
Dmitry Ponomarev, NACHOS team, INRIA

High-order Time-Integration Methods for Maxwell's Equations

(industrial / research training report)

July 23, 2009

1

Contents

1. Approximation of ODEs and PDEs with Finite Di�erences . 3

1.1. Runge-Kutta Methods . 3

1.2. Linear Multistep Methods . 4

1.3. Stability, Consistency, Convergence . 5

1.4. Stability on Examples . 10

1.4.1. Heat Equation . 10

1.4.2. Wave Equation . 15

2. Discontinuous Galerkin Method . 28

3. Application to the Equations of Electromagnetics . 43

4. Conclusions and Final Remarks . 56

Appendix - MATLAB Codes . 58

References . 78

2

1. Approximation of ODEs and PDEs with Finite Di�erences

Although majority of problems are mathematically formulated in PDE form, it is reasonable to start with

considering an ODE problem, not just because of its simplicity, but also due to the fact that it is useful for

solving PDEs. For example, application of semi-discretized methods for solving a PDE yields a set of ODEs:

in a time-dependent PDE problem we do discretization in space at every time step and thus end up with

ODEs in time (this is so-called Method of Lines). Therefore, it is essential to introduce some basic concepts

and methods for numerical solution of an ODE. Due to the fact that a high-order ODE is equivalent to the

system of the �rst order ODEs, the most crucial is to consider the following ODE problem


dy

dt
≡ y′ = f(t, y), t > 0

y(0) = y0

(1)

where y(t), f(t, y) can be either functions or vector-functions.

Later, in all the numerical method we intend to discuss in the current work we will use the following

notations: k stands for the time step, yn are approximations of the solution at tn = nk (that is yn ≈ y(tn)

for all integer n starting from 0) and fn = f(tn, yn).

1.1. Runge-Kutta Methods

To introduce such a powerful instrument as Runge-Kutta methods, we start with rewriting the ODE of

(1) in the integral form

y(tn+1) = y(tn) +

tn+1ˆ

tn

f(t, y(t))dt (2)

One can see that use of the midpoint formula for integration leads to yn+1 = yn + kf

(
tn +

k

2
, y

(
tn +

k

2

))
where y

(
tn +

k

2

)
can be evaluated using just Euler method y

(
tn +

k

2

)
= yn +

k

2
fn (which preserves here

the second order approximation of the midpoint formula due to the multiplication of f by k). This partic-

3

ular second-order method referred as RK2 gives inspiration to formulate the general idea of what is called

Runge-Kutta methods.

All the Runge-Kutta methods are one-step methods (which means that to �nd value yn+1 one needs to

know just the value at the previous time step yn), however, within one time step we have internal stages.

General s-stage Runge-Kutta method reads


Yi = yn + k

s∑
j=1

aijf(tn + cik, Yj), 1 ≤ i ≤ s

yn+1 = yn + k

s∑
i=1

bif(tn + cik, Yi)

where the coe�cients aij , bi, ci can be found from some consistency conditions (we refer, for example, to [3])

which in general become extremely cumbersome with growth of number of stages s.

If the matrix aij is lower diagonal, then a Runge-Kutta method is explicit. Order of accuracy of

Runge-Kutta methods is usually less than number of stages s and equal to it just for a couple of methods,

one of them is the classical fourth-order method RK4. Since the computational di�culty imposes restrictions

on usage of higher-order Runge-Kutta methods, the RK4 method, having also good stability characteristics,

is the most commonly used and sometimes is even referred as just the Runge-Kutta method.

1.2. Linear Multistep Methods

A linear s-step method is generally given in the following form

s∑
j=0

αjyn+1−j = k

s∑
j=0

βjfn+1−j

where, by convention, we set α0 = 1.

If β0 = 0, then the method is explicit and we can write

yn+1 =
s∑
j=1

(−αjyn+1−j + kβjfn+1−j)

4

Adams methods are based on using an interpolating polynomial to approximate f(t, y) in the in-

tegral form (2) and easily perform integration. If interpolating polynomial is driven through the points

tn, tn−1, ..., tn−s+1 , the methods are explicit and they form Adams-Bashforth family. In case we make

interpolating polynomial additionally pass through tn+1, we derive Adams-Moulton family of methods

which are obviously implicit (since the right-hand side involves yn+1).

Another commonly used family of methods, BDF (Backward Di�erentiation Formula methods),

also employs polynomial interpolation through the points tn+1, tn, tn−1, ..., tn−s+1 but for approximation of

y(t), not f(t, y). Once it is approximated, we compute the derivative and plug it directly to the ODE of (1)

where in the right-hand side we take f(t, y) = f(tn+1, yn+1). After that it remains to solve this for yn+1.

However, when one intends to use a linear multistep method, usually a Runge-Kutta method is still needed

to get initial steps in order to start the multistep method.

1.3. Stability, Consistency, Convergence

To proceed with the notion of stability, we introduce a numerical scheme operator Nπ such that mesh

function yπ(t) corresponding to the exact solution (i.e. yπ(tn) = yn) satis�es equation Nπyπ(tn) = 0 for all

n = 0, ..., N .

Then we can de�ne stability (0-stability) in the following way (see [1]): if there exist positive constants

k0, K such that for any mesh functions xπ and zπ for k ≤ k0 one has

|xn − zn| ≤ K{|x0 − z0|+ max
1≤j≤N

|Nπxπ(tj)− Nπzπ(tj)|}

for all 1 ≤ n ≤ N , then the method with operator Nπ is called 0-stable. In other words, stability ensures

that numerical solution obtained by numerical method corresponding to Nπ does not blow up.

One can note that application of a numerical method operator to the exact solution computed at one of

the points tn gives local truncation error:

Nπy(tn) = dn

5

If

max
n
|dn| = O(kp)

for all problems with su�ciently smooth solutions, a method is said to have the order of accuracy p.

In case p ≥ 1, a method is called consistent.

Assume a method to be consistent of order p and stable, then

|yn − y(tn)| ≤ Kmax
n
|dn| = O(kp),

so the method is convergent of order p. That is to say that consistency and stability imply convergence.

One of the practical way to study stability of an ODE method is to consider its application to the test

equation

y′ = λy (3)

Obviously, to avoid solution for this equation to be unbounded, one has to have non-positive real part of

λ:

<eλ ≤ 0

In a similar way, for a numerical method applied to (3) we de�ne a region of the z-complex plane (denoting

z = kλ) where

|yn+1| ≤ |yn|

for all n = 0, 1, 2, ..., this region we call the region of absolute stability.

If the region of absolute stability of a method contains the entire left half-plain of z, we call such method

A-stable.

We de�ne the stability function R(z) in a way that

yn+1 = R(z)yn (4)

yn = R(z)ny0 (5)

Then the region of absolute stability corresponds to

6

|R(z)| ≤ 1 (6)

For some methods (for example, trapezoidal or midpoint), in spite of |R(z)| < 1 for �nite z, we might

have lim
z→−∞

|R(z)| = 1 that is not very good characteristic of the method unless the time step k is very small:

because solutions for smaller λ (i.e. greater |λ| which are referred as higher modes) are damped less than

bigger ones (which are lower modes) that contradicts to behavior that exact solution of (3) exhibits with

respect to change of parameter λ. This leads to de�nition of another type of stability: a method is called

L-stable or having sti� decay if its stability function satis�es the following condition

lim
|z|→∞

|R(z)| = 0 (7)

Generally, we de�ne sti�ness in the following way (although there is no proper unique de�nition, here

we refer to [1]) - we call an ODE problem sti� if the absolute stability condition for an explicit Runge-Kutta

method impose higher restriction on step size than it is needed for achieving desired accuracy.

If we have a linear system of ODEs or linear multistep method, then R(z) will be matrix and in the con-

ditions (6), (7) instead of modulus we should write spectral radius of this matrix. This will be demonstrated

further on examples (see the next section).

Talking about absolute stability, it makes sense to write down explicitly stability function for Runge-Kutta

methods (due to their high-importance). A general Runge-Kutta method for the test equation (3) reads


Yi = yn + z

s∑
j=1

aijYj

yn+1 = yn + z

s∑
j=1

bjYj

Rewriting this is in matrix form we have


Y = yn + zAY ⇒ Y = (I − zA)−1yn

yn+1 = yn + zbTY = (1 + zbT (I − zA)−11)yn

7

Therefore, the stability function for Runge-Kutta methods is given by

R(z) = 1 + zbT (I − zA)−11

where 1 = (1, ..., 1)T is the vector having dimension s.

Another essential tool to study stability of a numerical scheme is to use Fourier analysis.

Given an explicit scheme in general form

yn+1
j =

r∑
m=−l

bmy
n
j+m (8)

where ynj ≈ y(tn, xj) are approximations of solution on an uniform grid with time step k and step in space

h.

We apply this scheme to the constant coe�cient PDE problem with periodic boundary conditions.

Due to periodicity of the problem, the solution can be expanded in the Fourier series

y(x, t) =
∞∑

j=−∞
αj(t)e

2πijx
L

with the coe�cients determined by

αj(t) =
1
L

ˆ L

0

y(ξ, t)e
−

2πijξ
L dξ

Recalling Parseval's equality

‖y(x, t)‖L2
=

∞∑
j=−∞

|αj(t)|2

we conclude that we can study stability by analyzing behavior in time of the coe�cients αj(t). Therefore,

using (8) we compute

8

αj(tn+1) = αj(tn + k) =
1
L

ˆ L

0

y(ξ, tn + k)︸ ︷︷ ︸
=

r∑
m=−l

bmy(ξ +mh, tn)

e
−

2πijξ
L dξ

By means of substitution ξ̃ = ξ +mh, the last expression transforms into

αj(tn+1) =
r∑

m=−l

bme

2πimh
L

L

ˆ L+mh

mh

y(ξ̃, tn)e
−

2πijξ̃
L dξ̃

Now we develop integral

ˆ L+mh

mh

... =
ˆ L

0

...+

ˆ L+mh

L

...−
ˆ mh

0

...︸ ︷︷ ︸


=0

using periodicity of function under integral sign that results in vanishing of the term in the square brackets.

Finally, we arrive at

αj(tn+1) =
r∑

m=−l

bme

2πimh
L

1
L

ˆ L

0

y(ξ̃, tn)e
−

2πijξ̃
L dξ̃︸ ︷︷ ︸

=αj(tn)

Hence we have established link between all the coe�cients αj(tn+1) and αj(tn)

αj(tn+1) = g(ζ)αj(tn)

where

g(ζ) =
r∑

m=−l

bme
imζ , ζ =

2πh
L

One can see that the so-called ampli�cation factor (or ampli�cation matrix in case of a linear

system of PDEs or a linear multistep in time method) g(ζ) has the same meaning as the stability function

R(z) introduced above.

9

In a similar way to (6), for absolute stability we require

|g(ζ)| ≤ 1 (9)

In case of a linear system of PDEs or a linear multistep time method we impose the same condition, known

as von Neumann condition, on spectral radius of ampli�cation matrix:

ρ(g(ζ)) ≤ 1 (10)

However, one should be careful in the situation when ρ(g(ζ)) = 1, namely, if g(ζ) has multiple eigenvalues

that might cause instability.

1.4. Stability on Examples

1.4.1. Heat Equation

We consider the Dirichlet problem for the constant coe�cient heat equation:


yt = ayxx, t > 0, 0 < x < L

y(0, t) = y(L, t) = 0, t ≥ 0

y(x, 0) = y0(x), 0 ≤ x ≤ L

(11)

and do semi-discretization choosing uniform mesh in space: x0 = 0, x1 = h, x2 = 2h, ..., xN+1 = L where

h =
L

N + 1
.

Thus, with second-order accuracy in space we have


(yt)j = a

yj−1 − 2yj + yj+1

h2
, j = 1, ..., N

y0 = yN+1 = 0

where yj ≡ yj(t) ≈ y(xj , t) (for j = 0, ..., N + 1), that is approximation of the solution in xi at given time t.

10

We can rewrite the same in the vector form 
yt = Ay

y0 = yN+1 = 0

where

A =
a

h2



−2 1 0 ... 0

1 −2 1 ... 0

0 0

0 ... 1 −2 1

0 ... 0 1 −2


is a symmetric negative de�nite (as it will be clear later from its spectrum) matrix and

y =



y1

y2

...

yN−1

yN


is the vector of the unknowns.

Motivated by the exact solution to the Dirichlet eigenvalue problem


y′′ = λy, 0 < x < L

y(0) = y(L) = 0

we can make the following guess for eigenvectors of the matrix A:

11

v(A)
l =



sin
(
πlh

L

)
sin
(

2πlh
L

)
...

sin
(

(N − 1)πlh
L

)
sin
(
Nπlh

L

)


, l = 1, ..., N .

Indeed, by utilizing the well-known trigonometric formulas, we check

−2 sin
(
πlh

L

)
+ sin

(
2πlh
L

)
= −2 sin

(
πlh

L

)
+ 2 sin

(
πlh

L

)
cos
(
πlh

L

)
= −2 sin

(
πlh

L

)(
1− cos

(
πlh

L

))
=

= −4 sin
(
πlh

L

)
sin2

(
πlh

2L

)
,

sin
(

(j − 1)
πlh

L

)
− 2 sin

(
j
πlh

L

)
+ sin

(
(j + 1)

πlh

L

)
= 2 sin

(
j πlhL

)
cos
(
πlh
L

)
− 2 sin

(
j πlhL

)
=

= −4 sin
(
jπlh

L

)
sin2

(
πlh

2L

)
,

sin
(

(N − 1)πlh
L

)
− 2 sin

(
Nπlh

L

)
= sin

(
(N − 1)πlh

L

)
− 2 sin

(
Nπlh

L

)
+ sin

(
(N + 1)πlh

L

)
︸ ︷︷ ︸

=0

=

= −4 sin
(
Nπlh

L

)
sin2

(
πlh

2L

)
.

