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STABILITY AND 

BIFURCATION OF 

DYNAMICAL SYSTEMS 
 

 

Scope: 

 

• To remind basic notions of Dynamical Systems and Stability Theory; 

• To introduce fundaments of Bifurcation Theory, and establish a link with 

Stability Theory; 

• To give an outline of the Center Manifold Method and Normal Form 

theory.  
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Outline: 

 

1. General definitions 

2. Fundaments of Stability Theory 

3. Fundaments of Bifurcation Theory 

4. Multiple bifurcations from a known path 

5. The Center Manifold Method (CMM) 

6. The Normal Form Theory (NFT) 
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1. GENERAL DEFINITIONS 

We give general definitions for a N-dimensional autonomous systems. 
 

•••• Equations of motion: 
 

( ) ( ( )), N
t t= ∈x F x x� �  

 

where x are state-variables, {x} the state-space, and F the vector field. 
 

•••• Orbits: 
 

Let  ( )
S

tx be the solution to equations which satisfies prescribed initial 

conditions:  
 

0

( ) ( ( ))

(0)
S S

S

t t=


=

x F x

x x

�

 

 

The set of all the values assumed by ( )
S

tx  for 0t > is called an orbit of the 

dynamical system. Geometrically, an orbit is a curve in the phase-space, 

originating from x
0
. The set of all orbits is the phase-portrait or phase-flow. 
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•••• Classifications of orbits: 

 

Orbits are classified according to their time-behavior. 
 

� Equilibrium (or fixed-) point: it is an orbit ( ) :S E
t =x x  independent of 

time (represented by a point in the phase-space); 

� Periodic orbit: it is an orbit ( ) : ( )S P
t t=x x  such that ( ) ( )

P P
t T t+ =x x , 

with T the period (it is a closed curve, called cycle); 

� Quasi-periodic orbit: it is an orbit ( ) : ( )S Q
t t=x x such that, given an 

arbitrary small 0ε > , there exists a time τ for which 

( ) ( )Q Qt tτ ε+ − ≤x x holds for any t; (it is a curve that densely fills a 

‘tubular’ space); 

� Non-periodic orbit: orbit ( )
S

tx  with no special properties. 

 

The first three are recurrent states; the last one a non-recurrent state. 
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2. FUNDAMENTS OF STABILITY THEORY 
 

� Stability of orbits 
 

Basic idea: An orbit is stable if all orbits, originating close to it, remain 

confined in a small neighborhood; otherwise, it unstable. This notion 

specializes as follows. 
 

� Stability of an equilibrium point (Liapunov):  

xE is stable if, for every neighborhood � of xE, there exists a 

neighborhood ⊆� �  of xE, such that an orbit x(t) starting in 

� remains in �  for all 0t ≥ . If , in addition, ( )
E

t →x x as t → ∞ , then 

xE  is asymptotically stable. 

 

� Stability of a general orbit (orbital stability):  

( )
S

tx  is orbitally stable if all orbits, originating from nearby initial 

points, remain ‘close’ to it, irrespectively of their time-parametrization. 
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� Quantitative analysis: the variational equation 
 

� Orbit ( )
S

tx  to be analyzed:  

( ) ( ( ))
S S

t t=x F x�  

� Perturbed motion:  

( ) ( ) ( )
S

t t tδ= +x x x  
 

� Equations for the perturbed motion, Taylor- expanded:  
 

2

( ) ( ) ( ( ) ( ))

( ( )) ( ( )) ( ) O( ( ) )

S S

S S

t t t t

t t t t

δ δ

δ δ

+ = +

= + +x

x x F x x

F x F x x x

� �

 

i.e.: 

2
( ) ( ) ( ) O( ( ) ), ( ) : ( ( ))

S S S
t t t t t tδ δ δ= + = xx J x x J F x�  
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� By linearizing in δx(t): 
 

( ) ( ) ( )
S

t t tδ δ=x J x�  
 

This is called the variational equation (based on ( )
S

tx ); it is generally 

non-autonomous, since ( )
S

tx depends on t. Special cases: 

 

o ( )
S

x t is an equilibrium point xE: 
 

( ) ( ), : ( )
E E E

t tδ δ= = xx J x J F x�  
 

in which JE has constant coefficients. 
 

o ( )
S

x t is a periodic orbit xP(t) of period T: 
 

( ) ( ) ( ), ( ) : ( ( ))
P P P

t t t t tδ δ= = xx J x J F x�  
 

in which JP(t)= JP(t+T) has periodic  coefficients (Floquet Theory). 

 
We will confine ourselves to equilibrium points. 
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� Stability of an equilibrium point 
 

We study the stability of an equilibrium point xE. 

 

•••• Linearized stability: 
 

We first study linearized stability of xE, by ignoring the reminder 
2

O( ( ) )tδ x  

in the equation for perturbed motion. 

