
Chapter 3

Laplace Equation

Undoubtedly, the Laplace Equation is among the most important PDEs. Traditionally, we
call

−∆u(x) = 0, x ∈ Ω ⊂ Rn, n ≥ 2. (3.1)

the Laplace Equation, and its non-homogeneous companion

−∆u(x) = f(x), x ∈ Ω ⊂ Rn, n ≥ 2, (3.2)

the Poisson Equation.
We recall that the Laplacian of u is

∆u =
n∑

i−1

uxixi .

In both equations, x = (x1, · · · , xn) ∈ Ω ⊂ Rn and the unknown is u : Ω̄ → R. In (3.2),
the function f : Ω → R is given fucntion. For later use, we have the following defintion:

Definition 3.0.1 If u ∈ C2(Ω) satisfies (3.1) in Ω, we call it a harmonic function. u ∈
C2(Ω) is called sub-harmonic (or super-harmonic) if it satisfies

−∆u ≤ 0(≥ 0).

Laplace equation and Poisson equations model many static physical fields with and
without sources. They appear in the modeling of gravity, electric force, and the chemical
concentration in equilibrium, and much more. Let V be any smooth subregion in Ω, the
net flux of u through ∂V is zero:

∫

∂V

F • ν dS = 0,

where F is the flux density and ν the unit outer normal of ∂V . By Divergence Theorem
(see Theorem 3.1.1 below), we have
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∫

V

∇ • F dx =

∫

∂V

F • ν dS = 0,

and so
∇ • F = 0, in Ω.

In many occasions, the flux F is proportional to the gradient Du, pointing in the opposite
direction. Therefore, one has

F = −aDu, a > 0. (3.3)

If u stands for the 




chemical concentration

temperature

electrostatic potential,

the equation (3.3) is 




Fick’s law of diffusion

Fourier’s law of heat conduction

Ohm’s law of electrical conduction.

Laplace equation also arises in the study of analytic functions and the probabilistic inves-
tigation of Brownian motion.

3.1 The fundamental solution

From the form of Laplace equation, we see that all directions have the same weights in
the equation. Namely, the equation is invariant under any orthogonal transformation of
coordinates. We thus seek to solve the equation explicitly by looking for the radial solution
which has the form

u(x) = v(r), r = |x|,
where v is to be determined so that (3.1) holds. For i ∈ {1, . . . , n},

uxi = v′(r)rxi = v′(r)
xi

r
, uxixi = v′′(r)

x2
i

r2
+ v′(r)

(
1

r
− x2

i

r3

)
.

One has

∆u = v′′(r) +
n− 1

r
v′(r) = 0.

If v′ (= 0, we deduce

(log(v′))′ =
v′′

v′
=

1− n

r
and hence

v′(r) =
a

rn−1
,
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for some constant a. Therefore, if r > 0, we find

v(r) =





b log r + c for n = 2

b

rn−2
+ c for n ≥ 3,

where a and b are constants. We therefore discover the fundamental solution of Laplace
equation:

Φ(x) =






− 1

2π
log |x| for n = 2

1

n(n− 2)α(n)

1

|x|n−2
for n ≥ 3,

(3.4)

where

α(n) =
2πn/2

nΓ(n/2)

is the volume of the unite ball in Rn. The reason for particular choices of the constants
will be explained later.

From the derivation, we also have the following estimates

|DΦ(x)| ≤ C

|x|n−1
, |D2Φ(x)| ≤ C

|x|n , (x (= 0), (3.5)

for some constant C > 0.

