metamaterial in different frequencies of electromagnetic waves (light). 

The Maxwell Equationsare the core of the EWI model to solve the electric field 

governing Maxwell equation which is used for the time-harmonic and eigenfrequency is 

(
�2Å Æ �) P Ê#3 �	 P DË
B�� � � � 

Ê# � =£	#
# � B
�K 

É � 3 ∙ 10� �/� 

= � 26È   

: the relative permeability 

 

: the frequency of electromagnetic wave [Hz] 

: the speed of light in air/vacuum 

For nonmagnetic and linear materials with 
 � 1 and 	 � �3 where  n is the refractive 

index of material,  equation 4.1a can be written in equation 4.2. 

Å Æ (Å Æ �) P Ê#3�3� � 0 
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Electromagnetic Waves Interface (EWI) Model in COMSOL 

Electromagnetic waves interface model aims to solve the electric field problem for time 

linear medium. The studies (simulations) which are able to be 

done by this model are frequency domain, eigenfrequency, mode analysis and boundary-

mode analysis. The frequency domain study is used to find the solution in single input 

nput frequencies. The eigenfrequency study is able to get the 

resonance frequency and its eigenmodes in cavity problems. The mode analysis is capable 

to find allowed propagating modes and its transmission line for 2D cross-sections in 

ndary mode analysis is applied to study the boundaries 

representing waveguide ports and only the electric field variant of the time harmonic 

equation can to be solved. To make simulation for our metamaterial model, the frequency 

cause we want to analyze the electromagnetic response of the 

 

The Maxwell Equationsare the core of the EWI model to solve the electric field The 

harmonic and eigenfrequency is 

(4.1a) 

(4.1b) 

(4.1c) 

(4.1d) 

where  n is the refractive 

(4.2) 
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4.3 – Modelling and Simulation of the Metamaterial in COMSOL 

Multiphysics 

4.3.1–Geometry of the Metamaterial 

The geometry model in COMSOL simulation aims to model the real condition of the 

metamaterial properties (alloy of the dielectric and the metal-semiconductor 

nanocomposites) and its interaction with electromagnetic waves. It divides into three 

layers, i.e. two air layers for the incident wave and for the transmitted wave; and the 

metamaterial layer. The metamaterial layer is sandwiched between two air layers such 

that there are numbers of metal-semiconductor nanocomposites (the nanoparticles) 

distributed in order inside host dielectric material. The dimension of nanoparticles are 

fixed and uniform for all. Figure 4.1 shows the description of model geometry for 4 

nanoparticles. 

 

Figure 4.1 Geometry Model of the Metamaterial 

 

4.3.2–The Model of Materials 

The model of Materials which are used in COMSOL simulation are exactly similar with 

materials model in analytical calculation, i.e. Drude Model for silver, Quantum Dot (QD) 

model for semiconductor InAs. These models determined directly their permittivity. The 

permittivity of host dielectric (PMMA) is constant. Figure 4.2, 4.3, 4.4 and 4.5 shows the 



Chapter  4-COMSOL Simulation 

 

  
36 

 

  

material’s  of air, the host dielectric, the metal (silver) and the semiconductor, respectively 

in geometry model.  

In Electromagnetic Waves Interface (EWI) Model, 3 material contents (properties), i.e. 

electric conductivity, relative permittivity and relative permeability, should be filled 

completely to solve the Maxwell Equation written in equation 4.1a. COMSOL 

Multiphysics has included these contents immediately when the built-in materials (the 

materials which has been defined in COMSOL material’s library) are selected. The users 

can also define their material and properties by themselves. 

The material’s model of air which is shown in Figure 4.2 is applied for air layer. Its 

material contents are taken from built-in materials in COMSOL material’s library with 

electric conductivity, relative permeability and relative permittivity are equal to 0, 1 and 1. 

It means that the air layers are completely transparent media to transfer 

light/electromagnetic wave. 

 

Figure 4.2 Material’s Model of Air 

 

The material’s model of the host dielectric which is shown in Figure 4.3 is applied its 

geometry in the metamaterial  layer. As explained before, the metamaterial layer has two 

component, i.e. the host dielectric and the nanoparticles; and every nanoparticle contains 

two element, i.e.  the semiconductor (InAs) in the core and the metal (Ag) in the shell.  

Material contents of the host dielectric medium (PMMA) are defined with electric 

conductivity, relative permeability and relative permittivity are equal to 0, ep_h and 1.  

ep_h is set to be constant with value 2.2022. 

 



 

  

 

Figure 4.3 

The material contents of silver (Ag) for every nanoparticle in metamaterial  layer are 

defined with electric conductivity, relative perm

equal to 0, ep_Ag (or, 

respect to the frequency of electromagnetic wave and is expressed by Drude Model as 

written in equation 4.3. 

 

 

Figure 4.4 
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Figure 4.3 Material’s Model of the Host Dielectric 

 

The material contents of silver (Ag) for every nanoparticle in metamaterial  layer are 

defined with electric conductivity, relative permeability and relative permittivity are 

 ) and 1. Permittivity of silver, , has dispersion relation 

respect to the frequency of electromagnetic wave and is expressed by Drude Model as 

	w!(=) � 	∞ + BQC
BC�DB}~�  

	∞ � 1 

Γw! � 3.00 ∙ 102�/� 

=F � 1.38 ∙ 102|/� 

Figure 4.4 Material’s Model of the Silver by Drude Model
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The material contents of silver (Ag) for every nanoparticle in metamaterial  layer are 

eability and relative permittivity are 

has dispersion relation 

respect to the frequency of electromagnetic wave and is expressed by Drude Model as 

(4.3) 

 

Material’s Model of the Silver by Drude Model 

Hyunwoong1
Cross-Out
0.3



 

  

 

 The model of the semiconductor (InAs) in this metal

nanopartcle) is expressed by Quantum Dot model. Its material contents are defined with 

electric conductivity, relative permeability and relative permittivity are equal to

(or,  ) and 1. Permittivity of  InAs which is modeled by Quantum Dot, 

dispersion relation respect to the frequency of electromagnetic wave as written in 

equation 4.4. 

	�Iw�
	� � 12.8 

>�� � 1.519 ∙ 10
=# � 2.279269
A: the gain factor, which is selected by analytical calculation in Chapter 2 

 

Figure 4.5 Material’s Model of InAs by Quantum Dot Model

 

  

4.3.3–Boundary Conditions

4.3.3.1 – Scattering Boundary 

Scattering boundary conditions are used to model the condition of electric field from the 

incident (incoming) light and the scattered (outgoing) light. Scattering BC assumes the 

boundaries are transparent medium for scattered wave and incoming p

normal to the boundary. The scattered plane wave of electric field 

expressed in equation 4.3. 

� �
�#    : the incident plane wave which travels in the direction 

���    : the scattered (outgoing) wave
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The model of the semiconductor (InAs) in this metal-semiconductor nanocomposite (the 

nanopartcle) is expressed by Quantum Dot model. Its material contents are defined with 

electric conductivity, relative permeability and relative permittivity are equal to

) and 1. Permittivity of  InAs which is modeled by Quantum Dot, 

dispersion relation respect to the frequency of electromagnetic wave as written in 

�Iw�(=) � 	� + � BKC
(BC�BKC)�3DE��  

1023/� 

279269 ∙ 102�/� 

A: the gain factor, which is selected by analytical calculation in Chapter 2 

Material’s Model of InAs by Quantum Dot Model

Boundary Conditions 

Scattering Boundary Conditions 

Scattering boundary conditions are used to model the condition of electric field from the 

incident (incoming) light and the scattered (outgoing) light. Scattering BC assumes the 

boundaries are transparent medium for scattered wave and incoming p

normal to the boundary. The scattered plane wave of electric field E 

 

� ���M�ÌÍ(Î∙Ï) + �#M�ÌÍ(Í∙Ï)                   
the incident plane wave which travels in the direction k 

the scattered (outgoing) wave 
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semiconductor nanocomposite (the 

nanopartcle) is expressed by Quantum Dot model. Its material contents are defined with 

electric conductivity, relative permeability and relative permittivity are equal to 0, ep_QD 

) and 1. Permittivity of  InAs which is modeled by Quantum Dot, , has 

dispersion relation respect to the frequency of electromagnetic wave as written in 

(4.4) 

A: the gain factor, which is selected by analytical calculation in Chapter 2  

 

Material’s Model of InAs by Quantum Dot Model 

Scattering boundary conditions are used to model the condition of electric field from the 

incident (incoming) light and the scattered (outgoing) light. Scattering BC assumes the 

boundaries are transparent medium for scattered wave and incoming plane wave that are 

E in scattering BC is 

(4.5) 



 

  

 

 

There are 2 scattering boundary conditions applied in geometry model, i.e for incoming 

light and for outgoing light, as shown in figure  4.6. Both scattering

of incoming light and outgoing light are placed in the air layer. The type of 

electromagnetic wave is transverse magnetic (TM) with incident angle equal to 

that the electric field is parallel to the plane of incident. The plane of incident is formed by 

x- and z- axis, so that the electric field 

whole domain) is always parallel with x

scattering BC and the transmitted electric field 

1ÊÐ  �/� and � �/�, respectively.

 

Figure 4.6 

 

4.3.3.2 – Periodic Boundary Conditions

Periodic boundary conditions are used in the boundary of metamaterial layer and air 

layers in x and y axis. It means that there are infinite air and metamaterial layers in 

Cartesian space, which means there are many nanoparticles inside host dielectric medium 

sandwiched by air layers. The thickness of metamaterial in z

between two air layer’s boundary) is fixed and does not change. Figure 4.7 shows the 

periodic boundary conditions which are applied in x axis and y axis.
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There are 2 scattering boundary conditions applied in geometry model, i.e for incoming 

light and for outgoing light, as shown in figure  4.6. Both scattering boundary conditions 

of incoming light and outgoing light are placed in the air layer. The type of 

electromagnetic wave is transverse magnetic (TM) with incident angle equal to 

that the electric field is parallel to the plane of incident. The plane of incident is formed by 

axis, so that the electric field E in scattering boundary conditions (and also in 

whole domain) is always parallel with x-axis. The incident electric field 

scattering BC and the transmitted electric field �Ñ in the second scattering BC are  

, respectively. 