Thus we �nd out that v(A)
l satis�es

Av(A)
l = λ

(A)
l v(A)

l

with

λ
(A)
l = −4a

h2
sin2

(
πlh

2L

)
, l = 1, ..., N .

Now, we study stability for both the forward (explicit) and the backward (implicit) Euler schemes for the

discretization in time.

For the Forward Euler scheme we have

un+1 − un

k
= Aun ⇒

⇒ un+1 = BFEun

12

where BFE = kA+ I and I is the identity matrix.

Note that
(
BFE

)T
BFE = BFE

(
BFE

)T
(due to the symmetry of the matrix A) and hence BFE is a

normal matrix. But operator norm of a normal matrix B (with respect to L2 vector norm) is bounded by

its spectral radius. Indeed, because of the fact that a normal matrix can be reduced to a diagonal D by an

orthogonal transformation P (that is to say, B = PTDP) , we have

||B|| = sup
||x||=1

||Bx|| = sup
||x||=1

|(Bx,Bx)|1/2 = sup
||x||=1

|(PTDPx,PTDPx)|1/2 = sup
||x||=1

|(DTx, PPT︸ ︷︷ ︸
=I

DPx)|1/2 =

= sup
||x||=1

|(x, PT DTD︸ ︷︷ ︸
=diag(λ2)

Px)|1/2 = |λ|max · |(x, PT IP︸ ︷︷ ︸
=I

x)|1/2 = |λ|max = ρ(B)

where the supremum is attained at the normalized eigenvector corresponding to an eigenvalue with the

maximal modulus.

Thus, to check stability it rests to �nd spectrum of the matrix B.

Turning back to our particular case, the eigenvalues of matrix BFE , obviously, are

λ
(BF E)
l = 1 + kλ

(A)
l = 1− 4ak

h2
sin2

(
πlh

2L

)
, l = 1,, N

and its spectral radius is

ρ(BFE) = max
l
|λ(BF E)
l | =

∣∣∣∣1− 4ak
h2

sin2

(
πN

2(N + 1)

)∣∣∣∣ ≈ ∣∣∣∣1− 4ak
h2

∣∣∣∣

Using analogy with (6) we can say that the scheme is absolute stable if

ρ(BFE) ≤ 1

This condition gives |1 + kλ
(A)
l | ≤ 1 ⇒ 1− 4ak

h2
≥ −1 ⇒ ak

h2
≤ 1

2
. Therefore,

k ≤ h2

2a
(12)

13

Since the absolute stability region is just the interior of the unit disk, the method is not A-stable, although

conditionally stable.

Now we are moving to the Backward Euler scheme:

un+1 − un

k
= Aun+1 ⇒

⇒ un+1 = BBEun

where BBE = (I − kA)−1.

In order to have boundedness by spectral radius again we need to ensure that the matrix BBE is normal,

that is to check that

(I − kA)−1(I − kAT)−1 = (I − kAT)−1(I − kA)−1

First notice

(I − kA)(I − kAT) = I − kA− kAT + k2AAT︸ ︷︷ ︸
=ATA

= (I − kAT)(I − kA)

Then taking inverse of both sides yields the desired result.

Hence it remains to �nd spectrum and estimate spectral radius of the matrix BBE

λ
(BBE)
l =

1

1− kλ(A)
l

=
1

1 +
4ak
h2

sin2

(
πlh

2L

) , l = 1,, N ,

ρ(BBE) =
1

1 +
4ak
h2

sin2

(
πN

2(N + 1)

) ≈ 1

1 +
4ak
h2

< 1

We can note that since the absolute stability region includes the whole negative (kλ(A)) half-plane, this

method is A-stable.

14

Generalization (in a similar way as we did with absolute stability a few lines before) of (7) yields imposing

condition

lim
kλ(A)→−∞

ρ(BBE) = 0

if one wants to have L-stability. Evidently, here, higher harmonics are well damped. Thus, for the Backward

Euler scheme we have both A- and L-stability.

Note that here discussing stability we were all the time talking about the absolute stability whereas there

is a more loose de�nition of stability that just requires solution to have less than an exponential growth (this

corresponds to the well-posedness of the di�erential equation problem). However, since the exact solution in

our case does not grow in time (due to the maximum principle that is valid for the heat equation), general

stability criterion in the �rst order of time-step k coincides with the absolute stability criterion we used.

1.4.2. Wave Equation

Since the wave equation is exactly the aim of our study, we develop this subsection in more details.

Consider 1D wave equation problem with constant velocity c:



ytt = c2yxx, 0 < x < L, t > 0

y(x, 0) = φ(x), 0 ≤ x ≤ L

yt(x, 0) = ψ(x), 0 ≤ x ≤ L

y(0, t) = y(L, t) = a(t), t ≥ 0

(13)

Sometimes it can be more convenient to �nd an appropriate numerical method if the wave equation in

(26) (which is a second-order PDE) is written as a symmetric system of two �rst-order PDEs.

Indeed, a simple substitution

15


u = cyx

v = yt

(14)

yields an equivalent to the original wave equation system


ut = cvx

vt = cux

(15)

By means of straightforward di�erentiating initial and boundary conditions of (13) using (14) we obtain

initial and boundary conditions for the equivalent equations (15)



u(x, 0) = cφ′(x)

v(x, 0) = ψ(x)

v(0, t) = v(L, t) = a′(t)

ux(0, t) = ux(L, t) =
1
c
a′′(t)

(16)

Here we also utilized equations (15) to get the last couple of conditions (namely, the boundary conditions

on ux), however, the new problem we obtained is overdetermined and we will see in the demonstration at the

end of this section that one of these conditions is redundant.

Forgetting about boundary conditions for a while, the system (15) can be written in the matrix form

Ut =

 0 c

c 0

Ux (17)

where U = (u, v)T .

Performing discretization in space (in a same way for u and v)


ut = Av

vt = Au

16

we have in the matrix form

Ũt =

 0 cA

cA 0


︸ ︷︷ ︸

≡CU

Ũ (18)

where Ũ = (u1, ..., uN , v1, ..., vN)T is extended vector, A is (N ×N) dimensional discretization matrix.

The block matrix CU having dimension (2N × 2N) can be factorized as follows

CU =

 1/
√

2 −1/
√

2

1/
√

2 1/
√

2


︸ ︷︷ ︸

≡P

 cA 0

0 −cA


 1/

√
2 1/

√
2

−1/
√

2 1/
√

2


︸ ︷︷ ︸

=PT

where P is an orthogonal matrix of similarity transformation (so PT = P−1).

Performing substitution of CU in (18) and multiplying both sides of the equation by PT , we obtain

Ṽt =

 cA 0

0 −cA


︸ ︷︷ ︸

≡CV

Ṽ (19)

where

Ṽ = PT Ũ (20)

After discretization in time we arrive at

Ṽn+1 = BV Ṽn (21)

In general, stability of the original problem (18) may not follow from stability of the block diagonalized

problem (19) or the fully discretized problem (21). However, if matrix Cu is normal it can be reduced to

block diagonal form by an orthogonal transformation P , and here it is exactly the case, hence we have

||Ũ(t)|| ≤ ||P || · ||PT ||︸ ︷︷ ︸
=1

||Ũ(0)||

17

provided that all eigenvalues of matrix CV have non-positive real part, that is, max(<eλ) ≤ 0. That means

that stability of (19) implies stability of the original problem (18).

Moreover, in our situation, since we are lucky to have the matrix CU in very good shape, the similarity

transformation matrix P is not dependent on h and thereby (due to (20)) stability conditions for Ũ and Ṽ

even for the fully discretized problem are equivalent.

Here, as in the case of the heat equation problem considered above, talking about stability we again all

the time imply absolute stability, it is because of the fact that exact solution of the wave equation problem

in the bounded domain is not growing in time.

Finally, we come to particular schemes and we start with the scheme named Forward Time Centered

Space (FTCS) which approximates (17) in the following way

Un+1
j −Un

j

k
=

 0 c

c 0

 Un
j+1 −Un

j−1

2h

Without loss of generality, let us �rst focus on the space discretization operator A (and therefore we omit

writing indices for time steps for a while) applied to u (the procedure with v goes absolutely the same way)

and �nd its spectrum.

In order to estimate it, we impose particular boundary conditions u0 = 1, uN+1 = 1 that are completely

arti�cial but �t our purpose1. Then

uj+1 − uj−1

2h
= λuj , j = 2, ..., 2N − 1

u2 − 1
2h

= λu1

1− u2N−1

2h
= λu2N

This formulation can be written in the matrix form

1 Though, generally discretization of boundary conditions may turn stable scheme into unstable one, but here, as it will be

clear after the calculations, the scheme happens to be unconditionally unstable, and to show instability it is enough to show

that the scheme is unstable just for some speci�c choice of boundary conditions.

18

1
2h



0 1 0 ... 0 0 0

−1 0 1 ... 0 0 0

0 0 0

0 0 −1 0 1 0 0

0 0 0

0 0 0 ... −1 0 1

0 0 0 ... 0 −1 0





u1

u2

...

uj

...

uN−1

uN



+
1

2h



−1

0

...

0

...

0

1



= λ



u1

u2

...

uj

...

uN−1

uN


Like in the case of heat equation, here again, keeping in mind the solution for the continuous analogue of

the problem


u′ = λu, 0 < x < L

u(0) = u(L) = 1

We search the eigenvectors in the form

u
(A)
l =



exp
(

2πilh
L

)
exp

(
4πilh
L

)
...

exp
(

2πijlh
L

)
...

exp
(

2(N − 1)πilh
L

)
exp

(
2Nπilh
L

)



, l = 1,, N

Plugging this into the matrix form above and using the Euler's formulas for simplifying

exp
(

4πilh
L

)
− exp (i0)︸ ︷︷ ︸

=1

= 2i sin
(

2πlh
L

)
exp

(
2πilh
L

)
exp

(
2πi(j + 1)lh

L

)
− exp

(
2πi(j − 1)lh

L

)
= 2i sin

(
2πlh
L

)
exp

(
2πijlh
L

)
− exp

(
2(N − 1)πilh

L

)
+ exp

(
2(N + 1)πilh

L

)
︸ ︷︷ ︸

=cos(2πl)=1

= 2i sin
(

2πlh
L

)
exp

(
2Nπilh
L

)

19

we conclude that u
(A)
l are truly the eigenvectors that correspond to the eigenvalues

λ
(A)
l =

i

h
sin
(

2πlh
L

)
, l = 1, ..., N .

Then for the block diagonalized matrix CV (that has the same eigenvalues as CU) we obtain

λ
(CV)
l = ± ic

h
sin
(

2πlh
L

)
, l = 1, ..., N

and it means that we have 2N eigenvalues in total, but only N of them are distinct (that is to say, each

eigenvalue is of multiplicity 2).

Let us proceed with discretization in time

Ṽn+1 − Ṽn

k
= CV Ṽn ⇒

⇒ Ṽn+1 = (kCV + I)︸ ︷︷ ︸
=BV

Ṽn

It follows that

λ(BV) = kλ(CV) + 1

and

ρ(BV) =

√
k2c2

h2
+ 1 > 1

Hence we conclude that FTCS method is unconditionally unstable (no matter what time and space steps

we take).

Now, after the breakdown of the previous scheme, we try to apply another method, the so-called LeapFrog

(LF2) scheme, which gives the second order approximation of the solution in both space and time:

yn+1
j − 2ynj + yn−1

j

k2
= c2

ynj+1 − 2ynj + ynj−1

h2
(22)

20

Unlike for the previous scheme we will check stability in a di�erent way demonstrating alternative ap-

proach.

Since we have periodic boundary conditions, we can use Fourier analysis discussed in the previous section,

that is, we �nd ampli�cation matrix and impose the condition on its spectral radius. Alternatively, since the

original problem allows separation of variables and for spatial part Fourier analysis can be applied, we can

search for a discrete solution in the form

ynj = Gneiξxj = Gneiξjh = Gneijζ

where we denote ζ = ξh.

In order to have the absolute stability, G (which is usually referred as the growth factor) must satisfy

condition

|G| ≤ 1

Plugging this into the scheme (22), we obtain the equation for G:(
Gn+1 − 2Gn +Gn−1

)
eijζ =

c2k2

h2
Gneijζ

(
eiζ − 2 + e−iζ

)
⇒

⇒G2 − 2G+ 1 = G
2c2k2

h2
(cos ξ − 1) ⇒

⇒G2 − 2
(

1− 2c2k2

h2
sin2(ξ/2)

)
G+ 1 = 0

Hence we have two roots - solutions for the growth factor:

G1,2 = α±
√
α2 − 1

where we denote α = 1− 2c2k2

h2
sin2(ξ/2).

First, it is easy to see that if |α| > 1, then for at least one of the root |G| > 1, that leads to instability.

Now, assume |α| ≤ 1. Obviously, we have 2 complex conjugated roots and thus

|G1,2| = α2 + (1− α)2 ≤ 1

This is ful�lled automatically due to our assumption |α| ≤ 1. It means α ≥ −1 (since, evidently, α ≤ 1)

which results in the well-known Courant-Friedrichs-Lewy (CFL) condition

k ≤ h

c
(23)

21

We should stress that this condition imposes much less limitation (the restriction is just linear in h) on a

time step than the one for the heat equation problem (12) (where the restriction on a time step was quadratic

in h) and thereby make way for an explicit scheme.

