
INTERNSHIP REPORT

Is Bunyamin SURYO

RENUMBERED ITERATIVE ALGORITHM
for NAVIER-STOKES SIMULATION

May - July 2009
Internship of MASTER 1 of MATHMODS Program

University of Nice - Sophia Antipolis, France

Advised by Prof. Alain Dervieux
The TROPICS Project team, INRIA Sophia Antipolis, France

1

Chapter 1

Introduction

1.1 About INRIA Sophia Antipolis

This training was hold in the Institut National de Recherche en Informatique et
Automatique (INRIA) with TROPICS project team during May 4th until June
29th 2009 in Sophia Antipolis. The French National Institute for Research
in Computer Science and Control (INRIA) conducts research in the field of
Information and Communication Science and Technology (ICST), and more
generally in the fields of computer science and modelling. INRIAs Sophia
Antipolis - Mediterrane research centre was set up in 1983 at the heart of
one of the most important scientific parks in Europe. Today it has premises
in Sophia Antipolis, Marseille and Montpellier, bringing together almost 500
staff - including nearly 400 scientists divided into 30 research teams, over
half of which have established partnerships with public science and technology
institutions.

The scientific research of INRIA are grouped around 5 major themes :

1. Applied Mathematics, Computation and Simulation

2. Algorithmics, Programming, Software and Architecture

3. Networks, Systems and Services, Distributed Computing

4. Perception, Cognition, Interaction

5. Computational Sciences for Biology, Medicine and the Environment

One of project team in Applied Mathematics, Computation and Simulation
theme is Program Transformations for Scientific Computing (TROPICS) that
coordinated by Laurent HASCOET. The TROPICS project-team is at the
junction of two research domains Automatic Differentiation (AD) and Com-
putational Fluid Dynamics (CFD) application of AD where this training con-
ducted. CFD application of AD applies to two real-life problems, optimal
shape design and mesh adaption. The training in TROPICS project team was

2

advised by Prof. Alain DERVIEUX with the help of Dr. Stephen WORNOM
and Ms. Anca BELME. The activities of training consist of introduction of
Linux and Latex system, computation in parallel cluster NEF server with
AERO-08 code, and literature study of papers and books. The focus of train-
ing is the effects of mesh numbering and the linear solver in Navier-Stokes
simulation.

1.2 The Training Aims

In numerical simulation, Central Processing Unit (CPU) time consuming is
one of the important aspects that designed to improved or reduced. The more
CPU time consuming, the more power needed, it means that the computation
cost is not efficient. In order to reduce CPU cost, the researchers try to improve
the algorithm’s efficiency for computing. For instance, if we want to solve a
large sparse matrix with iterative method, the CPU cost is depend upon the
behaviour of the sparse matrix. Because the sparse matrix is generated by a
particular numerical approximation, the developing algorithm of its numerical
approximation is important aspect for improving CPU cost. In this training,
the algorithm of mesh numbering will be improved in order to increase the
convergence rate of the Navier-Stokes computation in the case of the flow
around a circular cylinder.

The study of flow around a bluff body such us a cylinder have been devel-
oped long time ago. Nonetheless it is still interesting for researchers to investi-
gate the flow behaviours around a cylinder because there are many engineering
problems related with it. For instance the investigation of the seawave load
on the offshore structure of oil and gas exploration platform. Seawave, and
also wind, will generate a drag load on the riser of platform stucture. By
investigation of the flow around the riser, generally the riser has a cylinder ge-
ometry, we can calculate the strength of riser structure in order to restrain the
drag load of seawave and wind. Consider to this purpose, researchers simulate
and study the flow around a circular cylinder. For example in INRIA Sophia
Antipolis, The TROPICS project-team, with AERO-08 code, is working on
offshore platform hydrodynamics and also on aircraft aerodynamics.

