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1. CaucHY PROBLEM

1.1. Solution formula and existence.

1.1.1. D’Alembert formula — 1D. We will give the formal solution of Cauchy problem

utt—um:O, iDR+XR
uli=o = g(), (1.1)
ut|t:0 = h(l‘)

By factorizing the operator Oy — Oy = (0r + 0.) (0 — Ox), we will solve the following two transport

equations,
v + vy = 0, (1.2)
Vli=0 = h(z) — ¢'(2)
and
Up — Uy = 0, (1.3)
uli=0 = g(z)

By the solution of transport equation, (1.2) has solution

v(z,t) = h(z —1t) + g (x —t).
1
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(1.3) has solution

u(z,t) = gz +1t) +/0 v(z + (t — s),8)ds.

Thus the solution of (1.1) is

¢
u(z,t) = glz+t)+ / h(z +t—2s)+ ¢ (x+1t—2s)ds
0
1 x+t
— g0ty [ () - g W)y
T—t
1 1 1o
— glett) - sele O+ ge—0+5 [ hwdy
r—t
1 1 T+t
— G+t tge-0)+y [ hw
r—t
D’Alembert formula refers to
1 1 T+t
u(w,t) = 5ol + 0 +gle— 1)+ 5 [ by (14)
r—t

which is the formal solution of (1.1).
From this formula, we are ready to get the existence of solution for smooth initial data,

Theorem 1.1. If g € C*(R), h € C*(R), then u € C*(R x [0,+00)) satisfies wave equation
Upp — Uz = 0, and

lim  w(z,t) = g(zo), ug(x,t) = h(zg).

lim
(2,t)—(x0,0) (z,t)=(20,0)
Some properties of the solution. By using D’Alembert formula, there are some important
sets in (x,t) space.
(1) We call {y € R||y — z| < ¢} the domain of dependence of point (z,t).
(2) {(z,t) e Rx [0,400)|x > z1 — ¢ and x < x9 + t} the range of influence of [z1, z2].
(3) {(z,t) e R x [0,400)|z > 21 +t and 2 < 25 — t} the determining region of [z, z5].
(4) 4+t and x — t are characteristics of the wave equation.
Due to characteristics, wave equation has the property of Finite speed propagation of singu-
larity.
Nonhomogeneous problem By the same method we can also find the solution of nonhomoge-
neous problem

Ugp — Uge = f(x,t), Tz €RE>0 (1.5)
U|t:0 = g(x), Ut|t:0 = h(x)
which is,
1 1 x+t 1 t I+(t78)
uet) = 5ottt -0)+5 [ by [ds [ pwsd  (10)
2 2 Jot 2 Jo z—(t—s)

Theorem 1.2. If g € C*(R), h € C'(R), f € C*(R x [0,+00)), then u in (1.6), a function in
C?(R x [0,+00)), is a classical solution of (1.5).

By using the solution formula, it is easy to check that

Corollary 1.1. If g, h and f are odd (even, or periodic) in x, so is u.
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1.1.2. Half-line problem. By using extension, we will be able to give the solution formula of the
following problem

Utt — Ugpy = O, in R+ X R+
ult=o = 9(2), Utlt=0 = h(x) (1.7)
u|w:0 =0

For compatibility we need h(0) = ¢g(0) = 0. Due to the homogeneous Dirichlet boundary condition
at x = 0, we use odd extension. Let

- g(x) x>0
g{ —g(—x) =<0
The same extensions for @(z,t) and h(z). Then we have that @ satisfies
Gy — figy =0, n RT xR
tft=0 = g(z),
Gig)i—0 = h(z).

By D’Alembert formula, @ has the representation

x+t
o) = 5+ +ile—0)+5 [ by

We need to get back to the domain {(z,t) : > 0,¢ > 0} and drop the tildes in the formula. There
are two cases, in the case of x > ¢, our solution has the representation

x+t
uet) = 3o+ +ow—0)+3 [ hwn

And in the case of 0 < x < ¢, the solution is
1 1 x4+t t—x
wet) = gt -gt-o)+ ([ - [ n-na).
0 0

-+t
— %(g(x +1) —g(t—x)) + % /H h(y)dy.

Remark 1.1. For nonhomogeneous boundary condition u|,—o = up(t), one can use new variable
v =1u—up(t) to do the same discussion, where vy — vy = —(Up)ss.

Remark 1.2. It is an easy exercise to get half-line problem with homogeneous Neumann boundary
condition u,|,—¢ = 0 by using even extension.

