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Introduction




Seismic Exploration

Seismic Exploration — the search for subsurface
deposits of crude oil, natural gas and minerals

Objective: to form a model of the subsurface

The basic processes in seismic exploration:

Controlled sources emit elastic waves which
propagate in the subsurface

Record the wavefield propagated by the different
layers

Process the seismic data to produce some models
of the subsurface



Full Waveform Inversion

Full Waveform Inversion — a data fitting
procedure that utilizes the full information
contained in the seismic data to produce high
resolution models of the subsurface

Two main ingredients: the forward problem
and the inverse problem



Full Waveform Inversion

The Forward Problem
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Scope and Aim of the Work

The focus of this paper : implement and validate the 3D parallel
finite-difference time-domain code for acoustic wave modeling
(part of the Forward Problem)

Motivations:

o Build a forward modeling engine in the time domain to perform
3D acoustic full-waveform inversion in the frequency domain.

o Design an acoustic code with judicious stencil that will be easily
extended to the 3D elastic case.

o The 3D elastic code will be used:

1. as forward modeling engine to perform 3D elastic full-waveform
inversion

2. to perform cross-validation with a Discontinuous Galerkin finite-
element method developed by V. Etienne at Geosciences Azur

3. Perform wave modeling for other kinds of application such as
seismic hazards assessment.



The Forward Problem: Seismic Wave
Propagation Modeling




The Acoustic Wave Equation: The Earth as a Fluid
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The acoustic wave equation describes sound waves in a
liquid or gas.
Acoustic wave equation: not very accurate for modeling

wave propagation in solids but is relatively simple to
solve

Acoustic wave: essentially a pressure change. Since,
fluids exhibit fewer restraints to deformation, the
restoring force responsible for wave propagation is
simply due to pressure change



Velocity-Stress Formulation of the
Acoustic Wave Equation

@ — K 8VT | 5Vy | 8Vz
t or ' oy ' 0z

o =05 + [

ot 9

y — phYL |
N
o =09 +

Initial conditions: P and V are zero at t=0

Boundary conditions: Absorbing boundary conditions and free
surface boundary condition
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The Finite Difference Discretization of the 3D
Acoustic Wave Equation
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Staggered Grid Stencil

Simple way to avoid odd-even decoupling
between the pressure and the velocity.
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The Leapfrog Scheme

Leapfrog scheme on staggered grids

Leapfrog second-order accurate central difference scheme
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The Discretized 3D Acoustic Wave

_Jquatlon

Using the 2nd order discretization for time and 4% order
discretization for space in a staggered grid leads to:
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Numerical Dispersion and

Stability
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Numerical Dispersion

- variation of the numerical phase velocity as a
function of frequency

Occurs If:
o Grid spacing is large

o Wavelength of the source is too short compared
with the size of the grid
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Numerical Dispersion

For a Ricker wavelet, the rule of the
thumb given below is an effective
criterion for nondispersive propagation | i

Period (s) s: T
Frequency (Hz) Hz: f:
A Angular frequency: w = 2%

n Wavelength (sparial period) in meter: A = %
Wavenumber (spatial frequency) in rad.m=!:

n is the number of gridpoints per
wavelength. For a 4" order accurate
scheme, it has been established to be
5-8 gridpoints per wavelength.
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Numerical Stability

Numerical instability — an undesirable property that
may occur in explicit time-marching schemes, when the
computed result spuriously increases without limit in
time

A stability condition for the time step is the Courant-
Friedrichs-Levy (CFL) condition. For the scheme used
here,

At = fﬂ, where & = 0.48
C

Mmax

18



An Illustration through the
1D Case
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The 1D Scalar Wave Equation in
Homogeneous Medium

To illustrate the numerical analysis involved in finite
difference discretization, we start with the simplest case,
the one-dimensional homogeneous scalar wave
equation D*u 5 0%u

(‘)YL‘) - 0;1.72

A fully explicit second-order accurate finite difference
approximation of the wave equation
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Example of Dispersionless and Dispersive
Wave Propagation

Dispersionless case, S=1 Dispersive case, S=0.5
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Velocity Field for Free Surface Boundary condition, c = 4000m/s
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Simulation of an Unbounded Medium in
1D

= Radiation condition

= Sponge boundary condition
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'Radiation Condition

The solution of the 1D wave equation in homogeneous media is

u(x.t) = f(x — ct) + f(x + ct), where f is a function describing the
waveform over time and space. The partial solutions f(x — ct) and

f(x + ct) describe propagation in two opposite directions.