Now we want to apply the LF2 scheme to discretize (15) instead of tackling original wave equation.

In order to do that let us consider the following numerical scheme


un+1
j − un−1

j

2k
= c

vnj+1 − vnj−1

2h
vn+1
j − vn−1

j

2k
= c

unj+1 − unj−1

2h

(24)

One can easily see that in this scheme values (in both time and space) on one hand side are computed

in between of the points used on the other and vice versa, therefore the symmetry guarantees the second

order of accuracy in time and space. However, as we are going to show now, more natural way to preserve

the symmetry (even within a single step) is using so-called staggered grid as it follows. Assume we prescribe

values of u in time points in usual way but for space points we de�ne its values on a dual grid that we

denote with half-integer indices; for v everything is the other way round - we use regular mesh in space and

half-integer time steps.

The staggered grid described is illustrated below

↑t

u2
1/2 u2

3/2 u2
5/2

v
3/2
1 v

3/2
2

u1
1/2 u1

3/2 u1
5/2

v
1/2
1 v

1/2
2

u0
1/2 u0

3/2 u0
5/2

→ x

22

The numerical scheme on this mesh reads


un+1
j+1/2 − u

n
j+1/2

k
= c

v
n+1/2
j+1 − vn+1/2

j

h
v
n+3/2
j+1 − vn+1/2

j+1

k
= c

un+1
j+3/2 − u

n+1
j+1/2

h

(25)

This is a particular case (for full discretization in space and time) of the scheme usually referred as

StaggeredLF2.

If we substitute here midpoint approximation of (14)


unj+1/2 = c

ynj+1 − ynj
h

v
n+1/2
j =

yn+1
j − ynj

k

the �rst equation in (25) turns out to be trivially satis�ed and the second gives

yn+2
j − 2yn+1

j + ynj
k2

= c2
yn+1
j+1 − 2yn+1

j + yn+1
j−1

h2

which is exactly (after re-indexing in time (n + 1) → n) the LF2 scheme introduced above for the original

wave equation. Thus, the equivalence of (22) and (25) is now shown.

Demonstration of the StaggeredLF2 Scheme

Let us illustrate stable and unstable behavior of the StaggeredLF2 scheme on a particular example of the

wave equation problem



ytt = c2yxx, 0 < x < L, t > 0

y(x, 0) = sin
(πx
L

)
, 0 ≤ x ≤ L

yt(x, 0) = 0, 0 ≤ x ≤ L

y(0, t) = y(L, t) = 0, t ≥ 0

(26)

The problem obviously has the analytical solution

23

y(x, t) =
1
2

(
sin
(
π(x+ ct)

L

)
+ sin

(
π(x− ct)

L

))
(27)

As it was described before, introducing new variables (14), we can resort the wave equation problem (13)

to system of �rst order PDEs (15) with the corresponding initial and boundary conditions (16). Applying

this to our particular case (26), we arrive at



ut = cvx

vt = cux

u(x, 0) =
πc

L
cos
(πx
L

)
v(x, 0) = 0

v(0, t) = v(L, t) = 0

ux(0, t) = ux(L, t) = 0

(28)

Exact solution of (28) follows directly from (27) and (14), and it is given by


u(x, t) =

πc

2L

(
cos
(
π(x+ ct)

L

)
+ cos

(
π(x− ct)

L

))
v(x, t) =

πc

2L

(
cos
(
π(x+ ct)

L

)
− cos

(
π(x− ct)

L

)) (29)

Now we move to numerical solution of (28). The StaggeredLF2 scheme (25) gives

un+1
j+1/2 = unj+1/2 +

kc

h

(
v
n+1/2
j+1 − vn+1/2

j

)
, j = 0, ..., N, n = 0, ..., M

v
n+3/2
j+1 = v

n+1/2
j+1 +

kc

h

(
un+1
j+3/2 − u

n+1
j+1/2

)
=

= v
n+1/2
j+1 +

kc

h

(
unj+3/2 − u

n
j+1/2 +

kc

h

(
v
n+1/2
j+2 − 2vn+1/2

j+1 + v
n+1/2
j

))
j = 0, ..., N − 1, n = 0, ..., M

(30)

The second expression is more convenient to write replacing (j + 1)→ j, namely

24

v
n+3/2
j = v

n+1/2
j +

kc

h

(
unj+1/2 − u

n
j−1/2 +

kc

h

(
v
n+1/2
j+1 − 2vn+1/2

j + v
n+1/2
j−1

))
, j = 1, ..., N, n = 0, ..., M

(31)

The initial and boundary conditions read

u0
j+1/2 =

πc

L
cos
(πxj+1/2

L

)
, j = 0, ..., N + 1

v
1/2
j = 0, j = 0, ..., N + 1

v
n+1/2
0 = 0, n = 0, ..., M + 1

v
n+1/2
N+1 = 0, n = 0, ..., M + 1

unN+3/2 = unN+1/2, n = 0, ..., M + 1

(32)

where the last expression is consequence of the second order approximation of ux at the boundary of the

staggered grid.

We cannot impose the similar condition on the other boundary, since we do not have value un−1/2 in order

to discretize it symmetrically (and therefore preserve the second order of accuracy), however this condition

is not needed (we have already mentioned redundancy of boundary conditions when were formulating (16)),

because the �rst formula in (30), that is valid for j = 0, can be utilized

un+1
1/2 = un1/2 +

kc

h

vn+1/2
1 − vn+1/2

0︸ ︷︷ ︸
=0

 = un1/2 +
kc

h
v
n+1/2
1 (33)

and thereby this value at the boundary is transmitted step by step from the initial one at t = 0.

The formulas above (30), (31), (32), (33) allow us to perform calculation at all space and time points.

Once all values of unj+1/2 and v
n+1/2
j are computed, we can get back to solution of the original wave

equation problem (26) simply by integrating one of the expressions (14) using midpoint rule (to preserve the

second order of accuracy)

ynj = y(xj , tn) = y(0, tn) +
1
c

ˆ xj

0

u(ξ, tn)dξ ≈ yn0 +
h

c

j−1∑
l=0

unl+1/2, j = 0, ..., N + 1, n = 0, ..., M + 1 (34)

25

or

ynj = y(xj , tn) = y(x, 0) +
ˆ tn

0

v(xj , θ)dθ ≈ y0
j + k

n∑
l=0

v
l+1/2
j , j = 0, ..., N + 1, n = 0, ..., M + 1 (35)

Each of these two formulas has its own advantages and drawbacks. The �rst of them (34) does not

require storage of the solution at all previous times, hence we can bene�t from StaggeredLF2 being explicit

method, whereas the second one (35) employing time integration gives better accuracy since usually (since

it is stability condition) we have more temporal points than spatial.

Below is a comparison of the numerical solutions with the exact ones at di�erent time moments for

the following values of numerical parameters: length of physical (spatial) domain L = 10, velocity c = 1.5,

total time of integration T = 10, number of space intervals N+1 = 50, number of time intervalsM+1 = 100.

26

The same but with the number of time intervals M + 1 = 50 yielding violation of the CFL condition (23)

that results in the instability in time illustrated below.

27

2. Discontinuous Galerkin Method

Besides the �nite di�erences method, there are other numerical methods that are widely used for discretization

in space, such as the Finite Volumes Method and the Finite Elements Method. The latter is mainly used in

elliptic and parabolic problems (i.e. for problems without particular space directions dictating by equation

and thereby allowing use of symmetric basis functions to expand solution) whereas the former, the �nite

volumes method (which is similar to the �nite di�erences method, but based on integral form of equations

and therefore being perfectly suitable for problems with discontinuities), is designed for hyperbolic problems

but generally having as disadvantage inability to give high-order approximation on unstructured grid.

Therefore we would like to �nd a wise mixture of the two methods mentioned and this leads us to so-called

Discontinuous Galerkin (DG) Method.

We intend to introduce the DG method by considering homogeneous one-dimensional advection equation

∂u

∂t
+
∂f(u)
∂x

= 0 (36)

with linear �ux f(u) = cu.

28

We look for a solution to this equation on an spatial interval Ω = [0, L] performing partitioning of the

whole interval into non-overlapping elements Ω =
K
∪
k=1

Dk as well as discretization within an each element

Dk = [xk1 , x
k
Np

]. Note that x1
1 = 0, xk1 = xk−1

Np
, xkNp

= xk+1
1 , xKNp

= L where number of elements is K and

number of grid points within one element is Np and size of an element is hk = xkNp
− xk1 .

Illustration of this partitioning is given below

In the DG method we follow the idea of the Finite Elements Method, but we search for local (not global

as in the case of FEM) approximation of solution uh(x, t) in Dk as an expansion on some basis of functions{
ψkn(x)

}Np

n=1
that we assume here to be chosen from the space C∞(Dk)

ukh(x, t) =
Np∑
n=1

ûkn(t)ψkn(x) (37)

Then the global solution can be approximated as

u(x, t) ≈ uh(x, t) =
K
⊕
k=1

ukh(x, t)

Since we replace original in�nite dimensional space with �nite dimensional approximation space that is

spanned by
{
ψkn(x)

}Np

n=1
, the local approximation of solution ukh(x, t) does not exactly satisfy the original

equation (36), and this yields notion of the local residual

Rkh(x, t) =
∂ukh
∂t

+
∂f(ukh)
∂x

(38)

We want this local residual to be orthogonal to a test function from the space that, according to the

29

Galerkin approach, we choose to be the same as the approximation space de�ned above. Due to independency

of basis functions, it results in orthogonality of the residual (38) to all the functions
{
ψkn(x)

}Np

n=1

ˆ
Dk

Rkh(x, t)ψkn(x)dx = 0 (39)

for n = 1, ..., Np.

After plugging (38) into (39) we can perform integration by parts (since, as we assumed, our basis functions{
ψkn(x)

}Np

n=1
are smooth on Dk)

ˆ
Dk

(
∂ukh
∂t

ψkn − cukh
∂ψkn
∂x

)
dx = −

[
cukhψ

k
n

]
|
xk

Np

xk
1

(40)

If we considered, just an isolated element Dk, (40) would give us Np equations allowing to determine the

expansion coe�cients ûkn(t) (for n = 1, ..., Np and �xed k) of the local solution (43). However, due to locality

of de�nition of our approximation space, we have discontinuities of the solution uh(x, t) at every interface

between elements, and it gives rise to a question regarding which value of ukh to take at each boundary.

Therefore, in general we can simply rewrite (43)

ˆ
Dk

(
∂ukh
∂t

ψkn − cukh
∂ψkn
∂x

)
dx = −

[
f?ψkn

]
|
xk

Np

xk
1

(41)

introducing �numerical �ux� f? = (cu)? = cu?h as a smart combination of �ux values on the common boundary

of every adjacent elements to approximate the real �ux f = cu through this boundary. For instance, on the

right boundary of Dk the numerical �ux is some function of ukh(xkNp
) and uk+1

h (xk+1
1): f?|xk

Np
= f?(ukh, u

k+1
h)

that must be chosen in a way not to cause instability of the whole method (study of stability will be considered

few paragraphs later) and obviously be consistent (that is to satisfy f?(ukh, u
k
h) = cukh and f?(uk+1

h , uk+1
h) =

cuk+1
h).

Once the numerical �ux is chosen, we can use (41), that is referred as weak formulation, to obtain all the

expansion coe�cients ûkn(t) for all elements and thereby recover globally approximated solution uh(x, t).

Having introduced the numerical �ux, we can perform integration by parts again and hence transform

(41) back to original form

30

ˆ
Dk

Rkh(x, t)ψkn(x)dx =
[(
cukh − f?

)
ψkn
]
|
xk

Np

xk
1

(42)

which is called strong formulation and it gives a way to pose the problem with basis functions that are

non-smooth or even discontinuous within an element.

The question that still remains is how exactly to choose the numerical �ux. Since the crucial property of

a numerical method is stability, we will be looking for the simplest, linear, numerical �ux in a way for the

method to be stable.

We are going to use the energy method for stability analysis. In order to do that, it is convenient to

choose Lagrange polynomials as basis functions (that is so-called nodal approach). Then for local solution

approximation in an element Dk we have

ukh(x, t) =
Np∑
j=1

ukh(xj , t)lkj (x) (43)

where li(x) =
Np∏
j=1
(j 6=i)

x− xj
xi − xj

is the Lagrange interpolation polynomial.

The strong formulation (44) reads

ˆ
Dk

(
∂ukh
∂t

+
∂f(ukh)
∂x

)
lki (x)dx =

[(
cukh − f?

)
lki (x)

]
|
xk

Np

xk
1

(44)

for i = 1, ..., Np.

Plugging (43) into the left hand side of (44), we arrive at

Np∑
j=1

dukh(xj , t)
dt

ˆ
Dk

lki (x)lkj (x)dx︸ ︷︷ ︸
≡Mk

ij

+
Np∑
j=1

cukh(xj , t)
ˆ
Dk

dlkj (x)
dx

lki (x)dx︸ ︷︷ ︸
≡Sk

ij

=
[(
cukh − f?

)
lki (x)

]
|
xk

Np

xk
1

This can be written in the vector form

Mk d

dt
uk

h + Sk(cuk
h) =

[(
cukh − f?

)
lk
]
|
xk

Np

xk
1

(45)

31

where uk
h =

(
ukh(x1, t), ..., ukh(xNP

, t)
)T

, lk =
(
lk1(x), ..., lkNp

(x)
)T

and Mk, Sk introduced above are local

mass and sti�ness matrices, respectively.