3

Chapter 2

Navier-Stokes Simulations

2.1 Navier-Stokes Equations

The behaviour of fluid flow is described by well-established partial differential
equations (PDE) the Navier-Stokes equations, which are, essentially, particular
forms of Newton’s laws of motion, supplemented by an equation describing the
conservation of mass. They are one of the most useful sets of equations because
they describe the physics of a large number of phenomena of academic and
economic interest. They may be used to model weather, ocean currents, car
and aircraft aerodynamics. As such, these equations in both full and simplified
forms, are used in the design of aircraft and cars, the study of blood flow, the
design of power stations, the analysis of the effects of pollution, etc.

The Navier-Stokes equations commonly written as

ρ
(

∂v

∂t
+ v · ∇v

)

= −∇p + ∇ · T + f

where v is the flow velocity, ρ is the fluid density, p is the pressure, T is the
(deviatoric) stress tensor, and f represents body forces (per unit volume) acting
on the fluid and ∇ is the del operator. This is a statement of the conservation
of momentum in a fluid and it is an application of Newton’s second law to a
continuum.

The Navier-Stokes equations are also of great interest in a purely math-
ematical sense. Somewhat surprisingly, given their wide range of practical
uses, mathematicians have not yet proven that in three dimensions solutions
always exist (existence), or that if they do exist they do not contain any infini-
ties, singularities or discontinuities (smoothness). These questions are called
the Navier-Stokes existence and smoothness problems. Except for very sim-
ple conditions, these equations need to be solved numerically with the aid of
computers (often super-computers).

4

The Navier-Stokes equations are differential equations which, unlike alge-
braic equations, do not explicitly establish a relation among the variables of
interest (e.g. velocity and pressure). Rather, they establish relations among
the rates of change. For example, the Navier-Stokes equations for simple case
of an ideal fluid (inviscid and incompressible) can state that acceleration (the
rate of change of velocity) is proportional to the gradient (a type of multivariate
derivative) of pressure.

2.2 Turbulent Flow

2.2.1 What is Turbulence

Many of flows in engineering problem are turbulent thus the turbulent flow
regime is not just of theoretical interest. At values of the high Reynolds number
(ReD), ReD � 20000 for external flow, a complicated series of events take
place which eventually leads to a radical change of the flow character. In
the final state of the behaviour is random and chaotic. The motions becomes
intrinsically unsteady even with constant imposed boundary conditions. The
velocity and all other flow properties vary in a random and chaotic way. This
regime is called turbulent flow. Figure 2.1 represents a structure of turbulent
flow, while figure 2.2 represents a fluctuating velocity in turbulent flow. At this
condition, turbulent fluctuations cause a much greater net momentum transfer
than viscous forces throughout most of the flow. Thus, accurate modelling of
the Reynolds stresses is vital.

Figure 2.1: Flow structure of turbulent flow

5

Figure 2.2: Fluctuating velocity in turbulent flow

2.2.2 Turbulent Modelling

Turbulence modeling is the area of physical modeling where a different math-
ematical model than from the full time dependent Navier-Stokes Equations is
used to predict in much easier way the effects of turbulence. There are vari-
ous mathematical models used in flow modelling to approximate the Reynolds
stresses (and other turbulent fluxes) in order to close the mean-flow equations.
The classes of turbulence models are classified as

1. Algebraic models

2. Eddy viscosity transport models : one and two equation models

3. Non-linear eddy viscosity models and algebraic stress models

4. Reynolds stress transport models

5. Detached eddy simulations and other hybrid models

6. Large eddy simulations

7. Direct numerical simulations

Here is just an overview some of those models.

Direct Numerical Simulation (DNS)

• Theoretically all turbulent flows can be simulated by numerically solving
the full Navier-Stokes equations.

• Resolves the whole spectrum of scales.

• No modeling is required.

6

• The cost is too prohibitive.

• Not practical for industrial flows

Large Eddy Simulation (LES)

• Solves the spatially averaged Navier-Stokes equations.

• Large eddies are directly resolved, but eddies smaller than the mesh sizes
are modeled.

• Less expensive than DNS, but the amount of computational resources
and efforts are still too large for most practical applications.

Reynolds-Averaged Navier-Stokes (RANS) Equations Models

• Solve ensemble-averaged Navier-Stokes equations.