To mimic an infinite medium radiation conditions on the left and right
boundaries should be imposed as the following:

Right edge

On the right edge, the wavefield must satisfy: u(x.t) = f(x — ct), which
gives according to Hooke's law, (7 = E(x)2Y),

v(x,t) = —cf’(x — ct)

T(x.t) = E(x)f'(x — ct)
which leads to the radiation condition on the right edge:
T(L.t) =—Z(/)v(L.t), where Z = pc which is called the impedance.
Left edge
On the right edge, the wavefield must satisfy: u(x.t) = f(x + ct), which
leads to the radiation condition: 7(0.t) = Z(0)v(0. t).
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Time (s)

‘ Radiation Condition

Simulation in homogeneous medium
¢=4000 m/s (dispersionless — S=1)

Distance (km}

10

Time (s)

Simulation in a two-layer medium ¢1=2000 m/s
€2=4000 m/s — S=1in the high-velocity layer

0 4 5 B 10 12 14
Offset (km)
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‘ Sponge Boundary Condition

The sponge boundary condition captures the basic idea of behind the
PML. Basically, the computational domain is augment with one
absorbing (sponge) layer at each ends of the model.

The modified 1D wave equation, with an additional damping term is
introduced

{ Bv{x t} ( ]V(X t)—lll( )BTxr

2 5 ()r(x. ) = E(x) 2

where ~(x) are functions, the values of which are 0 in the medium and
progressively increase in the absorbing layers.

25



Sponge Boundary Condition

Simulation in a two-layer medium ¢1=2000 m/s
€2=4000 m/s - S=1in the high-velocity layer

Time (s)
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Parallel Implementation
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Methodology

A parallel version of the general algorithm based on
the principle of domain decomposition for structured
meshes is as follows:

o Decompose the mesh into subdomains and assign each
subdomain to a process

Determine the neighbors of each subdomain
lterate time

Exchange messages among interfaces
calculate

o 0O O O
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Subroutines

SUBROUTINE init

SUBROUTINE voisinage

SUBROUTINE typage

SUBROUTINE communication
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'SUBROUTINE init

This procedure init executes the
decomposition of the original
domain into subdomains and
the initialization of MPI
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'SUBROUTINE voisinage

DO IT

UP L J
5

This procedure determines the
existing neighbors of a

subdomain and which process

they correspond to
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'SUBROUTINE typage

= This procedure defines
the data blocks to be
send in sending and
receiving messages

nlloc

type_face23

X
QEﬁdpnints{
N

ndloc

type facel2

nlloc

2 prid points

2 prid points
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SUBROUTINE typage

To pass data to and from the overlaps of subdomains, data types for
each type of face are defined by using the following MPI functions:

MPI TYPE VECTOR(number of blocks, number of elements in each
block,number of elements between the start of each block, old type,
new type)

-- allows replication of a datatype into locations that consist of equally
spaced blocks.

MPI TYPE HVECTOR

-- almost the same as MPI TYPE VECTOR except that the stride (3rd
parameter) between the start of each block is in bytes instead of the
number of elements
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SUBROUTINE communication

This procedure is done within the loop in time

Its purpose is to send data blocks from the subdomain to
the corresponding neighboring areas and to receive the
same points in the relevant fields

Use |\/|P|_SENDRECV(initiaI address of sending, number of elements to

be sent, type of elements to send, destination, initial address of reception, number of

elements to receive, source)
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SUBROUTINE communication

For each subdomain, a three-dimensional array (to be
called x) is allocated as:

X(-1:nlloc+2,-1:n2loc+2,-1:n3loc+2)