1.1.3. Kirchhoff formula in 8D and Poisson formula in 2D. We will reduce the multi-dimension
problem into a half-line problem by using Spherical mean of the solution.
The spherical mean of a function u(x,t) on dB(z,r) is given by

U(z;r,t) :][ u(y, t)dS, (1.8)
OB (z,r)
Lemma 1.1. If u € C™([0,400) x R™) is a solution of
ugg — Au =0, in (0,400) x R™ (1.9)

U\tzo =9, ut|t:0 = h.



4 BY LI CHEN

Then the spherical mean of u, U(x;r,t) € C™([0,+00) X [0, +00)) satisfies
-1
Uﬁ—MW—ETJA:Q in (0,+00) x R*
U|t=0 = Ga Ut|t=0 = H7

which is called the Euler-Poisson-Darboux equation.

Proof. By direct calculations, we have

0 0
U (z;7,t — ,t)dS, = — ,1)dS,
w0 = g f o= 5 f o
= Vu(z +rz,t) - 2dS, = Vu(y,t) - y- dey
8B(0,1) OB (x,r) r
= ][ Vu-~vdS, = r Auly, t)dy.
OB (z,r) " JB(z,r)

As a consequence,
lim U,(x;r,t) =0.
r—0+ T( 7 )

If we take one derivative more,

Upr(zyrt) = 5(7”]{3 Au(y,t)dy): L a(rln/B(zyr) Au(y,t)dy)

" J B na(n) Or

1-n 1 1 0
= — A tydy + ———— A t)d
n () /B(m u(y,t)dy + nalm 1o g u(y, t)dy
1
= (=-1) Audy + AudS,.
n B(z,r) OB (z,r)

and

. 1
r1_1>r51+ Upr(z;7,t) = ﬁAu(ac,t).

Then by iteration, if u € C™, we have U € C™.
Back to the first order derivative, by using the wave equation u; — Au = 0, we have

T 1
U, = *f uppdy = ﬁ/ ugdy.
n JB(x,r) TLOL(TL)T B(z,r)

Multiplication of it by ™! gives

1
oy, = 7/ U dy.
na(n) B(z,r)

The the desired equation follows from Taking one more derivative of it, i.e.

1
(TnilUr)r = 7/ uttdSy = 7’”71][ uttdSy = ’f'nilUtt.
na(”) OB(x,r) OB (z,r)

In the case n = 3, we will get Kirchhoff’s formula by using Euler-Poisson-Darboux equation.
Let U =rU, G =rG and H = rH, we have

U, =U+rU,,

and moreover,

ﬁtt =rUy =rUp +2U, = (U +1U,.), = T}M.
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Now U solves the half-line problem

_ _ e
Olasrt) = 3@+~ Gle—m)+5 [ Ay,

-r

YO <r<t.

Since u(z,t) is a continuous function, its value on (z,t) is exactly the limit of its spherical mean.
Thus we have

u(z,t) = lim Ulint) = lim U(x;r,t)
r—0t T r—0t
_ [1Gr+t-GE—r) 1/’“+t~
1 = — H(y)d
r—l>%1+ 2 T N 2r t—r (y) Y
G'(t)+ H(t)

By definition of G and H , going back to variables g and h, we arrive at

0
t)y = —|t d t hdsS,,.
u( 1) at[ 7([93(%,;)94 - ]fa %

B(z,t)
Then if we do calculation one step more,

0 0
— gde:—][gm—i—tzdSz
ot 6B(x(7t)) Yoot aB(o,(1) )

= Vyg(x +tz) - zdS, =

V(y) - (y — z)dS,,
9B(0,1)

OB(z,t)
we will have the 3-D Kirchhoff formula,

uli, 1) = 7[ l9(9) + Va(y) - (v — ) + th(y)}dS,. (1.10)
OB(x,t)

In the case n = 2, we will get Poisson’s formula by the method of descent.

If w(zq, x2,t) is a solution in 2-D. Let @(x1, x2, 3, t) = u(z1, T2, t), then 4 solves the wave equation
in 3-D,

U — Au = in RB X (0, OO)

Uli—0 = g, Utlimo = h

where g(z1,72,73) = g(x1,22) and h(z1,22,73) = h(z1,72). Then by Kirchhoff’s formula in 3-D,

we have
o B _
uet) = o[t gwds,] vt [ hws,
oL Jop(zm oB(z,t)
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where T = (x1,22,0). Due to the fact that g(y1,vy2,y3) = g(y1,y2), we can simplify the integral on
0B(z,t) by