Figure 4.6 Scattering Boundary Conditions 

Periodic Boundary Conditions 

ary conditions are used in the boundary of metamaterial layer and air 

layers in x and y axis. It means that there are infinite air and metamaterial layers in 

Cartesian space, which means there are many nanoparticles inside host dielectric medium 

by air layers. The thickness of metamaterial in z-axis (or, the distance 

between two air layer’s boundary) is fixed and does not change. Figure 4.7 shows the 

periodic boundary conditions which are applied in x axis and y axis. 

COMSOL Simulation 

There are 2 scattering boundary conditions applied in geometry model, i.e for incoming 

boundary conditions 

of incoming light and outgoing light are placed in the air layer. The type of 

electromagnetic wave is transverse magnetic (TM) with incident angle equal to 0Ò such 

that the electric field is parallel to the plane of incident. The plane of incident is formed by 

in scattering boundary conditions (and also in 

ectric field �Ó in the first 

in the second scattering BC are  

 

ary conditions are used in the boundary of metamaterial layer and air 

layers in x and y axis. It means that there are infinite air and metamaterial layers in 

Cartesian space, which means there are many nanoparticles inside host dielectric medium 

axis (or, the distance 

between two air layer’s boundary) is fixed and does not change. Figure 4.7 shows the 
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Figure 4.7 Periodic Boundary Conditions 

 

4.3.4–Meshing the Geometry Model 

The model of the metamaterial in COMSOL Multiphysics use tretrahedral meshes, as 

shown in Picture 4.8. The size of meshes for the nanoparticles and the dielectric host 

medium are smaller than the size of meshes for air layers. It is done like that because the 

differential of physical variables respect to the space domain in the metamaterial layer 

(the nanoparticles and the dielectric host medium) are larger than the differential of 

physical variables in the air layers. COMSOL Multiphysics can set the size of meshes 

automatically and adapt with contours  and interfaces. 

 

Figure 4.8 Meshing of Geometry Models 



 

  

 

4.3.5–Simulation Study

The simulation of the metamaterial study is done for several wavelengths of 

electromagnetic waves in frequency domain. COMSOL Multiphysics is able to perform 

parametric sweep for every variable. In our study, we make sweep of wavelength (which 

is related to the frequency), then the simulation gives solutions of electric field 

every electromagnetic wavelength (frequency)in all space domains. But, the solution only 

can be found in every mesh, not in every point of domain, because the model use

Element with discretization of increment. The solution of the electric field 

can be represented in many forms, like modulus (norm), complex value, etc.  Figure 4.9 

shows the solution of electric field norm in space domain for specif

wavelength (frequency) obtained by simulation in COMSOL Multiphysics.

 

Figure 4.9 
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Simulation Study 

The simulation of the metamaterial study is done for several wavelengths of 

electromagnetic waves in frequency domain. COMSOL Multiphysics is able to perform 

parametric sweep for every variable. In our study, we make sweep of wavelength (which 

o the frequency), then the simulation gives solutions of electric field 

every electromagnetic wavelength (frequency)in all space domains. But, the solution only 

can be found in every mesh, not in every point of domain, because the model use

Element with discretization of increment. The solution of the electric field 

can be represented in many forms, like modulus (norm), complex value, etc.  Figure 4.9 

shows the solution of electric field norm in space domain for specif

wavelength (frequency) obtained by simulation in COMSOL Multiphysics.

Figure 4.9 Electric Field Norm Solution in Space Domain

 

COMSOL Simulation 

The simulation of the metamaterial study is done for several wavelengths of 

electromagnetic waves in frequency domain. COMSOL Multiphysics is able to perform 

parametric sweep for every variable. In our study, we make sweep of wavelength (which 

o the frequency), then the simulation gives solutions of electric field for 

every electromagnetic wavelength (frequency)in all space domains. But, the solution only 

can be found in every mesh, not in every point of domain, because the model uses Finite 

Element with discretization of increment. The solution of the electric field Ein every mesh 

can be represented in many forms, like modulus (norm), complex value, etc.  Figure 4.9 

shows the solution of electric field norm in space domain for specific electromagnetic 

wavelength (frequency) obtained by simulation in COMSOL Multiphysics. 

 

Electric Field Norm Solution in Space Domain 



 

  

 

4.4 – Processing the Simulation Data

4.4.1–Point Probe 

The point probe is taken in the second air layer w

propagates (Figure 4.10). COMSOL Multiphysics can give the electric field solution there 

respect to the parametric sweep of electromagnetic wavelengths. The electric field result 

in point probe will be processed (in MATLAB) 

metamaterial model. The point probe position and its probing result are shown in Figure 

4.10 and 4.11, respectively. 

 

Figure 4.10 

Figure 4.11 
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Processing the Simulation Data 

The point probe is taken in the second air layer where the transmitted wavelength 

propagates (Figure 4.10). COMSOL Multiphysics can give the electric field solution there 

respect to the parametric sweep of electromagnetic wavelengths. The electric field result 

in point probe will be processed (in MATLAB) to get the average permittivity of the 

metamaterial model. The point probe position and its probing result are shown in Figure 

 

 
Figure 4.10 The point probe in the second air layer 

 

 

Figure 4.11 The electric field magnitude in the point probe
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λ [nm]
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here the transmitted wavelength 

propagates (Figure 4.10). COMSOL Multiphysics can give the electric field solution there 

respect to the parametric sweep of electromagnetic wavelengths. The electric field result 

to get the average permittivity of the 

metamaterial model. The point probe position and its probing result are shown in Figure 

 

 
in the point probe 



 

  

 

4.4.2–Retrivial Lambda

The retrivial lambda in this research is a process to obtain permittivity of the metamaterial 

from the available information (the variable) in the simulation result, i.e. the electric field 

E. This process should be done because the Electromagnetic Waves Interface (EWI) model 

in COMSOL Multiphysics cannot give the permittivity value directly. Figure 4.12 shows 

the scheme of the vector field (electric field 

before, the simulation uses TM mode with  incident angle equal to 

field always parallel to that plane of incident in all layers.

  
 

Figure 4.12 
 
   
Based on Smith, et.al [1], the transm

face of one-dimensional (1

and permeability is expressed in equation 4.4.

 

Z
 
In our geometry, the transmission coefficient is the ratio between ‘the magnitude’ of 

transmitted  electric field 

incident electric field  at z<0. After some algebraic manipul

electric fields in 2 points (

as shown in equation 4.7 and 4.8. Although the simulation does not make homogenization 

in metamaterial layer such th

electromagnetic wave, the nanoparticles and the host dielectric , but the transmitted 
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Retrivial Lambda 

The retrivial lambda in this research is a process to obtain permittivity of the metamaterial 

from the available information (the variable) in the simulation result, i.e. the electric field 

be done because the Electromagnetic Waves Interface (EWI) model 

in COMSOL Multiphysics cannot give the permittivity value directly. Figure 4.12 shows 

the scheme of the vector field (electric field Eand wave vector k) in 2 air layers. As written 

simulation uses TM mode with  incident angle equal to 

field always parallel to that plane of incident in all layers. 

Figure 4.12 The scheme of vector of  fields in all domains

Based on Smith, et.al [1], the transmission coefficient for waves incident normally to the 

dimensional (1-D) slab of continuous material (in vacuum/air) with length 

is expressed in equation 4.4. 

� 2
ÒÔ(IÕÖ)R ^

C�IR¡
¨�Ô×Ø (IÕÖ) MDÕÖ  

In our geometry, the transmission coefficient is the ratio between ‘the magnitude’ of 

transmitted  electric field  at z>d (and also in point probe) and ‘the magnitude’ of 

at z<0. After some algebraic manipulations, the relation between 

 and ) and permittivity of metamaterial n can be obtained 

as shown in equation 4.7 and 4.8. Although the simulation does not make homogenization 

in metamaterial layer such that there are many complicated interactions between 

electromagnetic wave, the nanoparticles and the host dielectric , but the transmitted 

COMSOL Simulation 

The retrivial lambda in this research is a process to obtain permittivity of the metamaterial 

from the available information (the variable) in the simulation result, i.e. the electric field 

be done because the Electromagnetic Waves Interface (EWI) model 

in COMSOL Multiphysics cannot give the permittivity value directly. Figure 4.12 shows 

) in 2 air layers. As written 

 so that the electric 

The scheme of vector of  fields in all domains 

ission coefficient for waves incident normally to the 

D) slab of continuous material (in vacuum/air) with length d 

(4.4) 

In our geometry, the transmission coefficient is the ratio between ‘the magnitude’ of 

at z>d (and also in point probe) and ‘the magnitude’ of 

ations, the relation between 

) and permittivity of metamaterial n can be obtained 

as shown in equation 4.7 and 4.8. Although the simulation does not make homogenization 

at there are many complicated interactions between 

electromagnetic wave, the nanoparticles and the host dielectric , but the transmitted 
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electric field in the second air layer (z>d) is expected to become the average response of 

metamaterial.  

 

Z � \`
\^ (4.5) 
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The retrivial process can be obtained by numerical calculation in MATLAB to get the 

average permittivity of the metamaterial for each frequency/wavelength. The code can be 

seen in the attachment. 

 
4.5–Simulation of Geometry Model Variations and Their 

Permittivity Results 

Simulation is done by changing the configuration of geometry model of the metamaterial. 

