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1. Cauchy Problem

1.1. Solution formula and existence.

1.1.1. D’Alembert formula — 1D. We will give the formal solution of Cauchy problem

utt − uxx = 0, in R+ × R
u|t=0 = g(x), (1.1)

ut|t=0 = h(x).

By factorizing the operator ∂tt − ∂xx = (∂t + ∂x)(∂t − ∂x), we will solve the following two transport

equations,

vt + vx = 0, (1.2)

v|t=0 = h(x)− g′(x)

and

ut − ux = v, (1.3)

u|t=0 = g(x)

By the solution of transport equation, (1.2) has solution

v(x, t) = h(x− t) + g′(x− t).
1
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(1.3) has solution

u(x, t) = g(x+ t) +

∫ t

0

v(x+ (t− s), s)ds.

Thus the solution of (1.1) is

u(x, t) = g(x+ t) +

∫ t

0

h(x+ t− 2s) + g′(x+ t− 2s)ds

= g(x+ t) +
1

2

∫ x+t

x−t

(h(y)− g′(y))dy

= g(x+ t)− 1

2
g(x+ t) +

1

2
g(x− t) +

1

2

∫ x+t

x−t

h(y)dy

=
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t

h(y)dy.

D’Alembert formula refers to

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t

h(y)dy. (1.4)

which is the formal solution of (1.1).

From this formula, we are ready to get the existence of solution for smooth initial data,

Theorem 1.1. If g ∈ C2(R), h ∈ C1(R), then u ∈ C2(R × [0,+∞)) satisfies wave equation

utt − uxx = 0, and

lim
(x,t)→(x0,0)

u(x, t) = g(x0), lim
(x,t)→(x0,0)

ut(x, t) = h(x0).

Some properties of the solution. By using D’Alembert formula, there are some important

sets in (x, t) space.

(1) We call {y ∈ R||y − x| ≤ t} the domain of dependence of point (x, t).

(2) {(x, t) ∈ R× [0,+∞)|x ≥ x1 − t and x ≤ x2 + t} the range of influence of [x1, x2].

(3) {(x, t) ∈ R× [0,+∞)|x ≥ x1 + t and x ≤ x2 − t} the determining region of [x1, x2].

(4) x+ t and x− t are characteristics of the wave equation.

Due to characteristics, wave equation has the property of Finite speed propagation of singu-

larity.

Nonhomogeneous problem By the same method we can also find the solution of nonhomoge-

neous problem

utt − uxx = f(x, t), x ∈ R, t > 0 (1.5)

u|t=0 = g(x), ut|t=0 = h(x)

which is,

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t

h(y)dy +
1

2

∫ t

0

ds

∫ x+(t−s)

x−(t−s)

f(y, s)dy. (1.6)

Theorem 1.2. If g ∈ C2(R), h ∈ C1(R), f ∈ C2(R × [0,+∞)), then u in (1.6), a function in

C2(R× [0,+∞)), is a classical solution of (1.5).

By using the solution formula, it is easy to check that

Corollary 1.1. If g, h and f are odd (even, or periodic) in x, so is u.
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1.1.2. Half-line problem. By using extension, we will be able to give the solution formula of the

following problem

utt − uxx = 0, in R+ × R+

u|t=0 = g(x), ut|t=0 = h(x) (1.7)

u|x=0 = 0

For compatibility we need h(0) = g(0) = 0. Due to the homogeneous Dirichlet boundary condition

at x = 0, we use odd extension. Let

g̃ =

{
g(x) x ≥ 0

−g(−x) x < 0

The same extensions for ũ(x, t) and h̃(x). Then we have that ũ satisfies

ũtt − ũxx = 0, in R+ × R
ũ|t=0 = g̃(x),

ũt|t=0 = h̃(x).

By D’Alembert formula, ũ has the representation

ũ(x, t) =
1

2
(g̃(x+ t) + g̃(x− t)) +

1

2

∫ x+t

x−t

h̃(y)dy.

We need to get back to the domain {(x, t) : x > 0, t > 0} and drop the tildes in the formula. There

are two cases, in the case of x ≥ t, our solution has the representation

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t

h(y)dy.

And in the case of 0 ≤ x < t, the solution is

u(x, t) =
1

2
(g(x+ t)− g(t− x)) +

1

2

(∫ x+t

0

h(y)dy −
∫ t−x

0

h(−y)dy
)
.

=
1

2
(g(x+ t)− g(t− x)) +

1

2

∫ x+t

t−x

h(y)dy.

Remark 1.1. For nonhomogeneous boundary condition u|x=0 = uD(t), one can use new variable

v = u− uD(t) to do the same discussion, where vtt − vxx = −(uD)tt.

Remark 1.2. It is an easy exercise to get half-line problem with homogeneous Neumann boundary

condition ux|x=0 = 0 by using even extension.

1.1.3. Kirchhoff formula in 3D and Poisson formula in 2D. We will reduce the multi-dimension

problem into a half-line problem by using Spherical mean of the solution.

The spherical mean of a function u(x, t) on ∂B(x, r) is given by

U(x; r, t) =

∫
∂B(x,r)

− u(y, t)dSy (1.8)

Lemma 1.1. If u ∈ Cm([0,+∞)× Rn) is a solution of

utt −∆u = 0, in (0,+∞)× Rn (1.9)

u|t=0 = g, ut|t=0 = h.
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Then the spherical mean of u, U(x; r, t) ∈ Cm([0,+∞)× [0,+∞)) satisfies

Utt − Urr −
n− 1

r
Ur = 0, in (0,+∞)× R+

U |t=0 = G, Ut|t=0 = H,

which is called the Euler-Poisson-Darboux equation.

