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ELEMENTARY EXAMPLES 

OF PERTURBATION 

ANALYSIS 
 

 

 

Scope: 

 

• To introduce analytical tools for solving weakly nonlinear problems; 

• To illustrate the Multiple Scale Method, to be systematically used ahead 

for bifurcation analysis. 
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� Outline 
 

1. A quasi-linear algebraic problem, admitting a simple root 

2. A quasi-linear algebraic problem, admitting a double root 

3. Introducing a perturbation parameter 

4. Multiparameter systems 

5. Linear Algebraic Eigenvalue Problems 

6. Nonlinear Algebraic Eigenvalue Problems 

7. Initial Value Problems: straightforward expansions 

8. The Multiple Scale Method: basic aspects 

9. The Multiple Scale Method: advanced topics 
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1.  PERTURBING A SIMPLE ROOT OF AN ALGEBRAIC 

EQUATION 
 

� Example: a nonlinear algebraic equation: 

 
3 1 0, 0 1,x x xε ε− − = ≤ ∈� �    

 

� This is a linear equation, x-1=0, perturbed by a nonlinear term, 
3

xε− ; 

� ε is the perturbation parameter; the linear unperturbed equation is the 

generating equation.  

� The unperturbed equation admits the (unique) root  x0=1, called the 

generating solution. We want to find the (unique) root x=x(ε) of the 

perturbed equation which tends to x0 when 0ε → . 

� We expand the unknown solution x(ε) in Mac Laurin series: 

( ) 2

0 1 2 ...x x x xε ε ε= + + +  

and want to find the coefficient of the series 0: (1/ !)d / d |k k

k
x k x εε ==   
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� By substituting the expansion in the equation, and collecting terms with 

the same powers of ε :  
 

( ) ( ) ( )3 2 2

0 1 0 2 0 11 3 ... 0x x x x x xε ε− + − + − + =  

� Since this expression must hold ε∀ , the coefficients of 
kε  must vanish 

separately for any k: 
 

0

0

1 3

1 0

2 2

2 0 1

: 1

:

: 3

.....................

x

x x

x x x

ε

ε

ε

=

=

=  

 

� These are called the perturbation equations. They are a sequence of 

linear equations, in the unknowns 0 1 2, , , ,x x x �  having the same 

operator. They can be solved in chain:  

 

0 1 21, 1, 3, ...x x x= = =      
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� The series, consequently, reads :  
 

21 3 ...x ε ε= + + +      
 

� Note: the procedure gives an asymptotic expression  just for one root of 

the cubic equation. Indeed, the remaining two roots, which tend to ±∞  

when 0ε → , cannot be found as perturbation of the (finite) root x0.  

 

•••• Comments 

� In the problem studied, since 1 0x ≠ , an order-ε  perturbation of  the 

generating equation entails a modification of the same order of its  root 

(normal sensitivity, 0 O( )x x ε− = ). 

� There exist  problems in which the first derivative vanishes , 1 0x =  

(low-sensitivity 0 O( )x x ε− = ); the Mac Laurin expansion still works.  

� There exist degenerate problems in which the sensitivity of x with 

respect to ε  is infinite (high-sensitivity, the function is not analytical at 
0ε = ). Mac Laurin series cannot be used! An example is given ahead. 
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2. PERTURBING A MULTIPLE ROOT OF AN 

ALGEBRAIC EQUATION 
 

� Example: a double-zero root 
 

3 1 0, 0 1,x x xε ε− − = ≤ ∈� �    
 

� When ε≠0 , the cubic equation admits two roots of large modulus. To  

find them, we introduce the transformation 1/x y= ; consequently: 
 

3 2 0y y ε− + =  
 

� The generator system ( 0ε = ) admits the simple root 1y = (already 

studied ) and the double-zero root 0y = .  

� The standard method fails for double roots. Indeed, by expanding y:  
 

2

0 1 2y y y yε ε= + + +�  
 

the perturbation equations follow: 
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0 3 2

0 0

1 2

1 0 0

: 0

: (3 2 ) 1

.....................

y y

y y y

ε

ε

− =

− = −
 

 

in which the ε-order equation cannot be solved.  

