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Computation of electromagnetic caracteristics of body can be performed with integral formulation

equation. With �nite element method on surface of body we obtain descrete formulation of problem.

Firstly, I will present variational approach using the reaction concept of Rumsey and combining electric

integral equation (EFIE) and magnetic integral equation (MFIE). Beside this, we have to take into

consideration Huyghens principle that is applied at interfaces between every homogenous volume.

After using code that is devoloped in Turbie and that solves Integral equation using 2-D �nite element

method we will get information about scattered �eld. Having the data about value of �eld and �rst

derivative we can do Hermite interpolation. Interpolation will be done if for 3 values of dielectric

constant for which we have value of scattered �eld and �rst derivative. Polynomial is of degree 5.

After reading value for which we want to compute dielectrical constant we can �nd eigenvalues of

corresponding companion matrix using numerical method (QR method). Fortran code is checking

whether eigenvalues are real and in range [εmin, εmax]. Moreover, Matlab code that is written gives

us graphical presentation of Hermite interpolation and how it coincide with results of simulation code

that is done in Turbie.

1 Electromagnetics

Time Domain in comparison with Frequency Domain

For equations that are inherently nonlinear we can't use Fourier transform methods. For many ap-

plications the electromagnetic equations are linear. So we have possibility to solve the electromagnetic

equations in the frequency domain other than the time domain. The frequency-domain equations are

obtained by Fourier transforming the electromagnetic equations in time. The advantages of solving

the electromagnetic equations in the frequency domain is the fact that they don't depend on time,

and hence the resultant equations are simpler, so for example derivative with respect to time is equiv-

alent with multiplication with −iω in frequency domain. Another advantage is that each frequency

component solution can be solved independently , they can be solved parallely with no intersection

between frequences. Time domain solutions can be obtained after superposition of solution for di�erent

frequencies.
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Di�erential Equation versus Integral Equation

We are solving the equations in their di�erential forms in the case when we have nonlinear problem.

If a problem is linear, the principle of linear superposition enables us to �rst derive the point source

response of the di�erential equation, so called Green's function that is the fundamental solution of

the di�erential equation. If we know the Green's function, we can derive an integral equation whose

solution solves the problem. For a wave equation in time domain:

∇2φ(r, t)− 1
v2

∂2

∂t2
φ(r, t) = s(r, t)

If wave function is proportional to e−iwt the equation becomes the Helmholtz equation :

∇2φ(r, w)− k2 ∂
2

∂t2
φ(r, w) = s(r, w)

where k=w/v . The Green's function is the solution when the right-hand side is replaced by a point

source :

∇2g(r, r′) + k2g(r, r′) = −δ(r − r′)

If we assume linearity by the principle of superposition we can express Green's function as:

φ(r, w) = −
ˆ

V

g(r, r′)s(r′, w)dr′

We can use these integral equation to express scattering where φ(r, w) is incident �eld and Green's

function for free space is expresed as:

g(r, r′) =
eik|r−r

′|

4π|r − r′|

where k is wave number such that k2 = $2εrµr. Solving this equation implies to �nd source. Advantage

of solving equation of this type is that in our case it is the fact that source is spread on 2-D manifold

or surface. In comparison with di�erential equation, this integral type has less unknowns. One more
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advantage of integral equation is the fact that Green's function is exact propagator of �eld. There is

no grid dispersion error like in numerical di�erential equations solvers where the �eld is propagated

over numerical grid. Grid dispersion error is causing error in phase velocity, and it's serious problem.

Disadvantage of integral equations are their solvers that are much more complicated for implemeta-

tion in comparison with numerical di�erential equations solvers. On the other hand, numerical di�er-

ential equation solvers are easier to implement compared to integral equation solvers. The di�erential

equation solver deals with sparse matrix system so we can reduce storage requirements( O(N) storage

for problem with N unknown ), but the matrix system associated with integral equation is usually a

dense matrix system requiring O(N2) storage and more than O(N2) central processing unit (CPU)

time to solve. Previously, only dense matrix systems with tens of thousands of unknowns can be solved,

but now, dense matrix systems with tens of millions of unknowns can be solved .

We will observe 3D structure that is divided into N homogenous domains with di�erent dielectric

carcterisitcs εr, µr, in each of them classical Maxwell's equations are valid.

