4. THE CENTER MANIFOLD METHOD

= Existence of an invariant manifold

e Linear systems
The state-space X —R" of the linear system X(7) =Jx(¢) is direct sum of three

invariant sub-spaces, i.e. X =X ©® X @ X , where:

» X is the center subspace, of dimension N, spanned by the (generalized)
eigenvectors associated with non-hyperbolic eigenvalues of J;

» Xis the stable subspace, of dimension N, spanned by the (generalized)
eigenvectors associated with hyperbolic eigenvalues of J having negative real
part;

» X is the unstable subspace, of dimension N,, spanned by the (generalized)

eigenvectors associated with non-hyperbolic eigenvalues of J having positive
real part.



e Nonlinear systems

We consider the nonlinear system (in local form):

X(1) =F(x(1),p)

admitting the critical equilibrium (xX=0,p, =0). We assume that J:=F (0,0)

posses N, >0 critical eigenvalues, N, >0 stable eigenvalues and N, =0 unstable
eigenvalues.

The Center Manifold Theorem states that the asymptotic dynamics of the system
around the equilibrium point x=(, at the critical value of the parameters p=n_,

takes place on a (critical) manifold M_ € X | which has the following properties:

» M. has dimension N;
» M. is tangent to the critical subspace X at x=0;

> M. is attractive, i.e. all the orbits tend to it when  —> oo



The center manifold is therefore an N.-dimensional surface in the
N=N, +N,-dimensional state-space.

» Example:

» To analyze the asymptotic dynamics, it needs:

(a) to find the center manifold M, ;

(b) to obtain the reduced N. —dimensional equations governing the motion on
M., (bifurcation equations).



* Dependence of the CM on parameters

Since we are interested not only in the dynamics at p = p_, but also at the dynamics

at nclose to M., we can use the ‘trick’ to consider p as additional ‘critical’
variables, by considering the extended dynamical system:

{ X(1) = F(x(1),n(2))
n) =0

Therefore, the critical subspace becomes X, =X ® P with P ={1} the parameter
space. Hence:

» M " has dimension N+M:
> M is tangent to the critical subspace X" ;

> M is attractive, i.e. all the orbits tend to it when ¢ —> oo



* Reduction process

» Equations of motion, expanded:

By expanding x(#) =F(x(#),n) (and ignoring the dummy equations p =0) for

small x(#)and p close to n., we have:

2

(1) = Ix(O) +E(x(0),p), [f]=O(x)[".|n)

» Linear transformation of the variables:
After letting x(f) .= (x_.(7),x (?)), with x_(f)e X critical variables and
X (t)e X stable variables, a proper linear transformation uncouples the linear

part of the equations (# omitted):

x ) (J. 0)x MEACHS WY
x, ) (0 J \x, ) \£(x.x,.n



» Center manifold: active and passive coordinates
Cartesian equations for the CM:

X, =h(x,,p)
Tangency requirements:

h(0,0)=0, h (0,0)=0, h (0,0)=0.

The equation expresses the stable variables x; as (unknown) functions of the
critical variables x.; therefore x, are also said active coordinates, and X;
passive coordinates.

» Time derivative of x;:

The passive character of x; also holds for time-derivatives. By using the
chain rule and the upper partition of the equations of motion:

i =L hix . =h (x..px,
dt

=h_(x_,p)(J x. +f (x_ ,h(x, ),pn))



» Equation for the center manifold:

The lower-partition of the equation of motion supplies the equation for
determining M, :

h (x.,mWJ x, +f (x. h(x,),p)=Jh(x )+ (x h(x)p

This equation can be solved, e.g., by using power series expansions, (starting
from degree-2 polynomial, due to the required tangency):

h(XC,u)=u222+a3z3+---, Z={X_,pn}

» Bifurcation equations:

The upper-partition governs the dynamics on M, :

X, =Jx +f (x  h(x ),p



= Example 1: a static bifurcation

» Nonlinear, 2-dimensional system:

()'Cj_|:,u O}(xj_i_ xy +cx’
y 0 -1y bx?
» Critical point, critical and stable coordinates:

H.=0, X ={x}, X =y}

» Equation for the Center Manifold:

y=h(x,it) = h(x,)ux+xh(x, )+ cx’ | =—h(x, i) +bx’

» Power series expansion:

y = h('x’ﬂ) — {azoxz +CL’11XIL1+CL’02/12}+{6{30X3 + .- -} +-...