1
Gy)ds, = — / gds
]{?B(zt) Y ATt? Jopae
2 / 1
= — g(y)(1 + [Dvy(y)|”)2dy,
7 (y) (1 + [Dy(y)I*)

where y(y) = /& — (y — 2)2 and (1 + |Dy(y)[>)2 = t(t> — |y — x|?)"2. Therefore,

| s, = on [,

(@0) 21t Jp(a,) (12 — |y — x[2)3

t
_ 77[ 9(y) _dy
2By (2 —|y—=?)2

Then taking derivative with respect to ¢, we have
t
: ]/ g@ttz)
B (1—[z)2

9 [tg 7[ 9(y) ] 9
0t | Jp@e (22—ly—a?)? ot
B ][ 9@ +t2) +tz ][ Vylz +1tz) -2
~ Jeony (1-122)3 By (1—]2[2)3

t][ 9(y) 1dy+t][ Vg()-(y—wzdy
B(zt) (1?2 —|y—z[?)? Bzt (1?2 —|y—=z[?)?

Thus the 2-D Poisson’s formula is

_1 tg(y) + t2h(y) +tVg(y) - (y — )
u(x,t) = 2 ]{3(x " (2 — |y — 2[2)3 dy. (1.11)

By Kirchhoff’s and Poisson’s formula in 3-D and 2-D, we have the following existence result.

Qi

Theorem 1.3. n=2,3. If g € C3(R"), h € C*(R") with Q = R" x (0, +c0), then u € C*(Q) is a
classical solution of (1.9).

Difference of Solution behavior between 3-D and 2-D If we have a closed look at the
Kirchhoff formula (1.10) and the Poisson formula (1.11), we can easily find the main difference is
the integral. Integral over the sphere (which is the boundary of a domain) in Kirchhoff formula and
integral over the ball in Poisson formula.

Let’s assume that the initial data has compact support €2, where 2 is connected and regular
enough. Vzg ¢ Q and di = dist(z,Q) > 0, do = max{dist(zo,z) : x € Q}, then the possible
nonzero point of u(xg,t) can only be interval [dy,d3]. While in 2-D, the possible nonzero point of
u(zg,t) must be the half line [dy, +00). That’s explained why one can hear the others’ voice in 3-D,
and the water wave diffuse the whole space in 2-D. A picture is needed here.

1.2. Uniqueness — Energy method. With existence theory at hand, uniqueness is a natural
question to ask. Is the existed classical solution unique? Furthermore, is it stable? in which sense?
We first introduce a useful lemma.

Lemma 1.2. (Gronwall’s inequality) Assume G(7) >0, G'(1) € C[0,T], G(0) = 0 and V7 € [0,T],
the following inequality holds

dif) < CG(r) + F(r)
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where C' is a constant, F(T) > 0 nondecreasing in 7. Then

LC;S_T) < GCTF(T)7
and
G(1) < C7 Y™ —1)F(7).

Cr

Proof. Multiplying the given inequality by e~ 7 and integrate it on [0, 7], we have

e CTG(r) < /0 e CtR(t)dt < F(r)0~ (1 — e=C7).

|
The Cauchy problem we considered is revisited here
Ugg — Uge = f, N RT xR:=Q
uli=o = g(x), (1.12)

ut\t:() = h(.ﬁ)
The energy inequality of 1-D Cauchy problem (1.12) is

Theorem 1.4. Ifu € C1(R x [0,4+00)) N C?(R x (0,+00)) is a solution of (1.12), then V(xq,to) €
R x (0, +00), we have

/s,[u%(x’ﬂ +u (z, 7)]dr < M(/Qo(h2 +g2)dzx +//KT fQ(x,t)dmdt>,

//I(T[uf(x,t)—i—ui(x,t)]da:dt < M(/Qo(h2+gi)da:+//m f2(:c,t)da:dt).

where K = {(x,t) e R x [0,400) : |t —xo| < to—t}, K, = KN{0<t<7}, Q =Kn{t =1},
M = eto.

Proof. Multiply the equation by u; and integrated on K, we have

// (ututt—utum)dacdt:// uy fdzdt
K, K,

Notice that the boundary of K, is K, = QyUQ, UTLUT2, we can calculate the left hand side by
using divergence theorem,

1
// f(uf—i—ui)tdacdt—// (upty ) dadt
K, 2 K.
1

/ (5 (uf +uz), —uuy) " -yl
oK,

2

1 1
/ L2 42y - / L2 42y
Q- 2 Qo 2

L 1
r: V22 2 V2
1 1
> / —(uf +u2)dx 7/ ~(h?+ g3)dz.
Q, 2 Qo 2

where v is the exterior unit normal vector of K, has values v = (—1,0) on Qp, v = (1,0) on Q,,

1,—1) on Tl and vy = %(1, 1) on I'2.

