

NeuroMathComp project team (INRIA, ENS Paris, UNSA LJAD)

Modeling the Nature of Centre-Surround Interactions in Early Visual Cortex

Xueping Yao

July 15, 2009

Introduction

- 1.1 Primary visual cortex V1
 1.2 Center-surround interaction
 Models and Methods
 2.1 Quantitative models
 2.2 Image decomposition
 Implementation results
 - 3.1 Optimization
 - 3.2 Further discussion

Primary Visual Cortex V1

RINRIA

centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉE

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Primary Visual Cortex V1

Neurons in V1 orientations, spatial frequencies, colors....

Simple cells

bars of light, line orientated, center-on/off

Complex cells line orientation, excitatory/ inhibitory zone

Hyper Complex Cells moving corners or angles

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Primary Visual Cortex V1

Drifting oriented luminance spots

V1 NEURONS spatial frequency, orientation selectivities (1st), motion, direction, speed.....

code local contrast

Simultaneous Contrast

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉE

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

one aspect Orientation tuning

Schwartz and Simoncelli, 2001

Surround suppression is locally anisotropic Schwartz & Simoncelli, 2001 Modeling surrond suppression in V1 neurons with a statistically-derived normalization model

Surround suppression should be locally isotropic Petrov and McKee (2006) The effect of spatial configuration on surround suppression of contrast sensitivity

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Introduction

- 1.1 Early visual cortex V1
- 1.2 Center-surround interaction

Models and Methods

- 2.1 Quantitative models
- 2.2 Image decomposition

Implementation results

- 3.1 Optimization
- 3.2 Further discussion

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Quantitative Models

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Normalization Model

cortical channels interaction

overlap,

orientation channel

spatial frequency channels

INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUE ET EN AUTOMATIQUE

Normalization Model

Normalization Model

- Nonlinearity of contrast response function
- Inhibition from neighbor stimulus
- Mathematical simplicity
- Code more efficiently

High neighbor contrast & low center contrast Asymptotic inhibition, Ejima & Takahashi (1985)

> INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Multiplicative Model

Multiplicative Model

$$R = \frac{AC_t^{\alpha}}{\sigma^{\beta} + C_t^{\beta}} \left(1 + \frac{B}{1 + \left(\frac{qC_n}{C_t}\right)^{\gamma}}\right) \quad (2)$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Multiplicative Model

- Nonlinearity of contrast response function
- Amplify the spatial interaction
- The saturation of spatial interaction

• Two more parameters

INSTITUT NATIONAL

RINRIA

Image Decomposition

Gabor Filter

$$g(x, y, \lambda, \theta, \phi, \sigma, \nu) = \exp(-\frac{x'^2 + \nu y'^2}{2\sigma^2})\cos(2\pi \frac{x'}{\lambda} + \phi) \quad (3)$$

$$x' = x\cos(\theta) + y\sin(\theta), \quad y' = -x\sin(\theta) + y\cos(\theta)$$

$$\lambda: \text{wavelength}, \quad \theta: \text{orientation}, \quad \phi: \text{phase offset}, \quad \sigma: \text{Gaussian envelope}$$

$$\text{orientated kernel} \quad \bullet \quad \text{direction selectivity}$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Gabor Filter

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The Steerable Pyramid

Linear

— Multi-orientation

Directional derivative operator

order *orientations*

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The Steerable Pyramid

- No orthogonality
- Rotation invariant
 Orientation
- Translation invariant
 Position
- Independent scale
- Independent orientation

Over-completeness 4/3K

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The steerable pyramid

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The Steerable Pyramid

RINRIA

centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉE

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Introduction

- 1.1 Early visual cortex V1
- 1.2 Center-surround interaction

Models and Methods

- 2.1 Quantitative models
- 2.2 Image decomposition

Implementation results

INSTITUT NATIONAL

DE RECHERCHE

RMATIQUE

- 3.1 Optimization
- 3.2 Further discussion

Implementation Results

Objective function

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The wavelet pyramid

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Extracting channels

centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉE

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

32

Optimization algorithm

$$\{\hat{\omega}, \hat{\sigma}\} = \arg\min \mathbf{E} [C^2 - \sum \omega_k P_k^2 - \sigma^2]^2$$

Extract the corresponding coefficients matrix, 128×128

Choose a 13×13 window with the center pixel modeling the center neuron

Link $\{\omega_k\}$ to each pixel in this window

Move the window over the whole extracted area to establish the objective function

Apply optimization algorithm to find the weights $\{\omega_k\}$ by minimizing the objective function

INSTITUT NATION DE RECHERC EN INFORMATIQ ET EN AUTOMATIQ

Conclusion and further discussion

Optimized weights

Conclusion and further discussion

• Symmetric

Directional

Declining
 Surround suppression is locally anisotropic
 Schwartz & Simoncelli, 2001

Surround suppression should be locally isotropic Petrov and McKee (2006)

Petrov & McKee (2006)'s experiment

Surround layout around the target

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE UTOMATIQUE

Conclusion and further discussion

RINRIA

centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉE

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Conclusion and further discussion

Surround suppression is locally anisotropic Schwartz & Simoncelli, 2001

Further:

Across scales, optimization principle...

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE

Acknowledgements

I would like to thank Dr. Pierre Kornprobst and Dr. Neil Bruce for the great help and support during my internship at INRIA Sophia Antipolis Méditerranée.

Thanks are also due to Dr. Chiara SIMEONI and Prof. Victorita Dolean for their organizational help.

Thank you for your attention!

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