Proof. By direct calculations, we have

Ur(x; r, t) =
∂

∂r

∫
∂B(x,r)

− u(y, t)dSy =
∂

∂r

∫
∂B(0,1)

− u(x+ rz, t)dSz

=

∫
∂B(0,1)

− ∇u(x+ rz, t) · zdSz =

∫
∂B(x,r)

− ∇u(y, t) · y − x

r
dSy

=

∫
∂B(x,r)

− ∇u · γdSy =
r

n

∫
B(x,r)

− ∆u(y, t)dy.

As a consequence,

lim
r→0+

Ur(x; r, t) = 0.

If we take one derivative more,

Urr(x; r, t) =
∂

∂r

( r

n

∫
B(x,r)

− ∆u(y, t)dy
)
=

1

nα(n)

∂

∂r

(
r1−n

∫
B(x,r)

∆u(y, t)dy
)

=
1− n

n

1

α(n)rn

∫
B(x,r)

∆u(y, t)dy +
1

nα(n)rn−1

∂

∂r

∫
B(x,r)

∆u(y, t)dy

= (
1

n
− 1)

∫
B(x,r)

− ∆udy +

∫
∂B(x,r)

− ∆udSy.

and

lim
r→0+

Urr(x; r, t) =
1

n
∆u(x, t).

Then by iteration, if u ∈ Cm, we have U ∈ Cm.

Back to the first order derivative, by using the wave equation utt −∆u = 0, we have

Ur =
r

n

∫
B(x,r)

− uttdy =
1

nα(n)rn−1

∫
B(x,r)

uttdy.

Multiplication of it by rn−1 gives

rn−1Ur =
1

nα(n)

∫
B(x,r)

uttdy.

The the desired equation follows from Taking one more derivative of it, i.e.

(rn−1Ur)r =
1

nα(n)

∫
∂B(x,r)

uttdSy = rn−1

∫
∂B(x,r)

− uttdSy = rn−1Utt.

�

In the case n = 3, we will get Kirchhoff’s formula by using Euler-Poisson-Darboux equation.

Let Ũ = rU , G̃ = rG and H̃ = rH, we have

Ũr = U + rUr,

and moreover,

Ũtt = rUtt = rUrr + 2Ur = (U + rUr)r = Ũrr.
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Now Ũ solves the half-line problem

Ũtt − Ũrr = 0, in R+ × R+

Ũ |t=0 = G̃, Ũt|t=0 = H̃

Ũ |r=0 = 0.

By solution representation in half-line problem, we have

Ũ(x; r, t) =
1

2
(G̃(r + t)− G̃(t− r)) +

1

2

∫ r+t

t−r

H̃(y)dy, ∀0 < r < t.

Since u(x, t) is a continuous function, its value on (x, t) is exactly the limit of its spherical mean.

Thus we have

u(x, t) = lim
r→0+

Ũ(x; r, t)

r
= lim

r→0+
U(x; r, t)

= lim
r→0+

[
1

2

G̃(r + t)− G̃(t− r)

r
+

1

2r

∫ r+t

t−r

H̃(y)dy

]
= G̃′(t) + H̃(t)

By definition of G̃ and H̃, going back to variables g and h, we arrive at

u(x, t) =
∂

∂t

[
t

∫
∂B(x,t)

− gdSy

]
+ t

∫
∂B(x,t)

− hdSy.

Then if we do calculation one step more,

∂

∂t

∫
∂B(x,t)

− g(y)dSy =
∂

∂t

∫
∂B(0,1)

− g(x+ tz)dSz

=

∫
∂B(0,1)

− ∇g(x+ tz) · zdSz =

∫
∂B(x,t)

− ∇g(y) · (y − x)dSy,

we will have the 3-D Kirchhoff formula,

u(x, t) =

∫
∂B(x,t)

− [g(y) +∇g(y) · (y − x) + th(y)]dSy. (1.10)

In the case n = 2, we will get Poisson’s formula by the method of descent.

If u(x1, x2, t) is a solution in 2-D. Let ū(x1, x2, x3, t) = u(x1, x2, t), then ū solves the wave equation

in 3-D,

ūtt −∆ū = 0 in R3 × (0,∞)

ū|t=0 = ḡ, ūt|t=0 = h̄

where ḡ(x1, x2, x3) = g(x1, x2) and h̄(x1, x2, x3) = h(x1, x2). Then by Kirchhoff’s formula in 3-D,

we have

u(x, t) =
∂

∂t

[
t

∫
∂B(x̄,t)

− ḡ(y)dSy

]
+ t

∫
∂B(x̄,t)

h̄(y)dSy,
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where x̄ = (x1, x2, 0). Due to the fact that ḡ(y1, y2, y3) = g(y1, y2), we can simplify the integral on

∂B(x̄, t) by ∫
∂B(x̄,t)

− ḡ(y)dSy =
1

4πt2

∫
∂B(x̄,t)

ḡdSy

=
2

4πt2

∫
B(x,t)

g(y)(1 + |Dγ(y)|2) 1
2 dy,

where γ(y) =
√

t2 − (y − x)2 and (1 + |Dγ(y)|2) 1
2 = t(t2 − |y − x|2)− 1

2 . Therefore,

∫
∂B(x̄,t)

− ḡ(y)dSy =
1

2πt

∫
B(x,t)

g(y)

(t2 − |y − x|2) 1
2

dy

=
t

2

∫
B(x,t)

− g(y)

(t2 − |y − x|2) 1
2

dy.