3.1.1 Green’s formula

In this subsection, we summarize some useful formulas due to Green. These formulas
are convenient in the computations related to Laplacian. These are derived from the
Divergence Theorem (or, Gauss formula):

Theorem 3.1.1 Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let ν be
the unit outer normal of ∂Ω. For any smooth vector field w ∈ C1(Ω̄), it holds that

∫

Ω

∇ • w dx =

∫

∂Ω

w • ν dS. (3.6)

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let ν be the unit outer
normal of ∂Ω. For u ∈ C2(Ω̄), one derives from the Divergence Theorem (letting w = Du)
that ∫

Ω

∆u dx =

∫

∂Ω

Du • ν dS =

∫

∂Ω

∂u

∂ν
dS. (3.7)

Now, for u, v ∈ C2(Ω̄), by choosing w = uDv or w = vDu respectively in the Divergence
Theorem, we have
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∫

Ω

u∆v dx =

∫

∂Ω

u
∂v

∂ν
dS −

∫

Ω

Du • Dv dx (3.8)

∫

Ω

v∆u dx =

∫

∂Ω

v
∂u

∂ν
dS −

∫

Ω

Dv • Du dx. (3.9)

We subtract the above two equations to get
∫

Ω

(u∆v − v∆u) dx =

∫

∂Ω

(u
∂v

∂ν
− v

∂u

∂ν
) dS. (3.10)

Traditionally, (3.8) is called the first Green’s formula, while (3.10) is called the second
Green’s formula.

3.1.2 Poisson Equation in Rn

From the construction, we know that the fundamental solution Φ(x) of Laplace equation
is harmonic for x (= 0, so is Φ(x − y) for x (= y. With this in mind, we will prove the
following

Theorem 3.1.2 If f ∈ C2
0(Rn), then

u(x) =

∫

Rn

Φ(x− y)f(y) dy ∈ C(Rn) (3.11)

is a solution of the Poisson equation (3.2).

Proof. First of all, we have

u(x) =

∫

Rn

Φ(x− y)f(y) dy =

∫

Rn

Φ(y)f(x− y) dy,

hence
u(x + hei)− u(x)

h
=

∫

Rn

Φ(y)

[
f(x + hei − y)− f(x− y)

h

]
dy,

where h (= 0 and ei the unit vector in the direction of xi-axis. Note that

lim
h→0

f(x + hei − y)− f(x− y)

h
=

∂f

∂xi
(x− y)

uniformly on Rn, and thus

∂u

∂xi
(x) =

∫

Rn

Φ(y)
∂f

∂xi
(x− y) dy, (i = 1, · · · , n). (3.12)

Similarly,
∂2u

∂xi∂xj
(x) =

∫

Rn

Φ(y)
∂2f

∂xi∂xj
(x− y) dy, (i, j = 1, · · · , n). (3.13)
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We note that the integral above is continuous in the variable x, and thus u ∈ C2(Rn).
As Φ(x) is singular at x = 0, we have to pay substantial attention near the singularity.

Fix ε > 0, let B(0, ε) be the ball centered at 0 with radius ε. We have

∆u(x) =

∫

B(0,ε)

Φ(y)∆xf(x− y) dy +

∫

Rn\B(0,ε)

Φ(y)∆xf(x− y) dy

=: Iε + Jε.

(3.14)

Now, it is clear that

Iε ≤ C‖D2f‖L∞(Rn)

∫

B(0,ε)

|Φ(y)| dy ≤
{

Cε2| log ε| (n = 2)

Cε2 (n = 3).
(3.15)

On the other hand, we can estimate Jε as following

Jε =

∫

Rn\B(0,ε)

Φ(y)∆xf(x− y) dy

=

∫

Rn\B(0,ε)

Φ(y)∆yf(x− y) dy

= −
∫

Rn\B(0,ε)

DyΦ(y) • Dyf(x− y) dy +

∫

∂B(0,ε)

Φ(y)
∂f

∂v
(x− y) dS(y)

=: Kε + Lε,

(3.16)

where ν is the inward unit normal along ∂B(0, ε). We easily check

|Lε| ≤ C‖Df‖L∞(Rn)

∫

∂B(0,ε)

|Φ(y)| dy ≤
{

Cε| log ε| (n = 2)

Cε (n = 3).
(3.17)

It remains to compute Kε. In fact, we have

Kε = −
∫

Rn\B(0,ε)

DyΦ(y) • Dyf(x− y) dy

=

∫

Rn\B(0,ε)

∆yΦ(y)f(x− y) dy −
∫

∂B(0,ε)

∂Φ

∂ν
(y)f(x− y) dS(y)

= −
∫

∂B(0,ε)

∂Φ

∂ν
(y)f(x− y) dS(y).

