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Theory
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Equations of nonlinear Elasticity

We will look at the equations:

o
W
[ 5 (v0):ve, dx_/f 6; dx

in the compre55|b|e case and

Japi(det Ve — 1) =0

in the incompressible case

{fﬂ W (V§):V6; dx+ [op cof VO :V6; dx = [ f-6; dx

e with
W(F)=o-||F|[?+B-||cof F||>+7-|detF||>—3&-In(detF)
These equations must be fulfilled for all testfunctions 6; € O,
where O denotes the finite element solutions subspace.
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Basic notions

e Q is a bounded, open, connected subset of R3 with
suffiencently smooth boundary. Q represents the volume
occupied by a body before it is deformed and is called
reference configuration.
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Basic notions

e Q is a bounded, open, connected subset of R3 with
suffiencently smooth boundary. Q represents the volume
occupied by a body before it is deformed and is called
reference configuration.

@ One may write
¢=id+u
with B
u:Q— R3

where u is called the displacement.
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homogeneous hyperelastic material

A homogeneous elastic material with response function
T:M3 - M3

is called homogeneous hyperelastic if there exists a function
W M3 —R

differentiable with respect to the variable F € M2, such that

T(F) = %‘::V(F), VF e M3

. The function W is called stored energy function.
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minimal property

The equations of equilibrium are formally equivalent to the
equations

I'(9)6 =0

with

I(v) = [ WTw()de—{F(w)+ G(v)}-
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minimal property

The equations of equilibrium are formally equivalent to the
equations

I'(9)6 =0

with

I(v) = [ WTw()de—{F(w)+ G(v)}-

So we are looking of a minimum of the functional /!
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Numerics numerics

Finite element system

We were solving the system:

P
aVFV(ws) VO dx+ - M¢> /fev/e{1 n}

= Z¢i9i(X7)’) 9 =(91.--0n)"
i=1

nonlinear Elasticity



Numerics numerics

Finite element system

We were solving the system:
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Finite element system

We were solving the system:

P
aVFV(ws) VO dx+ - M¢> /fev/e{1 n}

x,y) =Y 0i6i(x,y) ¢ =(91...¢n)"
=1

for 6; € P! and

i fori=1...
O(i—myj fori=m+1...n o

System nonlinear = Finite Elements + Newton Algorithm for the

i in ¢s
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Newton Algorithm

{DG(q)k)A(j) = G(¢*

9/(4—1 :Qk




Newton Algorithm

DG(¢*)Ng = G(9
¢k+f _ ¢/f_

[DG(¢’<)L:/Q;%<?;__V(V¢)> V6 ot M




Newton Algorithm

{DG((i)k)A(P G(9" ) ¢*=(9r...00)"
9k+1 :¢k—A¢

DG (6" )L /;PJ <‘9W(v¢)>;ve,- dx+%-M

}, ‘ZVFV(V%) VO dxt "hg /f 0 dx




Numerics numerics

Reduced basis approach

basic Idea

The basic idea is to precompute solutions and use those solutions
as basis functions in our finite elements solution subspace i.e.

©s = U, =span{uj,i=1...1}, where u; are the displacements of
the solutions ¢s.
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Reduced basis approach

basic Idea

The basic idea is to precompute solutions and use those solutions
as basis functions in our finite elements solution subspace i.e.

©s = U, =span{uj,i=1...1}, where u; are the displacements of
the solutions ¢s.

We end up solving

aw

[ SF d+Vuy): Vsu dx—/ f.-8u, dx, Véu, € U,

= For the reduced basis system the Matrix in the Newton system
is not sparse anymore!
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= go to Matlab!
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Numerical Results:

We have chosen f(x,y) linear in both components,
a=B=y=1, 6§ =5, Number Nodes = 2121
Domain=[0,5] x [0,1], e = upr — ugg
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Numerical Results:

We have chosen f(x,y) linear in both components,
a=B=y=1, 6§ =5, Number Nodes = 2121
Domain= [0,5] x [0,1], e = upr — ugg

i) = Zop )| Nl | el
=6 9.04025 | 0.33289
=12 2.61462 | 0.12019
=18 1.5115 | 0.07257
=24 0.72561 | 0.02598
=30 0.61432 | 0.02661
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Numerical Results 2:

e = ( S0V 0T | tel | el
=6 7.23828 | 0.29562
=12 4.47455 | 0.18567
=18 3.52092 | 0.14728
=24 2.22963 | 0.0936
=30 1.29669 | 0.05495
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Numerical Results 2:

a0 = ( “oa s o ) | lele | el
=6 7.23828 | 0.29562
=12 4.47455 | 0.18567
=18 3.52092 | 0.14728
=24 2.22963 | 0.0936
=30 1.29669 | 0.05495
0
50 = (o35 ) | lele | lel-
=6 493955 | 0.17723
=12 3.39434 | 0.1344
=18 2.01984 | 0.08634
=24 1.24071 | 0.05417
=30 0.44359 | 0.01943
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We had converging problems for | =24 A | =30 due to the basis
functions, that are added!
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We had converging problems for | =24 A | =30 due to the basis
functions, that are added!

| | A [ B [ A
exact | 37.61s | 45.15s | 29.27s
=6 6.8s 6.83s 5.27s
I=12 | 24.15s | 23.83s | 22.24s
I=18 | 61.04s | 59.92s | 49.33s
=24 | 354.96s | 345.11s | 101.32s
=30 | 566.57s | 506.87s | 498.63s

|
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Remarks

@ In my code the FE-Algorithm was almost as fast as the
RB-Algorithm with 1=12. The RB-Algorithm can be speed up,
but the aim should be to keep the RB-basis low dimensional.
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but the aim should be to keep the RB-basis low dimensional.

@ It is very important how the basis functions in the
RB-Algorithm are chosen! In my case the last added solutions
are badly chosen, because the Jacobian in the
Newton-Algorithm becomes badly scaled.
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@ In my code the FE-Algorithm was almost as fast as the
RB-Algorithm with 1=12. The RB-Algorithm can be speed up,
but the aim should be to keep the RB-basis low dimensional.

@ It is very important how the basis functions in the
RB-Algorithm are chosen! In my case the last added solutions
are badly chosen, because the Jacobian in the
Newton-Algorithm becomes badly scaled.

o It seems like even RHSs that are not linear are still
approximated in a good way, so even if one has computed the
basisfunctions in a certain set, one can extend the possible
RHSs to a bigger space.
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