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1 System of linear elasticity

Linear elasticity is a simpli�cation of the more general nonlinear theory of elasticity and
is a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear
elasticity are: in�nitesimal strains or "small" deformations (or strains) and linear relation-
ships between the components of stress and strain. In addition linear elasticity is only valid
for stress states that do not produce yielding. These assumptions are reasonable for many
engineering materials and engineering design scenarios. Linear elasticity is therefore used
extensively in structural analysis and engineering design, often through the aid of �nite
element analysis.

In the following we recall some results concerning the system of linear elasticity, we will
apply the variational approach to the resolution of system of equation of linear elasticity.

We start with the description of the physical model
Figure : Beam �xed on one side
Displacement under the gravity force

Let Ω be an open set of RN , f(x) a force which is a function from Ω to RN and the
unknown u displacement which is a function of Ω in RN the mecanic modelisation involves
the tensor of deformation e(u) de�ned by

e(u) = 1
2 (∇u+ (∇u)t) = 1

2 ( ∂ui

∂xj
+ ∂uj

∂xi
) i = j = 1...N.

This modelisation involves also the tensor of constraint σ

σ = 2µe(u) + λtr(e(u))Id

where λ, µ are Lame coe�cients of the material. For some thermodynamic reason λ, µ
satisfy

µ > 0 and 2µ+Nλ > 0
Using the sum of all the forces in the solid we obtain :

−div(σ) = f in Ω

Using the fact that tr(u) = divu, we can deduce the following equation :

−
N∑
j=1

∂

∂xj
(µ(

∂ui
∂xj

+
∂uj
∂xi

) + λ(divu)δij) = fi in Ω

With ui, fi the components of f and u in the canonical basis of RN . Adding Dirichlet
boundary condition we obtain the following boundary value problem :
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{
−div(2µe(u) + λtr(e(u))Id) = f inΩ

u = 0 on ∂Ω (1)

The result below shows that the boundary value problem1 is well posed by using varia-
tional approach.

Theorem

There exists a unique weak solution u in H1
0 (Ω)N of equations (1). We will present the

main ingredients of the proof.
To �nd the variational formulation we multiply the equation by a smooth test function

which vanish on the border of Ω, and we integrate by parts to obtain :

ˆ
Ω

µ

N∑
j=1

(
∂ui
∂xj

+
∂ui
∂xj

)
∂vi
∂xj

dx+
ˆ

Ω

λdivu
∂vi
∂xi

dx =
ˆ

Ω

fividx

Using some summation properties we obtain the variational formulation : �nd u in
H1

0 (Ω)N such that

ˆ
Ω

2µe(u).e(v)dx+
ˆ

Ω

λdivudivvdx =
ˆ

Ω

fvdx

for all v in H1
0 (Ω)N

In order to apply the Lax-Milgram theorem we need to verify the coercivity of the bilinear
functional a(u, v) =

´
Ω

2µe(u).e(v)dx+
´

Ω
λdivudivvdx

We can show thatˆ
Ω

2µ|e(u)|2dx+
ˆ

Ω

λ|divu|2dx ≥ α
ˆ

Ω

|e(v)|2dx

with α= min(2µ, (2µ + Nλ)) �0 . Next we use Korn inequality which gives a constant
C�0 such that :

ˆ
Ω

|e(v)|2dx ≥ C
ˆ

Ω

|∇v|2dx

for all v in H1
0 (Ω)N .

Thirdly we use Poincare inequality which gives C � 0 such that for all v in H1
0 (Ω)N we

have,

ˆ
Ω

|v|2dx ≤ C
ˆ

Ω

|∇v|2dx

Combining these inequalities we obtain the coercivity of a mean

ˆ
Ω

2µ|e(u)|2dx+
ˆ

Ω

λ|divu|2dx ≥ C||v||2H1(Ω)

Applying Lax-Milgram theorem we obtain the existence and uniqueness of the solution
to the variational formulation