Multiplying (45) by
(
uk

h

)T
, we have the following.

The �rst term yields

Np∑
j=1

ukh(xj , t)
Np∑
i=1

dukh(xi, t)
dt

ˆ
Dk

lki (x)lkj (x)dx =
ˆ
Dk

Np∑
j=1

ukh(xj , t)lkj (x)︸ ︷︷ ︸
=uk

h(x,t)

Np∑
i=1

dukh(xi, t)
dt

lki (x)︸ ︷︷ ︸
=
∂ukh(x, t)

∂t

dx =
1
2
d

dt

∥∥ukh∥∥2

Dk

In a similar fashion, the second term gives

c

Np∑
j=1

ukh(xj , t)
Np∑
i=1

ukh(xi, t)
ˆ
Dk

dlki (x)
dx

lkj (x)dx = c

ˆ
Dk

Np∑
j=1

ukh(xj , t)lkj (x)︸ ︷︷ ︸
=uk

h(x,t)

Np∑
i=1

ukh(xi, t)
dlki (x)
dx︸ ︷︷ ︸

=
∂ukh(x, t)

∂x

dx =
c

2
(ukh)2|

xk
Np

xk
1

Developing of the right hand side term we take advantage of choosing Lagrange polynomials basis by

utilizing the fact that lki (xj) = δij (δij is the Kronecker symbol)

(
uk

h

)T [(
cukh − f?

)
lk
]
|
xk

Np

xk
1

=
(
uk

h

)T [(
cukh − f?

) (
lk1(x), 0, ..., 0, lkNp

(x)
)T]
|
xk

Np

xk
1

=
[(
cukh − f?

)
ukh
]
|
xk

Np

xk
1

Finally, we put everything together and obtain

d

dt

∥∥ukh∥∥2

Dk = 2
[(
cukh − f?

)
ukh
]
|
xk

Np

xk
1
− c(ukh)2|

xk
Np

xk
1

=
[
c(ukh)2 − 2f?ukh

]
|
xk

Np

xk
1

(46)

For stability one wants to have

32

d

dt
‖uh‖2Ω =

K∑
k=1

d

dt

∥∥ukh∥∥2

Dk ≤ 0 (47)

providing the exact solution is not growing in time, that is to say

d

dt
‖u‖2Ω = −c

(
u2(L, t)− u2(0, t)

)
≤ 0 (48)

that follows from the integration by parts of the original equation (36) multiplied by u(x, t).

Summing up (46) over all elements, we end up with the same di�erence of values at the boundaries of

the domain Ω as in (48) simply by choosing the appropriate value of the numerical �ux at the exterior plus

contribution of jumps at every interface between elements related with solution discontinuities there. Since

we want that the total contribution of those jumps do not make expression (47) positive, it is enough to

impose condition of non-positive contribution of a jump at each interface

c
(
(uh(x−, t))2 − (uh(x+, t))2

)
− 2f?

(
uh(x−, t)− uh(x+, t)

)
≤ 0

that is

(
u− − u+

) (
c
(
u− + u+

)
− 2f?

)
≤ 0 (49)

where for the sake of brewity we use notation x− = xkNp
, x+ = xk+1

1 , u+ = uh(x+, t), u− = uh(x−, t),

implying validity of this condition at all interfaces, i.e. for k = 1, ..., Np − 1.

As we agreed we consider linear numerical �ux as the simplest form, therefore we look for the appropriate

numerical �ux as a general linear combination of uh(x+) and uh(x−) that is the most convenient to write in

the form

f? =
c

2
(
β1(u− − u+) + β2(u− + u+)

)
Inserting this into the left hand side of (49), we come to

c(u− − u+)
[
(u− + u+)− β1(u− − u+)− β2(u− + u+)

]
≤ 0

33

To ensure negativeness of this expression regardless particular values of u+ and u−, we want to have

[...] = −β |c|
c

(u−− u+) providing β is an arbitrary non-negative constant. This restriction leads us straightly

to

β1 = β
|c|
c

β2 = 1

and therefore the general linear numerical �ux is

f? =
c

2
(u+ + u−) + β

|c|
2

(u− − u+), β ≥ 0

Notice that in case β = 0 we have the central numerical �ux (and this corresponds to zero contribution

from all internal boundaries)

f? =
c

2
(u+ + u−) (50)

whereas setting β = 1 leads to the purely upwind numerical �ux

f? =


cu−, c > 0

cu+, c < 0
(51)

Therefore we can expect consistency of the method for all �intermediate� choice of the numerical �ux,

that is for

f? =
c

2
(u+ + u−) + β

|c|
2

(u− − u+), 0 ≤ β ≤ 1 (52)

However, in our study we will focus just on the central (50) and the purely upwind (51) numerical �uxes.

34

Having chosen the basis functions for approximation space and the numerical �ux, one can get back to

(41) or (42) and eventually form the space discretization matrix.

Before we proceed with considering particular problem tackled by the DG method, error estimate needs

to be brie�y mentioned.

Obviously, increasing number of elements K (that is, re�ning grid, reducing the size of an element h =

L/K) and number of points Np (which results in increasing interpolation order being Np − 1) should cause

accuracy growth of the method. Namely, according to [4], it happens in the following way

‖u− uh‖Ω ≤ Ch
Np (53)

However, this estimates just spatial error and �constant� C, in fact, is time-dependent.

Demonstration of the Discontinuous Galerkin Method

Let us show how the DG method works on practice applying it to a simple �toy problem� (providing c > 0):



∂u

∂t
+ c

∂u

∂x
= 0, 0 < x < L, t > 0

u(x, 0) = sinx

u(0, t) = − sin(ct) ≡ a(t)

which has the following exact solution

u(x, t) = sin(x− ct)

As it was discussed, we are looking for the approximated solution on each element Dk = [xk1 , x
k
Np

] (k =

1, . . . , K) in the form

ukh(x, t) =
Np∑
n=1

ûkn(t)ψkn(x)

35

Plugging this into the weak formulation (41) gives

Np∑
j=1

dûkj (t)
dt

ˆ
Dk

ψki (x)ψkj (x)dx︸ ︷︷ ︸
≡Mk

ij

−
Np∑
j=1

cûkj (t)
ˆ
Dk

dψki (x)
dx

ψkj (x)dx︸ ︷︷ ︸
≡(Sk

ij)
T

= [−c (u)?︸ ︷︷ ︸
=f?

ψki (x)]|
xk

Np

xk
1

(54)

Here in contrast with nodal approach that we illustrated during study of stability, we will use modal

polynomial approach. And natural way to do it seems to be choosing the set of functions {xn}Np−1
n=0 as basis.

However, since to go on with solving problem after applying the DG method, time derivatives need to be

expicitly expressed from (54) that requires inverting mass matrices. At this point one can notice the fact that
´
xixjdx ∼ 1

i+ j − 1
which may result in ill-conditioning (since for high-order interpolation the multiplier

1
i+ j − 1

is close to zero) of mass matrices and therefore further loss of accuracy.

One way to proceed is to make inverting mass matrices Mk as simple as possible, and in order to do that,

we choose the orthonormal Legendre polynomials {Pn−1}
Np

n=1 on [−1, 1] as basis functions (which are simply

result of Gram-Schmidt orthonormalization process of the set of functions {xn}Np−1
n=0) and do one-to-one

mapping

ψkn(x) = Pn−1(rk︸︷︷︸
≡r

), n = 1, . . . , Np (55)

[xk1 , x
k
Np

]→ [−1, 1] : rk(x) =
1
hk

(2x− xk1 − xkNp
) (56)

where the orthonormal Legendre polynomials can be explicitly computed using Rodrigues' formula

Pn(r) =
1

n!2n

√
2n+ 1

2
dn

drn
(r2 − 1)n

or recurrent formula that they obey

rPn(r) = anPn−1(r) + an+1Pn+1(r)

starting with P0(r) =
1√
2
, P1(r) =

√
3
2
r and the notation an =

n√
(2n+ 1)(2n− 1)

.

Then, performing change of variables x =
1
2

(xk1 + xkNp
) +

r

2
hk in integrals of (54), we have

36

Mk
ij =

ˆ xk
Np

xk
1

ψki (x)ψkj (x)dx =
hk

2

ˆ 1

−1

Pi−1(r)Pj−1(r)dr =
hk

2
δij

Skij =
ˆ xk

Np

xk
1

ψki (x)
dψkj (x)
dx

dx =
ˆ 1

−1

Pi−1(r)
dPj−1(r)

dr
dr = Sij

Note that for uniform partitioning (i.e. hk = h) mass matrices are simply assembled into the identity

matrix multiplied by h and sti�ness matrices are independent of an element number k.

Taking this into account, (54) transforms as follows

hk

2
dûki (t)
dt

−
Np∑
j=1

cûkj (t) (Sij)
T = [−f?ψki (x)]|

xk
Np

xk
1

(57)

The numerical �ux on the left boundary of the domain is chosen to be equal f?|x1
1

= ca(t) (purely upwind,

due to the boundary condition) and on the right boundary �ux is purely out�ow f?|xK
Np

= cuKh (xKNp
) (no

boundary conditions can be imposed).

Between the elements we, �rst, choose purely central numerical �uxes.

This gives (where we still will use ψ notation for a while instead of P)

dû1
i (t)
dt

= − c

h1

Np∑
j=1

[(
−2Sji + ψ1

i (x1
Np

)ψ1
j (x1

Np
)
)
û1
j (t) +

+ ψ1
i (x1

Np
)ψ2
j (x1

Np
)û2
j (t)

]
+

2c
h1
a(t)ψ1

i (x1
1)

dûki (t)
dt

= − c

hk

Np∑
j=1

[(
−2Sji + ψki (xkNp

)ψkj (xkNp
)− ψki (xk1)ψkj (xk1)

)
ûkj (t) +

+ ψki (xkNp
)ψk+1
j (xkNp

)ûk+1
j (t)− ψki (xk1)ψk−1

j (xk1)ûk−1
j (t)

]
, 2 ≤ k ≤ K − 1

37

dûKi (t)
dt

= − c

hK

Np∑
j=1

[(
−2Sji + 2ψKi (xKNp

)ψKj (xKNp
)− ψKi (xK1)ψKj (xK1)

)
ûKj (t) −

− ψKi (xK1)ψK−1
j (xK1)ûK−1

j (t)
]

Taking into account that due to (55)-(56) we have ψki (xk1) = Pi−1(−1) and ψki (xkNp
) = Pi−1(1), we end

up with

dû1
i (t)
dt

= − c

h1

Np∑
j=1

[
(−2Sji + Pi−1(1)Pj−1(1)) û1

j (t) +

+ Pi−1(1)Pj−1(−1)û2
j (t)

]
+

2c
h1
a(t)Pi−1(−1)

dûki (t)
dt

= − c

hk

Np∑
j=1

[
(−2Sji + Pi−1(1)Pj−1(1)− Pi−1(−1)Pj−1(−1)) ûkj (t) +

+ Pi−1(1)Pj−1(−1)ûk+1
j (t)− Pi−1(−1)Pj−1(1)ûk−1

j (t)
]
, 2 ≤ k ≤ K − 1

dûKi (t)
dt

= − c

hK

Np∑
j=1

[
(−2Sji + 2Pi−1(1)Pj−1(1)− Pi−1(−1)Pj−1(−1)) ûKj (t) −

− Pi−1(−1)Pj−1(1)ûK−1
j (t)

]
Now, after mapping to linear index structure (k, i)→ (k− 1)Np + i, space discretization matrix A can be

assembled and the formulas above can be written in the vector form

dû(t)
dt

= cAû(t) + f(t)

where dimension of the vectors û(t) and f(t) is KNp (though f(t) have only �rst Np components not equal

38

to zero that is result of the boundary condition) and the matrix A has the following sparsity pattern (for

K = 20, Np = 2)

Now, we consider purely upwind numerical �uxes at all internal boundaries between elements.

This yields

dû1
i (t)
dt

= − 2c
h1

Np∑
j=1

(
−Sji + ψ1

i (x1
Np

)ψ1
j (x1

Np
)
)
û1
j (t) +

2c
h1
a(t)ψ1

i (x1
1)

dûki (t)
dt

= − 2c
hk

Np∑
j=1

[(
−Sji + ψki (xkNp

)ψkj (xkNp
)
)
ûkj (t)− ψki (xk1)ψk−1

j (xk1)ûk−1
j (t)

]
, 2 ≤ k ≤ K − 1

dûKi (t)
dt

= − 2c
hK

Np∑
j=1

[(
−Sji + ψKi (xKNp

)ψKj (xKNp
)
)
ûKj (t)− ψKi (xK1)ψK−1

j (xK1)ûK−1
j (t)

]

The same can be written in terms of the normalized Legendre polynomials

39

dû1
i (t)
dt

= − 2c
h1

Np∑
j=1

(−Sji + Pi−1(1)Pj−1(1)) û1
j (t) +

2c
h1
a(t)Pi−1(−1)

dûki (t)
dt

= − 2c
hk

Np∑
j=1

[
(−Sji + Pi−1(1)Pj−1(1)) ûkj (t)− Pi−1(−1)Pj−1(1)ûk−1

j (t)
]
, 2 ≤ k ≤ K − 1

dûKi (t)
dt

= − 2c
hK

Np∑
j=1

[
(−Sji + Pi−1(1)Pj−1(1)) ûKj (t)− Pi−1(−1)Pj−1(1)ûK−1

j (t)
]

In vector form

dû(t)
dt

= cAû(t) + f(t)

where the space discretization matrix has the sparsity pattern given below (for K = 20, Np = 2)

Now it rests to do integration in time. Since the point of this demonstration is to illustrate application

of the DG method, but not gaining high accuracy in time, to avoid possible stability issues we simply use

40

Backward Euler scheme for time integration. In both cases, for purely central and purely upwind �uxes, this

gives

ûn+1 − ûn

k
= cAûn+1 + fn+1

ûn+1 = (I − kcA)−1︸ ︷︷ ︸
≡B

ûn + kBfn+1

where fn+1 =
2c
h1
a(tn+1)

(
P0(−1), . . . , PNp−1(−1), 0, 0, . . . , 0

)T
and the starting state û0 is determining

from the expansion of the initial condition inside each element. And vice versa, once expansion coe�cient

vector found at desired time, the solution immediately follows by expansion with these coe�cients inside

each element.