(uf + ui) — ugtiy )dl

(

DN | =

(u? +u?) 4+ upug)dl + /
r

7=l



8 BY LI CHEN

And the right hand side can be estimated by

[howrssf [ oeaf ],

Combined the above discussions together, we have

/(uﬂrU) (h* +g7) + // uf // r*.

Q Q0
:Eo+(t0 t)

// (u? + u?)drdt = / / (u? + u?)dzxdt,
zo—(to—1)

F(r) = /Q (h* + g2)dz + / /K F2dadt.

Our above estimates is equivalently

Now let

Q
—~
K
N
I

dG (1)
dr
where F(7) is increasing in 7. Then Gronwall’s inequality implies that

G(t) < (7 = 1)F(1) < e F(7).

<G(r) + F(7)

We can also get the L? estimate from the energy estimate.

Theorem 1.5. If u € C1(R x [0, 4+00)) N C?(R x (0,+00)) is a solution of (1.12), then V(xq,to) €

R x (0, +00),
/ u?(z,7)dr < Ml(/ (¢° + h* + ¢%)dx + // dexdt)
Q. Q0 K.

//K uw?(z, t)dedt < M1(/§20(92+h2+93)d$+//& f2dmdt>

T

where My = et (et + 1), 7 € [0,t9] and the definition of domains K., Q, and Qg are the same as
before.

Proof. We only need to prove that |u| 2o, ) and |lulz2(k,) can be controlled by |lu¢l|z2(x,). In

fact,
/ (u2(ac,7)—u2(x,0))dx:/ / 8tu2(x,t)dtdx§// (u? + u?)dxdt.
Q o, Jo K.

r

By Gronwall’s inequality, we have

/ u?(z, T)dxgeto(/ gQ(x)dx—i—// ufdmdt .
// xtdxdt<et°(/ dx+// dxdt

Thus the L? estimate is a direct consequence by energy estimates. (]
Uniqueness is a direct corollary of energy estimates. Let @ = R x (0, +00).

Corollary 1.2. Ifu; and us are two C*(Q) N CY(Q) solutions of the Cauchy problem (1.12), then

up = ug n Q.
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Proof. Let w = u; — ug, then wy — wye = 0 in @ and wli—g = w¢|t=o = 0. Then energy estimates
for w gives that V(zg,t0) € @Q, 0 < 7 < o,

/ (w? +w? +w?)dx <0,
Q,
which implies w = 0 in €. Since (zo, o) is arbitrary, the uniqueness is proved. |

Stability in the sense of H! norm, a H! norm of a function is defined by ||u|| 1 = |Jul| p2+||Vu| 2.

Corollary 1.3. If uy, uz are C%(Q) N CH(Q) solutions of the Cauchy problem (1.12) with different
data flvghhl and f27927h2- Then

Jur — w2l iy <M (llgr — g2l (00 + 1P1 = hallr2(ao) + 11 — follrzx.)) »

where
lal e, = / / W (2, 7) + (2, 7) + 2 (e, 7)dedt
K.
T /g 2(2) + 62 (a)]da
0
sy = [ W(z)da
Qo

1o, = / /K 2, )t

Proof. Just notice that w = u; — us is a solution of

Wit — Wz = f1 — fo  in Qm
Wli=0 = g1 — g2,  Wi|t=0 = h1 — ha,

then using the energy estimates and L? estimates. ([

2. INITIAL BOUNDARY VALUE PROBLEM IN 1D

We will consider the initial boundary value problem 1-D

uli—o = g(z), Utle=0 = h(z)

U|I:0 = u|z:1 = 0

Here we give the Dirichlet boundary condition. One can also give Neumann boundary condition
and Robin boundary condition.

For derivation of the equation and physical meaning of boundary conditions, check Salsa’s book
[1] Page. 227-228. Page. 230.

The problem (2.1) can be solved by separation of variables. We first give a formal calculation.

Suppose that our solution has a factorized form u(z,t) = X (2)T(t), once we put it into the
equation we will get immediately

XI/ T//

XTI/ _ X/IT —
0 = e h
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Since both side of this equation are functions of different variables = and ¢, once they are equal,
they must be constant independent of z and ¢t. We denote the constant by —A. Taking account of
the boundary condition we have

X"4+AX =0, X(0)=X(1)=0,
T" + AT = 0.

Then the solutions with some undetermined constants A, B, C' and D are (Later on, we will prove
that A > 0 so that one can take square root of it)

X(z) = CcosV Az + DsinVz
T(t) = Acos VAt + Bsin vVt
Boundary conditoin for X shows that
C=0, DsinvVA=0 = A= (nm)?,n=1,2,3,---
Thus for any fixed n we can have a solution with undetermined constants A,, and B,,,
Un(z,t) = (Ancos /Ant + By sin v/ Apt)sin /A
= (A, cosnrnt + By, sinnnt) sinnwe.