 

 

� Variational equation: 
 

( ) ( )
E

t tδ δ=x J x�  

 

� Eigenvalue problem: 
 

( )
E

λ− =J I u 0  
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� Discussion:  
 

o if all the eigenvalues λ have negative real parts, then ( ) 0tδ →x as 

t → ∞ ; therefore xE is asymptotically stable; 

o if at least one eigenvalue λ has positive real part, then ( )tδ → ∞x as 

t → ∞ ; therefore xE is unstable; 

o if all the eigenvalues λ have non-positive real parts, and at least one 

of them has zero real part, then, the asymptotic behavior of ( )tδ x , as 

t → ∞ , depends on the eigenspace associated with Re(λ)=0, namely: 

(a) if it is complete (simple or semi-simple roots λ), ( )tδ x is 

oscillatory, hence xE is neutrally stable; (b) if this is incomplete 

(non-semi-simple roots λ), ( )tδ → ∞x , hence xE is unstable. 
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� Hyperbolic and non-hyperbolic equilibrium points: 
 

We introduce the following definition, based on the type of the 

eigenvalues of JE: 

 

o the equilibria at which all the eigenvalues λ have non-zero real parts 

are hyperbolic points; 

o the equilibria at which at least one of the eigenvalues λ has zero real 

part are non-hyperbolic points (also named critical). 

 

 

� Note: the most interesting case of non-hyperbolic point, is that in 

which the eigenvalues have either negative and zero real parts 

(neutrally stable linear system). 
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•••• Nonlinear stability of hyperbolic points: 

Since the remainder term 
2

O( ( ) )tδ x in the nonlinear equation 

2
( ) ( ) ( ) O( ( ) )

S
t t t tδ δ δ= +x J x x�  

can be made as small as we wish, by selecting a sufficiently small 

neighborhood of xE, results for linear system apply also to nonlinear system. 

Therefore: 
 

A hyperbolic point is asymptotically stable if all the eigenvalues of the 

Jacobian matrix JE have negative real parts; is unstable if at least one 

eigenvalue has positive real part. 

 

•••• Nonlinear stability of non-hyperbolic points: 

Nonlinear terms decide the true character of the equilibrium, stable or 

unstable. Therefore, linear stability analysis fails to give an answer, and a 

nonlinear analysis is necessary. 
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� Example: 
 

A one-dimensional system admitting a non-hyperbolic equilibrium 

point xE=0 is considered: 
 

( ), , (0) (0) 0xx F x x F F= ∈ = =� �  
 

By letting x=xE+δx and expanding in series, the equation reads: 

 

 

 

The phase-portrait is illustrated in the figure. 

 

 

(0)x Fδ =� (0)xF+ 2 3 41 1
(0) (0) O( )

2 6
xx xxxx F x F x xδ δ δ δ+ + +



 13 

3. FUNDAMENTS OF BIFURCATION THEORY 
 

Bifurcation theory considers families of systems depending on parameters. 

Its aim is to divide the parameter space in regions in which the system has 

qualitatively similar behaviors. At the separating boundaries, sudden 

alteration of the dynamics takes place. They are called bifurcations. 

 
� Parameter-dependent systems 
 

•••• Autonomous dynamical system: 
 

( ) ( ( ), ), ,N M
t t= ∈ ∈x F x µ x µ� � �  

 

where µ are parameters. 

 

•••• Phase-portrait: 

Since orbits ( , )
S S

t=x x µ  depend on parameters, when these latter are 

(quasi-statically) varied, the whole phase-portrait is modified. 
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� Structural Stability 
 

A phase-portrait is robust, or structurally stable, if small perturbations of 

the vector-field (as ( , )εG x µ , with 1ε � ) do not qualitatively change it, but 

only entails smooth deformations.  

 

� Note: Stability and Structural Stability should not be confused. The 

former refers to a selected orbit, and depends on the phase-portraits 

surrounding it; the latter refer on the whole phase-portrait.  

 

� Example of robust dynamics: 
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� Bifurcation: general definition 
 
 

� A bifurcation is a qualitative change of dynamics. It occurs at a 

bifurcation value c=µ µ of the parameters at which structural stability 

is lost. Therefore, the dynamics at c δ+µ µ , with δµ  arbitrary small, 

is topologically inequivalent from that at cµ .  

 

� Note: at a bifurcation, stability of equilibria changes, or the number 

of equilibria and/or periodic orbits change.  
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• Example: saddle-node bifurcation: 

�  Dynamical system:  

2
x x

y y

µ = +


= −

�

�  
 

� Equilibrium:  

 

, 0
E E

x yµ= ± − =  
 

� Equilibrium path (or bifurcation diagram):  
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� Jacobian matrix at equilibrium: 

 

2 0

0 1
E

µ ± −
=  

− 
J

 

 

The equilibrium at µ=0 is not-hyperbolic; here a bifurcation occurs. 