� To solve the problem, we use fractional power series expansion. By 

putting 
1/O( )y

νε= and matching the lowest power of y, i.e. 
2 2/O( )y

νε= , with the known-term ε , 2ν = follows. Therefore we take:  
 

1/ 2 3/ 2

1 2 3y y y yε ε ε= + + +�  
 

and we get the following perturbation equations: 
 

2

1

1/2 3

1 2 1

3/2 2 2

1 3 1 2 2

: 1

: 2

: 2 3

.....................

y

y y y

y y y y y

ε

ε

ε

=

=

= −  
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� The first equation is nonlinear in 1y , while the other ones are linear in 

2 3, ,y y � . At order-ε  two solutions are found, i.e. 1 1y = ± . For each of 

them, the successive equations furnish  one solution, i.e.: 

2 31/ 2, 5 /8,y y= = ± � . Thus:  
 

1/ 2 3/ 21 5

2 8
y ε ε ε= ± + ± +�  

 

� By coming back to the original variable 1/x y=  and expanding in 

series, we finally obtain:  
 

1 1 3

2 8
x ε

ε
= ± − +∓ �

 

 

 

� Note: The expansion leads to a quadratic equation that furnishes two 

roots, which are perturbations of the unique double-zero root. The 

higher-order equations just improve the approximation of each 

perturbed root. 
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3. INTRODUCING IN THE EQUATION A 

PERTURBATION PARAMETER 
 

� How to introduce a perturbation parameter in the equation? 

� Sometimes a small parameter ε naturally appears (e.g.: aspect ratios of 

slender bodies, damping ratios of slightly damped systems, frequency 

ratios of weakly coupled systems). 

�  In other cases, the perturbation parameter can be introduced artificially 

by rescaling the state variables x as , ˆ : αε=x x  for a suitable α>0. Then, ε 

measures the ‘smallness’ of the state vector x. Asymptotic solution, are 

valid in a small neighborhood of the state-space origin. 

� If the system contains a parameter µ, this should also be rescaled as 

ˆ βµ ε µ= , for some β>0. 

�  As a general rule, when ε has been artificially introduced, it can be 

always eliminated at the end of the procedure, by an inverse rescaling.  
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� Example: a weakly nonlinear algebraic problem  

 

� A nonlinear algebraic system:  
 

3 µAx + x = bB  

where: 
 

( , ,N N N N N N N∈ ∈ × ∈ × × ×x,b) A� � � � � � �B  
 

and µ is a parameter. We want to find x=x(µ). 

�  We assume: O(1)=A , ( )= O 1B , O(1)=b , so that no small 

parameters naturally appear. 

�  In order that 3 O( )µx Ax = b�B , we have to rescale x and µ at the 

same order, e.g.: 
 

( ) ( )1 2 1 2ˆ ˆ ˆ= ε , = ε with = O 1 , = O 1µ µ µx x , x , 
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� The rescaled equations become:  
 

ˆ ˆ ˆε µ3Ax + x = bB  

 

� Series expansion: 
 

2

0 1 2
ˆ ˆ ˆ ˆ ...ε ε= + + +x x x x  

 

� Perturbation equations: 
 

0

0

1 3

1 00

2 2

2 00

ˆ ˆ:

ˆ ˆ:

ˆ ˆ ˆ: 3

................

ε µ

ε

ε

= −

= − 1

Ax = b

Ax x

Ax x x

B

B  

 

� By solving in chain:  
 

( )
3

-1 3 1 1

0 1
ˆ ˆ ˆ ˆ, ,µ µ= = − - -x A b x A A b �B  
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� The series expansion furnishes:  
 

( )
3

-1 3 1 1ˆ ˆ ˆµ εµ= − +- -
x A b A A b �B  

 

� By coming back to the original variables:  
 

( )
3

-1 3 -1 1µ µ= − +-x A b A A b �B  

 

 

 

� Note: one can formally come back to the original variables by 

dropping the hat and letting  ε=1. We will use this short method 

ahead.  
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4. MULTIPARAMETER SYSTEMS 
 

Very often systems depend on several parameters 
M∈µ � , instead of a unique 

parameter ε. We show how to bring back this problem to a one-parameter 

problem. 
 

� Let us assume that a solution 0( )x µ  is known at 0=µ µ . We want to 

determine ( )x µ  inside a ball of radius ε and center 0 0:P = µ  in the M-

dimensional parameter space.  

