ELEMENTARY EXAMPLES
OF PERTURBATION
ANALYSIS

Scope:

e To introduce analytical tools for solving weakly nonlinear problems;
¢ To illustrate the Multiple Scale Method, to be systematically used ahead
for bifurcation analysis.
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1. PERTURBING A SIMPLE ROOT OF AN ALGEBRAIC
EQUATION

m Example: a nonlinear algebraic equation:
x—ex'—1=0, 0<exl, xeR

> This is a linear equation, x-1=0, perturbed by a nonlinear term, —€x’ ;

» ¢ is the perturbation parameter; the linear unperturbed equation is the
generating equation.

» The unperturbed equation admits the (unique) root x¢=1, called the
generating solution. We want to find the (unique) root x=x(¢) of the
perturbed equation which tends to xo when £ — 0.

» We expand the unknown solution x(¢) in Mac Laurin series:

x(€)=x,+€x,+Ex, +...

and want to find the coefficient of the series x, =(1/k!)d“ x/d&" | _,



» By substituting the expansion in the equation, and collecting terms with
the same powers of €:

(x, —1)+8(x1 —x3)+82 (x2 —3x, x, )+...=O

> Since this expression must hold V&, the coefficients of €“ must vanish
separately for any k:

0. . _
£ x,=1

» These are called the perturbation equations. They are a sequence of
linear equations, in the unknowns Xx,, x;, x,,---, having the same

operator. They can be solved in chain:

x, =1 x=1 x,=3, ..



» The series, consequently, reads :

x=1+&+3&* +...

a Note: the procedure gives an asymptotic expression just for one root of
the cubic equation. Indeed, the remaining two roots, which tend to oo

when € — 0 cannot be found as perturbation of the (finite) root xo,

e Comments
» In the problem studied, since x; # 0, an order- € perturbation of the
generating equation entails a modification of the same order of its root
(normal sensitivity, x—x, =0(€)).

» There exist problems in which the first derivative vanishes , x, =0
(low-sensitivity x—x, =O(€)); the Mac Laurin expansion still works.

» There exist degenerate problems in which the sensitivity of x with
respect to € is infinite (high-sensitivity, the function is not analytical at
€ =0). Mac Laurin series cannot be used! An example is given ahead.



2. PERTURBING A MULTIPLE ROOT OF AN
ALGEBRAIC EQUATION

m Example: a double-zero root
x—€x’—-1=0, 0<e<xl, xeR

» When &#0 , the cubic equation admits two roots of large modulus. To
find them, we introduce the transformation x=1/y ; consequently:

Y =y +£=0

» The generator system (€ =0) admits the simple root y =1(already
studied ) and the double-zero root y =0.

» The standard method fails for double roots. Indeed, by expanding y:
Y=Y tEN HE Y,

the perturbation equations follow:



in which the e-order equation cannot be solved.

» To solve the problem, we use fractional power series expansion. By
putting y =O(€"") and matching the lowest power of y, i.e.
y> =0(e”"), with the known-term €, V =2 follows. Therefore we take:

y=€"y +ey, +&"7y, +---
and we get the following perturbation equations:
e iy =1
e 2y, = )’13
2

A 2y, ¥, = 3)’12)’2 — Y



» The first equation is nonlinear in y,, while the other ones are /inear in

Y5> Y3+ . At order- € two solutions are found, i.e. y, ==x1. For each of

them, the successive equations furnish one solution, i.e.:
v,=1/2,y,=%5/8,---. Thus:

y=+¢g'? REPSEIEL I
2 8

» By coming back to the original variable x=1/y and expanding in
series, we finally obtain:

N

1 3
7 — €+"'
NP 2+8\/_

Q Note: The expansion leads to a quadratic equation that furnishes two
roots, which are perturbations of the unique double-zero root. The
higher-order equations just improve the approximation of each
perturbed root.



3. INTRODUCING IN THE EQUATION A
PERTURBATION PARAMETER

» How to introduce a perturbation parameter in the equation?

