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INTRODUCTION

The structure and nature of the of visual systems has been of great interest in
computational neuroscience. Quite a number of authors have devoted work to un-
derstand and quantify the underlying principles of visual perception. The model we
study here follow the steps proposed by Eero Simoncelli ( see reference).

Contrast sensitivity, orientation selectivity and spatial frequencies are known to be
characterises of center-surround modulations in the visual cortex. We examine how
these properties affect suppression and facilitation of the response of the center to
stimulus presented in the classical receptive field CRF. We capture in a quantitative
model, the rich behavior of center-surround interactions at the level of primary visual
cortex V1 through consideration of surround inhibition and excitation that occur at
V1. We showed that a divisive normalization model with weights determined from
optimization procedure can justify some proposition that for low spatial frequency
we have weights that is more diffused than for higher spatial frequency.

Visual Perception

Visual images are formed from light reflected from different surfaces in the envi-
ronment. The light from these surfaces is typically combined in a non-linear way.
Image perception consists of two basic steps:� capturing the image with the eye,� recognizing and interpreting the image with the visual cortex in the brain.

We shall be primarily concerned with the second step in this report.

The Visual Field

More than one-quarter of the human cortex is thought to be involved in processing
visual information, which shows the importance of visual sensation in human per-
ception. The primary visual cortex V1, also known as the striate cortex, receives
inputs from the lateral geniculate nucleus which is connected to the photoreceptors
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in the retina. V1 is linked with area V2 by a very dense set of reciprocal connections.
Beyond areas V1 and V2 which are the two largest cortical areas of the primate vi-
sual system is a large number of smaller cortical areas that contain neurons with
selectivity to parameters such as color, depth, direction of motion, etc. Many of
these areas during activation can now be observed directly in human by magnetic
resonance imaging.

The visual areas with their corresponding functional specialization are: V1 -basic
edge detection area , V2 stereo, V3 color, V3a is texture segmentation area, V3b for
segmentation and grouping, V4 is Recognition area, V7 for face recognition, MT is
general “motion area“, MST is working memory/mental imagery area.

Figure 1: Human brain

Figure 2: Visual field
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Processing Visual information

Retina and lateral geniculate cells have center-surround receptive fields, while most
neurons in the visual cortex respond to more complex stimuli. Uniform illumination
of the whole receptive field gives, on average, little excitation; neurons in the visual
cortex are stimulated best by bars or edges of a particular orientation or spatial
frequency or specific color or movement information about disparity of images on
the two retinas is used to give stereoscopic perception depth and distance. Neurons of
the visual cortex with closely related functions are arranged anatomically in columns
of cells responding to the same region of the retina, dominated by the same eye.

Both feedforward and feedback processing are ubiquitous in Visual system; the feed-
forward and the feedback models. The feedfarward connections transfer information
from the low order areas to higher order areas and the feedback connections carry
information in the reverse direction.

According to the feedforward model, neurons in areas V1 and V2 perform local
computations on a 2D representation of the visual image and global 3D represen-
tations are assumed to be achieved in higher order areas through a succession of
filters corresponding to neurons with very sophisticated properties. Due to the diffi-
culty of segmentation of a visual scene when the image is ambiguous, the need for a
model in which the local analysis and global precept can be combined is necessary.
Hence, the feedback model was develop, not to replace the feedforward model but,
to compensate for the shortcomings.

Image Decomposition

By image decomposition, we mean splitting an image into the set of statistically
and independent components, containing details of different information classes.

There are several methods of achieving this, we discuss four common image decom-
position procedures and, show with examples, the advantages of each of them.

Wavelet Pyramid

Wavelets are multi-scale linear transforms for image representation. The basis func-
tions of these representations are localized in spatial position, orientation and spatial
frequency (scale). The coefficients resulting from projection of natural images onto
these functions are essentially uncorrelated with non-Gaussian marginal statistics.
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Figure 3: Wavelet pyramid.