• All turbulence scales are modeled in RANS.

• The most widely used approach for calculating industrial flows.

There is not yet a single turbulence model that can reliably predict all
turbulent flows found in industrial applications with sufficient accuracy. The
general comparison of DNS, LES, and RANS is showed in figure 2.3.

Figure 2.3: Comparison of DNS, LES, and RANS

Because for most engineering purposes it is unnecessary to resolve the de-
tails of the turbulent fluctuations, only the effects of the turbulence on the

7

mean flow are usually sought, we can use LES as our turbulence models in
modelling flow around a cylinder where time-dependent flow equations are
solved for the mean flow and the largest eddies and where the effects of the
smaller eddies are modelled. It was argued earlier that the largest eddies in-
teract strongly with the mean flow and contain most of the energy thus LES
approach results in a good model of the main effect of turbulence.

2.3 Computational Fluid Dynamics (CFD)

2.3.1 Steps of a CFD Calculation

Computational fluid dynamics (CFD) is the use of computers and numerical
techniques to analyze the system or solve the problems involving fluid flow.
CFD has been successfully applied in a huge number of areas, including many
of interest in engineering such us aerodynamics of aircraft and automobiles.
The main stages in a CFD simulation are

1. Pre-processing

2. Solving

3. Post-processing

Pre-processing step consist of problem formulation (governing equations,
boundary conditions) and construction of a computational mesh. For more
detail, the activities in the pre-processing step involve

1. Definition of the geometry of the region of the interest : the computa-
tional domain.

2. Grid generation-the sub-division of the domain into a number of smaller,
non-overlapping sub-domain : a grid of cells or elements.

3. Selection of the physical and chemical phenomena that need to be mod-
elled.

4. Definition of the fluid properties.

5. Specification of appropriate boundary condition at the cells or elements.

Solving step involves discretisation of the governing equations and numer-
ical solution of the governing equations. There are some distinct streams of
numerical solution of the governing equation, they are finite difference method,
finite element method, finite volume method, and spectral method. In outline
the numerical methods that form the basis of solver perform the following steps

1. Approximation of the unknown flow variables by means of simple func-
tions

8

2. Discretisation by subtitution of the approximations into the governing
flow equations and subsequent mathematical manipulations.

3. Solution of the algebric equations. The main differences between the
separate streams are associated with the way in which the flow variables
are approximated and with the descretisation processes.

Post-processing step includes visualisation and analysis of results. The raw
output of the solver is a huge set of numbers corresponding to the values of
each field variable (u,v,w,p,etc.) at each point of the mesh. This must be
reduced to some meaningful subset and or manipulated further to obtain the
desired predictive quantities. For example, a subset of surface pressures and
cell-face areas is required to compute a drag coefficient.

2.3.2 Discrete Problem

There are many physical phenomenas and engineering problems that can be
represented as Partial Differential Equations (PDEs) in order to analyze the
phenomenas and solve the problems. For example we use Navier-Stokes equa-
tion in order to analyze the flow behaviour around a cylinder with vary of high
Reynolds number. But it is quite difficult to solve those PDEs by analitical
scheme because of the complexity and assumptions or boundary condition of
the problem. In order to overcome this difficulty, numerical approximation
is the solution. In numerical approximation, we discretize the domain of the
problem in such way, for example :

1. Finite Difference method (FDM)

2. Finite Volume method (FVM)

3. Finite Element method (FEM)

4. Finite Boundary method (FBM)

5. Spectral method (SPM)

6. others

Those discretizations will generate a linear system problem that is represented
in either a square sparse matrix, commonly from FDM; FVM; FEM, or a
square dense matrix, commonly from FBM; SPM. And then we solve this
linear system by a such method, for instance iterative method. Furthermore,
we call all those processes as discrete problem.