Lemma

LetΩ an open set of RN for all v in H1
0 (Ω)N we have :

||∇v||L2(Ω) ≤
√

2||e(v)||L2(Ω).
Since we have used Dirichlet boundary condition in pratice a part of the border can

be free to move or some surface forces can be applied on the border these two cases are
modelised by Neumann boundary condition,σn = g on∂Ω

Figure :Beam �xed on one side
Neumann condition on another
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where g is a function in L2(Ω)N (the force applied on the border).
Now we consider a system of linear elasticity with mixed boundary conditions, Dirichlet

and Neumann i.e  −div(2µe(u) + λtr(e(u))Id) = f inΩ
u = 0 on ∂ΩD
σn = g on ∂ΩN

(2)

where (∂ΩN , ∂ΩD) is a partition of ∂Ω of non zero measure. Existence and uniqueness
can be proved using Korn Inequality.

Lemma (Korn Inequality)

Let Ω be open bounded and regular set of class C1 of RN . There exists a constant C� 0
such that for all function v∈H1(Ω)N we have
||v||H1(Ω)≤C (||v||2L2(Ω)+ ||e(v)||2L2(Ω))

1/2.
The mecanic interpretation of Korn inequality is the following : the elastic energy pro-

portional to the norm of the tensor of deformation e(u) in L2(Ω) controls the norm of the
displacement u in H1(Ω)N up to the addition of the norm of u in L2(Ω) .

Theorem

Let Ω an open bounded connected regular set of class C1 of RN . Let f ∈L2(Ω)
g∈L2(∂ΩN )N we de�ne the space

V = {v∈ H1(Ω)N such that v = 0 on ∂ΩD}
There exists a unique weak solution u ∈ V of (2 ) which depends linearly on f and g
The solution of the variational problem can be interpreted as the minimization of an

energy

Proposition

Let j(v) the energy de�ned for all v ∈ V by :

j(v) =
1
2

ˆ
Ω

(2µ|e(v)|2 + λ|divv|2)dx−
ˆ

Ω

f.vdx−
ˆ
∂ΩN

g.vds

Let u be the unique solution of the variational formulation of (2), thenu is the unique
minimum point of the above energy in V. Reciprocally if u ∈ V is the minimum point of the
energy j(v) then u is the unique solution of the variational formulation.
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2 Smith factorization applied to the linear elasticity

Smith factorization is an algebraic tool which allows to treat matrices with polynomial
entries

We consider a matrix with polynomial entries in one variable

A(λ)=

 a11(λ) ... a1n(λ)
: ... :

a
m1(λ) ... a

mn
(λ)

.
We recall the Smith factorization of a matrix with polynomial entries
Theorem Let n be an positive integer and A an invertible n×n matrix with polynomial

entries with respect to the variable λ: A = (aij(λ))1≤i,j≤n. Then, there exist matrices E,
D and F with polynomial entries satisfying the following properties:

• det(E) and det(F ) are constants,

• D is a diagonal matrix uniquely determined up to a multiplicative constant,

• A = EDF .

Here E and F are matrices, which operate on the rows resp. columns. The entries of the
diagonal matrix D = (dij(λ)) are given by dii = φi/φi−1, where φi is the greatest common
divisor of the determinants of all i× i sub matrices of A and φ0 = 1.

The Smith factorization is a classical tool in computer algebra and in control of ordinary
di�erential equations. Since its use in scienti�c computing is rather new, we give here a few
comments:

• Smith was an English mathematician of the end of the 19th century. He worked in
number theory and considered the problem of factorizing matrices with integer entries.
We gave here the polynomial version of his theorem in the special case where the matrix
A is square and invertible but the result is more general and applies as well when the
matrixA is rectangular.

• One of the interest of the theorem is the following. By Cramer's formula, the inverse
of A is in general a matrix with rational entries. By the Smith factorization, we have
A−1 = F−1D−1E−1. Since det(E) and det(F ) are constants, the inverse of E and F
are still matrices with polynomial entries in λ. The rational part of the inverse ofA is
thus in D−1 which is an intrinsic diagonal matrix.