Steerable Pyramid

Steerable Pyramid is a linear multi-scale, multi-orientation image decomposition
that provides a useful font-end for image processing. This was developed in other to
overcome the limitations of orthogonal wavelet decompositions (it does not represent
oblique orientation well).

The basis functions of the steerable pyramid are directional derivative operators,
that come in different sizes and orientations. Below is an example of decomposition
of an image Lena.tif using a steerable pyramid containing 4 orientation subbands,
at 2 scales.

Figure 4: Steerable pyramid.
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The Log-Gabor filters

Gabor filters are very good choice for obtaining best simultaneous localization of
spatial and frequency information. Gabor filter have Gaussian transfer function
when viewed on the linear frequency scale. It has Small bandwith and so not optimal
when we seek broad spectral information with maximal spatial localization.

(a) Log-Gabor function (b) Log-Gabor function

The Log-Gabor function provides a better alternative to Gabor function. It was
suggested by Field [1987], that natural images are better coded by filters that have
Gaussian transfer function when viewed on the logarithmic frequency scale. Log-
Gabor can be constructed arbitrary bandwith and the bandwith can be optimised
to produce a filter with minimal spatial extent. The transfer function has a form

G(w) = e(− log(ω/ω0)2)/(2(log(k/ω0)2)) (1)

where ω0 is the filter’s center frequency.

The Log-Gabor functions have no DC component and it has an extended tail at the
high frequency end. Also, Log-Gabor function is consistent with measurements on
mammalian visual systems which indicate we have cell responses that are symmetric
on the log frequency scale. The following are Gabor filters of different orientation
with the corresponding filtered Lena images.

Figure 5: Gabor filter orinted at 0° & 30°.
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Figure 6: Gabor filter oriented at 60° & 90°.

Figure 7: Gabor pyramid

Figure 8: Gabor pyramid
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Models on Center-Surround

Modulations

Retina has center-surround receptive fields which size changes depending on the
varying contrast of center-surround stimuli. Uniform illumination of the whole re-
ceptive field gives, on average, little excitation; neurons in the visual cortex are
stimulated best by bars or edges of a particular orientation or spatial frequency or
specific color or movement information about disparity of images on the two retinas
is used to give stereoscopic perception depth and distance. Neurons of the visual
cortex with closely related functions are arranged anatomically in columns of cells
responding to the same region of the retina, dominated by the same eye..

Center-Surround Modulation

The region of the retina in which an introduction or removal of impuse-like stimuli
evokes action potentials is called the classical receptive field of the visual neurons.
We examine how stimuli placed outside the CRF modulates the activity the stimulus
placed within the CRF. These interactions have been revealed to be of paramount
importance in understanding the operation of visual neurons. Both experimental
findings and theoretical work have shown results in this direction.

The center-surround modulation occur as a suppression or facilitation based on the
properties of the stimuli in the center and/or surround of the receptive field. The
properties of the stimuli that might induce suppression or facilitation include the
relative orientation, contrast and spatial frequencies.

Contrast Response of Center and Surround

Given independent center and surround mechanism, suppression from the surround
will manifest itself in the neuron’s contrast response. Suppression might be either
divisive or subtractive requiring responses at different stimulus contrast to differen-
tiate the two. Characterizing changes in a neuron’s contrast responses will inform
us whether the influence from the surround should be modelled as a divisive or

7



subtractive suppression. To determine which of these three forms of suppression
best characterized surround influences, we consider three models. The models are
based on the well known Michaelis-Menten equation which well describes the con-
trast/response relationship in the visual cortical neurons. The first model that
explains some behavior of surround suppression through a divisive change in the
neuron’s response gain.

This response gain model is

R = K(Cs)

(

Cs
√

σ + C2
c

)β

(2)

where R is the neuron’s response, K(Cs) is the scaling factor which is a function
of the surround contrast, Cc is the center contrast, σ sets the neuron’s contrast
gain and β sets the slope of the neuron’s contrast response function in a log-linear
coordinates. The contrast response is scaled by a single factor K(Cs) that depends
on surround contrast.