Then taking derivative with respect to t, we have

∂

∂t

[
t2
∫
B(x,t)

− g(y)

(t2 − |y − x|2) 1
2

dy

]
=

∂

∂t

[
t

∫
B(0,1)

− g(x+ tz)

(1− |z|2) 1
2

dz

]

=

∫
B(0,1)

− g(x+ tz)

(1− |z|2) 1
2

dz + t

∫
B(0,1)

− ∇g(x+ tz) · z
(1− |z|2) 1

2

dz

= t

∫
B(x,t)

− g(y)

(t2 − |y − x|2) 1
2

dy + t

∫
B(x,t)

− ∇g(y) · (y − x)

(t2 − |y − x|2) 1
2

dy

Thus the 2-D Poisson’s formula is

u(x, t) =
1

2

∫
B(x,t)

− tg(y) + t2h(y) + t∇g(y) · (y − x)

(t2 − |y − x|2) 1
2

dy. (1.11)

By Kirchhoff’s and Poisson’s formula in 3-D and 2-D, we have the following existence result.

Theorem 1.3. n = 2, 3. If g ∈ C3(Rn), h ∈ C2(Rn) with Q = Rn × (0,+∞), then u ∈ C2(Q̄) is a

classical solution of (1.9).

Difference of Solution behavior between 3-D and 2-D If we have a closed look at the

Kirchhoff formula (1.10) and the Poisson formula (1.11), we can easily find the main difference is

the integral. Integral over the sphere (which is the boundary of a domain) in Kirchhoff formula and

integral over the ball in Poisson formula.

Let’s assume that the initial data has compact support Ω, where Ω is connected and regular

enough. ∀x0 ̸∈ Ω and d1 = dist(x0,Ω) > 0, d2 = max{dist(x0, x) : x ∈ Ω}, then the possible

nonzero point of u(x0, t) can only be interval [d1, d2]. While in 2-D, the possible nonzero point of

u(x0, t) must be the half line [d1,+∞). That’s explained why one can hear the others’ voice in 3-D,

and the water wave diffuse the whole space in 2-D. A picture is needed here.

1.2. Uniqueness — Energy method. With existence theory at hand, uniqueness is a natural

question to ask. Is the existed classical solution unique? Furthermore, is it stable? in which sense?

We first introduce a useful lemma.

Lemma 1.2. (Gronwall’s inequality) Assume G(τ) ≥ 0, G′(τ) ∈ C[0, T ], G(0) = 0 and ∀τ ∈ [0, T ],

the following inequality holds
dG(τ)

dτ
≤ CG(τ) + F (τ)
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where C is a constant, F (τ) ≥ 0 nondecreasing in τ . Then

dG(τ)

dτ
≤ eCτF (τ),

and

G(τ) ≤ C−1(eCτ − 1)F (τ).

Proof. Multiplying the given inequality by e−Cτ and integrate it on [0, τ ], we have

e−CτG(τ) ≤
∫ τ

0

e−CtF (t)dt ≤ F (τ)C−1(1− e−Cτ ).

�

The Cauchy problem we considered is revisited here

utt − uxx = f, in R+ × R := Q

u|t=0 = g(x), (1.12)

ut|t=0 = h(x).

The energy inequality of 1-D Cauchy problem (1.12) is

Theorem 1.4. If u ∈ C1(R× [0,+∞)) ∩C2(R× (0,+∞)) is a solution of (1.12), then ∀(x0, t0) ∈
R× (0,+∞), we have∫

Ωτ

[u2
t (x, τ) + u2

x(x, τ)]dx ≤ M
(∫

Ω0

(h2 + g2x)dx+

∫ ∫
Kτ

f2(x, t)dxdt
)
,∫ ∫

Kτ

[u2
t (x, t) + u2

x(x, t)]dxdt ≤ M
(∫

Ω0

(h2 + g2x)dx+

∫ ∫
Kτ

f2(x, t)dxdt
)
.

where K = {(x, t) ∈ R × [0,+∞) : |x − x0| < t0 − t}, Kτ = K ∩ {0 ≤ t ≤ τ}, Ωτ = K ∩ {t = τ},
M = et0 .

Proof. Multiply the equation by ut and integrated on Kτ , we have∫ ∫
Kτ

(ututt − utuxx)dxdt =

∫ ∫
Kτ

utfdxdt

Notice that the boundary of Kτ is ∂Kτ = Ω0 ∪Ωτ ∪Γ1
τ ∪Γ2

τ , we can calculate the left hand side by

using divergence theorem,∫ ∫
Kτ

1

2
(u2

t + u2
x)tdxdt−

∫ ∫
Kτ

(utux)xdxdt

=

∫
∂Kτ

(
1

2
(u2

t + u2
x),−utux)

T · γdl

=

∫
Ωτ

1

2
(u2

t + u2
x)dx−

∫
Ω0

1

2
(u2

t + u2
x)dx

+

∫
Γ1
τ

1√
2
(
1

2
(u2

t + u2
x) + utux)dl +

∫
Γ2
τ

1√
2
(
1

2
(u2

t + u2
x)− utux)dl

≥
∫
Ωτ

1

2
(u2

t + u2
x)dx−

∫
Ω0

1

2
(h2 + g2x)dx.

where γ is the exterior unit normal vector of ∂Kτ , has values γ = (−1, 0) on Ω0, γ = (1, 0) on Ωτ ,

γ = 1√
2
(1,−1) on Γ1

τ and γ = 1√
2
(1, 1) on Γ2

τ .
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And the right hand side can be estimated by∫ ∫
Kτ

utf ≤ 1

2

∫ ∫
Kτ

u2
t +

1

2

∫ ∫
Kτ

f2.

Combined the above discussions together, we have∫
Ωτ

(u2
t + u2

x) ≤
∫
Ω0

(h2 + g2x) +

∫ ∫
Kτ

u2
t +

∫ ∫
Kτ

f2.