Hence, discrete problem works for solving the problems in a set of com-
puter program or code. This set of computer program consist of two main

9

parts, Approximate theory and Algorithmic theory. In Approximate theory,
the computer program contains a set of assembly routines of numerical approx-
imation such us FVM, FEM, FDM. While in Algorithmic theory, it contains a
set of routines of solution such us iterative algorithm. Both of those computer
algorithm, Approximate theory and Algorithmic theory, can be developed in a
such languange programming, for instance Fortan, C++, etc. Even we try to
type all the computer programs in the best way as we can, there are still many
limitations in computing discrete problem. Those limitations are contributed
by following aspects

1. Real number can not be directly putted in computer because of the
binary system number for computer.

2. Limitation of memory storage for computing.

3. Finite number of allowable floating point during computation.

Thus, the result of discrete problem just approximates the exact or continous
solution of the real problem.

2.4 Iterative Method for Solving Linear Sys-

tem Problem

2.4.1 Solving Linear System

In general the linear system equation can be formulated as :

A.u = f

where A is a square matrix of the linear system. There are two schemes in
solving the linear system problem, Direct method and Iterative method.

The Direct method will yield a solution of linear system problem in finite
number of steps. For example, if we have n by n matrix A the number of steps
in solving linear system problem by Direct method is n steps. Some of the
Direct methods are

1. Gauss Elimination method

2. Kramer Formula method

3. Frontal method

4. others

10

For really large systems such us computation in weather forecast Direct meth-
ods become too expensive in CPU time and storage requirements, and therefore
an Iterative approach is needed.

In Iterative methods, they will yield a solution in (theoretically) an infinite
number of steps. Thus in Iterative methods we apply a convergence criteria
in iterations in order for stopping when we set a solution sufficiently close to
the one we seek. There are some methods either simple iterative methods or
complex iterative methods, for instance they are

1. Jacobi method

2. Gauss-Siedel method

3. Conjugate Gradient method

4. Generalized Minimal Residual Method (GMRES)

5. others

2.4.2 GMRES and Incomplete Lower Upper (ILU) Pre-

conditioning

Most of the existing practical iterative techniques for solving large linear sys-
tems utilize a projection process. The idea of projection techniques is to extract
an approximate solution to A.u = f problem from a subspace of ℜn. Let A be
an n times n real matrix and K and L be two m-dimensional subspaces of ℜn.
A projection technique onto the subspace K and orthogonal to L is a process
which finds an approximate solution ũ to A.u = f by imposing the conditions
that ũ belong to K and that the new residual vector be orthogonal to L.

Find ũ ∈ K, such that f − Aũ ⊥ L

GMRES is a projection method based on taking K = Km and L = AKm,
in which Km is the m-th Krylov subspace. The order-m Krylov subspace
Km(A, r0 generated by an nxn matrix A and a vector r0 of dimension n is the
linear subspace spanned by r0 under the first m powers of A (starting from
A0 = I), that is

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0}

11

In general, the convergence of the Iterative methods depends on spectral
properties of the coefficient matrix. Hence one way attempt to transform the
linear system into one that is equivalent in the sense that it has the same
solution, but that has more favorable spectral properties. Thus in order to
improve the rate of convergence, we can apply preconditioning for some Iter-
ative methods such us GMRES method for solving a sparse matrix of linear
system. Preconditioning is simply a means of transforming the original linear
system into one which has the same solution, but which is likely to be easier
to solve with an iterative solver. In preconditioning, we use a preconditioner
to transform the original linear system. Roughly speaking, a preconditioner is
any form of implicit or explicit modification of an original linear system which
makes it easier to solve by a given iterative method. For example, scaling
all rows of a linear system to make the diagonal elements equal to one is an
explicit form of preconditioning. If we have a matrix M that approximates the
coefficient matrix A in some way, the transformed system is

M−1Au = M−1f

has the same solution as the original system A.u = f , but the spectral prop-
erties of its coefficient matrix M−1A may be more favorable. We call matrix
M as preconditioner matrix. We have to choose preconditioner matrix M in
order to solve the linear system in easier way than to solve one with A and in
practice, the preconditioning operation M−1 should be inexpensive to apply
to an arbitrary vector.