• The proof of the theorem is constructive and gives an algorithm for computing matrices
E, D and F . As stated in the theorem, matrix D is intrinsic but matrices E and F
are not unique.

• In the sequel, we write the system of linear elasticity as a matrix with partial di�er-
ential operators entries applied to the unknown displacement. The direction normal
to the interface of the subdomains is particularized and denoted by∂x. Each partial
di�erential operator is then considered as a polynomial in the �variable ∂x� (e.g. Λ is
related to ∂x and Λ2 to ∂xx). It is then possible to apply the Smith factorization, see
below.

We consider two elementary operations on the matrix : 1) permutation of rows (and
columns), 2)multiply a row (or column) by a scalar polynomial and add it to another row
(or column).

These transformations keep the matrix with polynomial entries and preserve (up to a
sign ) the determinant of the matrix.

For a matrix whose �rst entry is a non zero polynomial of minimal degree, we consider
three possibilities :

1) there exists at least one entry in the �rst line or the �rst column that a11(λ) does not
divide.

2) The �rst entry a11(λ) divides all the entries of the �rst line and of the �rst column
and in addition to the �rst entry a11(λ), one of the entries of the �rst line and of the �rst
column is not zero.
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3) Except for the �rst entry a11(λ), all the entries of the �rst line and of the �rst column
are zero and there exist at least one entry in the matrix that a11(λ) does not divide

4) Except for the �rt entry a11(λ), all the entries of the �rst line and of the �rst column
are zero and a11(λ) divides all the entries of the matrix.

The above cases are exclusive and cover all possible situations. We shall show that by
elementary operations :

In case 1, it is possible to decrease the minimal degree of the matrix.
In case 3, it is possible to go to case 1.
In case 2, it is possible to go to case 3 or 4.
The generic situation is case 1. We propose that it is possible to decrease the minimal

degree of the matrix. Suppose a11(λ) does not divide an entry of the �rst line (the argument
would be similar for an entry of the �rst column), say a1j . Then, perform the Euclidean
division of a1j by a11(λ) :

a1j(λ)= bj(λ)a11(λ) + rj(λ) where the degree of rj is less than that of a11(λ). Then,
multiply the �rst column by −bj and add the result to the jth column of A, so that the
j − th element of the �rst line is rj . If rj is not zero, permute the �rst and the j − th
columns so that rj is the �rst coe�cient of the matrix. Note that the minimal degree of
A has decreased. Since the minimal degree of A is not negative, after a �nite number of
applications of this procedure, we are sure to leave case 1.

Suppose we are in case 3. Let aij(λ) be a polynomial that a11(λ) does not divide. By
adding the i− th row to the �rst row, we go to case 1.

Suppose we are in case 2. For each 1≺ j≤ n, we multiply the �rst column by a scalar
polynomial −aij(λ)/a11(λ) and add it to the j − th column. Then, all the coe�cients of
the �rst line are zero except for the �rst one. The coe�cients of the �rst column are left
unchanged by this operation.

Thus, for each 2≺ j≤ m multiplying the �rst line (which has only one non zero entry)
by −aj1(λ)/a11(λ) and adding it to the j-th line we cancel all the coe�cients of the �rst
column except for the �rst one. We are now thus either in case 3 or in case 4.

It is thus possible after a �nite number of steps to go to case 4 and then apply the same
procedure to submatrix A(2 : n, 2 : n).

The �rst equation of the system (1) in two dimension is given by :

S2

(
u
v

)
=
(

(2µ+ λ)∂xx + µ∂yy λ∂xy + µ∂yx
µ∂xy + λ∂yx µ∂xx + (2µ+ λ)∂yy

)(
u
v

)
=
(
f1

f2

)
We transform this equations as follows :
we perform Fourier transform in the y-direction with the dual variable k,
we perform Laplace transform in the x-direction with dual variable Λ,
we obtain the following equation :

(
(2µ+ λ)Λ2 − k2µ (λ+ µ)ikΛ

(µ+ λ)ikΛ µλ2 − (2µ+ λ)k2

)(
û
v̂

)
= f̂

Let A be the following matrix

A=

(
(2µ+ λ)Λ2 − k2µ (λ+ µ)ikΛ

(µ+ λ)ikΛ µΛ2 − (2µ+ λ)k2

)
The smith factorization of A is build as follows by :