» Sometimes a small parameter ¢ naturally appears (e.g.: aspect ratios of
slender bodies, damping ratios of slightly damped systems, frequency
ratios of weakly coupled systems).

» In other cases, the perturbation parameter can be introduced artificially

by rescaling the state variables x as ,X:= £“x for a suitable o>0. Then, ¢
measures the ‘smallness’ of the state vector X. Asymptotic solution, are
valid 1n a small neighborhood of the state-space origin.

» If the system contains a parameter u, this should also be rescaled as
i =¢€" 1, for some £>0.

» As a general rule, when ¢ has been artificially introduced, it can be
always eliminated at the end of the procedure, by an inverse rescaling.



m Example: a weakly nonlinear algebraic problem

» A nonlinear algebraic system:

Ax+Bx’ = ub
where;:

x,b)e R, AeR"xR", BeR"xR"xR"xR"

and u 1s a parameter. We want to find x=x(u).
> We assume: ||A|=0(1), [B|=O(1),|jb| =0(1), so that no small

parameters naturally appear.

> In order that Bx’ < Ax = O(ub) - we have to rescale x and x at the
same order, €.g.:

x=¢"%, wu=¢"p, with|§|=0(1),2=0(1)
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» The rescaled equations become:
Ax+£BR’ = ab

» Series expansion:

A2 A 2 A

X=X,+EX, +EX, +...
» Perturbation equations:

e’ : A%, = b

g A%, =-BX

2. A _ AD A
£ AXx, =-3BX X,

» By solving in chain:

X, =fA'D, % =—2'A"B(A'b)

3
’

11



» The series expansion furnishes:
k= AD -’ A'B(AD) +---
» By coming back to the original variables:
x=uA"'b— 1A B(AD) +--
a Note: one can formally come back to the original variables by

dropping the hat and letting e=1. We will use this short method
ahead.
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4. MULTIPARAMETER SYSTEMS

Very often systems depend on several parameters R E R" | instead of a unique

parameter &. We show how to bring back this problem to a one-parameter
problem.

> Let us assume that a solution X(,) is known at p=p,. We want to

determine X(p) inside a ball of radius ¢ and center £, ==, in the M-
dimensional parameter space.

» We choose to explore the ball along selected curves of parametric
equations p=p(€). By Taylor-expanding these equations we get:

B=H,+ER +EP, +o

where p, =(1/k!)(d" p/de),_, are known quantities.
» Usually, straight lines are sufficient to the scope, i.e., B, =0 Vk >1,
» By coming back to M, the solution is described in the whole ball.
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m A nonlinear algebraic system

» A nonlinear, parameter-dependent, algebraic system:

A(mx+Bx’ =b

» We assume that (X,p) =(X,,H,) is an exact solution of the nonlinear
problem , 1.e.:

A x, +Bx; =b, A, =A(p,)
» To solve the equation for p close to py,we expand A in series; hence:

A = Ah) A,y + A )+

/ / 1 V4
= A(ry) +EA () 1, + €A () By T A (R 7]+

1.e.:
A=A +€A +EA}+--
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» The equation, therefore, reads:
(A, +€A +&A°+--)x+Bx’ =b
» By expanding also the unknown Xx as:
X=X, +EX, +EX, +...
the perturbation equations follow:

1 L] —
2 . — 2

where the tangent operatorL, = A + 3IB3X§ 1s assumed non-singular, 1.¢.

det L()?EO .
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» Solution:
x, =-LjAx,, x, =L -3Bx,(L/Ax,)" +A (LA x)-Ax, |.
from which:
x=x,— L Al x,(ep, +€°p,)
+L {—3183)(0 (L A x,)" +A) (LAl x,)— % A7 x, } En +--

> By reabsorbing ¢, to within an error of order &, one has:

x=x,—L A x,(n—p,)