One of the simplest ways of defining a preconditioner is to perform an
Incomplete Lower Upper (ILU) factorization of the original matrix A. This
entails a decomposition of the form A = LU −R where L and U have the same
nonzero structure as the lower and upper parts of A respectively, and R is the
residual or error of the factorization. This incomplete factorization known as
ILU(0) is rather easy and inexpensive to comupte. Consider a general sparse
matrix A whose elements are ai,j , i, j = 1, ..., n. A general ILU factorization
process computes a sparse lower triangular matrix L and a sparse upper trian-
gular matrix U so the residual matrix R = LU−A satisfies certain constraints,
such as having zero entries in some locations. A general algorithm for build-
ing ILU factorizations can be derived by performing Gaussian elimination and
dropping some elements in predetermined nondiagonal positions. The Algo-
rithm for computing ILU(0) for a n by n matrix A is given by

for r := 1 step1 until n − 1 do

d := 1/arr

for i := (r + 1) step1 until n do

12

if (i, r) ∈ S then

e := dai,r

ai,r := e

for j := (r + 1) step1 until n do

if ((i, j) ∈ S) and ((r, j) ∈ S) then

ai,j := ai,j − ear,j

end if

end (j − loop)

end if

end (i − loop)

end (r − loop)

Here S represents the set of elements of matrix A. The same algorithm could
be applied to full matrix A.

Lemma: ILU(0) is a direct solver for tridiagonal matrix

There are some types of ILU preconditioners. ILU factorization technique
with no fill-in, denoted by ILU(0), consist of taking the zero pattern of P to
be precisely the zero pattern of A, where any zero pattern set of P , such that

P ⊂ {(i, j)|i 6= j; 1 � i, j � n}

The ILU(0) preconditioner preserves the structure of the original matrix in
the result. The use of ILU(0) factorization as a preconditioner is quite fre-
quent when solving linear systems of CFD computations. This is because of
its efficiency and moderate memory requirements. Another types of ILU is
ILU with threshold, generic name ILUT. Unlike the ILU(0) preconditioner,
the ILUT preconditioner preserves some resulting fill-in in the preconditioner
matrix structure. The distinctive feature of the ILUT preconditioner is that it
saves the resulting entry of the preconditioner if the entry satisfies two condi-
tions simultaneously: the value of the entry is greater than the product of the
given tolerance and matrix row norm, and the entry is in the given bandwidth
of the resulting preconditioner matrix.

13

2.5 Meshing Effects

In discretizing the domain of problem (PDEs), we will create a mesh in its
domain in such way that we will get a proper matrix A, it means matrix A will
be easy to be treated in order to get the solution. The parameters that effect
to A matrix condition are mesh scaling and vertice numbering. This matrix
condition is the condition number that means the ratio between the maximum
eigenvalue and the minimum eigenvalue of A matrix. The formulation of the
condition number is

κ(A) =
σmax(A)

σmin(A)

where σmax(A) andσmin(A) are the maximum and minimum eigenvalue of
matrix A, respectively. In numerical analysis, the condition number associated
with a problem is a measure of that problem’s amenability to digital compu-
tation, that is, how numerically well-conditioned the problem is. A problem
with a low condition number is said to be well-conditioned, while a problem
with a high condition number is said to be ill-conditioned.

The other important matrix property is the bandwidth of matrix. The
bandwidth of a sparse matrix is the maximum distance, in diagonals, between
two nonzero elements of the matrix. In another way we can say that the
bandwidth of a matrix A = ai,j is defined as the maximum absolute difference
between i and j for which ai,j 6= 0. The problem of reducing the bandwidth
of a matrix consists of finding a permutation of the rows and columns that
keeps the nonzero elements in a band that is as close as possible to the main
diagonal of the matrix. The shorter bandwidth of the matrix, the easier matrix
to be treated and otherwise. In order to avoid the large bandwidth of matrix
by vertice numbering, we have to choose a proper way when we are going to
number the vertice.