Now let

G(τ) =

∫ ∫
Kτ

(u2
t + u2

x)dxdt =

∫ τ

0

∫ x0+(t0−t)

x0−(t0−t)

(u2
t + u2

x)dxdt,

F (τ) =

∫
Ω0

(h2 + g2x)dx+

∫ ∫
Kτ

f2dxdt.

Our above estimates is equivalently

dG(τ)

dτ
≤ G(τ) + F (τ)

where F (τ) is increasing in τ . Then Gronwall’s inequality implies that

G(τ) ≤ (eτ − 1)F (τ) ≤ et0F (τ).

�

We can also get the L2 estimate from the energy estimate.

Theorem 1.5. If u ∈ C1(R× [0,+∞)) ∩C2(R× (0,+∞)) is a solution of (1.12), then ∀(x0, t0) ∈
R× (0,+∞), ∫

Ωτ

u2(x, τ)dx ≤ M1

(∫
Ω0

(g2 + h2 + g2x)dx+

∫ ∫
Kτ

f2dxdt
)

∫ ∫
Kτ

u2(x, t)dxdt ≤ M1

(∫
Ω0

(g2 + h2 + g2x)dx+

∫ ∫
Kτ

f2dxdt
)

where M1 = et0(et0 + 1), τ ∈ [0, t0] and the definition of domains Kτ , Ωτ and Ω0 are the same as

before.

Proof. We only need to prove that ∥u∥L2(Ωτ ) and ∥u∥L2(Kτ ) can be controlled by ∥ut∥L2(Kτ ). In

fact, ∫
Ωτ

(u2(x, τ)− u2(x, 0))dx =

∫
Ωτ

∫ τ

0

∂tu
2(x, t)dtdx ≤

∫ ∫
Kτ

(u2 + u2
t )dxdt.

By Gronwall’s inequality, we have∫
Ωτ

u2(x, τ)dx ≤ et0
(∫

Ω0

g2(x)dx+

∫ ∫
Kτ

u2
tdxdt

)
.∫ ∫

Kτ

u2(x, t)dxdt ≤ et0
(∫

Ω0

g2(x)dx+

∫ ∫
Kτ

u2
tdxdt

)
.

Thus the L2 estimate is a direct consequence by energy estimates. �

Uniqueness is a direct corollary of energy estimates. Let Q = R× (0,+∞).

Corollary 1.2. If u1 and u2 are two C2(Q) ∩C1(Q̄) solutions of the Cauchy problem (1.12), then

u1 = u2 in Q.
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Proof. Let w = u1 − u2, then wtt − wxx = 0 in Q and w|t=0 = wt|t=0 = 0. Then energy estimates

for w gives that ∀(x0, t0) ∈ Q, 0 < τ < t0,∫
Ωτ

(w2 + w2
t + w2

x)dx ≤ 0,

which implies w = 0 in Ωτ . Since (x0, t0) is arbitrary, the uniqueness is proved. �

Stability in the sense ofH1 norm, aH1 norm of a function is defined by ∥u∥H1 = ∥u∥L2+∥∇u∥L2 .

Corollary 1.3. If u1, u2 are C2(Q)∩C1(Q̄) solutions of the Cauchy problem (1.12) with different

data f1, g1, h1 and f2, g2, h2. Then

∥u1 − u2∥H1(Kτ ) ≤ M
(
∥g1 − g2∥H1(Ω0) + ∥h1 − h2∥L2(Ω0) + ∥f1 − f2∥L2(Kτ )

)
,

where

∥u∥2H1(Kτ )
=

∫ ∫
Kτ

[u2(x, τ) + u2
t (x, τ) + u2

x(x, τ)]dxdt

∥g∥2H1(Ω0)
=

∫
Ω0

[g2(x) + g2x(x)]dx

∥h∥2L2(Ω0)
=

∫
Ω0

h2(x)dx

∥f∥2L2(Kτ )
=

∫ ∫
Kτ

f2(x, t)dxdt.

Proof. Just notice that w = u1 − u2 is a solution of

wtt − wxx = f1 − f2 in Qm

w|t=0 = g1 − g2, wt|t=0 = h1 − h2,

then using the energy estimates and L2 estimates. �

2. Initial boundary value problem in 1D

We will consider the initial boundary value problem 1-D

utt − uxx = 0 x ∈ (0, 1), t > 0 (2.1)

u|t=0 = g(x), ut|t=0 = h(x)

u|x=0 = u|x=1 = 0.

Here we give the Dirichlet boundary condition. One can also give Neumann boundary condition

and Robin boundary condition.

For derivation of the equation and physical meaning of boundary conditions, check Salsa’s book

[1] Page. 227-228. Page. 230.

The problem (2.1) can be solved by separation of variables. We first give a formal calculation.

Suppose that our solution has a factorized form u(x, t) = X(x)T (t), once we put it into the

equation we will get immediately

XT ′′ −X ′′T = 0 ⇒ X ′′

X
=

T ′′

T
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Since both side of this equation are functions of different variables x and t, once they are equal,

they must be constant independent of x and t. We denote the constant by −λ. Taking account of

the boundary condition we have

X ′′ + λX = 0, X(0) = X(1) = 0,

T ′′ + λT = 0.

Then the solutions with some undetermined constants A, B, C and D are (Later on, we will prove

that λ ≥ 0 so that one can take square root of it)

X(x) = C cos
√
λx+D sin

√
λx

T (t) = A cos
√
λt+B sin

√
λt

Boundary conditoin for X shows that

C = 0, D sin
√
λ = 0, ⇒ λ = (nπ)2, n = 1, 2, 3, · · ·

Thus for any fixed n we can have a solution with undetermined constants An and Bn,

un(x, t) = (An cos
√
λnt+Bn sin

√
λnt) sin

√
λnx

= (An cosnπt+Bn sinnπt) sinnπx.