Below is a table that summarizes the communication

procedure

SEND-RECEIVE,

Send Address

Receive Address

Type

send to N-receive from S

x(1.1.1)

x(1, n2loc+1.1)

type_facel3

send to W-receive from E

x(1.1.1)

x(1.1.n3loc + 1)

type_facel2

send to UP-receive from DOWN

x(1.1.1)

x(nlloc+1,1.1)

type_face23

send to DOWN-receive from UP

x(nlloc —1.1.1)

x(—1.1.1)

type_face23

send to E-receive from W

x(1.1.n3loc — 1)

x(1.1.-1)

type_facel2

send to S receive from N

x(1.n2loc —1.1)

x(1.—1.1)

type_facel3
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‘ Algorithm

Intialize MPT
Bead input file
Compute source wavelest
Decompose the domain and define data types for interface
Initialize p, wv®, vy and v to zero (Initial conditions)
Build the parameters b and kappa and C-PML parameters on each subdomain
Locate corresponding subdomain location of source, receivers and topography points
Do it=1l,nt
Take snapshots of pressure wavefield
Record pressure wvalues at each time step for sach receiver
Commmicate vy, vy and vz between subdomains
Do i3=1,n3loc ™

Do iZ2=1, nZloc
Do il=1,nlloc
dvx dx = [ a0*(wx(il,i2, i3) —w=x(il, i2,i3-1}) + al* (vk(il,iZ,i3+1) —w=x(il, i2 3i3-2}) } / dx
dvy dy = [ al*(wy(il,i2, i3} —wy(il,12-1,33})} + al*(vy(il,i24+1,i3) —vyiil, i2-2,33}} )} / dy Update
dvz dz = ( a0*(vz(il,iZ2,i3)-vz(i1l-1,i2,i3})) + al*(ve(il4l,i2,i3)-v=(il-2,12,i3})) } / dz
Apply C-BML on dv_dx,dv dy and dv dz -
plil,i?,i3) = p(il, i2,i3} + kappaloc(il,iZ,i3) * (dvx dx + dvy dy + dvz_dz)
End do
End dn
End do y.
Increment Source
Commmicate p between subdomains
Do is=1,n3loc ™
Do iZz=1,nZloc
Do il=1,nlloc
dp dr = [ al¥%(p(il,iZ, i%+1)-p(il,iZ2,i3)} + al*(p(il, iZ,i3+2)-p(il, i?,i3-1}) } / dx
dp dy = [ a0%(p(il, i2+1,i3)-p(il,i2,i3)} + al*(p(il, iZ2+2,4i3)-p(il, i2-1,i3}) } / dy
dp dz = [ a0*(p(il+l,iZ,i3)-p(il,i2,i3)) + al*(p(il+2,i2, i3)-p(il-1,i2,i3}} } / d= REE
Zpply C-BML on dp_dx,dp dy and dp_dz } VK,
vk (il,iZ,i3) = wx(il,iZ, i3} + bu3loc(il,iz, i3} * dp dx ¥, w2
vy (il,i2,i3) = wy(il,iZ,i3) + buZloc(il,iZ,i3) * dp dy
vz (il,i2,i3) = w=z(il,iZ,i3) + bulloc(il,iZ,i3) * dp d=z
End do
End dn
End do .

End do
Write snapshots and seismograms to a2 £ile
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Numerical Results
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Comparison with Analytical Solution in
Homogeneous Medium
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‘ Simulation on a Realistic Model

= Number of
unknowns:
139x450x450

= 28,147,500

= Number of time
steps=3000

= Time step =0.0032

The SEG/EAGE Salt model

{Society of Exploration Geaphysics - European Association Geoscientists & Engineers)

Dip direction {(kmj
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Depth (km)
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' Simulation

on

Dip direction (krrl

a Realistic Model

4-Hz monochromatic wavefield
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Extraction of Seismograms

Offset (km)

Time (s)
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Scalability and Etficiency Analysis
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‘ Scalability and Efficiency

Efficiency

| Speedup
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Simulations performed on the IBM Power6 of IDRIS
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Conclusions
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Conclusion

Validate the accuracy of the FDTD code

Validate the efficiency of the absorbing boundary
condition: C-PML

Validate the computational efficiency of the code on
realistic example computed on a large-scale
distributed memory platform

Conclusion: we have a modeling engine which is ready
to be implemented in a 3D acoustic Full Waveform
Inversion code
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Perspectives

Extension to the elastic through rotated
stencll

Implementation of the FDTD code in FWI
which can be viewed in two levels of
parallelism:

o Perform modeling in sequential and distribute the
sources (rhs) over processors

o Classical domain decomposition of the number of
sources are much less than the number of
Processors

46



Thank you for listening!

Special thanks to Prof. Operto.
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