There are two typical vertice numberings, Lexicographic and Orthogonal
Lexigraphic. In Lexicographic vertice numbering, we use formulation as

k = i + (j − 1)imax

uk = ui,j

where uk ≡ ai,j

In Orthogonal Lexicographic, we use formulation as

14

k = j + (i − 1)jmax

where uk ≡ ai,j

If we apply those formulations in vertice numbering on domain of figure
2.4, we will get a matrix of figure 2.5 for Lexicographic and a matrix of figure
2.6 for Orthogonal Lexicographic. For those matrices, the application of ILU
results a complete solution of the linear system for Lexicographic and does not
solve the linear system for Orthogonal Lexicographic (and in fact it gives a
poor approximation of the solution).

Figure 2.4: Domain of lexicographic and orthogonal lexicographic

Figure 2.5: Generated matrix A by lexicographic

15

Figure 2.6: Generated matrix A by orthogonal lexicographic

As the conclusion of two typical vertice numbering (lexicographic and or-
thogonal lexicographic):
If |ai−1,j| >> |ai,j−1|, then ILU is more efficient by choosing lexicographic.
Otherwise, if |ai−1,j| << |ai,j−1|, then ILU is more efficient by choosing or-
thogonal lexicographic.

In the case of external flow modelling such us modelling for flow around
cylinder, the mesh scaling will be very important. In order to know the flow
behaviours in the region or sub-domain close to the body (surface) of cylinder
such us boundary layer, we have to mesh its domain with finer mesh than the
others domain (far from surface cylinder). Of course, this treatment will effect
to the condition of generated matrix A. Thus we must optimize this treatment
in order to get a proper flow modelling.

16

Chapter 3

Experiment Description

3.1 Numerical Code AERO-08

We will carry out a flow simulation around a cylinder with a numerical code
in multi parallel computing. In this simulation, we will solve numerically un-
steady three dimensional (3D) Navier-Stokes equation in high Reynolds num-
ber (turbulent Reynolds number). As we explained before, there are three main
stages in a CFD simulation : Pre-processing, Solving, and Post-processing. In
this work, we will use a numerical code AERO-08 for Pre-processing and Solv-
ing step. While for Post-processing, we will use Paraview-3.2.1 to visualize
and analyze the results. In Pre-processing and Solving step, we perfomed
computation with 8 processors in parallel cluster NEF server of INRIA Sophia
Antipolis.

AERO-08 code was developed for compressible flows about aircraft and
space shuttles. Then this code is extended for the technology of offshore re-
search which in many ways is not only for compressible flow but also for in-
compressible flow. AERO-08 code consists of hundred of subroutine programs
that are used simultaneously each others. For Pre-processing and Solving
step, we will use Nsc3Dm-HLLE.f as the main routine program and flu.data

as the main file for setting of simulation parameters such us numerical scheme
methods, number of iterations, magnitude of Reynolds number and etc. We
will use GMRES method, written in GmresASR-uniq.f, to solve the matrix
of linear system of the problem. Furthermore, we use an interface file, called
aero3dgm.x, in order to get readable solution file for Paraview-3.2.1.

3.2 Compiling and Running AERO-08 Code

In order to compile and run AERO-08 code, firstly, we must connect to parallel
cluster NEF server of INRIA Sophia Antipolis. Furthermore, we go to the

17

directory of the source file in NEF server by the path
/home/isuryo/AERO-08-Suryo/aero-08/src-F95 and then take a look and
check the main routine program Nsc3Dm-HLLE.f. For compiling and running
the experiments, we follow the path
/home/isuryo/Cylinder-Riser-NDP-16K-mesh2-43K/8-proc

in parallel cluster NEF server to get the directory of the case file. In this
directory, we take a look three mains file

1. flu.data

2. Makefile-AERO-08-F95-sophia

3. submit-8-nef-OpenMpi.pbs

flu.data is the main file for setting of simulation parameters. Some im-
portant simulation parameters should be designed in flu.data are

1. ivis (defines the flow equations, such us Euler, Navier-Stokes, etc.)

2. les (defines the turbulence model for eddies, such us LES, k-epsilon,
etc.)