We now note that

DΦ(y) =
−1

nα(n)

y

|y|n , y (= 0,

and

ν =
−y

|y| = −y

ε
, on ∂B(0, ε),



40 CHAPTER 3. LAPLACE EQUATION

So,
∂Φ

∂ν
(y) =

1

nα(n)εn−1
, on ∂B(0, ε).

We also note that nα(n)εn−1 is the surface area of ∂B(0, ε), we have

Kε = − 1

nα(n)εn−1

∫

∂B(0,ε)

f(x− y) dS(y)

→ −f(x), as ε → 0.

(3.18)

We therefore conclude from (3.14)–(3.18) (letting ε → 0) that

−∆u = f.

Remark 3.1.3 Sometimes, we write

−∆Φ = δ0, in Rn,

where δ0 is the Dirac measure on Rn giving unit mass to the point 0. Formally, one can
computes:

−∆u(x) =

∫

Rn

−∆xΦ(x− y)f(y) dy

=

∫

Rn

δxf(y) dy = f(x), (x ∈ Rn).

3.1.3 Fundamental integral formulas

As we often solve the elliptic equations in bounded domains, we now carry out some useful
integral formulas using the fundamental solution Φ(x).

Assume u ∈ C2(Ω). For any y ∈ Ω, we choose ρ > 0 suitably small so that the ball
Bρ(y) centered at y with radius ρ is inside Ω. On the region Ω \ B̄ρ(y), we substitute v(x)
with Φ(x− y) in the second Green’s formula,

∫

Ω−Bρ(y)

Φ(x− y)∆xu dx =

∫

∂Ω

(Φ
∂u

∂ν
− u

∂Φ

∂ν
) dSx +

∫

∂Bρ(y)

(Φ
∂u

∂ν
− u

∂Φ

∂ν
) dSx. (3.19)

Similar to the computations carried out in (3.17)–(3.18), we have

|
∫

∂Bρ(y)

Φ
∂u

∂ν
dSx| = |Φ(ρ)

∫

∂Bρ(y)

∂u

∂ν
dSx|

= |− Φ(ρ)

∫

Bρ(y)

∆u dx|

≤
{

Cρ2| log ρ| (n = 2)

Cρ2 (n = 3).

→ 0, as ρ → 0;
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and ∫

∂Bρ(y)

u
∂Φ

∂ν
dSx = −Φ′(ρ)

∫

∂Bρ(y)

u dSx

=
1

nα(n)ρn−1

∫

∂Bρ(y)

u dSx

→ u(y), as ρ → 0.

Therefor, we obtain from (3.19) by letting ρ → 0 that

u(y) = −
∫

Ω

Φ(x− y)∆xu dx−
∫

∂Ω

(u
∂Φ(x− y)

∂ν
− Φ(x− y)

∂u

∂ν
) dSx, ∀y ∈ Ω. (3.20)

This formula is called Green’s representation of u(y).
In particular, if u has compact support on Ω, then it holds

u(y) = −
∫

Ω

Φ(x− y)∆xu dx, ∀y ∈ Ω, u ∈ C2
0(Ω). (3.21)

If u is harmonic in Ω, we thus obtain the fundamental integral formula of harmonic
functions

u(y) = −
∫

∂Ω

(u
∂Φ(x− y)

∂ν
− Φ(x− y)

∂u

∂ν
) dSx, ∀y ∈ Ω. (3.22)

We remark that, actually, for smooth harmonic function, (3.7) implies
∫

∂Ω

∂u

∂ν
dS = 0. (3.23)

3.2 Properties of harmonic functions

In this section, we discuss some basic properties of harmonic functions. We now consider an
open bounded set Ω ⊂ Rn and suppose u is harmonic in Ω. Various interesting properties
will be presented in orders.