The second model accounts for surround influence with divisive suppression but
through a change in the contrast gain.

R = K

(

Cs
√

σ(Cs) + C2
c

)β

(3)

For the contrast gain model, the response scaling factor K is fixed but the contrast
gain parameter σ(Cs) depends on the surround contrast.

The third model assumes a subtractive influence from the surround

R = max



o, K

(

Cs
√

σ + C2
c

)β

− K0(Cs)



 (4)

where K0(Cs) is an initial response which is a function of surround contrast.

Difference of Gaussian Model

We describe a receptive field model that assume independent center-surround mech-
anism in which the suppressive takes place through a subtractive mechanism. The
difference of Gaussian model (DoG) composed of 2 overlapping mechanism, inter-
acting subtractively.

In this model, first Gaussian (Lc) represent the excitatory contribution of the CRF
center and is taken to correspond to the envelop of a Gabor function representing the
CRF’s spatial structure. The second Gaussian (Ls) centered at the same position,
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describes the suppressive contribution of the surround. The response of a neuron to
a circular grating of radius x is given by a function of the form :

R(x) = KcLc − KsLs (5)

where Kc and Ks are the gains of the center and surround mechanism;

Lc =

∫ x

o

e−(y/σc)2 dy (6)

(7)

Ls =

∫ x

o

e−(y/σs)2 dy (8)

σc and σs represent the spatial extent of the center and surround components.

The DoG model assumes that the center and the surround mechanisms interact
linearly. It has been argued by many authors that the relationship between neuron’s
contrast response and the surround stimulus is better explained by a vertical scaling
of curve in log-linear coordinates which corresponds to a divisive interaction.

Consequently, Cavanaugh et al introduced an alternative model based on ratio of
Gaussian (RoG).

Ratio of Gaussian Model

The receptive field model we present here assumes independent center and surround
mechanism in which the surround influences response through a divisive gain control.
We focus on how to explain the changes in the receptive field size through this model.
The sensitivity of each of the center and surround is modeled with a one-dimensional
Gaussian which corresponds to integrating a two-dimensional envelop of the form

exp

(−r2

2σ2

)

/r (9)

where r is radius and σ is SD of the Gaussian envelop. This envelop determine the
spatial extent of the receptive field. The activity of each mechanism is given by
integrating the Gaussian envelop covered by a stimulus placed over their common
centers. We divide the output of the center by the output of the surround. Kc

and Ks control the gains of the center and surround independently. This divisive
interaction of center-surround mechanism formed a ratio of Gaussian

R(x) =
KcLc(x)

1 + KcLc(x)
(10)
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where

Lc(x) =

(

2√
π

∫ x

0

e−(y/σc)2 dy

)2

, (11)

(12)

Ls(x) =

(

2√
π

∫ x

0

e−(y/σs)2 dy

)2

(13)

where x is the stimulus diameter, Kc and Ks are the gains of the center and surround
mechanisms, and Lc and Lc are summed squared activities of the center and surround
mechanisms respectively. σc) and σc) represent the spatial extent of the center and
surround respectively, with the constraint σc) < σc).

Changes in receptive field structure with contrast

It has been shown that the spatial extent of the receptive field changes with stim-
ulus contrast. The gain parameter in the model accounted for the changes in the
mechanism activity with contrast and thus reflect each mechanism’s sensitivity to
contrast. At high contrast, the surround is relatively strong and suppresses weak
response from the center mechanism. At lower contrasts surround is relatively weak
and this suppression is relaxed allowing a higher response from the center. As the
stimulus contrast decreases, responses decreases more for small stimulus than for
large, resulting in a shift in diameter tuning.

Without suppression, the overall response to large (infinite) stimulus is proportional
to Kc/(1 + Ks). Expressing suppression as a fractional reduction in response, we
obtain

S = 1 − 1

1 + Ks

(14)

where S is the suppression value. But Ks > 0, thus we have 0 < S < 1.