By superposition principle, we know the finite summation of solutions is still a solution. For any
fixed N, we denote

N N
un(z,t) = Z Up(z,t) = Z(An cosnmt + By, sinnnt) sinnra.
n=1

n=1

Now if initial data g(z) and h(z) has the same form, say

N N
g(z) = Z gnsinnmx, hx) = Z hn, sinnrz,
n=1 n=1

then ux must be a solution with this initial data. One could naturally ask how about the case with
general initial data, what is u(x,t) then? Can we use co to replace N? The problem went directly
to the theory of Fourier Series. We first write initial data g and h into Fourier Series, which can be
done for L? functions, then the corresponding series A}gnoo un(z,t) can be expected to be a solution

for smooth enough initial data. We will prove this seriously later. Before that, we introduce the
so called Sturm-Liouville problem, which is the theoretical basis of the method of separation of
variables.

2.1. Solution formula by separation of variables.

2.1.1. Eigenvalue problem. We will study the following eigenvalue problem
X"4+AX =0, O0<z<l1 (2.2)
—a1 X'(0) +4X(0)=0 «;,B>0
asX'(1) +BX(1) =0 o;+ 5 >0.
Theorem 2.1. (Sturm-Liouville theorem)

(1) All eigenvalues of (2.2) are nonnegative. In addition, if 81 + B2 > 0, then all eigenvalues
are positive.
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(2) Figenvalues are countable and increasing to infinity, i.e.

D<A < < <A<y, lim A, = co.

n—oo

(3) Eigenfunctions of different eigenvalues are orthoganal in the following sense

1
/ XoX,udx =0,  for A# p,
0
(4) Vf € L*(0,1), it holds that

o) 1
flz) = ;C’an(x), in the sense of L*(0,1), C, = W

or
T [[f() — fu(a) 2 = 0

where fn(x) = Z C; Xi(z) is called the generalized Fourier Series.
i=1

Proof. We will only proof the first three statements. The last one can be found in functional analysis
in the part of compact self-adjoint operators.

(1) Multiply the equation by X and integrate it on (0, 1), we have

1

1 1
X, X} / (X{)2dz + /\/ Xidz =0.
0 0

0
Boundary conditions show that

0

—a1 X3(0)XA(0) + fLX3(0) =
a2 X3 (1) X (1) + B2X3(1)

0, —a1(X4(0))* 4 B1.Xx(0)X4(0)
0,  aa(X3(1)*+ XA (1)X}(1) = 0.

From these, we get

XOX0) = (X0 + HX5(0)
XMX) = = (BXE) + aa(X3(1)).

As a consequence we know the nonnegativity of

)\/1 Xidr = /I(X;)de — X (1) XA (1) + X5(0)X(0) > 0.
0 0

Thus we have A > 0 and and furthermore

A =0 if and only if X§ =0 and a1/6-):ﬂ1X§(0) + agﬁ—iﬂgxi(l) =0,
or equivalently
Xy=Cand ( b P )c =,
ar+ 51 az+ B

We can see from this expression that if 81 + 82 > 0, then X, = 0. In the end, we get that
in the case of 81 + B2 > 0, A must be positive.
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(2) We have already A > 0 and A =0 iff §; = S = 0. From X" + AX = 0, we know that there
exist A and B such that

X () = AcosVAz + Bsin vz,
X'(2) = —AVAsin V Az + BV A cos V Az

We will study it in the following three cases:
(a) Dirichlet boundary condition. a; = ag = 0, we have X(0) = X(1) = 0. So we have
A =0 and Bsinv\ = 0. As a consequence,

A\ = ()2, X, (x) =sinnrz, n=1,2---
Obviously, in this case, A\, is monotone and increasing to co.
(b) Neumann boundary condition. $; = 2 = 0, we have X’(0) = X'(1) = 0, then B =0,
AsinvA = 0. Thus we have
Ay = (nm)?, X, (z) =cosnmz, n=0,1,2,---.
(c¢) Robin boundary condition. ;02 + asf; > 0, from the boundary condition we have
BiA— BV =0,
Ba(Acos VA + Bsin VA) — aaVA(Asin VA — Bcos V) = 0.

