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Introduction

We consider the unsteady diffusion problem

∂u

∂t
−∇ ⋅ K ⋅ ∇u = f in Ω

u = 0 on ΓD∀t

∂u

∂n
= 0 on ΓN∀t

The conductivity, K = k∣∣K̃ + kI I is a 3 by 3 tensor comprising two parts.

The first part is the parallel conductivity given by k∣∣K̃ = k∣∣bbT/∣b∣2,
where k∣∣ is the parallel diffusion coefficient and b is a prescibed magnetic
vector-field. The second component, kI I , is the standard isotropic diffusion
term. Generally, the diffusion is strongly anisotropic, with k∣∣ >> kI .
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Triangulation

Definition

For a given set of points V, we call a triangulation a set of triangles T,
such that:

all points of T constitute V

none of the triangles in T overlap

the union of all triangles of T is the convex hull of V

T crosses V only in nodes.

Oleh Krehel (JAD Univ. Nice/INRIA Sophia-Antipolis) Internship project July 16, 2009 3 / 30



Definition

A Delaunay triangulation D of a vertex set V is a graph with the following
property: if u, v ∈ V , then uv ∈ D ⇔ ∃ circle, that passes through u, v
that doesn’t contain inside any point from V (this is called the Delaunay
property of the edge).

From this definition it’s obvious that for a given set of points, the
Delaunay triangulation is unique, as we can determine for each edge if it’s
present in the triangulation.
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On the pictures below, we have a set of vertices and its Delaunay
triangulation.
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Flipping Algorithm

The Flipping Algorithm starts from any triangualtion of set of points V ,
and looks for an edge that isn’t Delaunay. When it finds it, the edge is
removed, creating a quad, and then inserted back as the other diagonal.

Definition

An edge e of triangulation is locally Delaunay if it has the Delaunay
property with respect to just to the vertices of two triangles that contain e.
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PSLG and Constrained Delaunay triangulation

Definition

A Planar Straight Line Graph(PSLG) is a collection of vertices and
segments. Segments are edges whose endpoints are vertices in the PSLG,
and whose presence in any mesh generated from the PSLG is enforced.

Definition

A constrained Delaunay triangulation of a PSLG is similar to a Delaunay
triangulation, but each PSLG segment is present as a single edge in the
triangulation.

Definition

An edge or a triangle is constrained Delaunay if it doesn’t cross/cover a
segment of PSLG(except when an edge belongs to PSLG), and its
circumcircle doesn’t cover any point of PSLG that is visible from the
middle of the triangle or the edge(the line joining the middle point and a
point of PSLG doesn’t cross a segment of PSLG).
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On the picture below the edge e and the triangle t are constrained
Delaunay. Although their circumcircles cover vertices of PSLG, they aren’t
visible through the segments.
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On the next picture there’s (a)–PSLG,(b)–DT,(c)–CDT. As we can see,
some edges of CDT are constrained Delaunay but not Delaunay.
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Definition

A conforming Delaunay triangulation(CDT) of a PSLG is a true Delaunay
triangulation in which each PSLG segment may have been subdivided into
several edges by insertion of additional vertices, called Steiner points.
Steiner points are necessary to allow the segments to exist in the mesh
while maintaining the Delaunay property. Steiner points are also inserted
to meet constraints on the miniumum angle and maximum triangle area.

The latter is a triangulation that a Finite Element method can work with.
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Domain generation, based on a list of points and normals

The program uses the second order Bezier splines to approximate the
curved segments:

s(t) = t2p1 + 2t(1− t)m + (1− t)2p2

where p1 and p2 are the endpoints and m is the control point.
After little computation, we get the coordinates of control point from
normals:

x =
x1n1xn2y − x2n2xn1y + n1yn2y (y1 − y2)

n1xn2y − n2xn1y

y =
y1n1yn2x − y2n2yn1x + n1xn2y (x1 − y2)

n1yn2x − n2yn1x
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with Bezier splines, the boundary is C 1
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Variational formulation for stationary problem

find u ∈ V = {v ∈W 1
2 ∣v = 0 on ΓD} such that∫

Ω
∇u ⋅ k ⋅ ∇v =

∫
Ω

f ⋅ v
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Computing matrices on reference triangle