By superposition principle, we know the finite summation of solutions is still a solution. For any

fixed N , we denote

uN (x, t) =
N∑

n=1

un(x, t) =
N∑

n=1

(An cosnπt+Bn sinnπt) sinnπx.

Now if initial data g(x) and h(x) has the same form, say

g(x) =

N∑
n=1

gn sinnπx, h(x) =

N∑
n=1

hn sinnπx,

then uN must be a solution with this initial data. One could naturally ask how about the case with

general initial data, what is u(x, t) then? Can we use ∞ to replace N? The problem went directly

to the theory of Fourier Series. We first write initial data g and h into Fourier Series, which can be

done for L2 functions, then the corresponding series lim
N→∞

uN (x, t) can be expected to be a solution

for smooth enough initial data. We will prove this seriously later. Before that, we introduce the

so called Sturm-Liouville problem, which is the theoretical basis of the method of separation of

variables.

2.1. Solution formula by separation of variables.

2.1.1. Eigenvalue problem. We will study the following eigenvalue problem

X ′′ + λX = 0, 0 < x < 1 (2.2)

−α1X
′(0) + β1X(0) = 0 αi, βi ≥ 0

α2X
′(1) + β2X(1) = 0 αi + βi > 0.

Theorem 2.1. (Sturm-Liouville theorem)

(1) All eigenvalues of (2.2) are nonnegative. In addition, if β1 + β2 > 0, then all eigenvalues

are positive.
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(2) Eigenvalues are countable and increasing to infinity, i.e.

0 ≤ λ1 < λ2 < · · · < λn < · · · , lim
n→∞

λn = ∞.

(3) Eigenfunctions of different eigenvalues are orthoganal in the following sense∫ 1

0

XλXµdx = 0, for λ ̸= µ,

(4) ∀f ∈ L2(0, 1), it holds that

f(x) =
∞∑

n=1

CnXn(x), in the sense of L2(0, 1), Cn =

∫ 1

0
f(x)Xn(x)dx∫ 1

0
X2

ndx
,

or

lim
n→∞

∥f(x)− fn(x)∥L2 = 0

where fn(x) =

n∑
i=1

CiXi(x) is called the generalized Fourier Series.

Proof. We will only proof the first three statements. The last one can be found in functional analysis

in the part of compact self-adjoint operators.

(1) Multiply the equation by Xλ and integrate it on (0, 1), we have

XλX
′
λ

∣∣∣1
0
−
∫ 1

0

(X ′
λ)

2dx+ λ

∫ 1

0

X2
λdx = 0.

Boundary conditions show that

−α1X
′
λ(0)Xλ(0) + β1X

2
λ(0) = 0, −α1(X

′
λ(0))

2 + β1Xλ(0)X
′
λ(0) = 0

α2X
′
λ(1)Xλ(1) + β2X

2
λ(1) = 0, α2(X

′
λ(1))

2 + β2Xλ(1)X
′
λ(1) = 0.

From these, we get

X ′
λ(0)Xλ(0) =

1

α1 + β1
(α1(X

′
λ(0))

2 + β1X
2
λ(0))

X ′
λ(1)Xλ(1) =

−1

α2 + β2
(β2X

2
λ(1) + α2(X

′
λ(1))

2).

As a consequence we know the nonnegativity of

λ

∫ 1

0

X2
λdx =

∫ 1

0

(X ′
λ)

2dx−X ′
λ(1)Xλ(1) +X ′

λ(0)Xλ(0) ≥ 0.

Thus we have λ ≥ 0 and and furthermore

λ = 0 if and only if X ′
λ ≡ 0 and

β1

α1 + β1
X2

λ(0) +
β2

α2 + β2
X2

λ(1) = 0,

or equivalently

Xλ ≡ C and
( β1

α1 + β1
+

β2

α2 + β2

)
C2 = 0.

We can see from this expression that if β1 + β2 > 0, then Xλ ≡ 0. In the end, we get that

in the case of β1 + β2 > 0, λ must be positive.
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(2) We have already λ ≥ 0 and λ = 0 iff β1 = β2 = 0. From X ′′ + λX = 0, we know that there

exist A and B such that

X(x) = A cos
√
λx+B sin

√
λx,

X ′(x) = −A
√
λ sin

√
λx+B

√
λ cos

√
λx.

We will study it in the following three cases:

(a) Dirichlet boundary condition. α1 = α2 = 0, we have X(0) = X(1) = 0. So we have

A = 0 and B sin
√
λ = 0. As a consequence,

λn = (nπ)2, Xn(x) = sinnπx, n = 1, 2, · · · .

Obviously, in this case, λn is monotone and increasing to ∞.

(b) Neumann boundary condition. β1 = β2 = 0, we have X ′(0) = X ′(1) = 0, then B = 0,

A sin
√
λ = 0. Thus we have

λn = (nπ)2, Xn(x) = cosnπx, n = 0, 1, 2, · · · .

(c) Robin boundary condition. α1β2 + α2β1 > 0, from the boundary condition we have

β1A− α1B
√
λ = 0,

β2(A cos
√
λ+B sin

√
λ)− α2

√
λ(A sin

√
λ−B cos

√
λ) = 0.

By calculations,
A

B
=

α1

√
λ

β1
, and

β2α1

√
λ

1

tan
√
λ
+ β2β1 − α1α2λ+ β1α2

√
λ

1

tan
√
λ
= 0.

Let ξ =
√
λ, then

tan ξ =
(β2α1 + β1α2)ξ

α1α2ξ2 − β1β2
.

From this formulation, we know that λn is increasing to ∞.