Below the results are given for the both types of numerical �uxes considered and di�erent interpolation

order and number of elements. The following constant parameters were used: length of physical (spatial)

domain L = 10, velocity c = 0.05.

Number of elements K = 10, points inside an element Np = 4.

41

Number of elements K = 20, points inside an element Np = 2.

As one can notice, for higher interpolation order (Np = 4) there is no visible di�erence between use of

42

purely upwind or purely central numerical �uxes (however, as we will see in the next section, a choice of

the numerical �ux may strongly a�ect stability condition). For linear interpolation (Np = 2) this di�erence

becomes more and more obvious with growth of time as error increases, nevertheless, this is good from

instructive point of view to reveal and illustrate the discontinuous nature of the method.

3. Application to the Equations of Electromagnetics

Since the aim of the work is numerical solution of an electromagnetics problem, we start from introduction

of Maxwell's equations.

The famous Maxwell's set of equations (written in Electrostatic CGS units system in order to have

symmetry between electrical and magnetic �elds which in this system have the same dimension) reads



∇ ·E = 4πρ

∇ ·B = 0

∇×E = −1
c

∂B
∂t

∇×B =
4π
c

J +
1
c

∂E
∂t

(58)

where E, B are electrical and magnetic �elds correspondingly, J is vector of current density, c is the speed

of light, ρ is the charge density.

This incorporates Gauss' laws for electrical (more precisely, Gauss-Coulomb law) and magnetic �elds

(the �rst two equations), Faraday's law of induction and Ampere's circuital law with Maxwell's correction

(namely, displacement current, the last term in the right hand side of the fourth equation).

Here we also assume that dielectric permeability and magnetic susceptibility are both equal to unity

ε = µ = 1 (that is, no polarization and magnetization e�ects occur), and moreover we will focus on the

electromagnetic wave propagation problems in free space, therefore we have

43

ρ = 0

J = 0

For the sake of simplicity we consider just one dimensional case.

Let us set

E = (0, 0, Ez(x, t)) ≡ (0, 0, E(x, t))

B = (0, By(x, t), 0) ≡ (0, B(x, t), 0)

Then

∇×E = det


ex ey ez

∂

∂x

∂

∂y

∂

∂z

0 0 E

 = −∂E
∂x

ey

∇×B = det


ex ey ez

∂

∂x

∂

∂y

∂

∂z

0 B 0

 =
∂B

∂x
ez

So the last two equations in (58) governing dynamics (the �rst two are satis�ed automatically) take the

scalar form


∂E

∂t
= −c∂B

∂x
∂B

∂t
= −c∂E

∂x

(59)

that (after substitution u = B, v = −E) corresponds exactly to (15), the example considered before. However,

44

here we focus on use of high-order methods.

First, performing space discretization and denoting in general the corresponding discretization operators

as AE , AB (that particularly may come from Discontinuous Galerkin Method and which may not be the

same for E and B due to the di�erent boundary conditions), we arrive at


dE
dt

= cABB

dB
dt

= cAEE
(60)

where we write E, B as vectors implying the vectors with the spatial values as the components.

As we showed in the example in the �rst part (in particular case of the full discretization in space and

time), for the wave equation the LeapFrog method can be e�ectively applied on a staggered grid. Let us

consider this in details.

According to the previous publications ([2, 7]), general staggered LeapFrog methods for time integration

of the second and the fourth order of accuracy are further introduced.

Given a system of ODE


u′ = f(t, v)

v′ = g(t, u)

StaggeredLF2 reads 
un+1 = un + kf(tn+1/2, v

n+1/2)

vn+3/2 = vn+1/2 + kg(tn+1, u
n+1)

StaggeredLF4 is given by


un+1 = un +

22
24
α1 +

1
24
α3 +

1
24
α5

vn+3/2 = vn+1/2 +
22
24
β1 +

1
24
β3 +

1
24
β5

45

where



α1 = kf(tn+1/2, v
n+1/2)

α2 = kg(tn, un)

α3 = kf(tn−1/2, v
n+1/2 − α2)

α4 = kg(tn+1, u
n + α1)

α5 = kf(tn+3/2, v
n+1/2 + α4)

and



β1 = kg(tn+1, u
n+1)

β2 = kf(tn+1/2, v
n+1/2)

β3 = kg(tn, un+1 − β2)

β4 = kf(tn+3/2, v
n+1/2 + β1)

β5 = kg(tn+2, u
n+1 + β4)

The StaggeredLF2 rule for our generally discretized in space problem (60) is as following


En+1 −En

k
= cABBn+1/2

Bn+3/2 −Bn+1/2

k
= cAEEn+1

(61)

However, we will focus on the higher-order accuracy scheme StaggeredLF4.

Application of the StaggeredLF4 to our particular case yields


En+1 −En

k
=
(
AB +

1
24
c2k2ABAEAB

)
cBn+1/2

Bn+3/2 −Bn+1/2

k
=
(
AE +

1
24
c2k2AEABAE

)
cEn+1

(62)

46

Expressing En+1 from the �rst expression in (62) and plugging into the second one, we have

En+1 = En + kc

(
AB +

1
24
k2c2ABAEAB

)
Bn+1/2,

Bn+3/2 = Bn+1/2 + kc

(
AE +

1
24
k2c2AEABAE

)
En+1 =

= kc

(
AE +

1
24
k2c2AEABAE

)
En +

(
I + k2c2

(
AE +

1
24
k2c2AEABAE

)(
AB +

1
24
k2c2ABAEAB

))
Bn+1/2

These expressions can be written in the matrix form

 En+1

Bn+3/2

 =

 I S1

S2 I + S2S1


︸ ︷︷ ︸

≡C

 En

Bn+1/2

 (63)

where we denote

S1 = kc

(
AB +

1
24
k2c2ABAEAB

)
(64)

S2 = kc

(
AE +

1
24
k2c2AEABAE

)
(65)

Now, given space discretization matrices AE , AB , the ampli�cation matrix C can be computed with help

of (64), (65) and (63) allows to perform explicit time integration, providing stability condition holds.

Particular Problem: Electromagnetic Waves Between 2 Metallic Plates

Now we are ready to apply the both techniques for �nding high-order solution approximation, the DG method

for spatial discretization and the StaggeredLF4 scheme for integration in time.

Particular case that we focus on is one-dimensional wave problem of �nding electromagnetic �eld between

2 plates of perfect conducting metall that implies homogeneous Dirichlet boundary conditions for electrical

�eld

E(0, t) = E(L, t) = 0 (66)

Imposing this condition automatically determines behavior at the boundaries of magnetic �eld due to

47

validity of Maxwell's equations close to boundary. Indeed, taking time derivatives of (66) and utilizing (59)

we arrive at

Bx(0, t) = Bx(L, t) = 0 (67)

As it was mentioned before when the wave equation problem was reduced to (16) and also discussed during

StaggeredLeapFrog2 scheme demonstration (both in the �rst part of the current work), the conditions (67)

are redundant from mathematical point of view, since they follow from the equations and thereby are satis�ed

automatically, but in our approach, when discretizations in space and time are sequential, it is important to

write them down separately because they are necessary parts of space discretization operators AE and AB

that we want to construct.

Therefore, the problem to solve is as follows



∂E

∂t
= −c∂B

∂x
, 0 < x < L, t > 0

∂B

∂t
= −c∂E

∂x
, 0 < x < L, t > 0

E(0, t) = E(L, t) = 0

Bx(0, t) = Bx(L, t) = 0

E(x, 0) = sin
(πx
L

)
B(x, 0) = 0

(68)

where initial conditions were chosen in order to simply guess the exact solution


E(x, t) = sin

(πx
L

)
cos
(
πct

L

)
B(x, t) = − cos

(πx
L

)
sin
(
πct

L

) (69)

allowing to compare results with.

We start from discretization in space and we will follow exactly the same line as in the previous part,

when the advection equation �toy problem� was considered.

48

According to the DG method, the approximated solutions are sought inside each element Dk = [xk1 , x
k
Np

]

(k = 1, . . . , K)

Ekh(x, t) =
Np∑
n=1

Êkn(t)ψkn(x)

Bkh(x, t) =
Np∑
n=1

B̂kn(t)ψkn(x)

The weak formulation follows



Np∑
j=1

dÊkj (t)
dt

ˆ
Dk

ψki (x)ψkj (x)dx︸ ︷︷ ︸
≡Mk

ij

−
Np∑
j=1

cB̂kj (t)
ˆ
Dk

dψki (x)
dx

ψkj (x)dx︸ ︷︷ ︸
≡(Sk

ij)
T

= [−c (B)?︸ ︷︷ ︸
≡f?

B

ψki (x)]|
xk

Np

xk
1

Np∑
j=1

dB̂kj (t)
dt

Mk
ij −

Np∑
j=1

cÊkj (t)
(
Skij
)T

= [−c (E)?︸ ︷︷ ︸
≡f?

E

ψki (x)]|
xk

Np

xk
1

As in the demonstration of the DG method applied to the advection equation that was given before, we

choose Legendre polynomials as basis functions and rewrite the weak formulation (we omit some details and

explainations avoiding repetition of what has already been said in the previous part of the work)


hk

2
dÊki (t)
dt

−
Np∑
j=1

cB̂kj (t) (Sij)
T = [−f?Bψki (x)]|

xk
Np

xk
1

hk

2
dB̂ki (t)
dt

−
Np∑
j=1

cÊkj (t) (Sij)
T = [−f?Eψki (x)]|

xk
Np

xk
1

Now we come to the point where numerical �uxes on the boundaries of the domain have to be chosen in

order to satisfy the boundary conditions.

For electrical �eld we have homogeneous Dirichlet boundary conditions whose approximation is straight-

forward: f?E |x1
1

= f?E |xK
Np

= 0.

The condition f?E |x1
1

= 0 can be looked at as zeroing the central numerical �ux between the left boundary

of the leftmost element (k = 1) giving contribution cE1
h(x1

1) and the right boundary of some �ghost� element

to the left of it bringing value −cE1
h(x1

1). Absolutely the same thing can be done with attaching arti�cial

element to the rightmost element (k = K) and look at the condition f?E |xK
Np

= 0 as the result of central

49

numerical �ux approximation between them.

In a similar fashion, homogeneous Neumann boundary conditions for the magnetic �eld can be treated.

Again, employing �ghost element� principle we can consider condition
∂B

∂x
= 0, say, on the left boundary of the

domain, as equality of cB1
h(x1

1) to exactly the same value coming from the �ghost� element placed to the left of

the considered one (k = 1), then using central numerical �ux yields f?B |x1
1

=
1
2
(
cB1

h(x1
1) + cB1

h(x1
1)
)

= cB1
h(x1

1︸︷︷︸
=0

).

The same considerations can be applied to the right boundary of the domain, this leads to the analogous

boundary condition f?B |xK
Np

= cBKh (xKNp︸︷︷︸
=L

).

Next, we consider internal boundaries between all the elements.

We �rstly start with choosing the purely central numerical �uxes for this purpose.