In following �gure we can see mash on the surface:

Regarding boundary conditions, between two domains Ωk andΩl , for
→
E and

→
H is valid following :

→
nk ×

→
Ek +

→
nl ×

→
El = 0 =

→
mk +

→
ml

→
nk ×

→
Hk +

→
nl ×

→
Hl = 0 =

→
jk +

→
jl
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Using Green's representation formula for each domain Ωk that is bounded by Sk we can obtain

integral equations that gives us information about electromagnetic �eld and they express in electro-

magnetics so called Huyghens principle. This principle means that wave in each point is in fact the

center of disturbance and the source of a new waves; and that wave as a whole is superposition of all

the secondary waves arising from points in the medium already traversed.

→
Ek(x) =

→i
Ek+iωµ

˛

(Sk)

G(x, y)
→
jk(y)ds(y)− 1

iωε

˛

(Sk)

gradxG(x, y)divSk
→
jk(y)ds(y)−rot

˛

(Sk)

G(x, y)
→
mk(y)ds(y)

→
Hk(x) =

→i
Hk+iωε

˛

(Sk)

G(x, y)
→
mk(y)ds(y)− 1

iωµ

˛

(Sk)

gradxG(x, y)divSk
→
mk(y)ds(y)−rot

˛

(Sk)

G(x, y)
→
jk(y)ds(y)

where G(x, y) = eikR

4πR is green function for open space, R = |x − y|, x is observation point in

corresponding domain, y is source point on surface ,

divSk
→
j = [∇− (

→
nk
→
∇)
→
nk]
→
j ,

→i
Ek(x) is incident electric �eld associated with Ωk and

→i
Hk is magnetic

incident �eld.

So we conclude that integral equations are in function of jk and mk in the surface of each homoge-

nous domain Ωk.

Third term in �rst equation can be expressed over electric charge :

1
iωε

˛

(Sk)

gradxG(x, y)divSk
→
jk(y)ds(y) =

1
ε
grad

˛

(Sk)

G(x, y)ρ(y)ds(y)
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Finally, introducing test vector
→t
j and

→t
m and combining it with boundary condition and Green

representation we will obtain variational formulation:

N∑
l=1

µrlQSl(St, jl, jtl )+
k2
l

µrl
Qsl(St,ml,m

t
l)−Psl(St, jl,mt

l)−Psl(St,ml, j
t
l ) = −

N∑
l=1

˛
Sl

(Eil (x)jtl −Hi
l (x)mt

l)ds(x)

where Psl and Qsl are de�ned as :

QSl(St, jl, jtl ) =
˛

St

˛

Sl

G(k, x, y)(j(y)jt(x)− 1
k2
l

divSj(y)divStjt(x))ds(x)dst(y)

PSl(St, jt,mt
l) =

˛

St

˛

Sl

[grad(G(k, x, y)× j(y))]pt(x)ds(y)dst(x)

Using 2-D �nite element method we will obtain discretization of the suface of structure ( triangular

type with 6 degrees of freedom by triangle). Following equation is transformed into system of discrete

equation where electric and magnetic current densities are unknown. They devolop base associated

with triangles.

x = C1 + ζ1
→
ε1 + ζ2

→
ε2
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→
j(x) = α1

→
ε1 + α2

→
ε2 + β

→
C1x

→
j(x) = 1

area(T ) (JT1
→
C1x+ JT2

→
C2x+ JT3

→
C3x)

where

JTw =
¸
→

CuCv

→
nw •

→
j(x)ds

Bilinear form is tranformed into descrete one :

N∑
l=1

NE1∑
u=1

NE1∑
w=1

µrlA
uw
l (
→u
jl ,
→tw
jl )+

k2
l

µrl
Auwl (

→u
pl ,
→tw
pl )−Buwl (

→u
jl ,
→tw
jl )−Buwl (

→u
pl ,
→tw
pl ) =

N∑
l=1

NE1∑
w=1

Cwl (
→i
El,
→i
Hl,
→tw
jl ,

→tw
pl )

Summation is done on N domains and on NE1 triangles of mash of the body surface. Matrix

formulation of previous equation is Ax=C, where A is matrix of coupling between di�erent triangles

that is function of reaction elements Auw and Buw. X is vector with unknown current densities. C is

vector that is composed of elements Cwl that desribe e�ect of test currents on incident electromagnetic

�eld.

Currents of the triangle T can be expressed as it is written:

→
jT =

→
jT1 ·JT1 +

→
jT2 ·JT2 +

→
jT3 ·JT3
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→
mT = MT

1 ·
→
mT

1 +MT
2 ·

→
mT

2 +MT
3 ·

→
mT

3

so for the two neighbouring triangles we can write:

−JT
′

2 = JT3 = Jk

and conclude that we have 6 degrees of freedom.