� We choose to explore the ball along selected curves of parametric 

equations ( )ε=µ µ . By Taylor-expanding these equations we get: 
 

2

0 1 2ε ε= + + +µ µ µ µ � 
 

where 0: (1/ !)(d / d )k k

k
k εε ==µ µ  are known quantities.  

� Usually, straight lines are sufficient to the scope, i.e., 0 1
k

k= ∀ >µ . 

� By coming back to µ , the solution is described in the whole ball.  
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� A nonlinear algebraic system 

 

� A nonlinear, parameter-dependent, algebraic system:  
 

3A(µ)x + x = bB  
 

� We assume that 0 0( , ) ( , )=x µ x µ is an exact solution of the nonlinear 

problem , i.e.: 
 

3

0 0 0 0 0: ( )=A x + x = b, A A µB  
 

� To solve the equation for µ close to µ0 ,we expand A in series; hence:  

2

0 0 0 0 0

2 2

0 0 1 0 2 0 1

1
( ) ( ) ( )( ) ( )( )

2
1

( ) ( ) [ ( ) ( ) ]
2

ε ε

′ ′′= + − + − +

′ ′ ′′= + + + +

A µ A µ A µ µ µ A µ µ µ

A µ A µ µ A µ µ A µ µ

�

� 

i.e.: 
2 2

0 1 1ε ε= + + +A A A A �  
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� The equation, therefore, reads: 
 

2 2 3

0 1 1( )ε ε+ + +A A A x + x = b� B  
 

� By expanding also the unknown x as:  
 

2

0 1 2 ...ε ε= + + +x x x x  
 

the perturbation equations follow: 
 

1

0 1 1 0

2 2

0 2 0 1 1 1 2 0

:

: 3

................

ε

ε

= −

= − − −

L x A x

L x x x A x A xB
 

where the tangent operator
2

0 0 0: 3= +L A xB  is assumed non-singular, i.e. 

det L0≠0. 
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� Solution: 
 

1 1 1 2 1

1 0 1 0 2 0 0 0 1 0 1 0 1 0 2 0, 3 ,− − − − = − = − + − x L A x x L x (L A x ) A (L A x ) A x �B   
 

from which: 
 

        

1 2

0 0 0 0 1 2

1 1 2 1 2 2

0 0 0 0 0 0 0 0 0 0 0 1

( )

1
3

2

ε ε

ε

−

− − −

′= − +

 
′ ′ ′ ′′+ − + − +  

x x L A x µ µ

L x (L A x ) A (L A x ) A x µ �B  

 

� By reabsorbing ε, to within an error of order ε2, one has: 
 

          

1

0 0 0 0 0

1 1 2 1 2

0 0 0 0 0 0 0 0 0 0 0 0

( )

1
3 ( )

2

−

− − −

′= − −

 
′ ′ ′ ′′+ − + − − +  

x x L A x µ µ

L x (L A x ) A (L A x ) A x µ µ �B  

 

� Note: The solution does not depend on the curve  chosen to explore 

the ball, but only on the difference between the actual point µ and 

the initial point µ0. 
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5. LINEAR ALGEBRAIC EIGENVALUE PROBLEMS 
 

We analyze how the eigenvalues and eigenvectors of a matrix vary under 

perturbations of parameter(s). The derivatives of the eigenpairs with respect 

the parameter(s) are called sensitivities.  

 

� A linear free motion problem  

� Free motion of a linear, lightly damped, single-d.o.f. oscillator:  
 

2

0 02 0q q qεω ω+ + =�� �  
 

where the damping 1ε �  is the perturbation parameter. 