50

The weak formulation for all the internal and the boundary elements gives

dÊ1
i (t)
dt

= − c

h1

Np∑
j=1

[(
−2Sji + ψ1

i (x1
Np

)ψ1
j (x1

Np
)− 2ψ1

i (x1
1)ψ1

j (x1
1)
)
B̂1
j (t) + ψ1

i (x1
Np

)ψ2
j (x1

Np
)B̂2

j (t)
]

dB̂1
i (t)
dt

= − c

h1

Np∑
j=1

[(
−2Sji + ψ1

i (x1
Np

)ψ1
j (x1

Np
)
)
Ê1
j (t) + ψ1

i (x1
Np

)ψ2
j (x1

Np
)Ê2

j (t)
]

dÊki (t)
dt

= − c

hk

Np∑
j=1

[(
−2Sji + ψki (xkNp

)ψkj (xkNp
)− ψki (xk1)ψkj (xk1)

)
B̂kj (t) +

+ ψki (xkNp
)ψk+1
j (xkNp

)B̂k+1
j (t)− ψki (xk1)ψk−1

j (xk1)B̂k−1
j (t)

]
, 2 ≤ k ≤ K − 1

dB̂ki (t)
dt

= − c

hk

Np∑
j=1

[(
−2Sji + ψki (xkNp

)ψkj (xkNp
)− ψki (xk1)ψkj (xk1)

)
Êkj (t) +

+ ψki (xkNp
)ψk+1
j (xkNp

)Êk+1
j (t)− ψki (xk1)ψk−1

j (xk1)Êk−1
j (t)

]
, 2 ≤ k ≤ K − 1

dÊKi (t)
dt

= − c

hK

Np∑
j=1

[(
−2Sji + 2ψKi (xKNp

)ψKj (xKNp
)− ψKi (xK1)ψKj (xK1)

)
B̂Kj (t) − ψKi (xK1)ψK−1

j (xK1)B̂K−1
j (t)

]
dB̂Ki (t)
dt

= − c

hK

Np∑
j=1

[(
−2Sji − ψKi (xK1)ψKj (xK1)

)
ÊKj (t) − ψKi (xK1)ψK−1

j (xK1)ÊK−1
j (t)

]

The same can be written in more convenient form (so that discretization matrix elements are independent

of an element index), in terms of the normalized Legendre polynomials

dÊ1
i (t)
dt

= − c

h1

Np∑
j=1

[
(−2Sji + Pi−1(1)Pj−1(1)− 2Pi−1(−1)Pj−1(−1)) B̂1

j (t) + Pi−1(1)Pj−1(−1)B̂2
j (t)

]
dB̂1

i (t)
dt

= − c

h1

Np∑
j=1

[
(−2Sji + Pi−1(1)Pj−1(1)) Ê1

j (t) + Pi−1(1)Pj−1(−1)Ê2
j (t)

]

dÊki (t)
dt

= − c

hk

Np∑
j=1

[
(−2Sji + Pi−1(1)Pj−1(1)− Pi−1(−1)Pj−1(−1)) B̂kj (t) +

+ Pi−1(1)Pj−1(−1)B̂k+1
j (t)− Pi−1(−1)Pj−1(1)B̂k−1

j (t)
]
, 2 ≤ k ≤ K − 1

51

dB̂ki (t)
dt

= − c

hk

Np∑
j=1

[
(−2Sji + Pi−1(1)Pj−1(1)− Pi−1(−1)Pj−1(−1)) Êkj (t) +

+ Pi−1(1)Pj−1(−1)Êk+1
j (t)− Pi−1(−1)Pj−1(1)Êk−1

j (t)
]
, 2 ≤ k ≤ K − 1

dÊKi (t)
dt

= − c

hK

Np∑
j=1

[
(−2Sji + 2Pi−1(1)Pj−1(1)− Pi−1(−1)Pj−1(−1)) B̂Kj (t) − Pi−1(−1)Pj−1(1)B̂K−1

j (t)
]

dB̂Ki (t)
dt

= − c

hK

Np∑
j=1

[
(−2Sji − Pi−1(−1)Pj−1(−1)) ÊKj (t) − Pi−1(−1)Pj−1(1)ÊK−1

j (t)
]

The same procedure can be done in case when the purely upwind numerical �uxes are used at all the

internal boundaries.

The weak formulation yields

dÊ1
i (t)
dt

= − 2c
h1

Np∑
j=1

(
−Sji + ψ1

i (x1
Np

)ψ1
j (x1

Np
)− ψ1

i (x1
1)ψ1

j (x1
1)
)
B̂1
j (t)

dB̂1
i (t)
dt

= − 2c
h1

Np∑
j=1

(
−Sji + ψ1

i (x1
Np

)ψ1
j (x1

Np
)
)
Ê1
j (t)

dÊki (t)
dt

= − 2c
hk

Np∑
j=1

[(
−Sji + ψki (xkNp

)ψkj (xkNp
)
)
B̂kj (t) − ψki (xk1)ψk−1

j (xk1)B̂k−1
j (t)

]
, 2 ≤ k ≤ K − 1

dB̂ki (t)
dt

= − 2c
hk

Np∑
j=1

[(
−Sji + ψki (xkNp

)ψkj (xkNp
)
)
Êkj (t) − ψki (xk1)ψk−1

j (xk1)Êk−1
j (t)

]
, 2 ≤ k ≤ K − 1

dÊKi (t)
dt

= − 2c
hK

Np∑
j=1

[(
−Sji + ψKi (xKNp

)ψKj (xKNp
)
)
B̂Kj (t) − ψKi (xK1)ψK−1

j (xK1)B̂K−1
j (t)

]
dB̂Ki (t)
dt

= − 2c
hK

Np∑
j=1

[
−SjiÊKj (t) − ψKi (xK1)ψK−1

j (xK1)ÊK−1
j (t)

]

52

Rewriting the same in terms of Legendre polynomials

dÊ1
i (t)
dt

= − 2c
h1

Np∑
j=1

(−Sji + Pi−1(1)Pj−1(1)− Pi−1(−1)Pj−1(−1)) B̂1
j (t)

dB̂1
i (t)
dt

= − 2c
h1

Np∑
j=1

(−Sji + Pi−1(1)Pj−1(1)) Ê1
j (t)

dÊki (t)
dt

= − 2c
hk

Np∑
j=1

[
(−Sji + Pi−1(1)Pj−1(1)) B̂kj (t) − Pi−1(−1)Pj−1(1)B̂k−1

j (t)
]
, 2 ≤ k ≤ K − 1

dB̂ki (t)
dt

= − 2c
hk

Np∑
j=1

[
(−Sji + Pi−1(1)Pj−1(1)) Êkj (t) − Pi−1(−1)Pj−1(1)Êk−1

j (t)
]
, 2 ≤ k ≤ K − 1

dÊKi (t)
dt

= − 2c
hK

Np∑
j=1

[
(−Sji + Pi−1(1)Pj−1(1)) B̂Kj (t) − Pi−1(−1)Pj−1(1)B̂K−1

j (t)
]

dB̂Ki (t)
dt

= − 2c
hK

Np∑
j=1

[
−SjiÊKj (t) − Pi−1(−1)Pj−1(1)ÊK−1

j (t)
]

This allows to form space discretization matrices AE and AB (which also incorporate boundary conditions

for electrical and magnetic �elds) for the both cases of the numerical �ux choice, and once it is done, the

problem reduces to the set of ODE problems


dÊ
dt

= cABB̂

dB̂
dt

= cAEÊ

with initial values Ê(0), B̂(0) computed by means of Legendre polynomial basis expansions of initial condi-

tions of the original problem (68).

Next, we proceed to perform integration in time applying StaggeredLF4 scheme according to (63)-(65)

53

 Ên+1

B̂n+3/2

 =

 I S1

S2 I + S2S1


 Ên

B̂n+1/2


where we denote S1 = kc

(
AB +

1
24
k2c2ABAEAB

)
, S2 = kc

(
AE + 1

24k
2c2AEABAE

)
.

Finally, we utilize Legendre polynomial basis expansions again to pass from the coe�cients Ê, B̂ to the

real values of the �elds E, B in space at the �nal time of integration.

Below are the results of integration for both choices of numerical �ux and di�erent values of time steps

(that is seen on the plots by varying total time of integration T keeping the same number of time steps):

regular and critical (i.e. the time step size corresponding to the stability region border - when instability just

starts to occur) . The following parameters were used: length of physical (spatial) domain L = 10, the light

propagation speed c = 0.9, number of elements K = 10, number of points inside an element Np = 4, number

of time steps M = 20.

54

55

4. Conclusions and Final Remarks

In the current work di�erent numerical schemes, general notions and essential properties of numerical

methods were considered and accent was made on application of the Discontinuos Galerkin method to do

spatial discretization �rst and then employ the StaggeredLeapFrog4 �nite di�erence scheme to perform inte-

gration in time of a linear hyperbolic problem, namely the simplest Maxwell's set of equations problem was

stressed.

Discontinuous Galerkin methods due to (53) allow to achieve any desired high order accuracy in space

by re�ning mesh or increasing interpolation order inside an element, whereas the StaggeredLF4 scheme gives

the fourth order of accuracy in time. The latter, being an explicit scheme has limitations dictated by the

stability restrictions.

It happened to be not feasible to explicitly express stability condition by means of �nding spectral radius

of ampli�cation matrix of the whole DG-StaggeredLF4 method. Complication is related with the fact that

the ampli�cation matrix C in (63) turns out to be extremely close to the identity matrix (that is no wonder

due to the fact that for quite �ne spatial grid we obviously have a diagonally dominated matrix with values

56

on the diagonal close to unities).

The particular problem of electromagnetics was considered to apply the discussed method and study sta-

bility properties depending on choice of the numerical �ux on internal boundaries between all the elements.

Choice of the numerical �ux, that is an essential ingredient of the DG method, as it was demonstrated at the

end of the second part, does not have strong impact on the solution when high-order interpolation is used,

however, according to the example giving in the third part, a numerical �ux might a�ect stability properties

of the method. In the present work two typical choices of the linear numerical �ux were considered - purely

upwind and purely central. The results obtained and plotted at the end of the previous part allow us to draw

conclusion that for modal approach utilizing Legendre polynomial basis functions to approximate solution

by the DG method use of the purely central numerical �uxes is much more preferrable in comparison with

purely upwind due to less strict limitation on time step size dictated by the stability issue. This can be seen

on those plots where instability starts to occur, these results are plotted for di�erent choices of total time of

integration (that is di�erent maximal values of time steps providing the total number of time steps is �xed)

for the purely upwind and purely central numerical �uxes cases. This allows us to conclude that the purely

central numerical �ux gives an opportunity to use approximately more than 15 times greater time step being

compared to the purely upwind numerical �ux case.

It still needs to be veri�ed if the same result holds for the more commonly chosen nodal approach, that

is using Lagrangian polynomial basis for solution approximation inside an element. The work on this issue

is still in progress.

57

Appendix - MATLAB Codes

MATLAB codes for the programs that were used within the text of the current work for demonstations

are given below in the following order:

� StaggeredLF2 scheme demonstration for the wave equation

� Demonstration of the DG method for the advection equation - purely central internal numerical �uxes

� Demonstration of the DG method for the advection equation - purely upwind internal numerical �uxes

� Maxwell's equations problem in between 2 metallic plates - purely central internal numerical �uxes

� Maxwell's equations problem in between 2 metallic plates - purely upwind internal numerical �uxes

� Auxiliary function for symbolic computation of normalized Legendre polynomials used in the DG method

58

22.07.09 23:44 D:\MATLAB\LF2_stable.m 1 of 3

%% StaggeredLF2 scheme demonstration by Dmitry Ponomarev (22/07/2009).

% Define space and time intervals and velocity

L=10;

T=10;

c=1.5;

% Define uniform space and time grid

N=49; % 50 space intervals

M=99; % 100 time intervals

k=T/(M+1);

h=L/(N+1);

x=zeros(N+2);

t=zeros(M+2);

x=0:h:L;

t=0:k:T;

% Here, k=0.1, h=0.2, c=1.5

% CFL condition k <= h/c is satisfied (1 < 4/3), thus we have stability

% Define desired time values to plot the solution at

times=[0, 0.01*T, 0.03*T, 0.05*T, 0.07*T, 0.1*T, 0.3*T, 0.5*T, 0.7*T, T];

% Initialization of variables

y=zeros(1,N+2);

y_ex=zeros(1,N+2);

u=zeros(M+2,N+2);

v=zeros(M+2,N+2);

%u_ex=zeros(1,N+2);

%v_ex=zeros(1,N+2);

% Initial conditions

u(1,:)=pi*c/L*cos(pi*(x+h/2)/L);

v(1,:)=zeros(1,N+2);

% Boundary conditions on v

v(:,1)=zeros(1,M+2);

v(:,(N+2))=zeros(1,M+2);

% Computation in time

% Time loop

for n=1:(M+1)

 % Computation in space

22.07.09 23:44 D:\MATLAB\LF2_stable.m 2 of 3

 % Separated calculation utilizing boundary condition

 u(n+1,1)=u(n,1)+k*c/h*v(n,2);

 % Space loop

 for j=2:(N+1)

 u(n+1,j)=u(n,j)+k*c/h*(v(n,j+1)-v(n,j));

 v(n+1,j)=v(n,j)+k*c/h*(u(n,j)-u(n,j-1)+k*c/h*(v(n,j+1)-2*v(n,j)+v(n,j-1)));

 end

 % Separated calculation utilizing boundary condition

 u(n+1,N+2)=u(n+1,N+1);

end

% Solutions for the auxilary variables u and v may be verified

% syms t_;

%

% % Exact solutions for u and v

% u_ex=pi*c/(2*L)*(cos(pi/L*(x+h/2-c*t_))+cos(pi/L*(x+h/2+c*t_)));

% v_ex=pi/(2*L)*(-cos(pi/L*(x-c*(t_+k/2)))+cos(pi/L*(x+c*(t_+k/2))));

%

% for i=1:length(times)

% t_=times(i);

%

% figure

% plot(x,eval(u_ex),'-b', x,u(1+round((M+1)*t_/T),:),'-.r');

% legend('Exact solution', 'StaggeredLF2');

% title(['Plot for u at t=',num2str(t_)]);

% grid on;

%

% figure

% plot(x,eval(v_ex),'-b', x,v(1+round((M+1)*t_/T),:),'-.r');

% legend('Exact solution', 'StaggeredLF2');

% title(['Plot for v at t=',num2str(t_)]);

% grid on;

% end

% Verification of the solution for y

syms t_;

% Exact solition for y

y_ex=0.5*(sin(pi/L*(x-c*t_))+sin(pi/L*(x+c*t_)));

 for i=1:length(times)

 t_=times(i);

% Boundary condition on y

 y(1)=0;

% Integrating u/c over space to get y

 for j=2:(N+2)

 y(j)=y(j-1)+h/c*u(1+round((M+1)*t_/T),j-1);

 end

22.07.09 23:44 D:\MATLAB\LF2_stable.m 3 of 3

% % Alternatively, to recover y, we can integrate v in time

% for j=2:(N+2)

% y(j)=sin(pi*x(j)/L)+k*sum(v(1:round(1+(M+1)*t_/T),j));

% end

 figure

 plot(x,eval(y_ex),'-b', x,y,'-.r');

 title(['Solution of the wave equation at t=',num2str(t_)])

 legend('Exact solution', 'StaggeredLF2');

 grid on

 end

22.07.09 23:44 D:\MATLAB\DG_adv_cflux_BE.m 1 of 4

%% Advection equation DG-BackwardEuler solver by Dmitry Ponomarev (22/07/2009).