041\[\
B

1
IRV + — s\ + BrasVA
Baou v B21 102 + Brog

Let &€ = v/, then

A
By calculations, 5= , and

1 p—

0.
tan VA

(Baon + fraz)€
a12€? — 1By
From this formulation, we know that \,, is increasing to oc.
(3) Multiply the equation by X, and X, separately and integrate on (0,1), we have

1 1 1
f/ XLX§\+)\/ XX, =0
0 0 0

1 1 1
_/ X;ng/ X\ X, =0
0 0 0

tané =

X, X}

XX,

The difference between this two equations shows that

1
/
O+X)\X#

1 1
(/\fu)/ XX, = —X, X}, .
0 0

Now the boundary condition for X\ and X, are
—OélXS\(O)—l-BlX)\(O) =0, QQXS\(:[)—‘_/BQX)\(:[) =0
—a1 X}, (0) + B1X,(0) =0,  asX/ (1) + B2X,(1) =0
These algebraic systems have non zero solutions, thus the coefficient determinents are 0, i.e.

X3(0) Xx(0) X1 XA (1)

X1(0) X, (0) X1 x|~

-
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Thus we have .
(A= ,u)/ X, X dz = 0.
0

Since A # u, we know X and X, are authogonal.
O

Remark 2.1. When 81 = B = 0, it is Neumann boundary condition. In this case, A = 0 is an
eigenvalue, its eigenfunction is Xy = 1.
Remark 2.2. {X,(x)} is a complete authogonal basis of L?(0, 1), after normalization it is
[ X (2)]| 2

Then Vf € L?(0,1), the fourier coefficient C7* is

1
oF Jo fz) X (x)dx
" 25 (2)| L2

which is the inner product of f(z) and X (z).

2.1.2. Separation of variable. Formally the solution of (2.1) is
u(z,t) = Z(An cosnmt + By, sinnwt) sinnwx. (2.3)
n=1
Next we will give the method on determining coefficients A,, and B,, by using initial data.
Take t =0 in (2.3),

u(z,0) = Z Apsinnrz, and  u(z,0) = Z nmw B, sinnmrx.
n=1

n=1

Assume initial data g and h has the following Fourier expansion by sine functions

o 1
g(w) = Zgn sinnmz, Jn = 2/ g(x) sinnradx,
n=1 0

e} 1
h(z) = Z hy sinnmz, hy = 2/0 h(z) sin nradz.
n=1

Then a natural choice of the coefficients are

1
nm
Thus the solution expression is
S h
u(z,t) = Z(gn cos nmt + —= sin nrt) sin nwa. (2.4)
—~ nm

Summary. There are three main steps in separation of variables
(1) Separation of variable formally and set up the eigenvalue problem,
(2) Solve eigenvalue problem, and solve the ODE for T'(t),
(3) Summation, fixed the coefficients from initial data.
Questions remained.
(1) How about the solution for other boundary conditions? Neumann and Robin?
(2) Inhomogeneous boundary condition? Homogenization.
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(3) Inhomogeneous equation ugy — Uy, = f7
(4) Under what condition is u(zx,t) a solution?

For Neumann and Robin boundary conditions, the related eigenvalue problem is already studied
in Sturm-Liouville theorem. We will answer the remaining three questions in the following three
subsections.

2.1.3. Inhomogeneous equation. We briefly explain how to deal with the non homogeneous equations.
Here we use (0,1) instead of (0,1).

Utt — Ugpy = f x € (O,l),t >0 (25)
u|z:0 = u|x:l =0
ult=0 = g(x) Ut|i=0 = h(x).

nmr
Firstly we know that the eigenfunctions are sin 5 n =1,2,---. Then assume that

u(zx,t) = Z T, (t) sin nl—ﬂx
n=1

g(z) = Z gn Sin nTwz

n=1

Then solve the ODE for T, (t),

One can get that the solution is

! nr

l t
T, (t) = gn cos nr, + —hpsin —t + — / fu(7) sin nm (t — 1)dr.
l nm Jo l

I onr
Then by replacing T,,(¢) in the solution w(z,t) by this, we get the solution for inhomogeneous
equation.

2.1.4. Inhomogeneous boundary conditions. The problem with inhomogeneous boundary condition
is

U — Ugy = [ z € (0,0),t >0 (2.6)
Ulg=0 = uo(t)  ulz=1 = ur(t)
ult=o0 = g(x) utlt—o = h(z).

We will use homogenization technic. Introduce a new function v(x,t) such that the homogeneous
boundary conditions are true for v(z,t), more precisely, let

l—x
——wuo(t),

w(z,t) = (@, t) + Sui(t) + :

l
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then v(z,t) solves

T l_x//

Vit — Ugge = f(l',t) - jul - I Ug
U|JJ:0 = U|w:l =0
T l—x
V|t=0 = g(x) — jul(o) - TUO(O)
x , l—z ,

vele=o = h(z) — Suj(0) — 7 ug(0)

By the method of dealing with inhomogeneous equations, we can get a formula for v(z,t), which
gives the solution formula for u(z,t).