Initially we are in case 1 we permutte the columns and reduce the degree of the �rst
entry

A1 = A

(
0 1
1 0

)
=

(
i(µ+ λ)kΛ (2µ+ λ)Λ2 − k2µ

µΛ2 − (2µ+ λ)k2 (µ+ λ)ikΛ

)
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A2 = A1

(
1 i(µ+λ)Λ

(µ+λ)k

0 1

)
=

(
i(µ+ λ)kΛ −µk2

µΛ2 − (2µ+ λ)k2 (i(µλ+2µ2)Λ3−i(2µλ+3µ2))Λk2

(µ+λ)k

)

A3 = A2

(
0 1
1 0

)
=

(
−µk2 i(µ+ λ)kΛ

(i(µλ+2µ2)Λ3−i(2µλ+3µ2))Λk2

(µ+λ)k µΛ2 − (2µ+ λ)k2

)
The above situation correspond to case 2

A4 =A3

(
1 i(µ+λ)Λ

µk

0 1

)
=

(
−µk2 0

(i(µλ+2µ2)Λ3−i(2µλ+3µ2))Λk2

(µ+λ)k − (λ+2µ)Λ4−(2λ+4µ)k2Λ2+(λ+2µ)k4

k2

)
here we are in case 4

A5 =

(
1 0

(i(µλ+2µ2)Λ3−i(2µλ+3µ2))Λk2

µ(µ+λ)k3 1

)
A4 =

(
−µk2 0

0 − (λ+2µ)(Λ2−k2)2

k2

)
�nally we obtain ;

The diagonal matrix given by :

D=

(
1 0
0 −(Λ2 − k2)2

)

E=

(
−µk2 0

iµΛ((λ+2µ)Λ2−(2λ+3µ)k2)
(λ+µ)k 1

)

F=

( −(λ+2µ)Λ2

µk2 + 1 −i(λ+µ)Λ
µk

i(λ+2µ)2Λ
(λ+µ)k3

λ+2µ
k2

)
such that A = EDF
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3 An e�cient(optimal) algorithm for the system of linear
elasticity

Our goal is to write for the equations of linear elasticity on the whole plane divided into
two half-planes an algorithm converging in two iterations. We have shown that the design
of an algorithm for the fourth order operator B := ∆2 is a key ingredient for this task.
Therefore, we derive an algorithm for the operator B and then, via the Smith factorization,
we recast it in a new algorithm for the elasticity system.

We consider the following problem : Find φ : R2 → R such that
-42φ= f in R2, |φ(−→x )| →0 for |x|→∞
where f is given right hand side. The domain Ω is decomposed into two halfplanes

Ω1 = R− ×R and Ω2 = R+ ×R. Let the interface {0} ×R be denoted by Γ and (n i)i=1,2

be the outward normal of (Ωi)i=1,2. The algorithm, we propose, is given as follows:

Algorithm3 .1 . We choose the initial values φ0
1 and φ0

2 such that φ0
1= φ0

2 and 4φ0
1 =4φ0

2

on Γ. We obtain (φn+1
i )i=1,2 from (φni )i=1,2 by the following

iterative procedure:
Correction step. We compute the corrections (φ̃n+1

i )i=1,2 as the solution of the homoge-
neous local problems

−42φ̃n+1
i = 0 inΩi,

lim|x|→0|φ̃n+1
i | = 0,

∂φ̃n+1
i

∂ni
= γn1 onΓ,

∂4φ̃n+1
i

∂ni
= γn2 onΓ,

where γn1 = − 1
2 ( ∂φ

n
1

∂n 1
+ ∂φn

2
∂n 2

) andγn2 =-
1
2 (∂4φ

n
1

∂n 1
+ ∂4φn

2
∂n 2

).