The influence of the surround was, on average, very weak at lower contrasts than at
high and this difference in the contrast gain characteristics of the center-surround
interaction causes the observed changes in the receptive field size with contrast.

Divisive Normalization Model

This model of cortical processing is based on the statistical characterization of the
sensory signals. It is widely assumed that neurons in the sensory area of the brain
are adapted, through evolution and development, to the signals to which they are
exposed. An appealing hypothesis for the design of sensory signal is the statistically
efficient representation of the visual information. The hypothesis states that the
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role of early sensory processing is to remove redundancy or increase independence
between neural responses to natural stimuli.

One of the methodologies to test this hypothesis, and which we shall follow, is
to examine the statistical properties of the environmental signals and show that a
transformation derived according to some statistical optimization criterion provides
a good description of the response properties of a set of sensory neurons.

We decompose a natural image using some linear filter (such as wavelet basis, gabor,
or steerable pyramids), when the higher-order statistical properties of the images
are examined, they are found to show some statistical dependencies, even when
the basis functions are chosen to optimize independence. The Principal component
analysis and Independent component analysis were employed (reference 7 and 9 of
simoncelli) to eliminate the statistical dependencies. But this two methods require
some extra constaints such as spatial locality and/or symmetry, in order to obtain
functions which adequately approximate cortical receptive field.

Considering the joint statistics of neural responses from a typical pair of adjacent
basis functions, it is observed that pairs are decorrelated but not statistically in-
dependent. The strength of the dependency varies depending on the specific pair
chosen. It is strongest for basis functions that are close in spatial position, orienta-
tion and scale.

This form of dependencies cannot be eliminated by linear processing. Indeed, a
nonlinear form of cortical processing is needed which will ensure that the linear
response of each basis function is rectified. By being rectified, we mean that the
response of the neurons is squared and then divided by the weighted sum of the
rectified responses of neighboring neurons.

Figure 9: Basis function at two scales and 6 orientations steerable pyramids.
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Divisive Normalization Model

The following gives the relationship between the center-surround mechanism through
what we describe as divisive normalization.

R = P 2
k̄ (x, y)/





∑

k(i,j)

ωK̄kP
2
k (x + i, y + j) + σ2



 (15)

where R is the mean response, P 2
k̄
(x, y) is the center cell, P 2

k (x + i, y + j) is the
surround cells (are the values of coefficients at adjacent spatial positions, orientations
and scales). ωK̄k and σ are chosen to minimize squared prediction error:

min
ω

K̄k
∈Rnσ∈R

E



P 2
k̄ (x, y) −

∑

k(i,j)

ωK̄kP
2
k (x + i, y + j) − σ2





2

(16)

where E[·] indicates expected value (computed by integrating over the full spatial
extent of a set of images).

The explicit values of for the weights ωK̄k and constant σ can be computed by� maximum-likelihood (ML) estimation of the parameters, assuming a Gaussian
form for the underlying conditional distribution.

P(Pi|Pj, j ∈ Ni) =
1

√

2π(
∑

j ωjiP 2
j + σ2)

exp

[

−P 2
i

2(
∑

j ωjiP
2
j + σ2)

]

(17)� Least square estimation

We focus on the Least square estimation approach. Thus, Equation (16) can be
re-written in the form:

min
ω

K̄k
∈Rn,σ∈R

J(ωK̄k, σ), (18)

J(ωK̄k, σ) =
∑

x,y



P 2
k̄ (x, y) −

∑

k(i,j)

ωK̄kP
2
k (x + i, y + j) − σ2





2

(19)

The subscripts k̄k means that the weights ωK̄k depends on the relative positions k̄
of the center and k surround cells.
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Optimization Approach

Here, we estimate the optimal values of the parameters ω and σ by doing a least
square estimation. To estimate the minimum values of ωK̄k and σ, we compute the
gradient of J as follows:

J ′

ω
K̄k

= −2
∑

x,y

[
∑

k(i,j)

P 2
k (x+i, y+j)]·

∑

x,y

[P 2
k̄ (x, y)−

∑

k(i,j)