The metal-semiconductor nanocomposites (the nanoparticles) are designed with fixed 

dimension and are distributed in order inside the host dielectric medium with several 

distribution patterns of the nanoparticles inside the host medium. The simulation aims to 

see the permittivity of the metamaterial for each geometry structure when it interacts with 

polarized EM waves (TM waves) then to compare its permittivity with analytical result. 

 

4.5.1– Simulation of 1 Cell with 4 Nanoparticles 

4.5.1.1-Regular Distribution 

In this model, 4 nanoparticles are placed regularly along z-axis in one cell which is 

duplicated periodically along x-axis and y-axis, and the distance is kept in such a way so 

that they will not cross each other. The filling fraction of the total volume of the 

nanoparticles respect to the total volume of the metamaterial is fixed to be 0.03 . Based on 

the theoretical calculation in Chapter 3, the to reach epsilon-near-zero (ENZ) at the 



 

  

 

wavelength 827.00 nm, the core radius 

nm; with the gain of Quantum Dot A is 

To make the filling fraction become 0.03 in the COMSOL geometry model, the dimension 

of metamaterial layer’s domain Lx, Ly, Lz(=

respectively. The distance between the outer boundaries of the nanoparticles are uniform, 

i.e. 12.7 nm (or, 18.99 nm from their centre points). Measured from the outer boundaries 

the outermost nanoparticles, their distances with air layers are 12 nm and 13 nm in lo

part and in upper part, respectively. This geometry model can be seen in Figure 4.13.

 

Figure 4.13 The geometry of 4 nanoparticles model in regular distribution 

The simulation is done in frequency domain of TM mode (p

incident waves in which the polarization electric field 

domains. The result that we want to obtain is the effective permittivity of

metamaterial as the function of the electromagnetic wavelength. As known, 

electromagnetic wavelength 

frequency . The wavelength of incident light ranging from 826.970 nm to 8
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wavelength 827.00 nm, the core radius R2 and the shell radius R3 should be 5 nm and 6.29 

nm; with the gain of Quantum Dot A is 3.175 ∙ 10��.  

To make the filling fraction become 0.03 in the COMSOL geometry model, the dimension 

of metamaterial layer’s domain Lx, Ly, Lz(=d) are fixed in 35 nm, 35 nm and 113.8 nm, 

ely. The distance between the outer boundaries of the nanoparticles are uniform, 

i.e. 12.7 nm (or, 18.99 nm from their centre points). Measured from the outer boundaries 

the outermost nanoparticles, their distances with air layers are 12 nm and 13 nm in lo

part and in upper part, respectively. This geometry model can be seen in Figure 4.13.

 

The geometry of 4 nanoparticles model in regular distribution 

 

The simulation is done in frequency domain of TM mode (p-polarization) electromagnetic 

incident waves in which the polarization electric field E is always parallel to x

domains. The result that we want to obtain is the effective permittivity of

metamaterial as the function of the electromagnetic wavelength. As known, 

electromagnetic wavelength  is same as the light speed in vacuum 

. The wavelength of incident light ranging from 826.970 nm to 8

E

COMSOL Simulation 

should be 5 nm and 6.29 

To make the filling fraction become 0.03 in the COMSOL geometry model, the dimension 

) are fixed in 35 nm, 35 nm and 113.8 nm, 

ely. The distance between the outer boundaries of the nanoparticles are uniform, 

i.e. 12.7 nm (or, 18.99 nm from their centre points). Measured from the outer boundaries 

the outermost nanoparticles, their distances with air layers are 12 nm and 13 nm in lower 

part and in upper part, respectively. This geometry model can be seen in Figure 4.13. 

The geometry of 4 nanoparticles model in regular distribution  

polarization) electromagnetic 

is always parallel to x-axis in all 

domains. The result that we want to obtain is the effective permittivity of the 

metamaterial as the function of the electromagnetic wavelength. As known, 

is same as the light speed in vacuum c divided with 

. The wavelength of incident light ranging from 826.970 nm to 827.010 nm. 
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Figure 4.14 The simulation result of 4 nanoparticles model in regular distribution  

 

Figure 4.14 shows the comparisons between the permittivity of the metamaterial obtained 

by COMSOL simulation in the regular distribution and obtained by theoretical calculation 

in MATLAB, for several range of wavelengths. The COMSOL simulation reaches the 

epsilon-near-zero (ENZ) close to the expected frequency which has been calculated by the 

theoretical calculation in MATLAB. But, the simulation has resonance from 826.985 nm 

until 826.995 such that the permittivity due to the surface Plasmon polariton excitation, or 

we can call that resonance as the plasmonic resonance (it will be discussed in the next 

Chapter). . The results obtained by the theoretical calculation in MATLAB do not have 

plasmonic resonances because the nanoparticles are distributed randomly in the host 

dielectric medium. 

In the next simulations, we will make variations of the nanoparticles positions in the cell 

to see if the plasmonic resonance position and its pick point will move or not The 

variation of the nanoparticles configuration in the geometry model is important, because 

we want  to make simulations whose results are close to the theoretical expectations. But, 

COMSOL Multiphysics cannot make the random distribution like in the theoretical model 

or assumption. Then, if we find a geometrical model configuration whose simulation 

result show plasmonic resonance is small enough, we can use that geometrical model 

configuration as an ideal geometry model that represents a random distribution of the 

nanoparticles in the host dielectric medium. Moreover, the variation of the geometry 

model configuration is useful to see how the plasmonic resonance behaves respect to 

nanoparticles positions and light polarizations. 

 

 



 

  

 

4.5.1.2-Variation 4.1.I 

In this variation, 4 nanoparticles which were placed re

cell, are modified. 2 nanoparticles in the middle are moved away from each other along z

axis, as shown in Figure 4.15. The movement is done for every 1 nm, so that for every one 

movement, the distance between 2 nanopar

fraction of the total volume of the nanoparticles respect to the total volume of the 

metamaterial is still 0.03, and the dimension of the nanoparticles are 

. These dimensions ar

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar wit

lower part and in upper part, respectively. 

 

Figure 4.15
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In this variation, 4 nanoparticles which were placed regularly along z-axis in one periodic 

cell, are modified. 2 nanoparticles in the middle are moved away from each other along z

axis, as shown in Figure 4.15. The movement is done for every 1 nm, so that for every one 

movement, the distance between 2 nanoparticles in the middle turn into 2 nm. The filling 

fraction of the total volume of the nanoparticles respect to the total volume of the 

metamaterial is still 0.03, and the dimension of the nanoparticles are 

. These dimensions are uniform for all nanoparticles.  

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=d) are 35 nm, 35 nm and 113.8 

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 

lower part and in upper part, respectively.  

 

Figure 4.15The geometry of variation 4.1.I 
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axis, as shown in Figure 4.15. The movement is done for every 1 nm, so that for every one 
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) are 35 nm, 35 nm and 113.8 
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Figure 4.16The Permittivity Graphics of Variation 4-1-A for saveral movements 
 

 

Figure 4.16 is the simulation results of variation 4.1.I  for movement of  nanoparticles in 

the middle every 1 nm. They show that the plasmonic resonance become smaller at the 

first time when  we move away the nanoparticlese in the middle, but the plasmonic 

resonance become larger anymore when we move more. In this variation the wavelebgth 

of the plasmonic peak resonance shift to the left side (blue shift) when the nanoparticles 

movement is larger, 



 

  

 

4.5.1.3 Variation 4.1.II 

In this variation, 4 nanoparticles which were placed regularly along z

cell, are modified. 2 nanopart

shown in Figure 4.17 The movement is done for every 1 nm, so that for every one 

movement, the distance between 2 nanoparticles in the middle turn into 1 nm. The filling 

fraction of the total volume o

metamaterial is still 0.03, and the dimension of the nanoparticles are 

. These dimensions are uniform for all nanoparticles. 

The dimension of metamaterial layer’s domain 

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 

lower part and in upper part, respe

 

Figure 4.17
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In this variation, 4 nanoparticles which were placed regularly along z-axis in one periodic 

cell, are modified. 2 nanoparticles in the middle approach each other along z

shown in Figure 4.17 The movement is done for every 1 nm, so that for every one 

movement, the distance between 2 nanoparticles in the middle turn into 1 nm. The filling 

fraction of the total volume of the nanoparticles respect to the total volume of the 

metamaterial is still 0.03, and the dimension of the nanoparticles are 

. These dimensions are uniform for all nanoparticles.  

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=d) are 35 nm, 35 nm and 113.8 

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 

lower part and in upper part, respectively.  

 

Figure 4.17The geometry of variation 4.1.II 
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icles in the middle approach each other along z-axis, as 

shown in Figure 4.17 The movement is done for every 1 nm, so that for every one 

movement, the distance between 2 nanoparticles in the middle turn into 1 nm. The filling 

f the nanoparticles respect to the total volume of the 

metamaterial is still 0.03, and the dimension of the nanoparticles are  and  

) are 35 nm, 35 nm and 113.8 

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 
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Figure 4.18The Permittivity Graphics of Variation 4.1.II for saveral movements  

 

Figure 4.18 is the simulation results of variation 4.1.II  for movement of  nanoparticles in 

the middle every 1 nm. They show that the plasmonic resonance becomes smaller very 

fast, faster than something happens in the variation 4.1.I. Although the plasmonic 

resonance decreases quite fast when the movements are done more, but thedifferences 

between the permittivity obtained by simulation and the permittivity obtained by the 

theoretical calculation becomes larger. In this variation the wavelength of the plasmonic 

peak resonance shift to the left side (blue shift) when the nanoparticles movement is 

larger. 



 

  

 

4.5.1.4 Variation 4.1.III-x 

In this variation, 4 nanoparticles which were placed regularly along z

cell, are modified. 2 nanoparticles in the middle move in x

shown in Figure 4.19 The movement is done for every 1 nm. The filling fraction of the 

total volume of the nanoparticles respect to the total volume of the metamaterial is still 

0.03, and the dimension of the nanoparticles are 

dimensions are uniform for all nanoparticles. 