2 Hermite interpolation

In numerical mathematics Hermit interpolation method is used along with Newton divided di�erences.

We can take advantage of having data about derivative in some point.

Hermite(Osculating) polinomials are generalization of both the Taylor and Langrangian polynomi-

als. If we have given n+1 points x0, x1, ... , xn and nonnegative integers m0, ... Hermite polynomial

approximating a function f is polynomial of at least degree of miat point xiwhere f belongs to C
m(a, b)

and m= max{m0, ...mn} and xi belongs to [a,b] for every i = 0, ... n.

The degree of this osculating polynomial will be at most :

M =
∑
i

mi + n.

The number of conditions to be satis�ed is
∑
i

mi + (n+ 1) and a polynomial of degree M has M+1

coe�cients that has to satisfy these conditions.

By de�nition, if we have n+1 distinct numbers in range [a,b] and miare nonnegative integers

associated with xi, so for each i = 0, ... , n .

If m=max
0≤i≤n

mi and f∈ Cm[a, b]

so Hermite polynomial approximating f is the polynomial P of least degree m such that

dkP (xi)
dxk = dkf(xi)

dxk for each i =0, 1, ... , n and k=0,1, ... , mi.
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We can notice that in case n=0 Hermite polynomial that approximates f is simply mo − th Taylor

polynomial in point xo. In case when mi = 0 for i =0, 1, ... , n , the Hermite polynomial is the n-th

Langrange polyomial interpolating f on x0, x1, ... , xn. If mi = 1 for each i = 0, ... , n we have a

class of so called Hermite polynomials. For function f these polynomials agree with f at x0, x1, ..., xn,

additionally since their �rst derivatives are equal they have the same shape s the function f .

If the function f belongs to C1[a, b]and x0, x1, ... , xn that are in range [a,b] are distinct , tha

unique polynomial of least degree matching with f and f' at x0, x1, ... , xn is the polynomial of degree

at most M=2n+1 given as :

H2n+1(x) =
∑
j

f(xj)Hn,j(x) +
∑
f
j

′(xj)
∧
Hn,j(x)

where :

Hn,j(x) = [1− 2(x− xj)L
′

n,j(xj)]L
2
n,j(x)

and
∧
Hn,j(x) = (x− xj)L2

n,j(x)

here Ln,j(x)denotes Langrange coe�cient polynomial of degree n that si de�ned by formula :

Ln,k(x) =
(x− x0)....(x− xk−1)(x− xk+1)....(x− xn)

(xk − x0)....(xk − xk−1)(xk − xk+1)....(xk − xn)

For function f that belongs to C2n+2[a, b],then

f(x)=H2n+1(x) + (x−x0)
2.....(x−xn)2

(2n+2)! f (2n+2)(ξ)

with some ξ such that a < ξ < b .

PROOF:
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Regarding Ln,j(x) we know that Ln,j(x) is equal to zero if i 6= j.Otherwise is equal to 1. So if we

consider i 6= j we have following relations:

Hn,j(xi) = 0and
∧
Hn,j(xi) = 0

also we can conclude that :

Hn,i(x) = [1− 2(xi − xi)L
′

n,i(xi)] · 1 = 1

and
∧
Hn,i(xi) = (xi − xi) · 12 = 0

Thus we obtain that H2n+1 coincide with f at points x0, x1, ... , xn:

H2n+1(xi) =
∑
j 6=i
f(xj) · 0 + f(xi) · 1 +

∑
j

f ′(xj) · 0 = f(xi)

Since Ln,j(x) is a factor of H ′n,j(x) , for i 6= j both of them are equal to zero.

In the case when i = j :

H ′n,i(xi) = 2 · [1− 2(xi − xi)L
′

n,i(xi)]Ln,i(xi) · L
′

n,i(xi)− 2L2
n,i(xi) · L

′

n,i(xi) = 0

So for all values of i and j : H ′n,i(xi) = 0
∧
H
′

n,j(xi) = 2(xi − xj)Ln,j(xi)L
′

n,j(xi) + L2
n,j(xi)

This derivative is 0 when i 6= j, and
∧
H
′

n,i(xi) = 1 so we can compute that H
′
2n+1(xi)coincide with

f ′at x0, x1, ... , xn.

H
′
2n+1(xi) =

∑
j

f(xj) · 0 +
∑
i 6=j
f ′(xj) · 0 + f ′(xi) · 1 = f ′(xi)

Evaluation of Langrange polynomials and derivatives is di�cult even for small n. Alterntive method

for determination Hermitian polynomials is based on Newton interpolary divided di�erence formula.