(3) Multiply the equation by Xµ and Xλ separately and integrate on (0, 1), we have

XµX
′
λ

∣∣∣1
0
−
∫ 1

0

X ′
µX

′
λ + λ

∫ 1

0

XλXµ = 0

XλX
′
µ

∣∣∣1
0
−
∫ 1

0

X ′
µX

′
λ + µ

∫ 1

0

XλXµ = 0

The difference between this two equations shows that

(λ− µ)

∫ 1

0

XλXµ = −XµX
′
λ

∣∣∣1
0
+XλX

′
µ

∣∣∣1
0
.

Now the boundary condition for Xλ and Xµ are

−α1X
′
λ(0) + β1Xλ(0) = 0, α2X

′
λ(1) + β2Xλ(1) = 0

−α1X
′
µ(0) + β1Xµ(0) = 0, α2X

′
µ(1) + β2Xµ(1) = 0

These algebraic systems have non zero solutions, thus the coefficient determinents are 0, i.e.∣∣∣∣ X ′
λ(0) Xλ(0)

X ′
µ(0) Xµ(0)

∣∣∣∣ = 0,

∣∣∣∣ X ′
λ(1) Xλ(1)

X ′
µ(1) Xµ(1)

∣∣∣∣ = 0.
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Thus we have

(λ− µ)

∫ 1

0

XµXλdx = 0.

Since λ ̸= µ, we know Xλ and Xµ are authogonal.

�

Remark 2.1. When β1 = β2 = 0, it is Neumann boundary condition. In this case, λ = 0 is an

eigenvalue, its eigenfunction is X0 = 1.

Remark 2.2. {Xn(x)} is a complete authogonal basis of L2(0, 1), after normalization it is

X∗
n(x) =

Xn(x)

∥Xn(x)∥L2

.

Then ∀f ∈ L2(0, 1), the fourier coefficient C∗
n is

C∗
n =

∫ 1

0
f(x)Xn(x)dx

∥xn(x)∥L2

which is the inner product of f(x) and X∗
n(x).

2.1.2. Separation of variable. Formally the solution of (2.1) is

u(x, t) =
∞∑

n=1

(An cosnπt+Bn sinnπt) sinnπx. (2.3)

Next we will give the method on determining coefficients An and Bn by using initial data.

Take t = 0 in (2.3),

u(x, 0) =
∞∑

n=1

An sinnπx, and ut(x, 0) =
∞∑

n=1

nπBn sinnπx.

Assume initial data g and h has the following Fourier expansion by sine functions

g(x) =

∞∑
n=1

gn sinnπx, gn = 2

∫ 1

0

g(x) sinnπxdx,

h(x) =
∞∑

n=1

hn sinnπx, hn = 2

∫ 1

0

h(x) sinnπxdx.

Then a natural choice of the coefficients are

An = gn, Bn =
1

nπ
hn.

Thus the solution expression is

u(x, t) =
∞∑

n=1

(gn cosnπt+
hn

nπ
sinnπt) sinnπx. (2.4)

Summary. There are three main steps in separation of variables

(1) Separation of variable formally and set up the eigenvalue problem,

(2) Solve eigenvalue problem, and solve the ODE for T (t),

(3) Summation, fixed the coefficients from initial data.

Questions remained.

(1) How about the solution for other boundary conditions? Neumann and Robin?

(2) Inhomogeneous boundary condition? Homogenization.
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(3) Inhomogeneous equation utt − uxx = f?

(4) Under what condition is u(x, t) a solution?

For Neumann and Robin boundary conditions, the related eigenvalue problem is already studied

in Sturm-Liouville theorem. We will answer the remaining three questions in the following three

subsections.

2.1.3. Inhomogeneous equation. We briefly explain how to deal with the non homogeneous equations.

Here we use (0, l) instead of (0, 1).

utt − uxx = f x ∈ (0, l), t > 0 (2.5)

u|x=0 = u|x=l = 0

u|t=0 = g(x) ut|t=0 = h(x).

Firstly we know that the eigenfunctions are sin
nπx

l
, n = 1, 2, · · · . Then assume that

u(x, t) =
∞∑

n=1

Tn(t) sin
nπ

l
x

f(x, t) =
∞∑

n=1

fn(t) sin
nπ

l
x

g(x) =

∞∑
n=1

gn sin
nπ

l
x

h(x) =
∞∑

n=1

hn sin
nπ

l
x.

Then solve the ODE for Tn(t),

T ′′
n (t) + (

nπ

l
)2Tn(t) = fn(t)

Tn(0) = gn, T ′
n(0) = hn.

One can get that the solution is

Tn(t) = gn cos
nπ

l
t+

l

nπ
hn sin

nπ

l
t+

l

nπ

∫ t

0

fn(τ) sin
nπ

l
(t− τ)dτ.

Then by replacing Tn(t) in the solution u(x, t) by this, we get the solution for inhomogeneous

equation.

2.1.4. Inhomogeneous boundary conditions. The problem with inhomogeneous boundary condition

is

utt − uxx = f x ∈ (0, l), t > 0 (2.6)

u|x=0 = u0(t) u|x=l = u1(t)

u|t=0 = g(x) ut|t=0 = h(x).

We will use homogenization technic. Introduce a new function v(x, t) such that the homogeneous

boundary conditions are true for v(x, t), more precisely, let

u(x, t) = v(x, t) +
x

l
u1(t) +

l − x

l
u0(t),
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then v(x, t) solves

vtt − vxx = f(x, t)− x

l
u′′
1 − l − x

l
u′′
0

v|x=0 = v|x=l = 0

v|t=0 = g(x)− x

l
u1(0)−

l − x

l
u0(0)

vt|t=0 = h(x)− x

l
u′
1(0)−

l − x

l
u′
0(0)

By the method of dealing with inhomogeneous equations, we can get a formula for v(x, t), which

gives the solution formula for u(x, t).