2.2. Existence of solution for (2.1). Now we have the solution formula (2.4). Under what con-
ditions is u a classical solution of (2.1)? We need that u is at least twice differentiable in both x
and t. According to the theory on function Series, we need that

0o e} e}
E § E 2
u’ﬂ7 Duna D u’rb
n=1 n=1 n=1

are uniformly convergent in (0,1) x (0,7).
To have classical solution of (2.1), we also need some compatibility conditions,

9(0) =9(1) =0, h(0)=h(1)=0, 4"(0)=yg"(1)=0. (2.7)

Theorem 2.2. g € C3[0,1], h € C?[0,1] and they satisfies the compatibility condition (2.7), then
u(z,t) =307 un(z,t) € C*(Q) is a solution of (2.1).

Proof. Integral by parts on the coefficients of g and h by using compatibility conditions,

b 2 [* ) 2 v 2
— =— [ h(z)sinnrrdr = —— [ h'(z)sinnrrdr = ——=a,
nr o nw J (nm)? Jo (nm)
! . 2 [, 2
gn =2 ; g(z) sinnraedr = e g"(x) cosnmadx = () by,

Then we have

2 2
u(zx,t) = Z (an cosnmt — Wan sin mrt) sinnwz.

n=1
Moreover the following estimates holds
C C

C 1
|D2un| < g(|an| + [ba]) < C(ﬁ + |an|2 + |bn|2)a

where the right hand side of the last inequality can be bounded by Bessel inequality,

[ee] 1 oo} 1
Z|0Ln|2 < 2/ \h|2dz, Z|bn|2 < 2/ lg"" |2dax.
n=1 0 n=1 0
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2.3. Uniqueness and Stability — Energy estimates. Let @, = (0,1) x (0,7), we have the
following energy estimates for initial boundary value problem of wave equation (2.1) in @,. Then
uniqueness and stability can be obtained from that.

Theorem 2.3. Assume u € C*(Q,) N CYQ,), then

1 1
/ (u? +u? +u?)dx < M(/ (h? + g* + g2)dx + fdxdt).
0 0 Q-

Proof. Multiply the wave equation by u; and integrate it on @,

/%(u?wi)s/ f2+/ uj.
Q- . .

Notice that fQT =/, fol, we have

1 1
[t [o2e@e [ e[
0 0 Qr

-

By Gronwall’s inequality,

[ <m( [0 ee [ ),

.

Similar to the discussion in Cauchy problem, we have the L? estimates.

2.4. Resonance. Consider initial boundary value problem

Ut — Uge = A(x)sinwt, =z € (0,1),£>0
uly=0,1 =0,

U|t0 = ut‘t:O = O

Compatibility conditions A(0) = A(1) = 0 is needed for existence of classical solution. We assume
A € C'. The solution formula from separation of variable is

o0 ¢
1
u(z,t) = Z e / fn(T)sinnrm(t — 7)dr - sinnmx
n=1 0
= Z — sin mr:v/ sinwrt - sinnw(t — 7)dr,
nm 0

n=1

where

1
an = 2/ A(x) sinnradz.
0
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If we calculate further, we will see

¢
/ sinwr - sinnw(t — 7)dr
0

= /0 —%(cos(mrt + (w—nm)7) — cos(—(w + nmw)T — nwt))dr

I I
= 5 / cos((w + nm)T — nwt)dr — 3 / cos((w — nm)T + nwt)dr
0 0
BT sin((w ) — )| — 5 sin((w — )7 + )|
= ——— —sin((w+nm)T —nrw ——sin((w — nm)T + 0w
2(w + nm) 0 2(w—nm)
w#nw m(sm wt + sinnwt) — m(sin wt — sinnmt).

If w = k7 for some k, then

2sinknt 1 (¢
ug(z,t) = Z—;(];HIT;T — 5/0 cos kﬂ'th) sin kmx
= ((;LTk)Q sin knt — ;;—kwt - COS k:mﬁ) sin kmx.

Thus in the case of w = k7, we have

1
u(z,t) nz;é; (W(sin wt + sinnwt) — m(sin wt — sin mrt)) sin nmwa
ak
2km

As t — 00, we have ug(x,t) must blow up at some point.