3.2.1 Mean-value formulas

The mean-value formulas, which declare that u(x) equals both the average of u over the
sphere ∂B(x, r) and the average of u over the whole ball B(x, r), as long as B(x, r) ⊂ Ω.
It will play key roles in many important occasions.

To begin, we introduce the notion of mean value of u(x) over a domain Ω:

(u)Ω =
1

|Ω|

∫

Ω

u(x) dx. (3.24)

Theorem 3.2.1 If u ∈ C2(Ω) is harmonic, then

u(x) = (u)∂B(x,r) = (u)B(x,r), (3.25)

for each ball B(x, r) ⊂ Ω.
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Proof. By (3.22), using (3.23), one has

u(x) = −
∫

∂B(x,r)

(u
∂Φ(x− y)

∂ν
− Φ(x− y)

∂u

∂ν
) dSy

= −Φ′(r)

∫

∂B(x,r)

u(y) dSy − Φ(r)

∫

∂B(x,r)

∂u

∂ν
dSy

= −Φ′(r)

∫

∂B(x,r)

u(y) dSy

= (u)∂B(x,r).

Now, for the mean-value on the ball, we have
∫

B(x,r)

u(y) dy =

∫ r

0

(

∫

∂B(x,s)

u(y) dSy) ds

= u(x)

∫ r

0

∫

∂B(x,s)

dSy ds = u(x) · (volume of B(x, r)).

This completes the proof.

Remark 3.2.2 If instead of harmonic, u ∈ C2(Ω) is sub-harmornic, then one has

u(x) ≤ (u)∂B(x,r), u(x) ≤ (u)B(x,r). (3.26)

If u ∈ C2(Ω) is super-harmornic, then

u(x) ≥ (u)∂B(x,r), u(x) ≥ (u)B(x,r). (3.27)

The converse of the mean-value formulas is also a true statement.

Theorem 3.2.3 If u ∈ C2(Ω) satisfies

u(x) = (u)∂B(x,r)

for each ball B(x, r) ⊂ Ω, then u is harmonic.

Proof. Set
φ(r) = (u)∂B(x,r) = (u(x + rz))∂B(0,1).

Then
φ′(r) = (Du(x + rz) • z)∂B(0,1)

=
1

|∂B(x, r)|

∫

∂B(x,r)

Du(y) • y − x

r
dSy

=
1

|∂B(x, r)|

∫

∂B(x,r)

∂u

∂ν
dSy

=
r

n
(∆u)B(x,r)
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If ∆u (= 0, there exists some ball B(x, r1) ⊂ Ω such that ∆u > 0 in B(x, r) (the other case
is similar). But

0 = φ′(r1) =
r1

n
(∆u)B(x,r1) > 0,

a contradiction.

3.2.2 Maximum principle and uniqueness

Assume that Ω is an open and bounded set in Rn. We first present

Theorem 3.2.4 (Strong maximum principle). Suppose u ∈ C2(Ω)∩C(Ω̄) is harmonic in
Ω, then

• (i) max
Ω̄

u = max
∂Ω

u

• (ii) If Ω is connected and there exists a point x0 ∈ Ω such that

u(x0) = max
Ω̄

u,

then u is constant in Ω.

Remark 3.2.5 The first assertion in this theorem is the maximum principle and the
second is the strong maximum principle. If one replaces u by −u, the similar assertions
are true when ”max” is replaced by ”min”.

Proof. Suppose there exists a point x0 ∈ Ω with

u(x0) = M = max
Ω̄

u.

Then for some r > 0, the ball B(x0, r) ⊂ Ω. By the mean-value formula on this ball, we
have

M = u(x0) = (u)B(x0,r) ≤ M.

Here, the equality holds only if u ≡ M in B(x0, r). Therefore, u(x) = M for any x ∈
B(x, r). So, the set {x ∈ Ω|u(x) = M} is both open and relatively closed in Ω, and thus
equals Ω if Ω is connected. This proves assertion (ii). The first one follows immediately.