2.2. Existence of solution for (2.1). Now we have the solution formula (2.4). Under what con-

ditions is u a classical solution of (2.1)? We need that u is at least twice differentiable in both x

and t. According to the theory on function Series, we need that

∞∑
n=1

un,
∞∑

n=1

Dun,
∞∑

n=1

D2un

are uniformly convergent in (0, 1)× (0, T ).

To have classical solution of (2.1), we also need some compatibility conditions,

g(0) = g(1) = 0, h(0) = h(1) = 0, g′′(0) = g′′(1) = 0. (2.7)

Theorem 2.2. g ∈ C3[0, 1], h ∈ C2[0, 1] and they satisfies the compatibility condition (2.7), then

u(x, t) =
∑∞

n=1 un(x, t) ∈ C2(Q̄) is a solution of (2.1).

Proof. Integral by parts on the coefficients of g and h by using compatibility conditions,

hn

nπ
=

2

nπ

∫ 1

0

h(x) sinnπxdx = − 2

(nπ)3

∫ 1

0

h′′(x) sinnπxdx := − 2

(nπ)3
an

gn = 2

∫ 1

0

g(x) sinnπxdx =
2

(nπ)3

∫ 1

0

g′′′(x) cosnπxdx :=
2

(nπ)3
bn.

Then we have

u(x, t) =
∞∑

n=1

( 2

(nπ)3
bn cosnπt−

2

(nπ)3
an sinnπt

)
sinnπx.

Moreover the following estimates holds

|un| ≤
C

n3
, |Dun| ≤

C

n2

|D2un| ≤
C

n
(|an|+ |bn|) ≤ C(

1

n2
+ |an|2 + |bn|2),

where the right hand side of the last inequality can be bounded by Bessel inequality,

∞∑
n=1

|an|2 ≤ 2

∫ 1

0

|h′′|2dx,
∞∑

n=1

|bn|2 ≤ 2

∫ 1

0

|g′′′|2dx.

�
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2.3. Uniqueness and Stability — Energy estimates. Let Qτ = (0, 1) × (0, τ), we have the

following energy estimates for initial boundary value problem of wave equation (2.1) in Qτ . Then

uniqueness and stability can be obtained from that.

Theorem 2.3. Assume u ∈ C2(Qτ ) ∩ C1(Q̄τ ), then∫ 1

0

(u2 + u2
t + u2

x)dx ≤ M(

∫ 1

0

(h2 + g2 + g2x)dx+

∫
Qτ

f2dxdt).

Proof. Multiply the wave equation by ut and integrate it on Qτ ,∫
Qτ

∂

∂t
(u2

t + u2
x) ≤

∫
Qτ

f2 +

∫
Qτ

u2
t .

Notice that
∫
Qτ

=
∫ τ

0

∫ 1

0
, we have

∫ 1

0

(u2
t + u2

x)|t=τ ≤
∫ 1

0

(h2 + g2x) +

∫
Qτ

f2 +

∫
Qτ

u2
t .

By Gronwall’s inequality,∫ 1

0

(u2
t + u2

x)|t=τ ≤ M
(∫ 1

0

(h2 + g2x) +

∫
Qτ

f2
)
.

Similar to the discussion in Cauchy problem, we have the L2 estimates.

�

2.4. Resonance. Consider initial boundary value problem

utt − uxx = A(x) sinωt, x ∈ (0, 1), t > 0

u|x=0,1 = 0,

u|t0 = ut|t=0 = 0.

Compatibility conditions A(0) = A(1) = 0 is needed for existence of classical solution. We assume

A ∈ C1. The solution formula from separation of variable is

u(x, t) =
∞∑

n=1

1

nπ

∫ t

0

fn(τ) sinnπ(t− τ)dτ · sinnπx

=
∞∑

n=1

an
nπ

sinnπx

∫ t

0

sinωτ · sinnπ(t− τ)dτ,

where

an = 2

∫ 1

0

A(x) sinnπxdx.
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If we calculate further, we will see∫ t

0

sinωτ · sinnπ(t− τ)dτ

=

∫ t

0

−1

2
(cos(nπt+ (ω − nπ)τ)− cos(−(ω + nπ)τ − nπt))dτ

=
1

2

∫ t

0

cos((ω + nπ)τ − nπt)dτ − 1

2

∫ t

0

cos((ω − nπ)τ + nπt)dτ

ω ̸=nπ
=

1

2(ω + nπ)
sin((ω + nπ)τ − nπt)

∣∣∣t
0
− 1

2(ω − nπ)
sin((ω − nπ)τ + nπt)

∣∣∣t
0

ω ̸=nπ
=

1

2(ω + nπ)
(sinωt+ sinnπt)− 1

2(ω − nπ)
(sinωt− sinnπt).

If ω = kπ for some k, then

uk(x, t) =
ak
kπ

(2 sin kπt
kπ + kπ

− 1

2

∫ t

0

cos kπtdτ
)
sin kπx

=
( ak
(kπ)2

sin kπt− ak
2kπ

t · cos kπt
)
sin kπx.

Thus in the case of ω = kπ, we have

u(x, t) =
∑
n̸=k

( 1

2(ω + nπ)
(sinωt+ sinnπt)− 1

2(ω − nπ)
(sinωt− sinnπt)

)
sinnπx

+
( ak
(kπ)2

sin kπt− ak
2kπ

t · cos kπt
)
sinnπx

As t → ∞, we have uk(x, t) must blow up at some point.