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 

lower part and in upper part, respectively. 

Figure 4.19
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In this variation, 4 nanoparticles which were placed regularly along z-axis in one periodic 

cell, are modified. 2 nanoparticles in the middle move in x-axis with the same directio

shown in Figure 4.19 The movement is done for every 1 nm. The filling fraction of the 

total volume of the nanoparticles respect to the total volume of the metamaterial is still 

0.03, and the dimension of the nanoparticles are  and  

dimensions are uniform for all nanoparticles.  

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=d) are 35 nm, 35 nm and 113.8 

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

ayers are still similar with the regular form, i.e. 12 nm and 13 nm in 

lower part and in upper part, respectively.  

 

 

Figure 4.19The geometry of variation 4.1.III-x 
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shown in Figure 4.19 The movement is done for every 1 nm. The filling fraction of the 

total volume of the nanoparticles respect to the total volume of the metamaterial is still 

. These 

) are 35 nm, 35 nm and 113.8 

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

ayers are still similar with the regular form, i.e. 12 nm and 13 nm in 
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Figure 4.20The Permittivity Graphics of Variation 4.1.III-x for saveral movements  

 

Figure 4.20 is the simulation results of variation 4.1.III-x  for movement of  nanoparticles 

in the middle every 1 nm. They show that the plasmonic resonance pattern is not 

predictable we move the nanoparticlese in the middle, and some movements in this 

variation there are more than one plasmonic resonance. In this variation, we cannot 

determine precisely the shifting pattern of the plasmonic peak resonance respect to the 

movement of 2 nanoparticles in the middle. 



 

  

 

4.5.1.5 Variation 4.1.III-y 

In this variation, 4 nanoparticles which were placed regularly along z

cell, are modified. 2 nanoparticles in the middle move in y

shown in Figure 4.21. The movement is done for every 1 nm. The filling fraction of the 

total volume of the nanoparticles respect to the total volume of the metamaterial is still 

0.03, and the dimension of the nanoparticles are 

dimensions are uniform for all nanoparticles. 

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 

lower part and in upper part, respectively. 

Figure 4.22 is the simulation results of variation 4.1.III

in the middle every 1 nm. They show that the plasmonic resonance decreases quite fast 

when the nanoparticles in the middleare moved in y

 

Figure 4.21
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In this variation, 4 nanoparticles which were placed regularly along z-axis in one periodic 

cell, are modified. 2 nanoparticles in the middle move in y-axis with the same direction, as 

ure 4.21. The movement is done for every 1 nm. The filling fraction of the 

total volume of the nanoparticles respect to the total volume of the metamaterial is still 

0.03, and the dimension of the nanoparticles are  and  

dimensions are uniform for all nanoparticles.  

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=d) are 35 nm, 35 nm and 113.8 

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 

lower part and in upper part, respectively.  

ure 4.22 is the simulation results of variation 4.1.III-y  for movement of  nanoparticles 

in the middle every 1 nm. They show that the plasmonic resonance decreases quite fast 

when the nanoparticles in the middleare moved in y-direction.. 

 

 

Figure 4.21The geometry of variation 4.1.III-y 
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) are 35 nm, 35 nm and 113.8 

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 

y  for movement of  nanoparticles 

in the middle every 1 nm. They show that the plasmonic resonance decreases quite fast 
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Figure 4.22The Permittivity Graphics of Variation 4.1.III-y for saveral movements  

 

 

 

 

 

 



 

  

 

4.5.1.6 Variation 4.1.IV-x 

In this variation, 4 nanoparticles which were placed regularly along z

cell, are modified. 2 nanoparticles in the middle move in x

shown in Figure 4.23. The movement is done for every 1 nm. The filling fraction of the 

total volume of the nanoparticles respect to the total volume of the metamaterial is st

0.03, and the dimension of the nanoparticles are 

dimensions are uniform for all nanoparticles. 

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=

nm, respectively. Measured from

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 

lower part and in upper part, respectively.

 

Figure 4.23
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In this variation, 4 nanoparticles which were placed regularly along z-axis in one periodic 

odified. 2 nanoparticles in the middle move in x-axis with opposite direction, as 

shown in Figure 4.23. The movement is done for every 1 nm. The filling fraction of the 

total volume of the nanoparticles respect to the total volume of the metamaterial is st

0.03, and the dimension of the nanoparticles are  and  

dimensions are uniform for all nanoparticles.  

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=d) are 35 nm, 35 nm and 113.8 

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 

lower part and in upper part, respectively. 

 

Figure 4.23The geometry of variation 4.1.IV-x 
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shown in Figure 4.23. The movement is done for every 1 nm. The filling fraction of the 

total volume of the nanoparticles respect to the total volume of the metamaterial is still 
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) are 35 nm, 35 nm and 113.8 

the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 
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Figure 4.24The Permittivity Graphics of Variation 4.1.IV-x for saveral movements  

 

Figure 4.24 is the simulation results of variation 4.1.IV-x  for movement of  nanoparticles 

in the middle every 1 nm. They show that the plasmonic resonance pattern is not 

predictable we move the nanoparticlese in the middle, and some movements in this 

variation there are more than one plasmonic resonance. In this variation, we cannot 

determine precisely the shifting pattern of the plasmonic peak resonance respect to the 

movement of 2 nanoparticles in the middle. 



 

  

 

 

4.5.1.7 Variation 4.1.IV-y 

In this variation, 4 nanoparticles which were placed regularly along z

cell, are modified. 2 nanoparticles in the middle move in y

shown in Figure 4.25. The movement is done for every 1 nm. The filling fraction of the 

total volume of the nanoparticles respect to the total volume of the metamaterial is still 

0.03, and the dimension of the nanoparticles are 

dimensions are uniform for all nanoparticles. 

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still simi

lower part and in upper part, respectively. 

Figure 4.26 is the simulation results of variation 4.1.IV

in the middle every 1 nm. They show that the plasmonic resonance dec

when the nanoparticles in the middleare moved in y

 

Figure 4.25
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In this variation, 4 nanoparticles which were placed regularly along z-axis in one periodic 

cell, are modified. 2 nanoparticles in the middle move in y-axis with opposite direction, as 

4.25. The movement is done for every 1 nm. The filling fraction of the 

total volume of the nanoparticles respect to the total volume of the metamaterial is still 

0.03, and the dimension of the nanoparticles are  and  

ions are uniform for all nanoparticles.  

The dimension of metamaterial layer’s domain Lx, Ly, Lz(=d) are 35 nm, 35 nm and 113.8 

nm, respectively. Measured from the outer boundaries the outermost nanoparticles, their 

distances with air layers are still similar with the regular form, i.e. 12 nm and 13 nm in 

lower part and in upper part, respectively.  

Figure 4.26 is the simulation results of variation 4.1.IV-y  for movement of  nanoparticles 

in the middle every 1 nm. They show that the plasmonic resonance dec

when the nanoparticles in the middleare moved in y-direction.. 

 

Figure 4.25The geometry of variation 4.1.IV-y 
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Figure 4.26The Permittivity Graphics of Variation 4-1-D2 for saveral movements 
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4.5.2 – Simulation of 4 Cells with 16 Nanoparticles 

4.5.2.1 Variation 4.4.I 

This variation is an integration between the variation 4.1.I and 4.1.II in 4 cells. In Figure 

4.27 we can see that the variation 4.1.I is applied in the first and the third cell, and the 

variation 4.1.II is applied in the second and the fourth cell. The light polarization is 

parallel to x-axis. The idea is to see if this configuration model can approach the 

homogeneity assumed in the theoretical MGT model, so that the plasmonic resonance can 

be reduced.  

Figure 4.28 shows how the variation 4.4.I can reduce the plasmonic resonance in a good 

way, although when we move the nanoparticles too far, the plasmonic resonance is 

generated again and cannot be predicted. 

 

 

 
Figure 4.27The geometry of variation 4-4-I 
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           Move = 1nm               Move = 2nm 

 

           Move = 3nm               Move = 4 nm 

 
Figure 4.28The Permittivity Graphics of Variation 4.4.I for saveral movements 

 

 

 

4.5.2.2 Variation 4.4.II 

This variation is a modification between the variation 4.1.III-x and 4.1.IV-x. The light 

polarization comes is parallel to x-axis. In Figure 4.29 we can see that the variation 4.1.III-x 

is applied in the first and the third cell, and the variation 4.1.IV-x is applied in the second 

and the fourth cell. The light polarization is parallel to x-axis. The idea is to see if this 

configuration model can approach the homogeneity assumed in the theoretical MGT 

model, so that the plasmonic resonance can be reduced.  

Figure 4.30 shows how the variation 4.4.II generates more plasmonic resonances, instead 

reduces it. It can be concluded that this variation is not suitable to approach the 

randomness of the Maxwell Garnett Theory (MGT) assumption 
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Figure 4.29The geometry of variation 4.4.II 

 

 

     Move = 1nm                      Move = 2nm 

 
Figure 4.30 The geometry of variation 4.4.II 
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CHAPTER 5 

DISCUSSION OF RESULT 
 

. 

5.1 – The Aims of Simulations 

The simulation in COMSOL Multiphysics aims to study the electromagnetic responses of 

the metamaterial when it interacts with electromagnetic waves and to induce its material 

properties (i.e. the permittivity). It is almost impossible to simulate the model of the 

metamaterial in COMSOL as done in  the analytical/theoretical model (the real geometry 

and particles distribution), because there are many limitations of COMSOL, like available 

features and capacity of memory. As  written in the previous chapter, COMSOL can only 

model the simplified geometry of the metamaterial with certain boundary conditions. 