The strong maximum principle has many applications. A direct application is as follows:
if Ω is connected and u ∈ C2(Ω) ∩ C(Ω̄) is a solution of

{
∆u = 0, in Ω,

u = g, on ∂Ω,

where g ≥ 0, then u is positive everywhere in Ω if g is positive somewhere on ∂Ω.
An important application of the maximum principle is the uniqueness of solutions to

certain boundary value problems for Poisson equation.
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Theorem 3.2.6 (Uniqueness). Let g ∈ C(∂Ω), f ∈ C(Ω). Then there exists at most one
solution u ∈ C2(Ω) ∩ C(Ω̄) of the boundary value problem

{
−∆u = f, in Ω,

u = g, on ∂Ω.
(3.28)

Proof. If u1 and u2 are two solutions, one applies the maximum principle to the har-
monic functions w± = ±(u1−u2) which satisfies the Laplace equation with zero boundary
condition, therefore, w± ≡ 0.

3.2.3 Harnack’s inequality

In this subsection, we will exploit an amazing averaging effect of Harmonic functions.
Recall that we denote by V ⊂⊂ Ω if V̄ ⊂ Ω is compact. The following theorem assert that
the value of a non-negative harmonic function on Ω are all comparable within a compact
subset relative to Ω: it cannot be very large ( or very small) at any point in this subset
unless it is very large (or very small) everywhere. The idea is that since the compact set
has positive distance from ∂Ω, there is room for the averaging effect of Laplace’s equation
to occur.

Theorem 3.2.7 (Harnack’s inequality). For each connecterd open set V ⊂⊂ Ω, there
exists a positive constant C, depending only on V , such that

sup
V

u ≤ C inf
V

u

for all nonnegative harmonic functions u in Ω.

Remark 3.2.8 The Harnack’s inequality in particular implies that, for any x and y ∈ V ,
it holds that

1

C
u(y) ≤ u(x) ≤ C u(y).

Proof. Let r = 1
4 dist(V, ∂Ω). Fixing any x ∈ V , for any y ∈ V such that |x− y| ≤ r, we

have
u(x) = (u)B(x,2r)

≥ 1

α(n)2nrn

∫

B(y,r)

u dz

1

2n
(u)B(y,r) =

1

2n
u(y).

Therefore, we actually proved that

2−nu(y) ≤ u(x) ≤ 2nu(x),∀x, y ∈ V, |x− y| ≤ r.
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Since V is connected and V̄ is compact, we can cover V̄ by a chain of finitely many balls
{Bi}N

i=1, each of which has radius r and Bi ∩Bi−1 (= ∅, for i = 2, · · · , N . Then,

2−nNu(y) ≤ u(x) ≤ 2nNu(y)

for all x, y ∈ V .

3.2.4 Regularity

Now we prove that if u ∈ C2(Ω) is harmonic, then necessarily u ∈ C∞(Ω). Thus harmonic
functions are infinitely differentiable. This sort of assertion is called a regularity statements.
It is interesting to see that the algebraic structure of Laplace equation leads to that all the
partial derivatives of u exist, even those which do not appear in the PDE.

Theorem 3.2.9 (Smoothness). If u ∈ C(Ω) satisfies the mean-value property (3.25) for
each ball B(x, r) ⊂ Ω, then u ∈ C∞(Ω).

Before we proceed to prove this theorem, we first introduce an important tool. Define
η ∈ C∞(Rn) by

η(x) =

{
C exp{ 1

|x|2−1} if |x| < 1,

0 if |x| > 1,
(3.29)

where C > 0 is chosen so that ∫

Rn

η(x) dx = 1.

Now, for each ε > 0, set

ηε = ε−nη(
x

ε
).

Such η is called the standard mollifier, and ηε ∈ C∞(Rn) statisfies
∫

Rn

ηε(x) dx = 1, supp(ηε) ⊂ B(0, ε). (3.30)

The following lemma states some of the properties of mollifiers.