3. Appendix-On Fourier Series

∀f ∈ L1(−l, l), it can be written into a Series by using sines and cosines functions

f(x) ∼ A0

2
+

∞∑
n=1

(An cos
nπx

l
+Bn sin

nπx

l
).

where

An =
1

l

∫ l

−l

f(x) cos
nπx

l
dx, n = 0, 1, 2, · · ·

Bn =
1

l

∫ l

−l

f(x) sin
nπx

l
dx, n = 1, 2, · · ·

are called Fourier coefficients of f .

If f(x) is an odd function, then Bn = 0, and

f(x) ∼ A0

2
+

∞∑
n=1

An cos
nπx

l
, An =

2

l

∫ l

0

f(x) cos
nπx

l
dx

If f(x) is an even function, then An = 0, and

f(x) ∼
∞∑

n=1

Bn sin
nπx

l
, Bn =

2

l

∫ l

0

f(x) sin
nπx

l
dx.
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For any fixed N ≥ 1, (SNf)(x) =
A0

2
+

N∑
n=1

(An cos
nπx

l
+ Bn sin

nπx

l
) is called Trigonometric

polynomials.

sin
nπx

l
, cos

mπx

l
, n,m = 1, 2, · · · are orthogonal in the sense that

1

l

∫ l

−l

cos
mπx

l
cos

nπx

l
dx = δmn

1

l

∫ l

−l

sin
mπx

l
sin

nπx

l
dx = δmn

1

l

∫ l

−l

sin
mπx

l
cos

nπx

l
dx = 0

Moreover, {1,
√
2 cos

nπx

l
,
√
2 sin

nπx

l
}∞n=1 is an orthonormal basis in L2(−l, l), where the inner

product in L2(−l, l) is defined by
1

2l

∫ l

−l

f(x)ḡ(x)dx.

Theorem 3.1. (Convergence in L2 norm)

lim
N→∞

∥f(x)− (SNf)(x)∥L2 = 0, for f ∈ L2(−l, l).

Theorem 3.2. (Bessel inequality) For f ∈ L2(−l, l), it holds

A2
0

2
+

∞∑
n=1

(A2
n +B2

n) ≤
1

l

∫ l

−l

f2dx.

Theorem 3.3. (Parseval’s equality) For f ∈ L2(−l, l), it holds

A2
0

2
+

∞∑
n=1

(A2
n +B2

n) =
1

l

∫ l

−l

f2dx.

4. Problems

(1) Verify that u(x, t) =
F (x− at) +G(x+ at)

h− x
is a solution of

(
1− x

h

)2 ∂2u

∂t2
= a2

∂

∂x

[(
1− x

h

)2 ∂u

∂x

]
where h > 0, a > 0 are constants, F,G are any function in C2.

(2) (a) Show the general solution of the PDE uxy = 0 is u(x, t) = F (x) + G(y) for arbitrary

function F,G.

(b) Using the change of variables ξ = x + t, η = x − t, show utt − uxx = 0 if and only if

uξη = 0.

(c) Use the above two facts to derive d’Alembert’s formula.

(3) Give energy estimates for half-line problem and the Cauchy problem in Multi-D case.

(4) (Equal partition of energy) Suppose that u ∈ C2(R × [0,∞)) is a solution of the following

Cauchy problem

utt − uxx = 0 (x, t) ∈ R× (0,∞)

u|t=0 = g, ut|t=0 = h x ∈ R.
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where g, h have compact support. Let kinetic energy be k(t) =
1

2

∫ ∞

−∞
u2
t (x, t)dx, potential

energy be p(t) =
1

2

∫ ∞

−∞
u2
x(x, t)dx. Try to prove

(a) k(t) + p(t) is a constant independent of t.

(b) k(t) = p(t) for large enough t.

(5)

utt − uxx = 0, x ∈ (0,+∞), t ∈ (0,+∞)

u|x=0 = cosωt

u|t=0 = Ae−x2

, ut|t=0 = 0.

Find the condition for A and ω such that solution u ∈ C2(R̄+ × R̄+), and give this solution

formula.

(6) If u is a classical solution of

utt − uxx = 0, x ∈ (0, 1), t ∈ (0,+∞)

u|x=0 = u|x=1 = 0

u|t=0 = 0, ut|t=0 = x2(1− x).

what is the limit

lim
t→+∞

∫ 1

0

(u2
t + u2

x)dx.

(7) Solve eigenvalue problem

X ′′(x) + λX(x) = 0, x ∈ (0, l)

X(0) = X ′(l) = 0.

(8)

X ′′(x) + λX(x) = 0, x ∈ (0, 1)

X ′(0) +X(0) = 0, X(1) = 0.

(a) Find an eigenfunction with eigenvalue zero. Call it X0(x).

(b) Find an equation for the positive eigenvalues λ = β2.

(c) Show graphically from part (8b) that there are an infinite number of positive eigenval-

ues.

(d) Is there a negative eigenvalue?

(9) Apply separation of variables to get formal solution of

utt − uxx = 0 (x, t) ∈ (0, 1)× (0,∞)

ux|x=0 = A sinωt, u|x=1 = 0 t ≥ 0

u|t=0 = 1, ut|t=0 = 0 x ∈ [0, 1].

(10)

utt − uxx = 0, x ∈ (0, 1), t ∈ (0,+∞)

u|x=0 = u|x=1 = 0

u|t=0 = αx4 + βx3 + sinx, ut|t=0 = γ cosx.
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Solve the problem and give the conditions on α, β and γ such that the solution you gave is

a classical one.

(11) Find the solution of initial boundary values for heat equation by separation of variables.

ut − uxx = sinxπ, x ∈ (0, 1), t ∈ (0,+∞)

u|x=0 = u|x=1 = 0

u|t=0 = 0.

(12) Discussions One can get solution formula of (2.1) by D’Alembert and Fourier series, are

they the same?
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