Still, those COMSOL models are expected to be represented the analytical model. 

To study the reliability of the COMSOL model (geometry and boundary conditions), the 

analytical model and its computational result are treated as a reference for simulations. 

Some steps have to be done. First, geometry models in COMSOL moreless represent the 

geometry model of the analytical model (based on the Maxwell Garnett Theory). Second, 

boundary conditions  of geometry models in COMSOL must be made in such a way that 

they approximate the conditions in analytical model. Then, the result obtained from 

analytical calculation and the results obtained from simulation must be compared. 

Comparing the analytical results and the simulation results is very important in this 

research. Beside to study the reliability of COMSOL model, it can also evaluate the 

analytical model, i.e. how it works in specific case or conditions. The analytical model of 

the metamaterial in this research uses the Maxwell Garnett Theory (MGT) with some 

assumption, i.e. a lot of nanoparticles are distributed randomly inside the dielectric host 

medium, no interaction happens between one nanoparticle and the other nanoparticle(s) 

when the metamaterial responses electromagnetic waves (the interaction only occurs 

between nanoparticle and the host dielectric medium), and the filling fraction is quite 

small. Although COMSOL simulation can fix the filling fraction, but it is difficult to 

distribute nanoparticles in completely random situation and to neglect the interaction 
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between a nanoparticle to the other nanoparticles. Indeed, those limitations in COMSOL 

simulation can be treated as special case and maybe there are some phenomena in 

COMSOL simulation which are not covered by the analytical model. 

To make reach the goals,  several simulations have been done, i.e.: 

1. Study the plasmonic resonance behavior in regular distribution of nanoparticles in 

the box of dielectric host medium. It is done by changing number of nanoparticles in 

the box, but keeping the filling fraction.  

2. Choose one study case in point 1, then make variation of nanoparticles distribution 

systematically by changing the distances between nanoparticles in x direction, y 

direction, z direction and combination of them. Beside studying their plasmonic  

behavior, these simulations are useful to find in which distributions the average 

respons of the metamaterial approximates the Maxwell Garnett Theory (MGT) 

assumption.   

Thoses simulation studies have been done in the Chapter 4. In this Chapter we will 

analyze the simulation results obtained in the previous Chapter and induce some 

conclusions. 

  

 

5.2 – The Microscopic Responses  

Comparing the simulation results and theoretical calculations is the important things to 

study the responses of the metamaterial in microscopic scale. As explained before, 

analytical calculation use the Maxwell Garnett Theory (MGT) as the basis in which it 

assumes that the nanoparticles are distributed totally random inside the dielectric host 

medium, so there is no any fields generated due to the interaction between them. But, the 

comparison results (Chapter 4) shows that there are differences between the theoretical 

results and the simulation result, as can be seen again in the Figure 5.1 and 5.2  
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Figure 5.1 Geometry Model of COMSOL Simulation in Regular Distribution 

 

 

Figure 5.2 The comparison between theoretical and simulation results 
of the dispersion relation of the permittivity 

 

The comparison results between theoretical calculation and simulation in regular 

distribution shows the similarity between them. The real part and the imaginary part of 

permittivity obtained by simulation behaves like the permittivity obtained by analytical 

calculation. But, it exists big resonance of imaginary when electromagnetic wave with 
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lambda=826.987 is applied due to the surface Plasmon phenomena, which is called 

surface Plasmon polariton (SPP) excitation. 

Starting from the comparison in the regular distribution, we will see how the SPP 

excitation behave in each simulation of geometry model/comparison, then find in which 

distributions the average respons of the metamaterial approximates the Maxwell Garnett 

Theory (MGT) assumption. But, firstly it is important to see the explanations of the 

microscopic effects occurring in the metamaterial. 

 

5.2.1-The Near Field Effect 

The near field effect is the outer electric fields which interact and make dipole moment 

with microscopic nanoparticle. This near effect field is not considered by Clausius-Mosotti 

relation model which is derived to be the MGT formula. MGT formula is used as the basis 

of analytical method to calculate the effective permittivity of the metamaterial for every 

light frequency/wavelength. Instead using MGT formula, COMSOL Multiphysics 

compute the electromagnetic response in every mesh point of geometry model, so that the 

near field effect will be considered and gives different result respect to the analytical 

calculation.  

The dipole moment due to near field can be caused by the interaction between two or 

more nanoparticles in the medium that can be described by using the electric field in slab. 

When the assumption of the Maxwell Garnett Theory (MGT) is used, only one particle 

determines the dipole moment and polarization in microscopic scale. 

�� � �� + �� + �� + �ITÛÜ (5.1a) 

�� + �� � � (5.1b)  

�� � P �
�K  (5.1c) 

�� � �
��K  (5.1d) 

 

But, because there are more than 1 nanoparticle (x nanoparticles) interact in the slab 

(when �ÎÝÞÏ is applied) equation 2.4 should be modified into equation…. 

�� + �ÎÝÞÏ � ß�� �  ß �
��K (5.2) 
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�� � � + ß �
��K     (5.3) 

� � �G�� � �G �� + ß ∙ �
��K� (5.4) 

& � ε#χ'$ � ε#(1 P ε)$ (5.5) 
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��2
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Then, using modified Clausius-Mosotti relation and polarizability for whole composite 

material with permittivity 	�  
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�
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à�R(��à)�  (5.10) 

��� 
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à�¡R(��à)� � (5.11) 

	 � 	� �¡(àR(��à)�)R(��à)� (2��)
à�¡(2��)R� ((��à)Rà�)    (5.12) 

 

The numbers of interacted nanoparticles contribute the deviation of the effective 

permittivity of the metamaterial. But, it is difficult to specify how many particles 

interacted inside the dielectric medium by analytical approach, because until now it has 

not been founded the method to do it. The only way is just comparing the simulation 

result with the analytical/theoretical calculation result such that same parameters have to 

be fixed, i.e. the dimension of nanoparticles R1 and R2, the filling fraction f. 

 

5.2.2-The Surface Plasmon Polariton (SPP) Excitation, or the 

Plasmonic Effect 

The resonance of permittivity result obtained by COMSOL simulation in several 

wavelength range is caused by Surface Plasmon Polariton (SPP), or the plasmonic effect. The 

plasmonic effect in the microscopic unit structure of our metamaterial model can induce 



 

  

 

the near effect field when the distances between two or more than nanoparticles are small 

enough so that the evanescent wave generated by SPP in one nanoparti

interact with another evanescent waves in other nanoparticles. Then, as explained before, 

those interactions will change the macroscopic electromagnetic response of the 

metamaterial in some range of the wavelength.

 

5.2.2.1 – The Description of the Surface Plasmon Polaritons (SPP)

Plasmon is a quasi particle (plasma) generated from oscillation of collective electrons 

density in metal. The relationship between ‘plasmon and electron oscillation’ is analogue 

with the  relationship between ‘photons and electromagnetic radiation’, or ‘phonons with 

crystal vibration’. Although Plasmon is a kind of plasma, but the equations of the wave 

vectors and propagation constants associated with SPPs can be derived from Maxwell’s 

equation [2].  

When collective electron density oscillations are coupled with external electromagnetic 

waves (photons) in the surface between metal and dielectric, it gives the special type of 

Plasmon, which is called Surface Plasmon (SPs).  Surface Plasmon Polaritons (SPPs) 

common to call it, since polariton in general means a quasi

particles,  like ‘photon-phonon coupling’ or ‘photon

in ‘Surface Plasmons (SPs)’ aims to state that ‘plasmons in the surface

dielectric’ are caused by the coupling between ‘photons and oscillations of the electrons’.

By definition, SPPs are propagating solutions of Maxwell’s equations at the interface between a 

dielectric and a metal, which are bound to that i

between electromagnetic waves and the oscillations of free electrons at the metal interface 

and have an evanescent response into the metal and the dielectric [4]. The physics of SPP 

can be treated as the part of 

metal nanoparticles inside host dielectric medium, localized SPR (LSPR) can occur as a 

microscopic phenomena of the unit structure [3].

The wave vectors of SP is always mismatch with the wave vector of

couple, because SP’s mode is confined is evanescent. The dispersion relation between SP’s 

wave vector and the wave vector of its electromagnetic couple in absence of incident field 

is expressed in equation 5.13.  

wave. As mentioned, SP mode is evanescent, so that it will disappear very fast due to the 

loses which is related with its imaginary part with the propagation length (equation 5.14). 
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is expressed in equation 5.13.   and   express the propagation and the loss of SP  

wave. As mentioned, SP mode is evanescent, so that it will disappear very fast due to the 

loses which is related with its imaginary part with the propagation length (equation 5.14). 
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plasma behaviour based on Drude Model in metal [2]. In 

metal nanoparticles inside host dielectric medium, localized SPR (LSPR) can occur as a 

 its electromagnetic 

couple, because SP’s mode is confined is evanescent. The dispersion relation between SP’s 

wave vector and the wave vector of its electromagnetic couple in absence of incident field 

express the propagation and the loss of SP  

wave. As mentioned, SP mode is evanescent, so that it will disappear very fast due to the 

loses which is related with its imaginary part with the propagation length (equation 5.14). 



 

  

 

The dispersion relation between SP propagation respect to the electromagnetic waves 

varying with dielectric permittivity can be seen in Figure 5.3.

