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Background:
The electromagnetic modeling of antennas or radiating structures are ofter

based on integral formulations for the E-or H-�eld involving Green's functions.
Depending of the numerical method for solving the integral equation(such as
Method of Moments or Finite Element Method), it is necessary to numerically
evaluate the Green's functions on sampling element such as a triangle of a
meshing structure. In my report, we use Gauss method in a triangle element.

Green's functions in electromagnetism:

f =
eikr

rn
, r =

√
x2 + y2 + h2, n = 1, 2

Here k is the wavenumber. The angular wavenumber is de�ned as

k =
2π
λ

=
2πν
vp

In the formula aboveλis the wave length, ν is the wave frequency and vp is
the phase velocity. In our case, we choose vp = c light speed.
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My work´
Ω
eikr/rkds Ω is a triangle in the mesh. This is the integration that we

want to approximate.
1. For any triangle in 2D case, we have the variable h, to �nd a good way

to divide the triangle and to �nd how many subdivisions do we need to make
error less than what we expect, for instance 10−5or 10−6. It is quite usefull in
electromagntic modelling.

2. Since the theory of Gauss method in 2 dimension is not well developed.
We don't have the exact expression of error like the case in 1 dimension, so
err = f(...) in 2D in an triangle just like a black box. I want to �ll this formula
through analysis of experimental data. I can not get the exact expression of
error in this way but some relationship. It will be useful in the deduction of in
a rigorous theoretical way in the future.
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Introduction of Gauss quadrature in one dimension:
In numerical analysis, a quadrature rule is an approximation of the de�nite

integral of a function, usually stated as a weighted sum of function values at
speci�ted values at speci�ed points within the domain of integration. In one
dimension, it usaully has a form below

ˆ −1

1

f(x)dx ≈
n∑
i=1

wif(xi)

Gauss quadrature is based on Fundamental theorem below
Letpnbe a nontrivial polynomial of degree n such that´ b
a
w(x)xkpn(x)dx = 0, for all k=0, 1, ..., n-1

If we pick the nodes to be the zeros of pn, then there exist weights wi which
make the computed integral exact for all polynomials of degree 2n − 1 or less.
Furthermore, all these nodes will lie in the open interval (a, b).

The polynomial pn is said to be an orthogonal polynomial of degree n asso-
ciated to the weight function w(x). It is unique up to a constant normalization
factor.

We will have

ˆ 1

−1

f(x)dx =
ˆ 1

−1

w(x)g(x)dx ≈
n∑
i=1

wig(xi)

Error estimate:
The error of a Gaussian quadrature rule can be stated as follows. For an

integrand which has 2n continuous derivatives,

ˆ b

a

w(x)f(x)dx−
n∑
i=1

wif(xi) =
f (2n)(ξ)

(2n)!
(pn, pn)

for some ξin (a,b), where pnis the orthogonal polynomial of order n and
where

(f, g) =
ˆ b

a

w(x)f(x)g(x)dx

In the important special case of w(x) = 1, we have the error estimate

(b− a)2n+1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(ξ), a < ξ < b

From the Gauss method in 1D case we can see:
Advantage of this method: It is esay to be implemented.
Disadvantage of this method: The error estimate is in convenient in practice,

since it usually related to high order derivative of this function, and further more
the actual error may be much less than a bound established by the derivative.

Gauss method on a triangle in 2 dimension:
Numerical Integration over Simplexes and Cones
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THEOREM 1 . If ∑
j

ajf(ξ)−
ˆ
R

f(ξ) = E(f)

then ∑
j

Wajg(ηj)−
ˆ
TR

g(η)dV = WE(f)

Where T is an a�ne transformation, η = Aξ + η0, of Enonto itself; g(η) =
f(ξ); W is the absolute value of the determinant of A; R is an n-dimensional
region included in the domain of f and ξ1,...ξk, ..., are points in the domain of f.

This theorem allowed us to some speci�c shape regions to develop formulas
for the class of all a�ne transforms. All triangles in 2 dimension are equivalent
under a�ne transformations.

How to get extend this Gauss method to high dimension like a triangle
Let an n-dimensional region R be embedded in the hyperplane x = 1 in

the En+1 where we represent the points in En+1by (ξ, x), where ξ is a point in
En.Then the set of all points xR, where 0 ≤ x ≤ 1, is a cone C with base R and
vertex at the origin in En+1.

Let f(ξ, x) be a function de�ned over C and suppose that a suitable numerical
integration formula is given over the base R of C. If,

ˆ
R

f(ξ, 1)dVn =
∑
j

ajf(ξj , 1)

then
ˆ
C

f(ξ, x)dV =
ˆ 1

0

dx

ˆ
xR

f(ξ, x)dVn =
ˆ 1

0

xn
∑
j

ajf(xξj , x)dx

since the Jacobian of the a�ne transformtion from R to xRis x−n. De�ne a
function

g(x) =
∑
j

ajf(xξj , x)

and then we have ˆ
C

fdv =
ˆ 1

0

xng(x)dx

Now we ask for numerical integration formulas of the form

ˆ 1

0

xng(x)dx =
∑
i

big(xi)

Since such formulas may certainly be found we then have
ˆ
C

fdv =
∑
i

∑
j

biaif(xiξj , xi)
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Use the method above we can decrease the dimension to get a Gauss ap-
proximation of integral in higher dimension.