% We use Legendre basis functions and as internal numerical fluxes we take

% purely central fluxes.

K=20; % number of elements = space intervals

Np=2; % number of points inside an element = interpolation order + 1

L=10; % spatial interval

c=0.05; % velocity

h=L/K; % size of an element

% Initialization

M=2; % number of time points

T=10; % total time of integration

dt=T/(M-1); % time step size

t=0:dt:T; % time discretization

X=0:h:L; % spatial interval partitioning into elements

x=zeros(K,Np); % grid matrix; first index stands for an element number, second for a

point inside it

u=zeros(M,K*Np); % solution vector

u_=zeros(M,K*Np); % vector of expansion coefficients

S_=zeros(Np,Np); % stiffness matrix

A=zeros(K*Np,K*Np); % discretization matrix

B=zeros(K*Np,K*Np); % amplification matrix

lmbds_A=zeros(1,K*Np); % spectrum of A

lmbds_B=zeros(1,K*Np); % spectrum of B

I=eye(K*Np,K*Np); % auxiliary identity matrix

% Initial condition

syms x_;

b=sin(x_);

% Boundary condition (on the left boundary)

a=-sin(c*t);

% Generating grid

for k=1:K

 for l=1:Np

 x(k,l)=X(k)+h*(l-1)/(Np-1);

 end

end

% Transforming initial condition into expansion coefficient vector

22.07.09 23:44 D:\MATLAB\DG_adv_cflux_BE.m 2 of 4

syms x_;

for k=1:K

 for l=1:Np

 j=(k-1)*Np+l;

 u_(1,j)=2/h*int(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,l-1)*b,x_,x(k,1),x

(k,Np));

 end

end

% Computing the stiffness matrix

k=1; % take arbitrary element, since it is the same for all elements

for i=1:Np

 for j=1:Np

 tmp=diff(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,i-1),x_);

 S_(i,j)=int(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,j-1)*tmp,x_,x(k,1),x(k,

Np));

 end

end

% Applying the DG method to obtain spatial discretization matrix A

for i=1:K*Np

 for j=1:K*Np

 if (mod(i,Np)~=0) i_=mod(i,Np); else i_=Np; end

 if (mod(j,Np)~=0) j_=mod(j,Np); else j_=Np; end

 if ((i<=Np) && (j<=Np))

% k=1; % the first element (left boundary)

% Since boundary condition is not homogeneous, it doesn't contribute to the matrix

 A(i,j)=-2*S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 A(i,j+Np)=legendre_norm_symb(1,i_-1)*legendre_norm_symb(-1,j_-1);

 elseif ((i>(K-1)*Np) && (j>(K-1)*Np))

% k=K; % the last element (right boundary)

% Since c is positive, no boundary conditions condition can be imposed

% here: the value here is completely defined by the equation

 A(i,j)=-2*S_(i_,j_)+2*legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-

1);

 A(i,j)=A(i,j)-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(-1,j_-1);

 A(i,j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 elseif ((j>Np) && (floor((j-1)/Np)==floor((i-1)/Np)) && (j<=(K-1)*Np))

% k=1+floor((j-1)/Np); % all internal elements

 A(i,j)=-2*S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 A(i,j)=A(i,j)-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(-1,j_-1);

 A(i,j+Np)=legendre_norm_symb(1,i_-1)*legendre_norm_symb(-1,j_-1);

 A(i,j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 end

 end

end

A=-1/h*A;

% Computing amplification matrix

22.07.09 23:44 D:\MATLAB\DG_adv_cflux_BE.m 3 of 4

B=inv(I-c*dt*A);

% Computing contribution from (left) boundary condition and integrating

% altogether using BackwardEuler scheme

f=zeros(1,K*Np);

for m=1:(M-1)

 for i=1:Np

 f(i)=2/h*c*a(m+1)*legendre_norm_symb(-1,i-1);

 end

 u_(m+1,:)=B*u_(m,:)'+dt*B*f';

 m % displays current time step to track status and estimate computational time

end

% Recover solution from its expansion coefficient vector

for m=1:M

 u(m,:)=zeros(1,K*Np);

 for k=1:K

 for l=1:Np

 j=(k-1)*Np+l;

 for i=1:Np

 u(m,j)=u(m,j)+u_(m,(k-1)*Np+i)*legendre_norm_symb((2*x(k,l)-x(k,1)-x(k,

Np))/h,i-1);

 end

 end

 end

end

% Plotting solution

figure;

hold on;

grid on;

for k=1:K

 plot(x(k,:),u(M,(1+(k-1)*Np):k*Np), '-r');

 plot(x(k,:),sin(x(k,:)-c*t(M)), '-b');

 legend('Computed', 'Analytical', 'Location', 'SouthEast');

% legend('Computed', 'Analytical');

end

title(['Solution at T=', num2str(T), ' with central num. fluxes']);

% Stability checks

lmbds_A=eig(A);

22.07.09 23:44 D:\MATLAB\DG_adv_cflux_BE.m 4 of 4

lmbds_B=eig(B);

max(real(lmbds_A)) % maximal real eigenvalue of discretization matrix

max(abs(lmbds_B)) % spectral radius of amplification matrix

22.07.09 23:46 D:\MATLAB\DG_adv_upwind_BE.m 1 of 3

%% Advection equation DG-BackwardEuler solver by Dmitry Ponomarev (22/07/2009).

% We use Legendre basis functions and as internal numerical fluxes we take

% purely upwind fluxes.

K=10; % number of elements = space intervals

Np=4; % number of points inside an element = interpolation order + 1

L=10; % spatial interval

c=0.05; % velocity

h=L/K; % size of an element

% Initialization

M=2; % number of time points

T=10; % total time of integration

dt=T/(M-1); % time step size

t=0:dt:T; % time discretization

X=0:h:L; % spatial interval partitioning into elements

x=zeros(K,Np); % grid matrix; first index stands for an element number, second for a

point inside it

u=zeros(M,K*Np); % solution vector

u_=zeros(M,K*Np); % vector of expansion coefficients

S_=zeros(Np,Np); % stiffness matrix

A=zeros(K*Np,K*Np); % discretization matrix

B=zeros(K*Np,K*Np); % amplification matrix

lmbds_A=zeros(1,K*Np); % spectrum of A

lmbds_B=zeros(1,K*Np); % spectrum of B

I=eye(K*Np,K*Np); % auxiliary identity matrix

% Initial condition

syms x_;

b=sin(x_);

% Boundary condition (on the left boundary)

a=-sin(c*t);

% Generating grid

for k=1:K

 for l=1:Np

 x(k,l)=X(k)+h*(l-1)/(Np-1);

 end

end

% Transforming initial condition into expansion coefficient vector

22.07.09 23:46 D:\MATLAB\DG_adv_upwind_BE.m 2 of 3

syms x_;

for k=1:K

 for l=1:Np

 j=(k-1)*Np+l;

 u_(1,j)=2/h*int(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,l-1)*b,x_,x(k,1),x

(k,Np));

 end

end

% Computing the stiffness matrix

k=1; % take arbitrary element, since it is the same for all elements

for i=1:Np

 for j=1:Np

 tmp=diff(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,i-1),x_);

 S_(i,j)=int(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,j-1)*tmp,x_,x(k,1),x(k,

Np));

 end

end

% Applying the DG method to obtain spatial discretization matrix A

for i=1:K*Np

 for j=1:K*Np

 if (mod(i,Np)~=0) i_=mod(i,Np); else i_=Np; end

 if (mod(j,Np)~=0) j_=mod(j,Np); else j_=Np; end

 if ((i<=Np) && (j<=Np))

% k=1; % the first element (left boundary)

% Since boundary condition is not homogeneous, it doesn't contribute to the matrix

 A(i,j)=-S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 elseif ((i>(K-1)*Np) && (j>(K-1)*Np))

% k=K; % the last element (right boundary)

% Since c is positive, no boundary conditions condition can be imposed

% here: the value here is completely defined by the equation

 A(i,j)=-S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 A(i,j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 elseif ((j>Np) && (floor((j-1)/Np)==floor((i-1)/Np)) && (j<=(K-1)*Np))

% k=1+floor((j-1)/Np); % all internal elements

 A(i,j)=-S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 A(i,j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 end

 end

end

A=-2/h*A;

% Computing amplification matrix

B=inv(I-c*dt*A);

% Computing contribution from (left) boundary condition and integrating

22.07.09 23:46 D:\MATLAB\DG_adv_upwind_BE.m 3 of 3

% altogether using BackwardEuler scheme

f=zeros(1,K*Np);

for m=1:(M-1)

 for i=1:Np

 f(i)=2/h*c*a(m+1)*legendre_norm_symb(-1,i-1);

 end

 u_(m+1,:)=B*u_(m,:)'+dt*B*f';

 m % displays current time step to track status and estimate computational time

end

% Recover solution from its expansion coefficient vector

for m=1:M

 u(m,:)=zeros(1,K*Np);

 for k=1:K

 for l=1:Np

 j=(k-1)*Np+l;

 for i=1:Np

 u(m,j)=u(m,j)+u_(m,(k-1)*Np+i)*legendre_norm_symb((2*x(k,l)-x(k,1)-x(k,

Np))/h,i-1);

 end

 end

 end

end

% Plotting solution

figure;

hold on;

grid on;

for k=1:K

 plot(x(k,:),u(M,(1+(k-1)*Np):k*Np), '-r');

 plot(x(k,:),sin(x(k,:)-c*t(M)), '-b');

 legend('Computed', 'Analytical', 'Location', 'SouthEast');

% legend('Computed', 'Analytical');

end

title(['Solution at T=', num2str(T), ' with upwind num. fluxes']);

% Stability checks

lmbds_A=eig(A);

lmbds_B=eig(B);

max(real(lmbds_A)) % maximal real eigenvalue of discretization matrix

max(abs(lmbds_B)) % spectral radius of amplification matrix

23.07.09 0:06 D:\MATLAB\DG_Maxwell_cflux_LF4.m 1 of 4

%% Maxwell's equation DG-StaggeredLF4 solver by Dmitry Ponomarev (22/07/2009).

% We use Legendre basis functions and as internal numerical fluxes we take

% purely central fluxes.

K=10; % number of elements = space intervals

Np=4; % number of points inside an element = interpolation order + 1

L=10; % spatial interval

c=0.9; % light propagation speed

h=L/K; % size of an element

M=21; % number of time points

T=10; % time of integration

% Initialization

dt=T/(M-1); % time step size

t=0:dt:T; % time discretization

X=0:h:L; % spatial interval partitioning into elements

x=zeros(K,Np); % grid matrix; first index stands for an element number, second for a

point inside it

E=zeros(M,K*Np); % electric field vector

E_=zeros(M,K*Np); % vector of coefficients of electric field expansion

B=zeros(M,K*Np); % magnetic field vector

B_=zeros(M,K*Np); % vector of coefficients of magnetic field expansion

w=zeros(M,2*K*Np); % combined electric and magnetic fields vector

w_=zeros(M,2*K*Np); % combined vector of coefficients

S_=zeros(Np,Np); % stiffness matrix

% Discretization matrices for electric and magnetic fields

A_E=zeros(K*Np,K*Np);

A_B=zeros(K*Np,K*Np);

% Some auxiliary matrices

S1=zeros(K*Np,K*Np);

S2=zeros(K*Np,K*Np);

C1=zeros(K*Np,K*Np);

C2=zeros(K*Np,K*Np);

I=eye(K*Np,K*Np);

% Amplification matrix and its eigenvalues

C=zeros(2*K*Np,2*K*Np);

lmbds_C=zeros(1,2*K*Np);

% Initial conditions

23.07.09 0:06 D:\MATLAB\DG_Maxwell_cflux_LF4.m 2 of 4

syms x_;

a=sin(pi*x_/L);

b=cos(pi*x_/L)*sin(-pi*c*0.5*dt/L); % this is not zero due to the staggered grid

% Generating grid

for k=1:K

 for l=1:Np

 x(k,l)=X(k)+h*(l-1)/(Np-1);

 end

end

% Transforming initial conditions into expansion coefficient vectors

syms x_;

for k=1:K

 for l=1:Np

 j=(k-1)*Np+l;

 E_(1,j)=2/h*int(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,l-1)*a,x_,x(k,1),x

(k,Np));

 B_(1,j)=2/h*int(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,l-1)*b,x_,x(k,1),x

(k,Np));

 end

end

% Computing the stiffness matrix

k=1; % take arbitrary element, since it is the same for all elements

for i=1:Np

 for j=1:Np

 tmp=diff(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,i-1),x_);

 S_(i,j)=int(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,j-1)*tmp,x_,x(k,1),x(k,

Np));

 end

end

% Applying the DG method to obtain spatial discretization matrices A_E and A_B

for i=1:K*Np

 for j=1:K*Np

 if (mod(i,Np)~=0) i_=mod(i,Np); else i_=Np; end

 if (mod(j,Np)~=0) j_=mod(j,Np); else j_=Np; end

 if ((i<=Np) && (j<=Np))

% k=1; % the first element (left boundary)

% We use homogeneneous conditions: Dirichlet for E, Neumann for B (by utilizing ghost

cell principle)

 A_E(i,j)=-S_(i_,j_)+0.5*legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-

1);