 : the wave vector of SP

: the permittivity of dielectric

: the permittivity of metal, which is expressed by Drude Model

 : the wave vector of electromagnetic wave in vacuum

Figure 5.3 Surface Plasmon Dispersion Relationship for Different Dielectric Permittivities 

 

5.2.2.2 – The Localized Surface Plasmon Resonance (LSPR)

The Local Surface Plasmon Resnonace (LSPR) is important to be studied in our 

metamaterial simulation, because the plasmonic resonance which have been seen in the 

last chapter is changed when the mutual distances of the nano

on researches of C. Noguez [4] and E. Hutter et al [5], LSPR exist due to the interaction 

between metal-nanoparticles and the external electric field 

induced electric field 

evanescent wave (SPR) and can influence the wave propagation inside the host dielectric. 
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Surface Plasmon Resonance (LSPR) 

The Local Surface Plasmon Resnonace (LSPR) is important to be studied in our 

metamaterial simulation, because the plasmonic resonance which have been seen in the 

last chapter is changed when the mutual distances of the nanoparticles are moved. Based 

on researches of C. Noguez [4] and E. Hutter et al [5], LSPR exist due to the interaction 

nanoparticles and the external electric field  which generates the 

 (Figure 5.4). The induced electric field 

evanescent wave (SPR) and can influence the wave propagation inside the host dielectric. 
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on between SP propagation respect to the electromagnetic waves 

(5.13) 

(5.14) 

 

Surface Plasmon Dispersion Relationship for Different Dielectric Permittivities [2] 

The Local Surface Plasmon Resnonace (LSPR) is important to be studied in our 

metamaterial simulation, because the plasmonic resonance which have been seen in the 

particles are moved. Based 

on researches of C. Noguez [4] and E. Hutter et al [5], LSPR exist due to the interaction 

which generates the 

 is generated by 

evanescent wave (SPR) and can influence the wave propagation inside the host dielectric. 
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They study how the electromagnetic interaction between the nanoparticles and substrate 

(the host dielectric medium) which generates induced electric field depends on the 

separation between the nanoparticles. The results of their studies show that when the 

nanoparticles are larger, the plasmonic peak resonance becomes larger, and vice versa. 

This result is satisfied when the separation movement is parallel or perpendicular to the 

light polarization (see Figure 5.5) 

 
It should be noticed that our metamaterial model is a little bit different with respect to 

these LSPR experiments. In these experiments, the distances of the nanoparticles are still 

uniform for all when the separation movement is done. On the other hand, the distances 

of the nanoparticles in our simulation (in all variations) are not uniform when the 

separation movement is done such that some nanoparticles become closer and the others 

become more far. But, these experiments is still useful to state that the plasmonic 

resonances in our metamaterial simulations are dominantly caused by the Localized 

Surface Plasmon Resonance (LSPR). 

 
Figure 5.4 .(a and b) Electromagnetic Interaction between the nanoparticles and substrate as a 
function of the separation, modelled using the image method induced local field for an applied 

field (c) normal and (d) parallel to the interface[4] 
 

 

Figure 5.5 extinction spectra (1/T) of gold NPs (d=150nm) obtained by experimental result at 
several frequencies with  (a)parallel and (b)orthogonal polarization of light excitation [5] 
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CONCLUSION 
 

 

 

Based on the studies and the results obtained in the previous chapters, we can conclude 

some important points below: 

1. The simulation results of the developed metamaterial model is capable to verify the 

epsilon near zero condition when the metamaterial interacts with the electromagnetic 

wave whose wavelength is close to the wavelength obtained by the theoretical 

calculation. 

2. Plasmonic resonances occur in the simulation because  the full electromagnetic model 

employed in the Comsol Multiphysics program enabled us to verify the existence of 

Localized Surface Plasmon Resonances (LSPR) occurring between neighbouring 

nanoparticles. The plasmonic resonances do not occur in the theoretical calculation 

because the used Maxwell Garnett Theory assumes that the nanoparticles are totally 

random distributed inside the host dielectric medium and the surface plasmon 

excitation is not included. 

3. Moreover the full electromagnetic analysis developed in this thesis predicts that a 

change in the mutual position of the nanoparticles in the model results in a change of 

the plasmonic resonance behaviour. For our simulation with p-polarized (TM) 

incident wave such that the electric field vector is always parallel to the x-axis in all 

domains, moving particles in the y-direction is the most effective way to neglect the 

interaction between nanoparticles, comparing with moving particles in the x-direction 

or z-direction. 

In conclusion both the developed theoretical and simulation calculations allow to 

determine the physical conditions to fabricate nanoparticles in a core/shell geometry in 

which a semiconductor (core) is surrounded by a thin metal shell. We demonstrated that 

the epsilon-near-zero condition is completely fulfilled when the induced gain in the 

semiconductor by external electromagnetic pumping beam (with a photon energy greater 

than the semiconductor gap) compensates the metal absorption effects.   
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Future studies: 

We foresee that the developed models can be used in future studies to design more simple 

geometries in which, for example, single metal nanoparticles with diameters close to 1-2 

nanometer, are uniformly distributed in a host that contains specific dyes. In this case the 

dye is externally pumped to produce the gain that allows to compensate the metal 

absorption. In this example the  theoretical and simulation models will make use of the 

Bruggemann Effective Medium Theory.  

Other investigations will concern the study of the plasmonic interactions deeply in the 

geometry of the metamaterial. Finally, it will be possible to study the nonlinear properties 

of metamaterials in the epsilon near zero conditions. 



 

 

APPENDIX: MATLAB® CODE 
 

Permittivity of Ag Computation (by Modified Drude Model): 

clear function  
clear all  
close all  
 
%Setting parameter  
F   = 0.02  
rho = 0.498272867240438  
A   = 3.203320623998E-03  
 
%% 
%Permittivity of Silver (Drude Model)  
eb=1;  
wp=13.8*10^15;  
g=3*10^14;  
c=3*10^8;  
con=2*pi*c;  
 
wa=(0:0.1:900);  
w=con./(wa*1E-9)  
 
e_ag=eb-((wp.^2)./(w.^2 - w*g*i));  
e1_ag=real(e_ag);  
e2_ag=imag(e_ag);  
 
figure(1)  
subplot (2,1,1)  
plot(wa,e1_ag)  
axis([min(wa)-0.001,max(wa)+0.001,min(e1_ag)-0.001, max(e1_ag)+0.001])  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( 'Re(\epsilon_A_g)' , 'fontsize' ,12)  
 
subplot (2,1,2)  
plot(wa,e2_ag)  
axis([min(wa)-0.001,max(wa)+0.001,min(e2_ag)-0.001, max(e2_ag)+0.001])  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( 'Im(\epsilon_A_g)' , 'fontsize' ,12)  
 
figure(2)  
plot(wa,e1_ag,wa,e2_ag)  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( '\epsilon_A_g' , 'fontsize' ,12)  
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Permittivity of InAs Computation (by Quantum Dot Model) 

%Quantum Dot  
eb=12.8;  
w0=2.279269*10^15;  
g=1.519*10^12;  
A=3.203320623998E-03; 
 
e_QD = eb + ((A*w0^2)./((w.^2-w0^2)-2*w*g*i));  
e1_QD = real(e_QD)  
e2_QD = imag(e_QD)  
n_QD = sqrt(e_QD);  
 
 
figure(1)  
subplot (2,1,1)  
plot(wa,e1_QD)  
axis([min(wa)-0.001,max(wa)+0.001,min(e1_QD)-0.001, max(e1_QD)+0.001])  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( 'Re(\epsilon_Q_D)' , 'fontsize' ,12)  
 
subplot (2,1,2)  
plot(wa,e2_QD)  
axis([min(wa)-0.001,max(wa)+0.001,min(e2_QD)-0.001, max(e2_QD)+0.001])  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( 'Im(\epsilon_Q_D)' , 'fontsize' ,12)  
 
figure(2)  
plot(wa,e1_QD,wa,e2_QD)  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( '\epsilon_Q_D' , 'fontsize' ,12)  
 

Permittivity of the Metal-Semiconductor Nanoparticle Computation (Ag-InAs) 

%Metal-Semiconductor Nanoparticle (AgInAs)  
r=rho;  
 
e_1=e_QD;  
e_2=e_ag;  
e_c = (e_2.*(e_1*(1+2*r)+2*e_2*(1-r)))./(e_1*(1-r)+ e_2*(2+r));  
e1_c=real(e_c);  
e2_c=imag(e_c);  
 
n_c = sqrt(e_c);  
 
figure(1)  
subplot (2,1,1)  
plot(wa,e1_c)  
axis([min(wa)-0.001,max(wa)+0.001,min(e1_c)-0.001,m ax(e1_c)+0.001])  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
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ylabel( 'Re(\epsilon_n_p)' , 'fontsize' ,12)  
 
subplot (2,1,2)  
plot(wa,e2_c)  
axis([min(wa)-0.001,max(wa)+0.001,min(e2_c)-0.001,m ax(e2_c)+0.001])  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( 'Im(\epsilon_n_p)' , 'fontsize' ,12)  
 
figure(2)  
plot(wa,e1_c,wa,e2_c)  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( '\epsilon_n_c' , 'fontsize' ,12) 
 
 

Permittivity of the Metamaterial Computation (the Composite of Nanoparticles and 
Host Dielectrics) 

f=F;  
e_mg = (e_h.*(e_c*(1+2*f)+2*e_h*(1-f)))./(e_c*(1-f) +e_h*(2+f));  
e1_mg = real(e_mg)  
e2_mg = imag(e_mg)  
n_mg = sqrt(e_mg);  
 
ep_mod = sqrt(e1_mg.^2+e2_mg.^2);  
 
figure(1)  
subplot (2,1,1)  
plot(wa,e1_mg)  
axis([min(wa)-0.001,max(wa)+0.001,min(e1_mg)-0.001, max(e1_mg)+0.001])  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( 'Re(\epsilon_e_f_f)' , 'fontsize' ,12)  
 
subplot (2,1,2)  
plot(wa,e2_c)  
axis([min(wa)-0.001,max(wa)+0.001,min(e2_mg)-0.001, max(e2_mg)+0.001])  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( 'Im(\epsilon_e_f_f)' , 'fontsize' ,12)  
 
figure(2)  
plot(wa,e1_mg,wa,e2_mg)  
set(gca, 'fontsize' ,8)  
% set(gca,'YTick',-0.30:0.05:0.60)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( '\epsilon_e_f_f' , 'fontsize' ,12)  
 
figure (3)  
plot(wa,ep_mod)  
hold, plot(827.000,0.01, '*' )  
axis([min(wa)-0.001,max(wa)+0.001, 0, max(ep_mod)+0 .001])  
set(gca, 'fontsize' ,8)  