» Zeroing separately the different powers:

x° 1=, +b=0
xp:—a,, =0
1 =0, =0

ooooooooo

» By solving for a’s coefficients, at the lowest order, we have:

y =bx* +0(|(x, )] )
» Bifurcation equation:
X=ux+b+c)x’

If b+c<0, a supercritical (stable) pitchfork occurs; if b+¢>0, a sub-critical
(unstable) pitchfork occurs; if b+c¢=0, higher-order terms must be evaluated.
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= Example 2: a dynamical bifurcation

» 3-dimensional nonlinear system:

Y (4 -1 0 «x Xz
yvi=|1 u O] yl+ ¥z
z) \0 0 -1){z) (FP+key+y?

» Equation for CM.:
z=a,x’ + o,y +oxy + o ux+auy +0(3)
» z-equation (passive coordinate), transformed:

200, —a)xy+ o, (x> =y )+ o iux— o ly

=—(ox" +a,y’ + o xy + aux+auy) + x° +kxy +y* +0(3)



» Zeroing separately the different powers in the z-equation:

(2

x: a+o—-1=0 r0;1:1_16/5
v —a,+a,—1=0 a,=1+k/5
sxy: 2o, —-a)+o,—k=0 = Ja,=k/5
ux: o, +o, =0 o, =0
Uy o, —0o, =0 ;=0

» Bifurcation equations:

= px—y+x[(1=k/5)x" +k/5xy+(1+k/5)y’]
y=py—x+ [(1=k/5x" +k/S5xy+(1+k/5)y’]

Note: if k& # 0, the inertia z contributes to the motion; if kK =0, z contributes

statically.
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6. THE NORMAL FORM THEORY

® Scope:
To use a smooth nonlinear coordinate transformation, in order to put the
bifurcation equation in the simplest form.

e Algorithm:

Equations of motion: X = Jx+f(x)
Transformed Equations: y=Jy+g(y)
Near-identity transformation: x =y +h(y)

where x (possibly) includes the dummy variables p.
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O Transformed equation in the h(y) unknown:

By differentiating the nearly-identity transformation:
x=[I+h (y)ly
the equation of motion is transformed into:

[T+h, (V)IJy +g(y)]=Jly +h(y)]+f(y +h(y))

or.

h, (y)Jy —Jh(y)=1(y +h(y))-[I+h (y)]g(y)

which is a differential equation for h(y) for any given g(y). A series solution is
often necessary.

13



O Series solution:

f(y)) (L)) (£
g(y) |=| &) |+ g () [+
h(y)) \(h,(y)) \hy(y))

O Chain of equations:

h, , (y)Jy -Jh,(y) =f,(y)-g,(y)
h, (y)Jy —Jh,(y) =f;(y) +f,,(y)h,(y)—h, (y)g,(y)—&;(y)

Lh, (y)=f,(y)-g.(y), k=23,



O Homogeneous polynomial of k-degree:

fk (y) = Zkakmpkm (¥), g.(y)= Zklgkmpkm (¥), h.(y)= Zk VP (Y)

o Zeroing the independent monomials:

L.y, =0,—B,
where (if J 1s diagonal):
N N
L, =diag[A,l, A=) (mA,-A), > m =k
j=1 J=1
O Resonance:
Since ﬂ =0,0,---,%iw,tiw,, -+, A, =0 for some i (i.e. L; is singular);

hence, B, # 0 must be taken for compatibility, and resonant terms survive in

the normal form!!!
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¢ Example 1: System independent of parameters

O System at a Hopf bifurcation:

: . 3 2— ) —3
X iw 0 X . xX +0 XX+ xx" +,, X
X 0 —-iw|\x O X~ + 0, X X+ 0, Xx” + 00X

O Normal form:

y =i@y +:631y3 +:B32y2y+:833yy2 +:634y3

O Near-i1dentity transformation:

X=y+ 7/31)’3 + 732)’2?4' 7/33)7?2 + 734y3
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O Equation for the coefficients:

_Q’la) O O 0 /7/31\ (a31\ /1831\

0 0 O 0 || 7| || | Py
0 0 2w 0 |y, oy | | B

O O 0 —4iw | \ V34 ) \ U3y ) \1834/

O Solution:
1831 — 1633 — 1634 =0, 1832 =,

O Normal form:
y=iwy+ 0(32)72?