3. rey, xl (defines the Reynolds number and the reference length for the
Reynolds number)

4. ktmax (defines maximum number of time-steps)

5. nexp (decides whether to use an explicit time or an implicit time-integration
strategy)

6. cflmin, cflstart, cflstep, cflmax (these parameters define the Courant-
FriedrichsLewy (CFL) strategy)

7. iflux (specifies the flux algorithm)

After setting of simulation parameters, we compile file
Makefile-AERO-08-F95-sophia in order to ensure that all the routines are
working properly. Then, if the compiling is successful, we submit the job
by file submit-8-nef-OpenMpi.pbs to parallel cluster NEF server. We use 8
processors for running the job because we decompose our domain to 8 subdo-
main. It means that each subdomain is computed in one processor and the
final result of each processor will be associated in only one processor in order
to get the global solution. Finally, we will get some output files: nef-32.out,
solf.xxxxxx.data, and startf.xxxxxx.data. In order to visualize the out-
put files, we use interface file aero3dgm.x to convert solf.xxxxxx.data and
startf.xxxxxx.data to be solf.xxxxxx.vtu. The last file is readble file for
Paraview-3.2.1 which is the post-processing or visualisation software.

18

3.3 Renumerotation Method

In order to accelerate the convergence rate of GMRES method in solving the
matrix of the linear system, we will try to apply a scheme of vertices re-
numbering for all vertices close to cylinder surface. In applying this scheme,
we will modify the subroutine code SubMesh.f which is responsible to read the
mesh data in subdomain. Inside SubMesh.f, we will call subroutine RenSom.f

that responsible to renumerotate of the list of vertices in order separate in-
terface vertices from those that are purely interior to the submesh. In this
experiment, we will modify subroutine Rensom.f by introducing and calling
a new subroutine RenumILU.f. With RenumILU.f, the order of vertice num-
bering will be started from vertice in cylinder surface as the boundary and
the next vertice is the closest vertice in orthogonal direction of the boundary.
It will proceed until the last vertice in such layer that defined in the code
RenumILU.f. After that, the order of vertice numbering will be started from
vertice in boundary again. This process is showed in figure 3.1 and 3.2.

Figure 3.1: Order of vertices numbering before apply RenumILU.f

Figure 3.2: Order of vertices numbering after apply RenumILU.f

19

We apply this method only for a finite number of layer close to the cylinder
surface or boundary because this region is very important for analyzing the
boundary layer development such that we need precise mesh scheme.

20

Chapter 4

Results and Discussions

4.1 Domain Decomposition

The domain of the computation is showed by figure 4.1 and 4.2. The com-
putation domain consist of 43282 vertices and 228792 tetrahedrals. We can
see that the meshes close to the surface of cylinder are much finer than other
regions because we need more precise mesh in the region which is close to
boundary in order to get sufficient results.

Figure 4.1: Global domain in 3 dimensional view

In this computation, we use parallel computing with 8 processors in parallel
cluster NEF server. Such that we decompose the domain of computation onto
8 subdomain, it means that each domain is computed by one processor. In
order to get global solution, the results of each processor will be compile in the
one designed processor. Figure 4.3 represents the domain decomposition for
computation. The number of vertices and tetrahedrals, respectively, for each
subdomain are

• subdomain 1 : nsmax,ntmax = 5827, 28938

21

Figure 4.2: Global domain in 2 dimensional view

• subdomain 2 : nsmax,ntmax = 5581, 28091

• subdomain 3 : nsmax,ntmax = 6127, 29449

• subdomain 4 : nsmax,ntmax = 5713, 27781

• subdomain 5 : nsmax,ntmax = 5744, 27767

• subdomain 6 : nsmax,ntmax = 5853, 28957

• subdomain 7 : nsmax,ntmax = 5931, 28889

• subdomain 8 : nsmax,ntmax = 5802, 28920

Figure 4.3: Domain decomposition

4.2 Effects of Renumerotation

Inside the subroutine SubMesh.f we call subroutine RenSom.f. These sub-
routines responsible to read the mesh data inside the domain. In order to
accelerate the convergence of the iterative linear solver, in this case we use

22

GMRES solver, we modify the order of vertice numbering by applying sub-
routine RenumILU.f inside the subroutine RenSom.f. Furthermore we test
the modified code in one time step with Reynolds number 100 and only one
GMRES iteration. The figure 4.5 and 4.6 show the computation results
unmodified code and modified code, respectively.