  

 

% set(gca,'YTick',0:0.05:max(ep_mod))
grid on 
xlabel( '\ lambda [nm]'
ylabel( 'abs(\ epsilon)'

 

Numerical Computation of in MATLAB to Get Corresponding Variables (A and 

ENZ Metamaterial by Fixed Method

function  res=tailoring;

close all  
clear all  
clc  
format long  
 
wav=827;                
om=(2*pi*3e+8)/(wav*1e
 
epAg=EpAg(om);  
epb=12.8;  
 
 
eph=2.2022;  
 
ep=0.01;  
 
rho=(4:0.001:6)*1E -
A=(3:0.0001:3.3)*1E

 
F=0.03;     %fill the filling fraction

 
 
Q0=eph*(1+(2/F)*((ep
eph)/(ep+2*eph)));  
 
 
 
for  jr=1:length(rho)
    jr  
for  jA=1:length(A)  
        epQD=epb+A(jA)*Lor(om);
        Q(jr,jA)=epAg*(epQD*(1+2*rho(jr))+2*epAg*(1
rho(jr)))/(epQD*(1 -
end  
end  
 
 
 
MQ=abs(Q-Q0).^2;  
[jr jA]=find(eq(MQ,min(min(MQ))));

 
 
 
figure( 'Position' ,[100 100 1000 700])  
%http://www.mathworks.com/help/techdoc/ref/figure_p rops.html
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set(gca,'YTick',0:0.05:max(ep_mod))  

lambda [nm]' , 'fontsize' ,12)  
epsilon)' , 'fontsize' ,12)  

Numerical Computation of in MATLAB to Get Corresponding Variables (A and 

ENZ Metamaterial by Fixed Method 

res=tailoring;  

wav=827;                 
om=(2*pi*3e+8)/(wav*1e -9);  

- 01;  
A=(3:0.0001:3.3)*1E -03;  

%fill the filling fraction  

Q0=eph*(1+(2/F)*((ep -eph)/(ep+2*eph)))/(1-(1/F)*((ep-
 

jr=1:length(rho)  

 
epQD=epb+A(jA)*Lor(om);  
Q(jr,jA)=epAg*(epQD*(1+2*rho(jr))+2*epAg*(1 -

- rho(jr))+epAg*(2+rho(jr))  );  

[jr jA]=find(eq(MQ,min(min(MQ))));  

,[100 100 1000 700])  
%http://www.mathworks.com/help/techdoc/ref/figure_p rops.html
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,[100 100 1000 700])  
%http://www.mathworks.com/help/techdoc/ref/figure_p rops.html  



  

 

subplot(1,3,1), mesh(rho,A,real(Q)'), xlabel(
zlabel( 'Re(Q)' ) 
%http://www.mathworks.com/help/techdoc/ref/subplot. html?BB=1&BB=1
subplot(1,3,2), mesh(rho,A,imag(Q)'), xlabel(
zlabel( 'Im(Q)' ) %http://www.mathworks.com/help/techdoc/visualize/f0
45715.html  
subplot(1,3,3), hold, contour(rho,A,imag(Q)'
xlabel( '\rho' ), ylabel(
plot(rho(jr),A(jA),
g_plots/f10- 2524.html

 
 
 
 
%plotting epsilon efficace 
 
lam=826:1e-5:828;  
omm=(2*pi*3e+8)./(lam*1e
 
 
epS=EpAg(omm).*( (epb+A(jA)*Lor(omm))   
2*EpAg(omm)*(1- rho(jr)) )
    ./(  (epb+A(jA)*Lor(omm))*(1
G=(epS- eph)./(epS+2*eph);
epeff=eph*(1+2*F*G)./(1
 
figure  
subplot(1,2,1), hold, plot(lam,real(epeff)), xlabel (
ylabel( 'Re(\ep silon)'
subplot(1,2,2), hold, plot(lam,imag(epeff)), xlabel (
ylabel( 'Im(\ epsilon)'
 
%More about advanced plot function:
%http://www.mathworks.com/help/techdoc/creating_plo ts/f6
 
clc  
disp( 'RESULT' )  
disp( ' ' )  
disp(strcat( 'rho.....='
disp(strcat( 'A.......='
disp(strcat( 'R1......='
disp(strcat( 'R2......='
 
 
save merda  
 
 
function  res=EpAg(oom)
res=(1- (13.8e+15)^2./(oom.^2+1i*0.3e+15*oom));

 
function  res=Lor(oom)
res=(2.279269e15)^2./(oom.^2
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subplot(1,3,1), mesh(rho,A,real(Q)'), xlabel( '\rho' ), ylabel(

%http://www.mathworks.com/help/techdoc/ref/subplot. html?BB=1&BB=1
subplot(1,3,2), mesh(rho,A,imag(Q)'), xlabel( '\rho' ), ylabel(

%http://www.mathworks.com/help/techdoc/visualize/f0

subplot(1,3,3), hold, contour(rho,A,imag(Q)' ,[0 0.001]), 
), ylabel(

plot(rho(jr),A(jA), '*' ) %http://www.mathworks.com/help/techdoc/creatin
2524.html  

%plotting epsilon efficace  

 
omm=(2*pi*3e+8)./(lam*1e -9);  

epS=EpAg(omm).*( (epb+A(jA)*Lor(omm))   *(1+2*rho(jr)) + 
rho(jr)) ) ...  

./(  (epb+A(jA)*Lor(omm))*(1 - rho(jr)) + EpAg(omm)*(2+rho(jr)));
eph)./(epS+2*eph);  

epeff=eph*(1+2*F*G)./(1 -F*G);  

subplot(1,2,1), hold, plot(lam,real(epeff)), xlabel (
silon)' ), plot(wav,ep, '*' ), axis tight  

subplot(1,2,2), hold, plot(lam,imag(epeff)), xlabel (
epsilon)' ), plot(wav,0, '*' ), axis tight  

%More about advanced plot function:  
%http://www.mathworks.com/help/techdoc/creating_plo ts/f6

'rho.....=' ,num2str(rho(jr))))  
'A.......=' ,num2str(A(jA))))  
'R1......=' ,num2str(5)))  
'R2......=' ,num2str(5/(rho(jr)^(1/3)))))  

res=EpAg(oom)  
(13.8e+15)^2./(oom.^2+1i*0.3e+15*oom));  

res=Lor(oom)  
res=(2.279269e15)^2./(oom.^2 - (2.279269e15)^2+1i*2*oom*(1.519e+12));

Numerical Computation in MATLAB to Get Corresponding Variables (A and 
Statistical Method 
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), ylabel( 'A' ), 

%http://www.mathworks.com/help/techdoc/ref/subplot. html?BB=1&BB=1  
), ylabel( 'A' ), 

%http://www.mathworks.com/help/techdoc/visualize/f0 -

,[0 0.001]), 
), ylabel( 'A' ), 

%http://www.mathworks.com/help/techdoc/creatin

*(1+2*rho(jr)) + 

rho(jr)) + EpAg(omm)*(2+rho(jr)));  

subplot(1,2,1), hold, plot(lam,real(epeff)), xlabel ( '\lambda' ), 

subplot(1,2,2), hold, plot(lam,imag(epeff)), xlabel ( '\lambda' ), 

%http://www.mathworks.com/help/techdoc/creating_plo ts/f6 -20079.html  

(2.279269e15)^2+1i*2*oom*(1.519e+12));  

Numerical Computation in MATLAB to Get Corresponding Variables (A and ) for 
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function  res=res;  
close all  
clear all  
clc  
 
format long  
 
global  eph om0 Drho Dom0  
 
eph=2.2022;  
wav=827;   
wav0=827;  
 
om=(2*pi*3e+8)/(wav*1e-9);  
om0=(2*pi*3e+8)/(wav0*1e-9);  
Drho=1e-10;      %rho variation  
Dom0=om0*(1e-10/wav0);    %omega variation  
 
f=0.02;      %filling fraction  
 
 
epeff=0.01;     %effective epsilon target  
 
 
 
WT=(1/f)*((epeff-eph)/(epeff+2*eph));  
 
 
rho=0:2e-1:1;  
A=0:1e-3:0.008;  
for  jr=1:length(rho)  
    disp(strcat(num2str(jr), '_' ,num2str(length(rho))))  
for  jA=1:length(A)  
       WWW(jr,jA)=W(A(jA),rho(jr),om);  
end  
end  
MQ=abs(WWW-WT).^2; 
[jr jA]=find(eq(MQ,min(min(MQ))));  
 
 
 
figure( 'Position' ,[100 100 1000 700])  
subplot(1,3,1), mesh(rho,A,real(WWW)'), xlabel( '\rho' ), ylabel( 'A' ), 
zlabel( 'Re(W)' )  
subplot(1,3,2), mesh(rho,A,imag(WWW)'), xlabel( '\rho' ), ylabel( 'A' ), 
zlabel( 'Im(W)' )  
subplot(1,3,3), contour(rho,A,imag(WWW)',[0 0]), xl abel( '\rho' ), 
ylabel( 'A' ), plot(rho(jr),A(jA), '*' )  
 
 
 
x0=[A(jA) rho(jr)].';  
dA=1e-10;  
dr=1e-10;  
FLA=1;  
 
h=20;       %step  
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while  FLA  
    plot(x0(2),x0(1), 'o' )  
    xlim([rho(1) rho(length(rho))]);  
    ylim([A(1) A(length(A))]);     
 
    x0(1);  
    WW=W(x0(1),x0(2),om);  
    F0=[real(WW-WT) imag(WW-WT)].';  
 
dWA=(W(x0(1)+dA,x0(2),om)-WW)/dA;  
dWr=(W(x0(1),x0(2)+dr,om)-WW)/dr;  
 