Newton divided di�erences

For a function interpolated at points x0, x1, ... , xn, the interpolation polynomial for a given set

of points is in Newton form.. Coe�cients of the polynomial are calculated using divided di�erences as

it is shown in following table.

So we can introduce zero-th dividived di�erence in xi − th point as f(xi) =f [xi].

First divided di�erence with respect to points xi and xi+1 will be : f [xi,xi+1]= f [xi+1]−f [xi]
xi+1−xi

.
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To summarize k-th divided di�erence with respect to xi, xi+1, ..., xi+k will be :

f [xi,xi+1,....,xi+k] =
f [xi+1, ..., xi+k]− f [xi, xi+1..., xi+k−1]

xi+k − xi

x f(x) First divided di�ernces Second divided di�erences Third divided di�erences

x0 f [x0]

f [x0, x1] = f [x1]−f [x0]
x1−x0

x1 f [x1] f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0

f [x1, x2] = f [x2]−f [x1]
x2−x1

f [x0,x1, x2, x3] = f [x1,x2,x3]−f [x0,x1,x2]
x3−x0

x2 f [x2] f [x1, x2, x3] = f [x2,x3]−f [x1,x2]
x3−x1

f [x2, x3] = f [x3]−f [x2]
x3−x2

f [x1,x2, x3,x4] = f [x2,x3,x4]−f [x1,x2,x3]
x4−x1

x3 f [x3] f [x2, x3, x4] = f [x3,x4]−f [x2,x3]
x4−x2

f [x3, x4] = f [x4]−f [x3]
x4−x3

f [x0,x1, x2, x3] = f [x3,x4,x5]−f [x2,x3,x4]
x5−x2

x4 f [x4] f [x3, x4, x5] = f [x4,x5]−f [x3,x4]
x5−x3

f [x4, x5] = f [x5]−f [x4]
x5−x4

x5 f [x5]

For the Langrange polynomial Pn(x) = f [x0] +
n∑
k=1

f [x0, x1, ...., xk](x − x0)(x − x1)....(x − xk−1)

and for the given points x0, x1, ... , xn , we will assume that we have values of f and f ′ in all of these

points and we will de�ne following sequence z0, z1, ...., z2n, z2n+1such that for every i that belongs to

(0,n) :

z2i = z2i+1 = xi

First divided di�erences we can express over values f ′(xi):

f [z2i, z2i+1] = f ′[z2i+1] = f ′(xi)
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Example:

Hermite polynomial for points x0, x1, x2 is : H5 = f [z0] +
2n+1∑
k=1

f [z0, ..., zk](x−z0)(x−z1)...(x−zk−1).

Here is the corresponding table:

z f(z) First divided di�ernces Second divided di�erences

z0 = x0 f [z0] = f [x0]

f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f [x0] f [z0, z1, z2] = f [z1,z2]−f [z0,z1]
z2−z0

f [z1, z2] = f [z2]−f [z1]
z2−z1

z2 = x1 f [z2] = f [x1] f [z1, z2, z3] = f [z2,z3]−f [z1,z2]
z3−z1

f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f [x1] f [z2, z3, z4] = f [z3,z4]−f [z2,z3]
z4−z2

f [z3, z4] = f [z4]−f [z3]
z4−z3

z4 = x2 f [z4] = f [x2] f [z3, z4, z5] = f [z4,z5]−f [z3,z4]
z5−z3

f [z4, z5] = f ′(x2)

z5 = x2 f [z5] = f [x2]
So polynomial that we will obtain is:

H(x) = Q0,0 + (x − x0)Q11 + Q2,2(x − x0)2 + Q3,3(x − x0)(x − x1) + Q4,4(x − x0)2(x − x1)2 +

Q5,5(x− x2)(x− x0)2(x− x1)2

When we have information about scatered �eld, we can do interpolation. It's enough to have

coe�cients of osculating polynomials we can obtain value of dielectric constant for some value of

scattered �eld. Field is expresed as function of dielectric constant :

E(ε) = c5ε
5 + c4ε

4 + c3ε
3 + c2ε

2 + c1ε+ c0

So if we know E(ε) all we need to do is to modify coe�cient c0 and to �nd zeros of following

polynomial:

c5ε
5 + c4ε

4 + c3ε
3 + c2ε

2 + c1ε+ c′ = 0
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where c′ = c0 − E(ε).