To compute the elements∫
K
∇NK

i ⋅ k(x , y) ⋅ ∇NK
j and

∫
K

NK
i NK

j

move to the so-called reference element:

p̂1 = (0, 0), p̂1 = (1, 0) p̂1 = (0, 1)

The local nodal functions in the reference triangle for P1 are:

N̂1 = 1− � − �, N̂2 = �, N̂3 = �

Let us now take the three vertices of a triangle K

pK
1 = (x1, y1), pK

2 = (x2, y2), pK
3 = (x3, y3)

The following transformation[
x
y

]
=

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

] [
�
�

]
+

[
x1

y1

]
maps the triangle K̂ bijectively into K . Call this transformation FK .
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FK (p̂i ) = pK
i , i = 1, 2, 3

It is simple now to see that

NK
i (x , y) = N̂i (F−1

K (x , y))

Since computing F−1
K is straightforward from the explicit expression for

FK , this formula gives a simple way of evaluating the functions NK
i .

To evaluate the gradient of NK
i we have to apply the chain rule:

BT
K (∇� ∘ FK ) = ∇̂(� ∘ FK )

BT
K is the transposed of the matrix of the linear transformation FK .

Taking � = NK
i in this expression, we obtain:

∇NK
i = B−TK

(
(∇̂N̂i ) ∘ F−1

K

)
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Isoparametric elements

On the picture above, we have the reference triangle and a deformation of
the image triangle.
Let us now call pK

4 to the midpoint of the segment that joins p̂2 and p̂3,
that is p̂4 = ( 1

2 ,
1
2 ).

Take a fourth point in the physical space, pK
4 = (x4, y4) and compute its

deviation from the midpoint of pK
2 and pK

3[
�x
�y

]
=

[
x4

y4

]
−
[ x2+x3

2
y2+y3

2

]
Oleh Krehel (JAD Univ. Nice/INRIA Sophia-Antipolis) Internship project July 16, 2009 16 / 30



Finally take the transformation FK : K̂ → R2 given by

FK (�, �) = F 0
K (�, �) + 4��

[
�x
�y

]

BK = DF (�, �) = B0
K+4

[
�
�

] [
�x �y

]
=

[
x2 − x1 + 4��x x3 − x1 + 4��y
y2 − y1 + 4��x y3 − y1 + 4��y

]
When pK

4 is not too far from the midpoint of pK
2 and pK

3 , that is, when
the deviation (�x , �y ) is not too large, it is possible to prove that the
image if K̂ under this transformation K = FK (K̂ ) is mapped bijectively
from the reference element and therefore we can construct an inverse to
FK : K̂ → K .
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Computing the local integrals for isoparametric triangles

NK
i = N̂i ∘ F−1

K

Instead of integrating on K , we move to the reference domain:∫
K

NK
i NK

j =

∫
K̂
∣detBK ∣N̂i N̂j

With this strategy, the integral is defined on a plain triangle and we just
need to compute the non-constant determinant of

BK =

[
x2 − x1 + 4��x x3 − x1 + 4��y
y2 − y1 + 4��x y3 − y1 + 4��y

]
on the chosen quadrature points.
Stiffness matrix:∫

K̂
∣detBK ∣((B−TK ∇N̂i )

T ⋅ k(x(�, �), y(�, �)) ⋅ (B−TK ∇N̂i )
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Formulation of integrals over a triangular area

Since an affine transformation makes it possible to transform any triangle
into a standard triangle T with coordinates {(0,0), (0,1), (1,0)}, we have
to consider just the numerical integration on T. The integral of an
arbitrary function f over the surface of a triangle T is given by:

I =

∫∫
T

f (x , y) dx dy =

∫ 1

0
dx

∫ 1−x

0
f (x , y)dy =

∫ 1

0
dy

∫ 1−y

0
f (x , y)dx

Now we have to find the value of the integral by a quadrature formula:

I =
N∑

m=1

cmf (xm, ym)

where cm are the weights associated with specifice points (xm, ym) and N
is the number of pivotal points related to the required precision.
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The integral can be transformed into an integral over the surface of the
square: {(u, v)∣ 0 ≤ u, v ≤ 1}, by substitution:

x = u, y = (1− u)v

Then the determinant of the Jacobian and the differential area are:

∂(x , y)

∂(u, v)
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
= (1)(1− u)− 0(−v) = 1− u

and

dx dy =
∂(x , y)

∂(u, v)
du dv = (1− u) du dv

I =

∫ 1

0

∫ 1−x

0
f (x , y) dy dx =

∫ 1

0

∫ 1

0
f (u, (1− u)v)(1− u) du dv

=

∫ 1

−1

∫ 1

−1
f (

1 + �

2
,

(1− �)(1 + �)

4
)(

1− �
8

)d� d�

Last equation represents an integral over the surface of a standard
2-square:
{(�, �)∣ − 1 ≤ �, � ≤ −1}.
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I =

∫ 1

0

∫ 1

0
f (x(�, �), y(�, �))(

1− �
8

) d� d�,

I =
n∑

i=1

n∑
i=1

(
1− �i

8
)wiwj f (x(�, �), y(�, �)),

where �i , �i are Gaussian points in the �, � directions, respectively, and wi

and wj are the corresponding weights.

I =
N=n×n∑
k=1

ck f (xk , yk),

where ck , xk and yk can be obtained from the relations:

ck =
1− �i

8
wiwj , xk =

1 + �i
2

, yk =
(1− �i )(1 + �i )

4
,

k, i , j = 1, 2, 3, . . . , n.
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Time discretization

There is little difficulty in extending the finite element idealization to
situations that are time dependant. By putting

uh =
∑

Niai = Na

N = N(x , y , z) a = a(t) (1)

for each element, then we get the following matrix differential equation:

Cȧ + Ka + f = 0 (2)

a(0) = a0 (3)

in which all the matrices are assembled from element submatrices in the
standard manner with C being the mass matrix and K being the stiffness
matrix. To solve the problem we use the SS11 algorithm:

an+1 = an + Δt� (4)

� = −(C + ��tK)−1(f + Kan) (5)

� is chosen to be 0.5, which corresponds to Crank-Nicholson scheme.
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Solver

I’ve implemented a sparse direct solver that uses Cholesky decomposition
for symmetric systems.
Following algorithms are used:

Gibbs algorithm for finding a pseudo-peripheral node.

Reverse Cuthill-McKee algorithm for finding a symmetrical reordering
of rows and columns, that decreases the profile of the system.

Cholesky decomposition itself, with matrix being stored as an
envelope.
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Validation

Take known solution to be u = sin(�x) sin(�y) in Ω = [0, 1]x [0, 1]. To
estimate convergence rates we need two meshes with sizes h and h/2:

∣∣u − uh∣∣L2 ≤ hm∣∣u∣∣W 1
2

∣∣u − uh/2∣∣L2 ≤ (
h

2
)m∣∣u∣∣W 1

2

From here we can find m
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h = 1
10 h = 1

20 rate m

linear 0.00414891 0.00104353 1.9913
quadratic 0.000101269 1.19623⋅10−5 3.0816

h = 1
20 h = 1

40 rate my

linear 0.00104353 0.000261274 1.9978
quadratic 1.19623⋅10−5 1.4637⋅10−6 3.0310

From here we can see that estimated convergence rates match the
theoretical ones. The program is working correctly.
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Time evolution example 1, P1,1710 points,t ∈ [0, 0.001]

For this case consider k = I , f = 1
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Time evolution example 2, P1,1710 points, t ∈ [0, 0.001]

For this case consider k to have only the tangential component w.r.t the
circles centered at (0.5,0.5).
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Isoparametric example

Here is an example of a domain we can model.
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This is the triangulation of the domain.
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This is how the solution looks like.
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Conclusions

During my industrial training I have learned:

some knowledge on domain triangulation

some more advanced techniques in FEM

typesetting in LATEX

The program I wrote could use some improvements:

more advanced sparse matrix handling

try using iterative solvers

solve platform independance issues

Oleh Krehel (JAD Univ. Nice/INRIA Sophia-Antipolis) Internship project July 16, 2009 31 / 30


	Anisotropic Diffusion