    J(1,1)=real(dWA);  
    J(2,1)=imag(dWA);  
    J(1,2)=real(dWr);  
    J(2,2)=imag(dWr);  
 
    x=x0-inv(J)*F0/h;  
 
    clc  
    dist=norm(x-x0)/norm(x0)  
 
    h=30+4*(log(dist)/log(10));  
 
    x0=x;  
    drawnow  
    FLA=gt(dist,1e-6);  
end  
 
AL=x0(1)  
rhoL=x0(2)  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
 
lam=wav-1:1e-2:wav+1;  
omm=(2*pi*3e+8)./(lam*1e-9);  
 
figure( 'Position' ,[100 100 1000 700])  
subplot(1,2,1), hold, xlabel( '\lambda' ), ylabel( 'Re(\epsilon)' ), 
plot(wav,epeff, '*' )  
subplot(1,2,2), hold, xlabel( '\lambda' ), ylabel( 'Im(\epsilon)' ), 
plot(wav,0, '*' )  
 
for  j=1:length(omm);  
    WW=W(AL,rhoL,omm(j));  
    ep(j)=((1+2*f*WW)/(1-f*WW))*eph;  
    subplot(1,2,1), plot(lam(1:j),real(ep)), axis tight , drawnow  
    subplot(1,2,2), plot(lam(1:j),imag(ep)), axis tight , drawnow  
end  
 
 
 
plo(AL,rhoL,om)  
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save merda  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  res=W(A,rho,om)  
global  eph om0 Drho Dom0  
 
difDrho=Drho/40;  
difDom0=Dom0/40;  
 
rhop=rho-3*Drho:difDrho:rho+3*Drho;  
om0p=om0-3*Dom0:difDom0:om0+3*Dom0;  
 
epAg=EpAg(om);  
epb=12.8;  
 
for  jr=1:length(rhop)  
for  jo=1:length(om0p)  
       epQD=epb+A*Lor(om,om0p(jo));  
       ES=epAg*(epQD*(1+2*rhop(jr))+2*epAg*(1-rhop( jr)))/(epQD*(1-
rhop(jr))+epAg*(2+rhop(jr)));  
       IN(jr,jo)=((ES-eph)/(ES+2*eph))*(1/(pi*Drho* Dom0))*exp(-
((rhop(jr)-rho)/Drho)^2 -((om0p(jo)-om0)/Dom0)^2);  
end  
end  
 
res=difDrho*difDom0*sum(sum(IN));  
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  res=EpAg(oom)  
res=(1-(13.8e+15)^2./(oom.^2+1i*0.3e+15*oom));  
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  res=Lor(oom,om0);  
Gamma=1.519*1e+12;  
res=om0^2./(oom.^2-om0^2+1i*2*oom*Gamma);  
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  res=plo(A,rho,om)  
global  eph om0 Drho Dom0  
 
difDrho=Drho/35;  
difDom0=Dom0/35;  
 
rhop=rho-3*Drho:difDrho:rho+3*Drho;  
om0p=om0-3*Dom0:difDom0:om0+3*Dom0;  
 
epAg=EpAg(om);  
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epb=12.8;  
 
for  jr=1:length(rhop)  
for  jo=1:length(om0p)  
       epQD=epb+A*Lor(om,om0p(jo));  
       ES=epAg*(epQD*(1+2*rhop(jr))+2*epAg*(1-rhop( jr)))/(epQD*(1-
rhop(jr))+epAg*(2+rhop(jr)));  
       DE(jr,jo)=(1/(ES+2*eph))*exp(-((rhop(jr)-rho )/Drho)^2 -
((om0p(jo)-om0)/Dom0)^2);  
end  
end  
 
figure ( 'Position' ,[200 200 600 500])  
mesh(rhop,2*pi*3e+17./om0p,log(abs(DE))'), xlabel( '\Delta\rho' ), 
ylabel( '\Delta\lambda' )  
title( 'Resonance modes' )  

 

 

Retrivial Lambda 

clear all  
close all  
clc  
 
epR=-1.2:.001:1.2;  
epI=-1.2:.001:1.2;  
%L1=20;  
d=113.7469603;  
L1=10;  
L2=50;  
fid=fopen( '4.1.txt' )  
C=textscan(fid, '%n %n' , 'delimiter' , ',' , ...  
'treatAsEmpty' , { 'NA' , 'na' }, ...  
'commentStyle' , '%' )  
A=C{1}  
B=C{2}  
 
QQ=B.';  
fclose (fid);  
clear AAA 
 
n=length(A)  
 
 
wa=A';  
% wa=826.99:0.01:827.01;  
 
%% 
F   = 0.03;  
rho = 0.501027392331435;  
A   = 0.003175418931221;  
 
eb=1;  
wp=13.8*10^15;  
g=3*10^14;  
c=3*10^8;  
con=2*pi*c;  
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w=con./(wa*1E-9);  
 
e_ag=eb-((wp.^2)./(w.^2 - w*g*i));  
e1_ag=real(e_ag);  
e2_ag=imag(e_ag);  
 
e1=e1_ag; %make a simple definition of real part of permit  
e2=e2_ag; %make a simple definition of imaginary of permit  
n1_ag= sqrt((e1+(sqrt(e1.^2+e2.^2)))/2); %real refractive index  
n2_ag= sqrt((-e1+(sqrt(e1.^2+e2.^2)))/2); %real refractive index  
n_ag = n1_ag + n2_ag*i;  
 
eb=12.8;  
w0=2.279269*10^15;  
g=1.519*10^12;  
A=A;  
 
e_QD = eb + ((A*w0^2)./((w.^2-w0^2)-2*w*g*i));  
e1_QD = real(e_QD);  
e2_QD = imag(e_QD);  
n_QD = sqrt(e_QD);  
 
r=rho;  
 
e_1=e_QD;  
e_2=e_ag;  
e_c = (e_2.*(e_1*(1+2*r)+2*e_2*(1-r)))./(e_1*(1-r)+ e_2*(2+r));  
e1_c=real(e_c);  
e2_c=imag(e_c);  
 
n_c = sqrt(e_c);  
 
e_h = 2.2022;  
n_h = e_h^2;  
 
f=F;  
e_mg = (e_h.*(e_c*(1+2*f)+2*e_h*(1-f)))./(e_c*(1-f) +e_h*(2+f));  
e1_mg = real(e_mg);  
e2_mg = imag(e_mg);  
n_mg = sqrt(e_mg);  
 
ep_mod_an = sqrt(e1_mg.^2+e2_mg.^2);  
 
 
%% 
for  jj=1:length(wa)  
    jj  
    wav=wa(jj);  
    Q=QQ(jj);  
 
    k=2*pi/wav;  
    EE=exp(-1i*k*(L2));  
 
for  jR=1:length(epR)  
for  jI=1:length(epI)  
            ep=epR(jR)+1i*epI(jI);  
            n=sqrt(ep);  
            F(jR,jI)=abs(cos(n*k*d)+0.5*1i*(n+1/n)* sin(n*k*d)-
Q*EE)^2;  
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end  
end  
    F0=min(min(F));  
    A(2,jj)=F0;  
    [nR nI]=find(eq(F,F0));  
A(1,jj)=epR(nR)+1i*epI(nI);  
end  
%% 
res=A;  
ep_r=A(1,:);  
 
ep_r.';  
 
ep_mod = sqrt(real(ep_r).^2+imag(ep_r).^2);  
ep_mod.'  
 
Z1= wa,real(ep_r);  
Z2 = wa,imag(ep_r);  
Z3 = wa,ep_mod;  
%% 
%http://www.mathworks.com/help/techdoc/creating_plo ts/f6-20079.html  
 
ep_r1=real(ep_r);  
ep_r2=imag(ep_r);  
 
figure(1)  
subplot(2,1,1)  
plot(wa,real(ep_r),wa,e1_mg)  
hleg1 = legend( 'simulation' , 'analytic' )  
hold, plot(827.000,0.01, '*' )  
axis([min(wa)-0.001, max(wa)+0.001, min(min(min(e1_ mg),real(ep_r)))-
0.001, max(max(e1_mg),max(real(ep_r)))+0.001])  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( 'Re(\epsilon)' , 'fontsize' ,12)  
 
 
subplot(2,1,2)  
plot(wa,imag(ep_r),wa,e2_mg)  
hold, plot(827.000,0.00, '*' )  
axis([min(wa)-0.001, max(wa)+0.001, min(min(min(e2_ mg),imag(ep_r)))-
0.001, max(max(e2_mg),max(imag(ep_r)))+0.001])  
set(gca, 'fontsize' ,8)  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( 'Im(\epsilon)' , 'fontsize' ,12)  
 
 
(real(ep_r))';  
(imag(ep_r))';  
 
 
figure (2)  
plot(wa,ep_mod,wa,ep_mod_an)  
hleg1 = legend( 'simulation' , 'analytic' )  
hold, plot(827.000,0.01, '*' )  
axis([min(wa)-0.001, max(wa)+0.001, 0, max(ep_mod)+ 0.01])  
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axis([min(wa)-0.001, max(wa)+0.001, 0, 
max(max(ep_mod),max(ep_mod_an))+0.001])  
set(gca, 'fontsize' ,8)  
set(gca, 'YTick' ,0:0.1:max(max(ep_mod),max(ep_mod_an)))  
grid on 
xlabel( '\lambda [nm]' , 'fontsize' ,12)  
ylabel( 'abs(\epsilon)' , 'fontsize' ,12)  
 
ep_mod';  
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