 

� Phase-portraits: 
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� Bifurcation of equilibrium points:  
 

Let ( )
E E

=x x µ be an equilibrium path, i.e. ( ( ), ) 0
E

= ∀F x µ µ µ  and let 
0

0: ( )E E=x x µ be the equilibrium at 0=µ µ . We want to analyze changes  of 

the system dynamics, when the parameters 0µ  are perturbed to 0 δ+µ µ . 
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� Linear dynamics around the perturbed equilibrium point ( )
E

x µ : 
 

( ) ( ) ( )
E

t tδ= +x x µ x  
 

( )
E

x µ� ( ) ( ( ), )
E

tδ+ =x F x µ µ�
2

( ( ), ) ( ) O( ( ) )
E

t tδ δ+ +xF x µ µ x x  
 

( ) ( ) ( ), ( ) : ( ( ), )
E E E

t tδ δ= = xx J µ x J µ F x µ µ�  
 

� Series expansion of the Jacobian matrix at the perturbed point ( )
E

x µ : 
 

0 0

2

0 0 0 0 0

( ) ( ( ), )

[ ( ( ), ) ( ) ( ( ), )] O( )

E E

E E E δ δ

=

+ + +

x

xx µ xµ

J µ F x µ µ

F x µ µ x µ F x µ µ µ µ  

 

or, in short: 
 

0 0:
E E E

δ= +
µ

J J J µ  
 

The local flow around ( )
E

x µ is governed by the eigenvalues of EJ ; these 

are perturbations of the eigenvalues of 
0

EJ . 
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� Hyperbolic and non-hyperbolic equilibria 
 

o If 
0

Ex is hyperbolic, the sign of the real part of the eigenvalues of 
0

EJ  

does not change under sufficiently small perturbations δµ , so that the 

dynamics remain substantially unaltered. We conclude that the local 

phase-portrait  at a hyperbolic equilibrium point is structurally stable. 
 

o If 
0

Ex is non-hyperbolic, one or more eigenvalues of 
0

EJ have zero real 

parts. Therefore, arbitrary small perturbations δµmay lead to 

eigenvalues of EJ  with (small) positive or negative real parts, thus 

strongly changing the dynamics. We conclude that the local phase-

portrait  at a non- hyperbolic equilibrium point is structurally 

unstable.  
 

� By summarizing: 
 

Bifurcation of equilibrium occurs at non-hyperbolic points. If the 

associated linear system is neutrally stable, then generic perturbations 

entail loss of stability of the equilibrium. 
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• Example: Hopf bifurcation 
 

� Dynamical system: 
2( )

1

ρ ρ µ ρ

θ

 = −


=

�

�  

� Equilibria: 

 

0 ( )

( )

T

NT

ρ µ

ρ µ

= ∀


=  

 
 

� Jacobian: 

2
on

3
-2 on 

E

T
J

NT

µ
µ ρ

µ


= − = 

  
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� Phase-portraits: 
 

Linearized system 

   
stable focus center unstable focus 

Nonlinear system 

   
Stable focus Stable focus unst. focus + limit cycle 

µ<0 µ=0 µ>0 
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� Comments: 

 

o The dynamics around hyperbolic points is robust. It is qualitatively the 

same for linear and nonlinear systems, and does not suffer changes of 

parameters.  

 

o The dynamics around non-hyperbolic points is not robust. Adding 

nonlinearities, and/or changing the parameters, may lead to strong 

changes.  
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4. MULTIPLE BIFURCATIONS FROM A KNOWN PATH 

� Bifurcations from a known path 

We consider an autonomous dynamical system depending on parameters: 

( ) ( ( ), ), ,N Mt t= ∈ ∈x F x µ x µ� � �  

We assume to know an equilibrium path (named fundamental path) 

( )
E E

=x x µ ; we want: 

(a) to find the  values µc of the parameters for which a bifurcation takes 

place (analysis of critical behavior); 

(b) to study the dynamics of the nonlinear system for values of µ close to 

µc (post-critical behavior). 

For task (a), a linearized analysis is required; for task (b), a nonlinear 

analysis is necessary. 
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� Local form of the equation of motion 
 

� It is convenient to introduce local coordinates: 
 

 
 

Here ( , )tx µ�  denotes, for a given µ,  the deviation of the actual state 

from the corresponding equilibrium. Often, the dependence on µ is 

understood, and x�  is written as ( )t=x x� � .  