The term YV is resonant, since A+ A4 =4 ie. 2(iw) + (i) =iw



® Example 2: System dependent on a parameter

O System close to a Hopf bifurcation:

X U+10 0 X O X + 0, XX + 0, XX~ + o, X
= + ., x,ae C

X 0 wu-io|\x) \@,x +@,X x+aq,xx" +a,x°

or, extending the state-space:

(2 [iw 0 O](x) (ux /a31x3 + 0, XX + XX +0(34f3\
= : — — — -3, = =2 —~ —2, = 3
X |=| 0 —iw O} x [+]| 4x |+| O X" +0pX X+ 00xx" + 0, X

' 0O 0 O 0
\,Ll) N N4 Y ) \ 0 )

0(3)



O First equation:
X =iox+ (Ux) + (0, X + QXX + A XX + 0, X))
O Normal form (reduced number of monomials tried):

y =i@y +:B31y3 +:B32y2y+:833yy2 +:B34y3
+(ﬂ201uy) + ;u(,B35 )’2 + 1836 yy + ﬂ37 y2) + ignored terms

O Near-identity transformation (reduced number of monomials tried):

X=y+ 7/31y3 + 7/32)’2?4' 7/33)’?2 + 734?3
+(7/20:uy) + /,l(7/35 y2 + 7/36})?"' 7/37y2) + ignored terms
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O By operating as in Example 1, at O(2) it follows:
07 =1=5y = Pn=17,=0

o At O(3), in addition to the equations of Example 1, one has:

i 0 0 Vs , 3&'21 :835
. l

0 —-iw 0 V6 :% 3a,, |- :836

_ 0 0 _3iw_ V37 a,; :837

Since no further resonances appear,
Pis = Py = By =0
O Normal form:

V= (U+io)y+a,yy



O Amplitude equation:

Changing the variables according to:
y(t)=A@)e”, A@l)eC
the normal form is transformed into:
[A() +iwA(t)]e™ = (U +iw)A(r) e™ + o, A* () A1) e ™
or:
A1) = uA@) + a, A (1) A1)

This 1s called Amplitude Modulation Equation (AME).

Since A = O(UA, A’) . the AME describes a slow modulation. Therefore,

the change of variable filters the fast dynamics.
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O In polar form:

A(t) = % a(t)explif(t)]

hence:

1a0) + a1 = a2+ a2

and the real normal form reads (amplitude-phase modulation equations):

-

1
a=Uua +ZRe[0(32]a3

6= %Im[%z]az

\
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¢ Example 3: Non-diagonalizable system

O Double-zero bifurcation equations:
X, B {0 1} X, . 0{21x12 + O, X, X, + 0{23x22
X, 0 0]\ x 6L’24x12 T )X X, + a26x22
(y'l j ~ {0 1}(% }{ﬁzlyf + By, +ﬂ23y§)
Y 0 0]\y, ,324)’12 + Lo 01 Y, +1326y22
O Near-Identity transformation:

(%):[)’1]4_[721)’12+7/22Y1y2+723y§)+...
X5 Y2 724)’12 T Vs, +726y22

O Normal Form:
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O By zeroing the coefficients of the three monomials in the two transformed
equations:

0 0 0 ! -1 0 0 16 oy — :821
2 0 010 =1 0O} 0y, — Py
0 1 010 0 -l jay-py
0O 0 0 i 0O 0 0 I B Py — 1824
0O 0 0 i 2 0 0} % dys — 1625
_ 0 0 0 : 0 1 0 I\ 726 g — 1826

Since Rank[L,]=4:
K(L,)=span{u,,,u,,}, u, =(0,1,0,0,0,1)",u, =(0,0,1,0,0,0)"

K(L))=span{v,,,v,,}, Vv, =(2,0,0,0,1,0)",v,, =(0,0,0,1,0,0)"



O Compatibility condition:

2(a,, - 1821) + (05 — :825) =0, Uy — 1824 =0
It is possible to take 5,, = B,; = B =0 and 5, =0 or f,s=0.

O By taking B, =0, B, =, +a,, /2 the NF reads (Takens normal form):
: 1 )
[y1]:|:8 (1):|(y1]+ (0521"'50525))’1
> > 0(24y12

o By taking 0., =0, b,s = @5 +2a,, the NF reads (Bogdanov normal form):

Y, 0 0]\ y, 0(24y12+(0525+20(21)y1y2

The Normal Form is not unique!!
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