Lemma 3.2.10 If f : Ω → R is locally integrable, define

f ε = ηε * f =

∫

Ω

ηε(x− y)f(y) dy,

for x ∈ Ωε = {x ∈ Ω| dist(x, ∂Ω) > ε}. Then, it holds that

• (i) f ε ∈ C∞(Ωε).

• (ii) f ε → f , a.e. as ε → 0.

• (iii) If f ∈ C(Ω), then f ε → f uniformly on compact subsets of Ω.
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We now give a proof to the regularity theorem using the mean-value formulas.
Proof. Let η be a standard mollifier, we will prove that u = uε on Ωε. In fact, if x ∈ Ωε,
then

uε(x) =

∫

Ω

ηε(x− y)u(y) dy

= ε−n

∫

B

(x, ε)η(
|x− y|

ε
)u(y) dy

= ε−n

∫ ε

0

η(
r

ε
)(

∫

∂B(x,r)

u(y) dS) dr

= ε−nu(x)

∫ ε

0

η(
r

ε
)nα(n)rn−1 dr

= u(x)

∫

B(0,ε)

ηε dy = u(x).

Therefore, u ∈ C∞(Ωε) for any ε > 0, and so u ∈ C∞(Ω).

Remark 3.2.11 One should be careful that u is not assumed to have any regularity at
boundary, even continuity.

A further applications of mean-value formulas will lead to the estimates on derivatives,
for which we omit the proof.

Theorem 3.2.12 (Estimates on derivatives). Assume u is harmonic in Ω. Then it holds
that

|Dαu(x0)| ≤
Ck

rn+k
‖u‖L1(B(x0,r)) (3.31)

for each ball B(x0, r) ⊂ Ω and each multi-index α of order |α| = k. Here, the Ck can be
chosen as

C0 =
1

α(n)
, Ck =

(2n+1nk)k

α(n)
, k = 1, · · · . (3.32)

The C∞ regularity does not go to extreme of the harmonic functions. The following
theorem states that harmonic functions are actually analytic.

Theorem 3.2.13 If u is harmonic in Ω, then u is analytic in Ω.

The next one confirms the analyticity of harmonic functions, which says that there are
no nontrivial bounded harmonic functions on whole Rn.

Theorem 3.2.14 (Liouville’s Theorem). If u : Rn → R is harmonic and bounded, then u
is constant.
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Proof. Fix x0 ∈ Rn, r > 0, and apply Theorem 3.2.12 on B(x0, r),

|Du(x0)| ≤
C1

rn+1
‖u‖L1(B(x0,r))

≤ C1α(n)

r
‖u‖L∞(Rn) → 0, as r →∞.

Therefore, Du ≡ 0, and so u is constant.

As a direct application of Liouville’s Theorem, we have

Theorem 3.2.15 (Representation formula). Let f ∈ C2
0(Rn), n ≥ 3. Then any bounded

solution of
−∆u = f in Rn

has the form

u(x) =

∫

Rn

Φ(x− y)f(y) dy + C, (x ∈ Rn)

for some constant C.

Proof. Since Φ(x) → 0 as |x|→∞ for n ≥ 3,

ũ(x) =

∫

Rn

Φ(x− y)f(y) dy

is a bounded solution of
−∆u = f in Rn.

If u is another bouned solution, w = u−ũ is bounded and harmonic, and thus is a constant.

Remark 3.2.16 When n = 2, Φ(x) is not bounded as |x|→∞, and so it is possible that
∫

Rn

Φ(x− y)f(y) dy

is not bounded as |x| → ∞. Therefore, the representation formula is not true in general
for n = 2.