+L; {—3183){0 (LA x,)" + Al (LA X,)— % A7 XO:| (m—py)” +--
Q Note: The solution does not depend on the curve chosen to explore
the ball, but only on the difference between the actual point p and

the 1nitial point py.
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S. LINEAR ALGEBRAIC EIGENVALUE PROBLEMS

We analyze how the eigenvalues and eigenvectors of a matrix vary under
perturbations of parameter(s). The derivatives of the eigenpairs with respect
the parameter(s) are called sensitivities.

m A linear free motion problem
» Free motion of a linear, lightly damped, single-d.o.f. oscillator:

G+2em,g+a,q=0

where the damping € <1 is the perturbation parameter.
> In state-form, by letting x =(q,q)" -

ol eal)
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» By taking x(#) =uexp(At) , an eigenvalue problem follows:

(o oo a2l

» We want to find the eigenpairs A(¢),u(e), as analytical functions of €, by
perturbing the eigenpairs A(0),u(0).To this end we expand both the
eigenvectors and the eigenvalues in power series of &:

2
uE)=u,+eu, +€u, +--

AME)=A +EL+E N, +--

» Since u is defined to within an arbitrary constant, we introduce a
normalization condition, e.g. by requiring u, =1V & this entails:

u,=1, u,=0 k=12,
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» Perturbation equations:

. -4, 1 Uy Auy, ]
—(05 —Ay )\ Uy, (L, + A)u,,

» Generating solution:
A =tiw, w, =(L*iw)" v=(Fia,1)'

where v are left eigenvectors, satisfying the transpose conjugate
problem (A —A,1)" v=0(adjoint problem) .

» Compatibility (or solvability) condition:
In order that the e-order (singular) equation admits solution, its known
term must belong to the range of the operator, i.e. it must be orthogonal
to the kernel of the adjoint operator, namely:
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(J_ria)o,l)( 4 jz 0

(2w, + 4)iw,

from which 4, =—@, follows.

» General solution of the e-order equation:

= +c| V¢
U, -, Tiw,

Due to normalization, ¢ =0 must be taken.
» By the series expansion, truncated at the first-order, we finally have:
A=tio -y, +..., u=(,%ia,-cm,)
according with the series expansion of the exact solution:

Ae) =—ew, £ioN1-€*  u(e)=(1,4(e)"
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6. NONLINEAR ALGEBRAIC EIGENVALUE PROBLEMS

We want to solve nonlinear homogeneous problems depending on a parameter,
also called nonlinear eigenvalue problems.

m A static bifurcation problem
Let us consider the static system in the figure (reverse pendulum,
elastically restrained). The equilibrium equation reads:

6-11sind =0

where € is the rotation and  := PI/k the non-dimensional load parameter.
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» We look for non trivial solution to the equation, € = 6(u),
or @ =0(&), u=u(€) (buckling problem).

» We expand sin@ =@ +6°/6+--- and introduce a perturbation parameter
via the rescaling @ — £"°6 . Thus the equation becomes:

(1—u)9+é€,u93+---=0

» As for linear problems, we expand both the state variable and the load
parameter as:

0(e)=6,+€0,+---, uE)=H,+&U+-
» The following perturbation equations are obtained:

g’: (1-4,)6,=0
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» Normalization condition:
We denote by a the amplitude of 8, and therefore we require
0(€)=a V&, from which:

6,=a, 6 =0 k=1,2,-
» Generating solution:
Hy=1 6 =a

» Solvability condition and e-order solution:
The e-order equation can be solved if and only if:

U, = (1/6)a’

The equation is solved by & =c¢ Vc¢; normalization entails ¢ =0.

» By coming back to the original (not rescaled) variable @, we have:

6(e)=¢€"a, u(e) =1+éga2 T
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. . 1/2 .
and reabsorbing ¢ via ePa—>a:

0 =a, ,Ll=l+éa2+---
or, in Cartesian form:
1
=14+—-6"+--
“ 6

» Bifurcation diagram:

At U = U, a bifurcation takes place; o is the bifurcation (or critical)

load (T: trivial, NT: non-trivial solution).
0 a
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