Udapting step. We update (φn+1
i )i=1,2 by solving the local problems

−4φn+1
i = f inΩi

lim|x|→0|φn+1
i | = 0,

φn+1
i = φni + δn+1

1 onΓ
4φn+1

i = 4φni + δn+1
2 onΓ

where δn+1
1 = 1

2 (φ̃
n+1
1 + φ̃n+1

2 ) and δn+1
2 = 1

2 (4φ̃
n+1
1 + 4φ̃n+1

2 ).

Proposition

Algorithm 3.1. converges in two iterations
Proof.
The equations and the algorithm are linear. it su�ces to prove convergence to zero of

the above algorithm when f≡ 0. We make use of the Fourier transform in the y direction.
First of all, as φ0

1 = φ0
2 and 4φ0

1= 4φ0
2 on Γ, we obtain the same properties for φ1

1 and φ1
2.

Then note that at each step of the algorithm φni satis�es the homogeneous equation in each
subdomain

-4̂φ̂i
n
=−(∂xx − k2)2φ̂i

n
= 0

For each k ∈ R, is a fourth order ordinary di�erential equation in x. The solution in
each domain tends to 0 as |x| tends to ∞. We get

φ̂n1 (x, k) = αn1 (k)e|k|x + βn1 (k)xe|k|x

φ̂n2 (x, k) = αn2 (k)e−|k|x + βn2 xe
−|k|x

From φ̂1
1(0, k)=φ̂1

2(0, k) we have α1
1(k) =α1

2(k)
From 4̂φ̂1

1(0, k)= 4̂φ̂1
2(0, k) we obtain β1

1(k) = -β1
2(k)

Therefore we can omit the subscript indicating the number of the subdomain in α and
β. Then , we can compute γ1

1 and γ1
2 used by the correction step

γ1
1= −(|k|α1(k) + β1(k))
γ1

2 =2k2β1(k)
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A direct computation shows that the solutions of the correction step φ̃2
i , i = 1, 2, are

given by :
ˆ̃
φ2

1(x, k) = −α1(k)e|k|x − β1(k)xe|k|x
ˆ̃
φ2

2(x, k) = −α1(k)e−|k|x − β1(k)xe−|k|x

Inserting this into algorithm 2.1. shows that the right hand side of the boundary condi-

tions are zero. Since we assumed f≡0, this shows that φ̂2
i = 0 for i = 1, 2.

From the fourth order operator -42 to the linear elasticity system.
After having found an optimal algorithm which convergers in two steps for the fourth

order operator -42 problem, we focus on the linear elasticity system . It su�ces to replace
the operator -42 by the linear elasticity system in matrix form and φ by the last component
(F(u, v)T )2 of the vector F(u, v)T in the boundary conditions. algorithm reads :

Algorithm3 .2 . We choose the initial values (u0
1, v

0
1)and (u0

2, v
0
2) such that

(F(u0
1, v

0
1)T )2 = (F(u0

2, v
0
2)T )2 and 4(F(u0

1, v
0
1)T )2 = 4(F(u0

2, v
0
2)T )2 on Γ. We compute

((un+1
i ,vn+1

i ))i=1,2 from ((uni ,v
n
i ))i=1,2 by the following iterative procedure :

Corrrection step. We compute the corrections ((ũn+1
i ,ṽn+1

i ))i=1,2 as the solution of the
homogeneous local problems

S2(ũn+1
i , ṽn+1

i ) = 0 inΩi
Lim|x|→∞|ũ n+1

i | = 0,
∂(F (ũn+1

i
,ṽn+1

i
)T )2

∂ni
= γn1 onΓ,

∂4(F (ũn+1
i

,ṽn+1
i

)T )2
∂ni

= γn2 onΓ,

where
γn1 =− 1

2 (
∂(F (un

1 ,v
n
1 )T )2

∂n1
+
∂(F (un

2 ,v
n
2 )T )2

∂n2 )

γn2 =− 1
2 (
∂4(F (un

1 ,v
n
1 )T )2

∂n1
+
∂4(F (un

2 ,v
n
2 )T )2

∂n2
)