 

� The corresponding local form of the equations read:  
 

( ) ( ( ) ( ), ) : ( ( ), )
E

t t t= + =x F x x µ µ F x µ� �� � �
 

 

or, by omitting the tilde: 
 

( ) ( ( ), ), ( , )t t= = ∀x F x µ F 0 µ 0 µ�  

( , ) : ( ) ( )
E

t t= −x µ x x µ�
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� In the new variables, the fundamental path appears as trivial: 

E = ∀x 0 µ�  

 

� Geometrical meaning of the local coordinates: 

 

 

 



 27 

� Static and dynamic bifurcations 

We consider a bifurcation point c
=µ µ , at which  the Jacobian matrix 

: ( ( ), )c

E c c
=

x x
F F x µ µ  admits Nc:=Nz+2 Ni (non-hyperbolic or critical) 

eigenvalues with zero real part, ( 1 20,0, ; , ,k i iλ ω ω= ± ±� � .), the remaining 

(non-critical) having negative real part (example in Fig:  Nz=2, Ni =2). 
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• Transversality condition 

We assume that the critical eigenvalues cross the imaginary axis with non-

zero velocity (i.e. ( / ) Re( )
k

λ∂ ∂ ≠µ 0  ) . 

We distinguish: 

� static bifurcation (also said divergence bifurcation), if the critical 

eigenvalues are all zero, 1, 2,,0k zk Nλ = = � ; 

� dynamic bifurcation (or Hopf bifurcation): if the critical eigenvalues are 

all purely imaginary, ,j jiλ ω= ±  1,2, , ij N= � ; 

� static-dynamic bifurcation: if the critical eigenvalues are either zero and 

purely imaginary, 1, 2,, , 1, 2,, ,0 j jk z i
i k N j Nλ λ ω= = ± = =� � . 

If Nz+Ni =1, the bifurcation is called simple; if Nz+Ni>1, the bifurcation is 

called multiple. 
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� Resonant dynamic bifurcations 

If the critical eigenvalues j j
iλ ω= ± are rationally dependent, i.e. if there 

exist some sets of integer numbers rjk such that: 

1

0, , 1, 2, ,
cN

rj j rj

j

k k r Rω
=

= ∈ =∑ � �
 

then the (multiple) bifurcation is said resonant. If no such numbers exist, the 

bifurcation is said non-resonant. 

 

� Note: resonance conditions do not play any role in determining if a 

point is, or not, of bifurcation. However, as it will be shown ahead, the 

resonances strongly affect the nonlinear dynamics. 
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� Linear codimension of a bifurcation 

In the parameter-space, bifurcations take place on manifolds on which some 

relations (constraints) among the parameters is satisfied, namely: 
 

�  if the bifurcation is non-resonant: 
 

Re( ) 0, 1, 2, ,
k z i

k N Nλ = = +�  
 

� if the bifurcation is resonant: 
 

1

Re( ) 0, 1, 2, ,

Im( ) 0, 1, 2, ,
c

k z i

N

rj k

k

k N N

k r R

λ

λ
=

= = +



= =

∑

�

�  

 

The number: 
 

: z iM N N R= + +  
 

is the (linear) codimension of the bifurcation; it is the codimension of the 

manifold on which the multiple bifurcation occurs. 
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• Examples of low-codimension bifurcations: 

 
 

 
 

 

Divergence Hopf Double-zero Hopf-Diverg. Double-Hopf 

M=1 M=1 M=2 M=2 
2 non-res.

3 resonant

M

M

=


=
 

1 0λ =  1Re( ) 0λ =  
1

2

0

0

λ

λ

=


=  
1

2

Re( ) 0

0

λ

λ

=


=  

1

2

2 1

Re( ) 0

Re( ) 0

/ r

λ

λ

ω ω

=


=

= ∈�
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� The bifurcation parameters 
 

� A bifurcation point µc would appear as a rare singularity, if specific 

systems were considered. A small perturbation δµ would cancel it.  

� In contrast, if a family of systems is considered, the bifurcating system 

naturally appears as a member of that family. 

 

 

� The lowest-dimensional family where to embed the bifurcation has 

dimension-M, and it is transversal to the critical manifold. 

� Any perturbation of the transversal manifold changes the bifurcation 

point, but cannot destroy the bifurcation. The M parameters of the family 

are the bifurcation parameters. 
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� The (nonlinear) bifurcation analysis 

 

To analyze the system dynamics around a bifurcation point µ=µc, there are 

essentially two methods: 
 

� The Center Manifold Method (CMM) and Normal Form Theory 

(NFT)  
 

� The Multiple Scale Method (MSM) (or equivalent perturbation 

methods). 
 

The CMM reduces the dimension of the system, leading to an equivalent 

system (bifurcation equations) which describes the asymptotic ( t → ∞ ) 

dynamics. 

 

The NFT reduces the complexity of the bifurcation equations, giving them 

the simplest nonlinear form. 

 

The MSM performs both the operations simultaneously. In addition it filters 

the fast dynamics from the bifurcation equations.  