The quintic polynomial is integrated precisely with seven points in the tri-
angle using rV i + (1 − r)C C = 1

3

∑3
1 Vi weight a; sVi + (1 − s)C, weight

b; and C, weight c. We �nd r = 1+
√

15
7 , s = 1−

√
15

7 , and a = ( 155−
√

15
1200 )∆,

b == ( 155+
√

15
1200 )∆, c =

(
9
40

)
∆.Since the general quintic polynomial in two vari-

ables has 21 terms this formula appears to be a type we can e�cient nothing
that noting that one might not hope to accomplish a formula with fewer than
7=21/3 points. Here the �3� is the number of degrees of freedom for each point
due to coordinates and weight. Howerver, there are known hypere�cient for-
mulas. which use fewer points than indicated by this argument. While we will
not reproduce the argument here, we used a triangle with vertices (0,0), (1,-1),
(1,1). Then the requirements of the a�ne symmetry of the formula with the
form of the region assured that all monomials with odd powers of y could be
omitted. This left 12 equations. We chose �ve of these and solved them for
a, b, c, r, and s, and veri�ed that the remaining 7 were satis�ed.

From paper of P.C.HAMMER, O.J.MARLOWE and A.H.STROUD

Error Control of Numerical integration in 2D
We already have ˆ

Ω

f(x)ds =
7∑
i=1

wif(xi)

Ω is a triangle region, wi, xi are chosen according the result we have got. This
formula is exact for f(x) is polynomial with the degree ≤5.

If f(x) is any function, we have

ˆ

Ω

f(x)ds =
7∑
i=1

wif(xi) +R

Then we divide the triangle into small triangle regions

m∑
j=1

ˆ

Ωj

f(x)ds =
m∑
j=1

7∑
i=1

wijf(xij) +R

|R| ≤
m∑
j

|Rj | ≤ m |Rmax| < ε

ε we usually choose 10−5.
The convergence of this approximation method. If we assume

R ∼ 4K k ≥ 2

4 is the area of the whole triangle. Then after divided

|R| ≤ m |Rmax| ∼ m(c0
4
m

)k, k ≥ 2
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When m→∞, error→ 0.
We use the lines which parallel the edges to divide the whole triangle to n2

subdivisions, here each edge is divided to n equal line segments.

I tested the convergence of this way in many triangles.

With the experimental calculations in FORTRAN program, I mainly con-
sider how many subdivisions we need according to three aspects.

1. The parameter h, the range of h we consider L
100 < h < L, the L is the

longest edge of triangles.
2. The shape of triangles
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In my FORTRAN program, I mainly change the ratio of height and base to
control the shape of triangle. Firstly, I choose the triangle with the origin in
the interior of triangle.

3. The positon of triangles in the coordinates.
From the Green function

f =
eikr

rn
, r =

√
x2 + y2 + h2, n = 1, 2

For any triangle, we do mapping of this triangle according to x axis, y axis and
the origin, we will not change the value of integral of Green function. Also, we
rotate this triangle with the center of the origin, the value of the integral will
not change. So we can just move the triangles in one direction.

We have two Green functions

f =
eikr

r
and f =

eikr

r2

Parameter k = 6π, since we choose frequency ν = 900MHz, then k = 2πν
C =

6π
The size of triangle we choose
The longest edge of triangle L < λ

5

The results
The �rst Green function f = eikr/r
1. The relation beween the parameter h and the subdivision we need n2

Firstly, we see the table , in the table L is the longest edge of the triangle.
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The graph of this table, x axis is the h, y axis in n not n2

The graph of the relation in average
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2. The relation beween the position of triangle and the subdivision n2we
need

Here, I choose the equalateral triangle. Since for any triangle, we do mapping
of this triangle according to x axis, y axis and the origin, we will not change the
value of integral of Green function. Also, we rotate this triangle with the center
of the origin, the value of the integral will not change. We only need to move
the triangle in one direction to compare the di�erence.

In the table below, D is the shortest distance of the triangle from the origin
D 0.001*L 0.01*L 0.05*L 0.1*L 0.5*L 1*L 2*L 5*L
2*L 1 1 1 1 1 1 1 1
1*L 1 1 1 1 1 1 1 1
0.5*L 4 4 4 4 1 1 1 1
1/4*L 4 4 4 4 4 1 1 1
1/8*L 16 16 9 9 4 1 1 1
1/16*L 36 36 16 16 4 1 1 1
1/32*L 81 36 16 16 4 1 1 1
1/64*L 144 196 16 16 4 1 1 1

From the table, let's �x parameter h. When we increase D, the subdivison
what we need decrease rapidly like we increase parameter h in the case D=0.

The second Green function f = eikr/r2
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Ratio 0.120 0.244 0.400 0.599 0.866 1.239 1.799 2.732 4.598 10.20
2*L 1 1 1 1 1 1 1 1 1 1
1*L 4 4 4 4 4 4 4 4 4 4
0.5*L 9 9 9 9 9 9 16 16 16 9
1/4*L 36 25 25 25 36 25 36 49 64 64
1/8*L 100 121 100 121 100 144 100 49 169 361
1/16*L 196 361 400 484 484 256 676 900 1156 1024
1/32*L 256 1681 1296 1024 961 1681 2209 2401 3025 4624
1/64*L 784 3844 5329 3481 4096 3364 8281 14641 7569 11881

The graph of this table, x axis is the h, y axis in n not n2

The graph of the relation in average
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Summary
1. If h ≥1L, we don't need to divide the triangle.
2. There is no big in�uence of the shape of the triangle to the error.
3. If the shortest distance from the traingle to the origin ≥1L, we don't need

to divide the triangle.
4. A better way to divide the triangle.

Further work
1. To implement the new way to divide the triangle;
2. Use experimental calculation to test the probable relation of error and

other variables.
3. The most di�cult one: doing theorectical study to give an expression of

error in general case.
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