Instead of �nding zeros of previous polynomial we can look for eigenvalues of companion matrix :

A=



− c4c5 − c3c5 − c2c5 − c1c5 − c′

c5

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0



3 QR method for computing eigenvalues

QR decomposition of matrix A implies searching for matrix Q and R such that A = QR where R

is uper triangular matrix and Q is unitary matrix( Q �QT = I).

We can conclude that if A has full column rank, then columns of Q form an orthonormal basis for

ran(A). So this QR method is one way to compute an orthonormal basis for a set of vectors(in this

case columns of matrix A). There are several ways to proceed computations like Householder, Givens

rotations and fast Givens transformations. I was using Gram-Schmidt orthogonalization process ( a

numerically more stable variant called modi�ed Gram-Schmidt).

Classical Gram-Schmidt

Gram-Shmidt implies orthogonalizing a set of vectors( in this case columns of matrix A) in an

inner product Eucleadian space. Its used for QR decomposition of matrix A that can be presented as

A = Q1R1 .If the column vectors are of a full column rank then application of Gram-Shmidt yields

the QR decomposition. Fist we need to de�ne projection of column aj on vector qi:

projuj
ai = <ai,uj>

<uj ,uj>
uj
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if �rst step :

u1 = a1 and q1 = u1
||u1||

for the computation of k-th column of matrix Q we use formula :

uk = ak −
k−1∑
j=1

projuj
ak

and column qk:

qk =
uk
||uk||

Vectors u1, ..., unare orthogonal vectors and vectrors q1,... , qn form an orthonormal set of vectors.

These vectors are normalized and orthogonal and we call these process Gram-Schmidt orthonomal-

ization. In order to obtain eigenvalues of matrix A , in each k-th step we �rst factorize matrix A

:

Ak = Q ∗R

and then we compute new matrix A :

Ak+1 = R ∗Q

After certain number of iteration we will have convergence. We can �x number of iteration or we

can iterate until we achieve some accuracy.

Classical Gram Schmidt that is present doesn't have good numerical properties if we will use this

method to calculate eignevalues, we will have loss of orthogonality. By checking product Q ∗Qtwe will

see that Classical method cannot work. We have to use modi�ed Gram -Scmidt orthonormalization.

Algorithm is following:

do k=1,5

r(k,k)=sqrt(dot_product(A(1:5,k),A(1:5,k)))

q(1:5, k) = A(1:5, k) / r(k,k);
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do j = k+1,5

r(k, j) = dot_product(q(1:5, k), A(1:5, j));

A(1:5, j) = A(1:5, j) - r(k, j) * q(1:5, k);

end do

end do

From the following algorithm we see that we this algorithm requires 2 ∗ n3. If we compare this

with Householder we conclude it is twice more e�cient ( since Householder requires 2n3 − 2n3

3 for the

factorization and the same number of �ops for geting �rst n columns of Q ).

4 Short description of my program

My Fortran code reads data from �le CHAMP.txt and calculates azimutal component of electromag-

netic �eld. File CHAMP.txt contains information about scattered �eld that is calculated with respect

to incident �eld , geompetry of body and coordinates of point where we are doing measurement.

Computation is done with code SR3D.
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Program developed in Turbie is calculating scatered �eld with respect to incident �eld and geometry

of the body. In my case it will be homogenous dielectric cube excited with dipole. At the �rst place

is done mashing, then creation of matrix of coupling. After factorization of that matrix , current

densities are computed. At the end this code computes scattered �eld.

With respect to value of �eld and its �rst derivative for 3 values of dielectrical constant interpolation

is done. Degree of Hermite polynomial is 5. Small modi�ncations of program SR3D need to be done

in order to obtain �rst derivative of scattered �eld. First we need to know derivative of incident �eld,

besides this information this program needs data �le with current densities, and geometry of body.

Here unknown variable will be derivative of current densities.

When we obtain Hermite polynomial we transform it into standard form:
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E(ε) = c5ε
5 + c4ε

4 + c3ε
3 + c2ε

2 + c1ε+ c0

Then for some value of �eld we want to calculate dielectrical constant: we read that value and

we modify coe�cient c0.So our problem is to �nd zeros of that modi�ed polynimal. We can use some

method, like Newton Rapson, but if we start far from solution we will have divergence. Moreover,

we can search for eigenvalues of companion matrix. I was using numerical method for computing

eigenvalues so called QR method that is based on decompostion of matrix. There are several ways to

do it but I was using Modi�ed Gram-Schmidt.

Short description of my Matlab code

My Matlab code should give some graphical presentation of interpolation. Hermit polynomial is

plotted along with values of �eld that are obtatined with code SR3D.
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