ωK̄kP
2
k (x+i, y+j)−σ2] (20)

Thus, by Euler equality we have

J ′

ω
K̄k

= −2
∑

x,y

[
∑

k(i,j)

P 2
k (x+ i, y + j)] ·

∑

x,y

[P 2
k̄ (x, y)−

∑

k(i,j)

ωK̄kP
2
k (x+ i, y + j)−σ2] = 0

(21)

so that we get

−2
∑

x,y

[
∑

k(i,j)

P 2
k (x + i, y + j)] = 0 (22)

or
∑

x,y

[P 2
k̄ (x, y) −

∑

k(i,j)

ωK̄kP
2
k (x + i, y + j) − σ2] = 0 (23)

∑

x,y

[P 2
k̄ (x, y) −

∑

k

ωK̄kP
2
k (x + i, y + j) − σ2] = 0 (24)

which implies that

∑

x,y

P 2
k̄ (x, y) =

∑

x,y

∑

k(i,j)

ωK̄kP
2
k (x + i, y + j) − σ2 (25)

Since
∑

x,y

∑

k(i,j)

P 2
k (x + i, y + j) 6= 0

otherwise, we have that there is negative response such that the responses tends to
cancel out each other. The optimum is then attained for ωK̄k and σ such that

∑

x,y

P 2
k̄ =

∑

x,y

∑

k(i,j)

ωK̄kP
2
k − σ2 (26)

Results

We carried out the optimization procedure for obtaining the minimum weights and
we display the weights as greyscale images. Two different optimization algorithms
were considered; Least square estimation and Gradient decent method. The two
methods produced quite similar results. In both case, the tolerance for changes
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in the optimization variable and the function output have to be set in a certain
range for convergence to occur. In the Least square estimation approach, this was
achieved by rescaling the input and the objective function was modified in the case
of gradient decent.

We used three set of images to ensure that the weights are independent of the images
used. The images used are shown below. We decompose the images using different
filters. The results for Log-Gabor filter, Steerable pyramid, Wavelet pyramid and
Laplacian pyramid, are show below, for different subbands. The color corresponds
to the weights observed with hotter color having higher weights

(a) Steerable Pyramid subband 6. (b) Average weights against separation

(c) Wavelet Pyramid subbands 6. (d) Average weights against separation
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(e) Log-Gabor subband 6 (f) Average weights against separation

Figure 10: Center-Surround Separation

Figure 11: Center-Surround Separation

Discussion

In the case of steerable pyramid, we observe that the weights in the neighbhood of
the center neuron are higher that those far away. This is observed for other filter
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Figure 12: Center-Surround Separation

banks as well. Thus, the area of the proximity of the center is the region where the
suppression is strongest. Similarly, in the case of Gabor-pyramid, we observe a form
of symmetry in the weights. Thus, the suppressive effect of the surround cell which
are about the same separation from the center neuron is the same.

In Petrov and Mckee (2006) (see reference) experiment on on center-surround sep-
aration, when the separation between the center and surround radius was kept at
a constant value, it was found that the suppression was strongest for any masking.
They suggested that the drop off in suppression overlap (see figure ??) for high
spatial frequency and low spatial frequency of the surround stimulus. This idea con-
tradicts what we have observed in our simulation. We have seen earlier in the results
that the area of the surround in the proximity of the center is the region where there
suppression is strongest. Our results, see figure 11 shows that the weights are more
diffused for low spatial frequency than for high spatial frequency. This indicates that
the drop off in suppression is faster for low spatial frequency than for high spatial
frequency.
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Conclusion

We have shown that the response of the center cell to a stimulus presented outside the
classical receptive field is influenced by the surround contrast, orientation and spatial
frequency. We obtained the set of weights that minimizes the squared prediction
error for different subband and displayed these values as grayscale images. We have
also established that the separation varies with the spatial frequency. What might
be interesting to consider in a later work is to use a multiplicative model and try
to investigate if the center-surround interactions preserves the kind of property we
have established.
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