Comparison between figure 4.5 and 4.6 tell us that the zero velocity or
blue line around the surface in figure 4.5 is denser than the zero velocity
or blue line in figure 4.6. It means that the developing of non-zero velocity
in direction of restrain from the surface in figure 4.6 is faster than in figure
4.5. By the theoretical manner, the fluid velocity of viscous fluid around a
surface is equal to zero only on the surface. Thus, with only one GMRES
iteration, applying RenumILU.f in the subroutine RenSom.f will give more
sufficient result as figure 4.6 that means the convergance rate is accelerated in
modified code. More explicitly, the figure 4.7 and figure 4.8 tell us about the
result comparison between unmodified code and modified code. While figure
4.9 tells the velocity profile for unmodified and modified code.

Basically, applying RenumILU.f in the subroutine RenSom.f will change the
spectral properties of generated matrix of linear system. Either Unmodified
code and modified code perform a different order of vertices numbering in a
such way such that the generated matrix of unmodified code will be much
sparser or less denser than generated matrix of modified code. With less
denser of spectral properties, the generated matrix of unmodified code is more
difficult to solve than the generated matrix of modified code. It means that
the convergance rate of unmodified code is longer than modified code. Thus,
with only one GMRES iteration, the modified code generates more sufficient
result than the unmodified code.

Figure 4.4: Meshing layers close to surface as the object for applying
RenumILU.f

23

Figure 4.5: Developing of velocity value in Re=100, GMRES iteration=1,
before applying RenumILU.f

Figure 4.6: Developing of velocity value in Re=100, GMRES iteration=1, after
applying RenumILU.f

24

Figure 4.7: Isovelocity value in Re=100, GMRES iteration=1, before applying
RenumILU.f

Figure 4.8: Isovelocity in Re=100, GMRES iteration=1, after applying
RenumILU.f

Figure 4.9: Velocity profile on the surface/boundary

25

Chapter 5

Conclusions

Navier-Stokes equation is one of the most interesting in fluid dynamic study.
There are some numerical approximations used for solving this equation such
us finite volume method and finite element method. Each of used numerical
approximation for solving Navier-Stokes equation leads to generate a linear
system which is formulated by A.u = f , where A is a square matrix. In
order to get the solution of Navier-Stokes equation, we have to solve the linear
system with either direct methods or iterative methods. In using the iterative
methods, the behaviours or properties of matrix A strongly contribute to the
convergence rate of the used iterative method. The larger matrix A coefficients
are gathered close to diagonal, the easier the linear system to be solved.

The properties of matrix A are contributed by how the numerical approxi-
mation developed, for instance how to construct and partition off the mesh and
how to number the vertices. In this training, we modified the vertice numbering
system of AERO-08 code in order to accelerate the convergence rate of linear
solver, GMRES, by introducing and calling a new subroutine RenumILU.f in-
side the subroutine RenSom.f. By the test case of the flow around a cylinder,
with Re=100 and one step of GMRES iteration, it is proved that the modified
code can accelerate the convergence rate of linear solver. It means that the
modified code generated a matrix A on better properties than a matrix A of
unmodified code such that the linear system is easy to be solved. Finally, by
acceleration of the convergence rate in solving the linear system, it can save
both computation power and computation time.

26

Bibliography

1. Y. Saad. Iterative Methods for Sparse Linear System. PWS Publishing
Company, Boston, 1996.

2. INRIA. AERO-08 User Manual. Release: v2.0 F95, Sophia Antipolis,
2008.

3. Fluent User Services Center. Introductory FLUENT Notes. FLUENT
v6.2, 2005.

4. Kitware, Inc. Paraview 3.2.1, New York, 2009.

27