3.3 Green’s function

In last section, we obtained representation formula for problems on Rn. We now fix Ω to
be an bounded open domain in Rn with smooth boundary ∂Ω. We will try to find a general
representation formula for the solutions of the following boundary value problem

{
−∆u = f in Ω,

u = g on ∂Ω.
(3.33)
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We intend to solve this problem through the Green’s representation formula (3.20). We
recall (3.20) below

u(x) = −
∫

Ω

Φ(x−y)∆yu(y) dy−
∫

∂Ω

(u(y)
∂Φ(x− y)

∂ν
−Φ(x−y)

∂u(y)

∂ν
) dSy, ∀x ∈ Ω. (3.34)

It is clear that (3.34) permits us to solve the problem if we know how to deal with the term

of
∂u

∂ν
on the boundary. Unfortunately, it is unknown to us. The idea is to introduce a

correction h(x, y) for each fixed x such that it solves the following boundary value problem.
{

−∆yh = 0 in Ω,

h = Φ(x− y) on ∂Ω.
(3.35)

By the Green’s formula, we have

−
∫

Ω

h(x, y)∆yu(y) dy =

∫

∂Ω

(u(y)
∂h(x, y)

∂ν
− h(x, y)

∂u

∂ν
) dSy

=

∫

∂Ω

(u(y)
∂h(x, y)

∂ν
− Φ(x− y)

∂u

∂ν
) dSy.

(3.36)

We therefore arrived at the following definition.

Definition 3.3.1 Green’s function for the region Ω is

G(x, y) = Φ(x− y)− h(x, y), (x, y ∈ Ω, x (= y).

With this notion, we add (3.36) to (3.34) to find

u(x) = −
∫

Ω

G(x, y)∆yu(y) dy −
∫

∂Ω

u(y)
∂G(x, y)

∂ν
dSy, ∀x ∈ Ω. (3.37)

where
∂G

∂ν
(x, y) = ∇yG(x, y) · ν(y),

is the outer normal derivative of G with respect to variable y. The term
∂u

∂ν
does not

appear in this formula (3.37). This means the correction h(x, y) is in its proper form.
Now, suppose u(x) ∈ C2(Ω̄) solves the boundary value problem (3.33) for some contin-

uous functions f and g, using (3.37), we arrive at

Theorem 3.3.2 (Representation formula with Green’s function). If u(x) ∈ C2(Ω̄) solves
problem (3.33), then

u(x) =

∫

Ω

G(x, y)f(y) dy −
∫

∂Ω

g(y)
∂G(x, y)

∂ν
dSy, ∀x ∈ Ω. (3.38)
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Remark 3.3.3 Formally, (3.38) gives a nice formula to the solutions of the Poisson equa-
tion with Dirichlet boundary condition if we know the Green’s function on the domain Ω,
such a method is called Green’s method. However, for general domain, it is a difficult task
to construct the Green’s function, for which requires to solve the problem (3.35). However,
Green’s method is still significant in the following reasons:

• (i) For Poisson equation on a fixed domain, once we obtained the Green’s function,
the existence of solutions to the problem (3.33) is given by the formula (3.38) for any
continuous f and g.

• (ii) In the case when it is hard to find the solutions to (3.33), one can still use the
formula (3.38) to discuss the certain behavior of the solutions.

• (iii) For some domains with simple geometry, explicit calculation of G is possible.
The Dirichlet problem of Poisson equation on such domains are often important in
the applications.

• (iv) (3.38) transfers the (3.33) into a integral equation, which is convenient in certain
occasions even when the equation is semi-linear. The machinery of functional analysis
is thus applied to obtain some interesting results.

Before going to specific examples, we discuss certain important properties of Green’s
function.

First of all, it is clear that in Ω, when x (= y, G(x, y) is harmonic on x and on y
everywhere. Furthermore, G(x, y) → ∞ as x → y at the order of |x − y|n−2 if n > 2 and
at the order of log |x− y| if n = 2.

Secondly, substituting u(x) = 1 into (3.37) we have
∫

∂Ω

∂G

∂ν
dS = −1. (3.39)

Finally, we show that G(x, y) is symmetric in x and y.

Theorem 3.3.4 (Symmetry of Green’s function). For all x, y ∈ Ω, x (= y, it holds that

G(y, x) = G(x, y).