 A_E(i,j+Np)=0.5*legendre_norm_symb(1,i_-1)*legendre_norm_symb(-1,j_-1);

 A_B(i,j)=-S_(i_,j_)+0.5*legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-

1);

 A_B(i,j)=A_B(i,j)-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(-1,j_-1);

 A_B(i,j+Np)=0.5*legendre_norm_symb(1,i_-1)*legendre_norm_symb(-1,j_-1);

23.07.09 0:06 D:\MATLAB\DG_Maxwell_cflux_LF4.m 3 of 4

 elseif ((i>(K-1)*Np) && (j>(K-1)*Np))

% k=K; % the last element (right boundary)

% Again we use homogeneneous conditions: Dirichlet for E, Neumann for B (by utilizing

right ghost cell)

 A_E(i,j)=-S_(i_,j_)-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb(-1,

j_-1);

 A_E(i,j-Np)=-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 A_B(i,j)=-S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 A_B(i,j)=A_B(i,j)-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb(-1,j_-

1);

 A_B(i,j-Np)=-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 elseif ((j>Np) && (floor((j-1)/Np)==floor((i-1)/Np)) && (j<=(K-1)*Np))

% k=1+floor((j-1)/Np); % all internal elements

 A_E(i,j)=-S_(i_,j_)+0.5*legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-

1);

 A_E(i,j)=A_E(i,j)-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb(-1,j_-

1);

 A_E(i,j-Np)=-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 A_E(i,j+Np)=0.5*legendre_norm_symb(1,i_-1)*legendre_norm_symb(-1,j_-1);

 A_B(i,j)=-S_(i_,j_)+0.5*legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-

1);

 A_B(i,j)=A_B(i,j)-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb(-1,j_-

1);

 A_B(i,j-Np)=-0.5*legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 A_B(i,j+Np)=0.5*legendre_norm_symb(1,i_-1)*legendre_norm_symb(-1,j_-1);

 end

 end

end

A_E=-2/h*A_E;

A_B=-2/h*A_B;

% Forming amplification matrix C

S1=dt*c*(A_B+1/24*(dt*c)^2*A_B*A_E*A_B);

S2=dt*c*(A_E+1/24*(dt*c)^2*A_E*A_B*A_E);

C1=cat(1,I,S2);

C2=cat(1,S1,I+S2*S1);

C=cat(2,C1,C2);

% Forming combined electric and magnetic fields expansion coefficients vector

w_(1,:)=cat(2,E_(1,:),B_(1,:));

% Applying the StaggeredLF4 scheme to perform time integration

for m=1:(M-1)

 w_(m+1,:)=C*w_(m,:)';

 m % displays current time step to track status and estimate computational time

end

23.07.09 0:06 D:\MATLAB\DG_Maxwell_cflux_LF4.m 4 of 4

% Recover electric and magnetic fields from the expansion coefficients vector

% In order to decrease running time we recover solutions just at the final time of

integration,

% but when interested in dynamics on stability boundary, uncommenting this loop will

allow

% keeping some transient solutions for plotting

m=M;

%for m=1:M %

 E(m,:)=zeros(1,K*Np);

 B(m,:)=zeros(1,K*Np);

 for k=1:K

 for l=1:Np

 j=(k-1)*Np+l;

 for i=1:Np

 E(m,j)=E(m,j)+w_(m,(k-1)*Np+i)*legendre_norm_symb((2*x(k,l)-x(k,1)-x(k,

Np))/h,i-1);

 B(m,j)=B(m,j)+w_(m,(K+k-1)*Np+i)*legendre_norm_symb((2*x(k,l)-x(k,1)-x

(k,Np))/h,i-1);

 end

 end

 end

%end

% Plotting solutions for electric and magnetic fields

figure;

hold on;

grid on;

for k=1:K

 plot(x(k,:),E(M,(1+(k-1)*Np):k*Np), '-r');

 plot(x(k,:),sin(pi*x(k,:)/L)*cos(pi*c*t(M)/L), '-b');

 legend('Computed', 'Analytical');

end

title(['Solution for E at time t=', num2str(T), ' with central num. fluxes']);

figure;

hold on;

grid on;

for k=1:K

 plot(x(k,:),B(M,(1+(k-1)*Np):k*Np), '-r');

 plot(x(k,:),cos(pi*x(k,:)/L)*sin(-pi*c*(t(M)+0.5*dt)/L), '-b');

 legend('Computed', 'Analytical', 'Location', 'SouthEast');

% legend('Computed', 'Analytical');

end

title(['Solution for B at time t=', num2str(T+dt/2), ' with central num. fluxes']);

% Stability checks

lmbds_C=eig(C);

max(abs(lmbds_C)) % spectral radius of the amplification matrix

23.07.09 0:06 D:\MATLAB\DG_Maxwell_upwind_LF4.m 1 of 4

%% Maxwell's equation DG-StaggeredLF4 solver by Dmitry Ponomarev (22/07/2009).

% We use Legendre basis functions and as internal numerical fluxes we take

% purely upwind fluxes.

K=10; % number of elements = space intervals

Np=4; % number of points inside an element = interpolation order + 1

L=10; % spatial interval

c=0.9; % light propagation speed

h=L/K; % size of an element

M=21; % number of time points

T=0.56; % 10*0.9/0.05=10/18~=0.56; time of integration

% Initialization

dt=T/(M-1); % time step size

t=0:dt:T; % time discretization

X=0:h:L; % spatial interval partitioning into elements

x=zeros(K,Np); % grid matrix; first index stands for an element number, second for a

point inside it

E=zeros(M,K*Np); % electric field vector

E_=zeros(M,K*Np); % vector of coefficients of electric field expansion

B=zeros(M,K*Np); % magnetic field vector

B_=zeros(M,K*Np); % vector of coefficients of magnetic field expansion

w=zeros(M,2*K*Np); % combined electric and magnetic fields vector

w_=zeros(M,2*K*Np); % combined vector of coefficients

S_=zeros(Np,Np); % stiffness matrix

% Discretization matrices for electric and magnetic fields

A_E=zeros(K*Np,K*Np);

A_B=zeros(K*Np,K*Np);

% Some auxiliary matrices

S1=zeros(K*Np,K*Np);

S2=zeros(K*Np,K*Np);

C1=zeros(K*Np,K*Np);

C2=zeros(K*Np,K*Np);

I=eye(K*Np,K*Np);

% Amplification matrix and its eigenvalues

C=zeros(2*K*Np,2*K*Np);

lmbds_C=zeros(1,2*K*Np);

% Initial conditions

23.07.09 0:06 D:\MATLAB\DG_Maxwell_upwind_LF4.m 2 of 4

syms x_;

a=sin(pi*x_/L);

b=cos(pi*x_/L)*sin(-pi*c*0.5*dt/L); % this is not zero due to the staggered grid

% Generating grid

for k=1:K

 for l=1:Np

 x(k,l)=X(k)+h*(l-1)/(Np-1);

 end

end

% Transforming initial conditions into expansion coefficient vectors

syms x_;

for k=1:K

 for l=1:Np

 j=(k-1)*Np+l;

 E_(1,j)=2/h*int(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,l-1)*a,x_,x(k,1),x

(k,Np));

 B_(1,j)=2/h*int(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,l-1)*b,x_,x(k,1),x

(k,Np));

 end

end

% Computing the stiffness matrix

k=1; % take arbitrary element, since it is the same for all elements

for i=1:Np

 for j=1:Np

 tmp=diff(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,i-1),x_);

 S_(i,j)=int(legendre_norm_symb((2*x_-x(k,1)-x(k,Np))/h,j-1)*tmp,x_,x(k,1),x(k,

Np));

 end

end

% Applying the DG method to obtain spatial discretization matrices A_E and A_B

for i=1:K*Np

 for j=1:K*Np

 if (mod(i,Np)~=0) i_=mod(i,Np); else i_=Np; end

 if (mod(j,Np)~=0) j_=mod(j,Np); else j_=Np; end

 if ((i<=Np) && (j<=Np))

% k=1; % the first element (left boundary)

% We use homogeneneous conditions: Dirichlet for E, Neumann for B (by utilizing ghost

cell principle)

 A_E(i,j)=-S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 A_B(i,j)=-S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 A_B(i,j)=A_B(i,j)-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(-1,j_-1);

 elseif ((i>(K-1)*Np) && (j>(K-1)*Np))

% k=K; % the last element (right boundary)

% Again we use homogeneneous conditions: Dirichlet for E, Neumann for B (by utilizing

right ghost cell)

23.07.09 0:06 D:\MATLAB\DG_Maxwell_upwind_LF4.m 3 of 4

 A_E(i,j)=-S_(i_,j_);

 A_E(i,j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 A_B(i,j)=-S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 A_B(i,j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 elseif ((j>Np) && (floor((j-1)/Np)==floor((i-1)/Np)) && (j<=(K-1)*Np))

% k=1+floor((j-1)/Np); % all internal elements

 k_=1+floor((j-1)/Np);

 A_E(i,j)=-S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 A_E(i,j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 A_B(i,j)=-S_(i_,j_)+legendre_norm_symb(1,i_-1)*legendre_norm_symb(1,j_-1);

 A_B(i,j-Np)=-legendre_norm_symb(-1,i_-1)*legendre_norm_symb(1,j_-1);

 end

 end

end

A_E=-2/h*A_E;

A_B=-2/h*A_B;

% Forming amplification matrix C

S1=dt*c*(A_B+1/24*(dt*c)^2*A_B*A_E*A_B);

S2=dt*c*(A_E+1/24*(dt*c)^2*A_E*A_B*A_E);

C1=cat(1,I,S2);

C2=cat(1,S1,I+S2*S1);

C=cat(2,C1,C2);

% Forming combined electric and magnetic fields expansion coefficients vector

w_(1,:)=cat(2,E_(1,:),B_(1,:));

% Applying the StaggeredLF4 scheme to perform time integration

for m=1:(M-1)

 w_(m+1,:)=C*w_(m,:)';

 m % displays current time step to track status and estimate computational time

end

% Recover electric and magnetic fields from the expansion coefficients vector

% In order to decrease running time we recover solutions just at the final time of

integration,

% but when interested in dynamics on stability boundary, uncommenting this loop will

allow

% keeping some transient solutions for plotting

m=M;

%for m=1:M %

 E(m,:)=zeros(1,K*Np);

 B(m,:)=zeros(1,K*Np);

23.07.09 0:06 D:\MATLAB\DG_Maxwell_upwind_LF4.m 4 of 4

 for k=1:K

 for l=1:Np

 j=(k-1)*Np+l;

 for i=1:Np

 E(m,j)=E(m,j)+w_(m,(k-1)*Np+i)*legendre_norm_symb((2*x(k,l)-x(k,1)-x(k,

Np))/h,i-1);

 B(m,j)=B(m,j)+w_(m,(K+k-1)*Np+i)*legendre_norm_symb((2*x(k,l)-x(k,1)-x

(k,Np))/h,i-1);

 end

 end

 end

%end

% Plotting solutions for electric and magnetic fields

figure;

hold on;

grid on;

for k=1:K

 plot(x(k,:),E(M,(1+(k-1)*Np):k*Np), '-r');

 plot(x(k,:),sin(pi*x(k,:)/L)*cos(pi*c*t(M)/L), '-b');

 legend('Computed', 'Analytical');

end

title(['Solution for E at time t=', num2str(T), ' with upwind num. fluxes']);

figure;

hold on;

grid on;

for k=1:K

 plot(x(k,:),B(M,(1+(k-1)*Np):k*Np), '-r');

 plot(x(k,:),cos(pi*x(k,:)/L)*sin(-pi*c*(t(M)+0.5*dt)/L), '-b');

 legend('Computed', 'Analytical', 'Location', 'SouthEast');

% legend('Computed', 'Analytical');

end

title(['Solution for B at time t=', num2str(T+dt/2), ' with upwind num. fluxes']);

% Stability checks

lmbds_C=eig(C);

max(abs(lmbds_C)) % spectral radius of the amplification matrix

22.07.09 23:56 D:\MATLAB\legendre_norm_symb.m 1 of 1

%% Orthonormal Legendre polynomial generator by Dmitry Ponomarev (22/07/2009).

% We utilize Rodrigues' formula in order to have symbolic polynomial

% expression of order n with respect to x_.

function [P_]=legendre_norm_symb(x_,n)

if n==0

 P_=1/sqrt(2);

else

 syms r;

 tmp=eval(1/(2^n*factorial(n))*sqrt((2*n+1)/2)*diff((r^2-1)^n,n));

 P_=subs(tmp,x_);

end

end

References

[1] Ascher, U. M.: Numerical methods for evolutionary di�erential equations. Computational science and engineering

, vol. 5, SIAM (2008)

[2] Ghrist, M., Fornberg, B., Driscoll, T.A.: Staggered time integrations for wave equations. SIAM J. Nummer. Anal.

38, 718-741 (2000)

[3] Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Di�erential Equations I - Nonsti� problems. Springer

Series in Computational Mathematics, vol. 8. 2nd rev. ed. 1993. Corr. 3rd printing, Springer (2008)

[4] Hesthaven, J., Warburton, T.:: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications.

Texts in Applied Mathematics, vol. 54, Springer (2008)

[5] Press, W.A., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes - The Art of Scienti�c Com-

puting. 3rd ed., Cambridge University Press (2007)

[6] Thide, B.:: Electromagnetic Field Theory, Upsilon Books (2008)

[7] Verwer, J.G.: On Time Staggering for Wave Equations. SIAM J. Sci. Comput. 33, 139-154 (2007)

78

