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Equations of nonlinear Elasticity

We will look at the equations:

∫
Ω

∂W
∂F

(∇φ) : ∇θi dx =
∫

Ω
f ·θi dx

in the compressible case and

{∫
Ω

∂W
∂F (∇φ) : ∇θi dx +

∫
Ω p cof ∇φ : ∇θi dx =

∫
Ω f ·θi dx∫

Ω pi (det∇φ −1) = 0

in the incompressible case

with
W (F ) = α · ‖F‖2 + β · ‖cof F‖2 + γ · ‖detF‖2−δ · ln(detF )
These equations must be fulfilled for all testfunctions θi ∈Θs ,
where Θs denotes the finite element solutions subspace.
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Basic notions

Ω is a bounded, open, connected subset of R3 with
suffiencently smooth boundary. Ω̄ represents the volume
occupied by a body before it is deformed and is called
reference configuration.

One may write
φ = id+u

with
u : Ω̄→ R3

where u is called the displacement.
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homogeneous hyperelastic material

Definition
A homogeneous elastic material with response function

T̂ : M3
+→M3

is called homogeneous hyperelastic if there exists a function

Ŵ : M3
+→ R

differentiable with respect to the variable F ∈M3
+, such that

T̂(F) =
∂Ŵ
∂F

(F), ∀F ∈M3
+

. The function Ŵ is called stored energy function.
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minimal property

Fact
The equations of equilibrium are formally equivalent to the
equations

I ′(φ)θ = 0

with
I (ψ) =

∫
Ω

Ŵ (∇ψ(x))dx−{F (ψ) +G (ψ)} .

So we are looking of a minimum of the functional I !
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Finite element system

We were solving the system:

∫
Ω

∂W
∂F

(∇φS) : ∇θi dx +
1
ε
M ·φ =

∫
Ω

f ·θi ∀i ∈ {1 . . .n}

φS(x ,y) =
n

∑
i=1

φiθi (x ,y) φ = (φ1 . . .φn)t

for θi ∈ P1 and

θi (xj) =

{
δij for i = 1 . . .m
δ(i−m)j for i = m +1 . . .n

, Mij =
∫

ω

θi ·θj dx

System nonlinear ⇒ Finite Elements + Newton Algorithm for the
φi in φS
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Newton Algorithm

{
DG (φ

k)4φ = G (φ
k) φ

k = (φk
1 . . .φk

n )t

φ
k+1 = φ

k −4φ

[
DG (φ

k)
]
ij

=
∫

Ω

∂

∂φj

(
∂W
∂F

(∇φ)

)
: ∇θi dx +

1
ε
·M

[
G (φ

k)
]
i

=
∫

Ω

∂W
∂F

(∇φS) : ∇θi dx +
1
ε
M ·φ −

∫
Ω

f ·θ dx

nonlinear Elasticity



Theory
Numerics
Remarks

numerics

Newton Algorithm

{
DG (φ

k)4φ = G (φ
k) φ

k = (φk
1 . . .φk

n )t

φ
k+1 = φ

k −4φ

[
DG (φ

k)
]
ij

=
∫

Ω

∂

∂φj

(
∂W
∂F

(∇φ)

)
: ∇θi dx +

1
ε
·M

[
G (φ

k)
]
i

=
∫

Ω

∂W
∂F

(∇φS) : ∇θi dx +
1
ε
M ·φ −

∫
Ω

f ·θ dx

nonlinear Elasticity



Theory
Numerics
Remarks

numerics

Newton Algorithm

{
DG (φ

k)4φ = G (φ
k) φ

k = (φk
1 . . .φk

n )t

φ
k+1 = φ

k −4φ

[
DG (φ

k)
]
ij

=
∫

Ω

∂

∂φj

(
∂W
∂F

(∇φ)

)
: ∇θi dx +

1
ε
·M

[
G (φ

k)
]
i

=
∫

Ω

∂W
∂F

(∇φS) : ∇θi dx +
1
ε
M ·φ −

∫
Ω

f ·θ dx

nonlinear Elasticity



Theory
Numerics
Remarks

numerics

Reduced basis approach

basic Idea
The basic idea is to precompute solutions and use those solutions
as basis functions in our finite elements solution subspace i.e.
ΘS = Ur = span{ui , i = 1 . . . I}, where ui are the displacements of
the solutions φS .

We end up solving∫
Ω

∂W
∂F

(Id + ∇ur ) : ∇δur dx =
∫

Ω
f ·δur dx , ∀δur ∈ Ur

=⇒ For the reduced basis system the Matrix in the Newton system
is not sparse anymore!
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Plots

=⇒ go to Matlab!
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Numerical Results:

We have chosen f (x ,y) linear in both components,
α = β = γ = 1, δ = 5, Number Nodes = 2121
Domain= [0,5]× [0,1], e = uFE −uRB

f1(x ,y) =

(
−0.8
−0.8

)
‖e‖2 ‖e‖∞

I=6 9.04025 0.33289
I=12 2.61462 0.12019
I=18 1.5115 0.07257
I=24 0.72561 0.02598
I=30 0.61432 0.02661
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Numerical Results 2:

f2(x ,y) =

(
0.4x +0.3y −0.2
−0.5x + y +0.3

)
‖e‖2 ‖e‖∞

I=6 7.23828 0.29562
I=12 4.47455 0.18567
I=18 3.52092 0.14728
I=24 2.22963 0.0936
I=30 1.29669 0.05495

f3(x ,y) =

(
0

sin
(2π

5 · x
) ) ‖e‖2 ‖e‖∞

I=6 4.93955 0.17723
I=12 3.39434 0.1344
I=18 2.01984 0.08634
I=24 1.24071 0.05417
I=30 0.44359 0.01943
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Times

We had converging problems for I = 24∧ I = 30 due to the basis
functions, that are added!

f1 f2 f3
exact 37.61s 45.15s 29.27s
I=6 6.8s 6.83s 5.27s
I=12 24.15s 23.83s 22.24s
I=18 61.04s 59.92s 49.33s
I=24 354.96s 345.11s 101.32s
I=30 566.57s 506.87s 498.63s
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In my code the FE-Algorithm was almost as fast as the
RB-Algorithm with I=12. The RB-Algorithm can be speed up,
but the aim should be to keep the RB-basis low dimensional.

It is very important how the basis functions in the
RB-Algorithm are chosen! In my case the last added solutions
are badly chosen, because the Jacobian in the
Newton-Algorithm becomes badly scaled.

It seems like even RHSs that are not linear are still
approximated in a good way, so even if one has computed the
basisfunctions in a certain set, one can extend the possible
RHSs to a bigger space.
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