Updating step. We update ((un+1
i , vn+1

i ))i=1,2 by solving the local problems:
S2(un+1

i , vn+1
i ) = f inΩi,

Lim|x|→∞|u n+1
i | = 0,

(F (un+1
i , vn+1

i )T )2 = (F (uni , v
n
i )T )2 + δn+1

1 onΓ
4(F (un+1

i , vn+1
i )T )2 = 4(F (uni , v

n
i )T )2 + δn+1

2 onΓ

where
δn+1
1 = 1

2 [(F (ũn+1
1 , ṽn+1

1 )T )2 + (F (ũn+1
2 , ṽn+1

2 )T )2]
δn+1
2 = 1

2 [4(F (ũn+1
1 , ṽn+1

1 )T )2 +4(F (ũn+1
2 , ṽn+1

2 )T )2]

This algorithm seems quite complex since it involves third order derivatives of the un-
knowns in the boundary conditions on (F(ũi, ṽi)

T )2. Writing (F(ũi, ṽi)
T )2 =ũi, it is possible

to simplify it. By using the linear elasicity system in the subdomains, we can lower the de-
gree of the derivatives in the boundary conditions. In order to ease the presentation in
Algorithm3 .3 . we do not mention that the solutions tend to zero as |−→x |→∞.

Algorithm3 .3 . We choose the initial values (u0
1, v

0
1) and (u0

2, v
0
2) such that v0

1 = v0
2 and

∂u0
1

∂−→n1
= ∂u0

2

∂−→n2
on Γ. We compute ((un+1

i ,vn+1
i ))i=1,2 from ((uni , v

n
i ))i=1,2 by the following

iterative procedure :
Correction step. We compute the corrections ((ũn+1

i , ṽn+1
i ))i=1,2 as the solution of the

homogeneous local problems :
S2(ũn+1

1 , ṽn+1
1 ) = 0 inΩ1,

∂ũn+1
1
∂x = − 1

2 (∂u
n
1

∂x −
∂un

2
∂x ) onΓ,

∂ũn+1
1
∂x + ∂ṽn+1

1
∂y = γn2,1 onΓ

and


S2(ũn+1

2 , ṽn+1
2 ) = 0 inΩ2,

∂ũn+1
2
∂x = 1

2 (∂u
n
1

∂x −
∂un

2
∂x ) onΓ,

−∂ũ
n+1
2
∂x − ∂ṽn+1

2
∂y = γn2,1 onΓ

where
γn2,1 = − 1

2 (∂u
n
1

∂x + ∂vn
1

∂y −
∂un

2
∂x −

∂vn
2

∂y )
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Updating step. We update ((un+1
i , vn+1

i ))i=1,2 by solving the local problems
S2(un+1

i , vn+1
i ) = −→f inΩi,

un+1
i = uni + 1

2 (ũn+1
1 + ũn+1

2 ) onΓ
∂un+1

i

∂y − ∂vn+1
i

∂x = ∂un
i

∂y −
∂vn

i

∂x + δn2,1 onΓ

where

δn2,1 = 1
2 (∂ũ

n+1
1
∂y − ∂ṽn+1

1
∂x + ∂ũn+1

2
∂y − ∂ṽn+1

2
∂x )

Schwarz Overlap Scheme applied to the linear elasticity system

We want to solve

S2(w) = −→f inΩ1

⋃
Ω2

where w = (u, v).
The schwarz algorithm runs like this :
Start from (u0

1, v
0
1), (u

0
2, v

0
2) we compute wn+1

1 , wn+1
2 from wn

1 , w
n
2as follows :{

S2(wn+1
1 ) = f inΩ1

wn+1
1 = on ∂Ω1

⋂
Ω2

and{
S2(wn+1

2 ) = f inΩ2

wn+1
2 = wn

1 , on ∂Ω2

⋂
Ω1

Here we take 1 and 2 to be rectangle, we apply the algorithm starting from zero.
Figure : The 2 overlapping mesh TH and th

Figure :Displacement �elds during the iterations
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Figure : Final con�guration of the beam after convergence
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