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Introduction
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Seismic Exploration

Seismic Exploration – the search for subsurface 
deposits of crude oil, natural gas and minerals

Objective: to form a model of the subsurface

The basic processes in seismic exploration:
 Controlled sources emit elastic waves which 

propagate in the subsurface 
 Record the wavefield propagated by the different 

layers
 Process the seismic data to produce some models 

of the subsurface
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Full Waveform Inversion

Full Waveform Inversion – a data fitting 
procedure that utilizes the full information 
contained in the seismic data to produce high 
resolution models of the subsurface

Two main ingredients: the forward problem
and the inverse problem
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Full Waveform Inversion

where

The Forward Problem

The Inverse Problem

Model Data
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Scope and Aim of the Work

 The focus of this paper : implement and validate the 3D parallel
finite-difference time-domain code for acoustic wave modeling 
(part of the Forward Problem)

 Motivations:
 Build a forward modeling engine in the time domain to perform 

3D acoustic full-waveform inversion in the frequency domain. 
 Design an acoustic code with judicious stencil that will be easily 

extended to the 3D elastic case.
 The 3D elastic code will be used:    

 1. as forward modeling engine to perform 3D elastic full-waveform 
inversion    

 2. to perform cross-validation with a Discontinuous Galerkin finite-
element method developed by V. Etienne at Geosciences Azur

 3. Perform wave modeling for other kinds of application such as 
seismic hazards assessment.
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The Forward Problem: Seismic Wave 
Propagation Modeling
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The Acoustic Wave Equation: The Earth as a Fluid

 The acoustic wave equation describes sound waves in a 
liquid or gas. 

 Acoustic wave equation: not very accurate for modeling 
wave propagation in solids but is relatively simple to 
solve

 Acoustic wave: essentially a pressure change. Since, 
fluids exhibit fewer restraints to deformation, the 
restoring force responsible for wave propagation is 
simply due to pressure change
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Velocity-Stress Formulation of the 
Acoustic Wave Equation

 Initial conditions: P and V are zero at t=0

 Boundary conditions: Absorbing boundary conditions and free 
surface boundary condition
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The Finite Difference Discretization of the 3D 
Acoustic Wave Equation
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Staggered Grid Stencil

 Simple way to avoid odd-even decoupling 
between the pressure and the velocity.

1D Staggered Grid
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The Leapfrog Scheme

 Leapfrog scheme on staggered grids
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The Discretized 3D Acoustic Wave 
Equation
 Using the 2nd order discretization for time and 4th order 

discretization for space in a staggered grid leads to:
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Numerical Dispersion and 
Stability
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Numerical Dispersion

- variation of the numerical phase velocity as a 
function of frequency

Occurs if:
 Grid spacing is large
 Wavelength of the source is too short compared 

with the size of the grid
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Numerical Dispersion

For a Ricker wavelet, the rule of the 
thumb given below is an effective 
criterion for nondispersive propagation

n is the number of gridpoints per 
wavelength. For a 4th order accurate 
scheme, it has been established to be 
5-8 gridpoints per wavelength.

n
x 




18

Numerical Stability

 Numerical instability – an undesirable property that 
may occur in explicit time-marching schemes, when the 
computed result spuriously increases without limit in 
time 

 A stability condition for the time step is the Courant-
Friedrichs-Levy (CFL) condition. For the scheme used 
here,

48.0   where,
max




 
c

xt
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An Illustration through the 
1D Case
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The 1D Scalar Wave Equation in 
Homogeneous Medium
 To illustrate the numerical analysis involved in finite 

difference discretization, we start with the simplest case, 
the one-dimensional homogeneous scalar wave 
equation

 A fully explicit second-order accurate finite difference 
approximation of the wave equation
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Example of Dispersionless and Dispersive 
Wave Propagation

Velocity Field for Free Surface Boundary condition, c = 4000m/s

Dispersionless case, S=1 Dispersive case, S=0.5
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Simulation of an Unbounded Medium in 
1D
 Radiation condition

 Sponge boundary condition
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Radiation Condition
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Radiation Condition

Simulation in a two-layer medium c1=2000 m/s
c2=4000 m/s – S=1 in the high-velocity layer

Simulation in homogeneous medium 
c=4000 m/s (dispersionless – S=1)
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Sponge Boundary Condition
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Sponge Boundary Condition
Simulation in a two-layer medium c1=2000 m/s

c2=4000 m/s - S=1 in the high-velocity layer
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Parallel Implementation
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Methodology

 A parallel version of the general algorithm based on 
the principle of domain decomposition for structured 
meshes is as follows:

 Decompose the mesh into subdomains and assign each 
subdomain to a process

 Determine the neighbors of each subdomain
 Iterate time
 Exchange messages among interfaces
 calculate
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Subroutines

 SUBROUTINE init

 SUBROUTINE voisinage

 SUBROUTINE typage

 SUBROUTINE communication
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SUBROUTINE init

This procedure init executes the 
decomposition of the original 
domain into subdomains and 
the initialization of MPI
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SUBROUTINE voisinage

This procedure determines the 
existing neighbors of a 
subdomain and which process 
they correspond to
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SUBROUTINE typage

 This procedure defines 
the data blocks to be 
send in sending and 
receiving messages
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SUBROUTINE typage

To pass data to and from the overlaps of subdomains, data types for
each type of face are defined by using the following MPI functions:

MPI TYPE VECTOR(number of blocks, number of elements in each 
block,number of elements between the start of each block, old type, 
new type)
-- allows replication of a datatype into locations that consist of equally 
spaced blocks. 

MPI TYPE HVECTOR
-- almost the same as MPI TYPE VECTOR except that the stride (3rd 
parameter) between the start of each block is in bytes instead of the 
number of elements
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SUBROUTINE communication

 This procedure is done within the loop in time

 Its purpose is to send data blocks from the subdomain to 
the corresponding neighboring areas and to receive the 
same points in the relevant fields

 Use MPI_SENDRECV(initial address of sending, number of elements to 
be sent, type of elements to send, destination, initial address of reception, number of 

elements to receive, source)
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SUBROUTINE communication

 For each subdomain, a three-dimensional array (to be 
called x) is allocated as:

x(-1:n1loc+2,-1:n2loc+2,-1:n3loc+2)

Below is a table that summarizes the communication 
procedure
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Algorithm
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Numerical Results
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Comparison with Analytical Solution in 
Homogeneous Medium
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Simulation on a Realistic Model

 Number of 
unknowns: 
139x450x450 
= 28,147,500

 Number of time 
steps=3000

 Time step =0.0032
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Simulation on a Realistic Model
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Extraction of Seismograms
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Scalability and Efficiency Analysis

4   where, min
min  N

T
T

Speedup
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NT
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




4
min

Simulations 
performed on the 
IBMPower6 of 
IDRIS
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Scalability and Efficiency
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Conclusions
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Conclusion

 Validate the accuracy of the FDTD code
 Validate the efficiency of the absorbing boundary 

condition: C-PML
 Validate the computational efficiency of the code on 

realistic example computed on a large-scale 
distributed memory platform

Conclusion: we have a modeling engine which is ready 
to be implemented in a 3D acoustic Full Waveform 
Inversion code
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Perspectives

 Extension to the elastic through rotated 
stencil

 Implementation of the FDTD code in FWI 
which can be viewed in two levels of 
parallelism:
 Perform modeling in sequential and distribute the 

sources (rhs) over processors
 Classical domain decomposition of the number of 

sources are much less than the number of 
processors
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Thank you for listening!

Special thanks to Prof. Operto.