� In state-form, by letting T( , )q q=x � : 
 

1 1

2

0 02 2

0 1

2

x x

x xω εω

    
=     

− −    

�

�  
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� By taking ( ) exp( )t tλ=x u , an eigenvalue problem follows:  
 

1

2

0 2

0 00 1 0
( )

0 20 0

u

u
ε λ

ωω

      
+ − =      

−−       

 

� We want to find the eigenpairs λ(ε),u(ε), as analytical functions of ε, by 

perturbing the eigenpairs λ(0),u(0).To this end we expand both the 

eigenvectors  and the eigenvalues  in power series of ε:  
 

2

0 1 2

2

0 1 2

( ) +

( )

ε ε ε

λ ε λ ελ ε λ= + + +

u = u + u + u �

�  

 

� Since u is defined to within an arbitrary constant, we introduce a 

normalization condition, e.g. by requiring 
1 1u ε= ∀ ; this entails:  

 

10 11, 0 1,2,
k

u u k= = = �  
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� Perturbation equations:  
 

0 100

2

0 0 20

0 1 10111

2

0 0 0 1 2021

1 0
:

0

1
:

(2 )

u

u

uu

uu

λ
ε

ω λ

λ λ
ε

ω λ ω λ

−    
=    

− −    

−    
=    

− − +    

���

 

 

� Generating solution: 
 

0 0iλ ω= ± , 
T

0 0(1, )iω= ±u ,
T

0( ,1)iω=v ∓  
 

where v are left eigenvectors, satisfying the transpose conjugate 

problem 0( ) 0Hλ− =A I v (adjoint problem) . 
 

� Compatibility (or solvability) condition: 

In order that the ε-order (singular) equation admits solution, its known 

term must belong to the range of the operator, i.e. it must be orthogonal 

to the kernel of the adjoint operator, namely:  
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1

0

0 1 0

( ,1) 0
(2 )

i
i

λ
ω

ω λ ω

 
± = 

± +   

from which 1 0λ ω= − follows.  
 

� General solution of the ε-order equation:  
 

11

0 021

0 1u
c c

iu ω ω

    
= + ∀    

− ±       

 

Due to normalization, 0c = must be taken.  
 

� By the series expansion, truncated at the first-order, we finally have:  
 

T

0 0 0 0..., (1, )i iλ ω εω ω εω= ± − + = ± −u  
 

according with the series expansion of the exact solution: 
 

2

0 0( ) 1iλ ε εω ω ε= − ± − , 
T( ) (1, ( ))ε λ ε=u   
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6. NONLINEAR ALGEBRAIC EIGENVALUE PROBLEMS 
 

We want to solve nonlinear homogeneous problems depending on a parameter,  

also called nonlinear eigenvalue problems. 
 

 

� A static bifurcation problem   

 Let us consider the static system in the figure (reverse pendulum, 

elastically restrained). The equilibrium equation reads:  
 

- sin 0θ µ θ =  
 

where θ  is the rotation and : Pl kµ = the non-dimensional load parameter.  
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� We look for non trivial solution to the equation, ( ),θ θ µ=  

or ( ), ( )θ θ ε µ µ ε= =  (buckling problem).  

� We expand 3sin / 6θ θ θ+ +� �  and introduce a perturbation parameter 

via the rescaling
1/ 2θ ε θ→ . Thus the equation becomes:  

( ) 31
1 0

6
µ θ εµθ− + + =�  

� As for linear problems, we expand both the state variable and the load 

parameter as: 
 

0 1 0 1( ) , ( )θ ε θ εθ µ ε µ εµ= + + = + +� �  

 

� The following perturbation equations are obtained:  
 

( )

( )

0

0 0
3

1 0
0 1 1 0 0

ε : 1- =0

ε : 1-
6

µ θ
θ

µ θ µ θ µ= −

���
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� Normalization condition: 

We denote by a the amplitude of θ, and therefore we require 
( ) aθ ε ε= ∀ , from which: 

 

0 , 0 1,2,
k

a kθ θ= = = �  
 

� Generating solution: 
 

0 1µ =  , 0 aθ = . 
 

� Solvability condition and ε-order solution: 

The ε-order equation can be solved if and only if: 
 

2

1 (1/ 6)aµ =  

The equation is solved by  1 c cθ = ∀ ; normalization entails 0c = . 
 

� By coming back to the original (not rescaled) variableθ , we have:  

1 2 21
( ) , ( ) 1

6
a aθ ε ε µ ε ε= = + +�  
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and reabsorbing ε via 
1 2

a aε → :  

21
, 1

6
a aθ µ= = + +�  

or, in Cartesian form: 

21
1

6
µ θ= + +� 

� Bifurcation diagram:  

At 0µ µ= a bifurcation takes place; 0µ  is the bifurcation (or critical) 

load (T: trivial, NT: non-trivial solution). 

 
  