Q. . .
+ (W sin knt — t - cos k7rt> sinnmx

3. APPENDIX-ON FOURIER SERIES

Vf € L*(—1,1), it can be written into a Series by using sines and cosines functions

Ay > nmwr . nwT
flx) ~ 3 + Z(An €08 —— + B, sin T)

n=1

where

1 l
An:i/ f(a:)cosnlixdz:7 n=0,1,2,---
-1

1 l
B”:f/ f(x)sinnlﬂdx, n=1,2,---
—1

are called Fourier coefficients of f.
If f(z) is an odd function, then B, = 0, and

Ay > nwT 2 ! nwx
f(@) ~ 7+;A"COST’ Ay = 7/0 f(x)cosTda:

If f(x) is an even function, then A4,, = 0, and

= l
e N;B”Sinnzﬂ’ Bn = %/O f(@)sin = da.
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N
A
For any fixed N > 1, (Syf)(z) = 70 + Z(A cos nl + By, sin #) is called Trigonometric
n=1
polynomials.
sin ?, cos w, n,m =1,2,--- are orthogonal in the sense that
1
7 / cos cos ?dw = Omn
1 nmx
7 i 7d - 5mn
; / ¥ sin T dr =
/ sin 7 ¢os @dﬂc =0
L] l
Moreover, {1, \/icos f 2sin | is an orthonormal basis in L?(—I,1), where the inner

product in L?(—1,1) is defined by 27/ f(@)g(z)dx.
-1

Theorem 3.1. (Convergence in L? norm,)
Jim @)~ (Sx D@z =0, for f € LH(~L1).

Theorem 3.2. (Bessel inequality) For f € L*(—1,1), it holds
A2 Nt
04 Z (A2 4+ B?) / f2da.
Theorem 3.3. (Parseval’s equality) For f € L?(—1,1), it holds

A2
+Z (A2 + B?) = / f2dz.

4. PROBLEMS
F(z — at) + G(x + at)
h—x

(-2 22y
h/ Ot? ox h/ Ox
where h > 0, a > 0 are constants, F, G are any function in C2.
(2) (a) Show the general solution of the PDE u,, = 0 is u(x,t) = F(x) + G(y) for arbitrary
function F,G.
(b) Usmg the change of variables £ = x + ¢, n = © — t, show wuy — = 0 if and only if
Ugy = 0.
(¢) Use the above two facts to derive d’Alembert’s formula.
(3) Give energy estimates for half-line problem and the Cauchy problem in Multi-D case.

(4) (Equal partition of energy) Suppose that u € C?(R x [0,00)) is a solution of the following
Cauchy problem

(1) Verity that u(z,t) = is a solution of

utt_ua:wzo (l‘,t)ERX(0,00)
ult=0 =9, Utli=0 =h r €R.
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oo

1
where g, h have compact support. Let kinetic energy be k(t) = 3 / u? (z,t)dz, potential

— 00

1 oo
energy be p(t) = 5/ u?(x,t)dx. Try to prove
—0o0
(a) k(t) + p(t) is a constant independent of ¢.
(b) k() =p

(t) (t) for large enough ¢.
(5)
Ut — Ugy = 0, x € (0,+00),t € (0,+00)
U|g=0 = coswt
Ult=o = Aefzz, Utlt=0 = 0.
Find the condition for A and w such that solution u € C*(R; x R, ), and give this solution

formula.
(6) If u is a classical solution of

Utt — Ugx = Oa T e (Oa 1)7t € (07 +OO)

u|z:0 = u‘z:l =0

U|t:0 =0, ut‘t:o = :E2(1 — x)
what is the limit
1
: 2 2
t_l}gloo ; (uf + u)d.

(7) Solve eigenvalue problem
X" (x)+ XX (x) =
X(0)=X'(l) =

, x€(0,0)

X"(z)+AX(xz) =0, z€(0,1)
X'(0) + X(0) =0, X(1)=0.
(a) Find an eigenfunction with eigenvalue zero. Call it Xo(z).
(b) Find an equation for the positive eigenvalues A = 3.
(¢) Show graphically from part (8b) that there are an infinite number of positive eigenval-
ues.
(d) Is there a negative eigenvalue?
(9) Apply separation of variables to get formal solution of
Ut — Uz = 0 (z,t) € (0,1) x (0,00)
Ug|p=o = Asinwt, ul,—1 =0 t>0

u|t:0 =1, ut|t:0 =0 T € [0, 1].

Ut — Ugg = 0, z € (0,1),t € (0,400)
u‘a::O = u|z:1 =0

U|t=0 = azt + Bx?’ + sinx, ut|t:0 = ycosz.
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Solve the problem and give the conditions on «, S and ~ such that the solution you gave is
a classical one.
(11) Find the solution of initial boundary values for heat equation by separation of variables.

Ut — Uy = s, z € (0,1),t € (0, +00)

(12) Discussions One can get solution formula of (2.1) by D’Alembert and Fourier series, are
they the same?
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