Proof. Formally, we prove the theorem as following. For x (= y ∈ Ω, Φ(|x− y|) is smooth
on ∂Ω, by definition, we know that

G(y, x) = Φ(x− y)− h(x, y), G(y, x) = Φ(y − x)− h(y, x).

We note that Φ(x−y) = Φ(y−x) = Φ(|x−y|), and therefore, both h(x, y) and h(y, x) are the
harmonic solutions of the same problem (3.35). By uniqueness we know h(x, y) = h(y, x)
and therefore

G(y, x) = G(x, y), ∀x (= y ∈ Ω.
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3.3.1 Green’s function on a ball

We will construct Green’s function for the unit ball B(0, 1) using some reflection through
the sphere ∂B(0, 1).

Definition 3.3.5 If x ∈ Rn \ {0}, the point

x̄ =
x

|x|2

is called the point dual to x with respect to ∂B(0, 1). The mapping x → x̄ is inversion
through the unit sphere ∂B(0, 1).

We will use this inversion to construct Green’s function for the unit ball Ω = B(0, 1).
Fix x ∈ B(0, 1). We need to find a correction h(x, y) solving

{
−∆yh = 0 in B(0, 1),

h = Φ(x− y) on ∂B(0, 1),
(3.40)

then the Green’s function reads

G(x, y) = Φ(x− y)− h(x, y).

We try to invert the singularity of Φ(x − y) from x ∈ B(0, 1) to x̄ (∈ B(0, 1). Assume
now that n ≥ 3. The mapping

y → Φ(y − x̄)

is harmonic for y (= x̄. Thus,
y → |x|2−nΦ(y − x̄)

is harmonic for y (= x̄, and so

h(x, y) = Φ(|x|(y − x̄)) (3.41)

is harmonic in B(0, 1). Furthermore, if y ∈ ∂B(0, 1) and x (= 0,

|x|2|y − x̄|2 = |x|2
(
|y2 − 2y · x

|x|2 +
1

|x|2

)

= |x|2 − 2y · x + 1 = |x− y|2.

Therefore, (|x||y − x̄|)2−n = |x− y|2−n and so

h(x, y) = Φ(y − x), ∀y ∈ ∂B(0, 1). (3.42)

This verifies that h(x, y) is the one we were looking for.
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Definition 3.3.6 Green’s function for the unit ball is

G(x, y) = Φ(y − x)− Φ(|x|(y − x̄)), x, y ∈ B(0, 1), x (= y. (3.43)

We now solve the following boundary value problem
{

∆u = 0, in B(0, 1)

u = g, on ∂B(0, 1).
(3.44)

By (3.38), we need to calculate
∂G

∂ν
on the unit sphere. According to formula (3.43), for

y ∈ ∂B(0, 1) one has
∂G

∂yi
=

∂Φ(y − x)

∂yi
− ∂Φ(|x|(y − x̄))

∂yi
,

where
∂Φ(y − x)

∂yi
=

−1

nα(n)

yi − xi

|x− y|n ,

and

∂Φ(|x|(y − x̄))

∂yi
=

−1

nα(n)

yi|x|2 − xi

(|x||y − x̄|)n
=

−1

nα(n)

yi|x|2 − xi

|x− y|n , ∀y ∈ ∂B(0, 1).

Therefore,
∂G

∂ν
=

n∑

i=1

yi
∂G

∂yi
(x, y)

=
−1

nα(n)

1

|x− y|n
n∑

i=1

yi((yi − xi)− yi|x|2 + xi)

=
−1

nα(n)

1− |x|2

|x− y|n , ∀y ∈ ∂B(0, 1).

Thus, we use (3.38) to yield the representation formula

u(x) =
1− |x|2

nα(n)

∫

∂B(0,1)

g(y)

|x− y|n dSy. (3.45)

If now instead of (3.43), for r > 0, we want to solve the following boundary-value
problem {

∆u = 0, in B(0, r)

u = g, on ∂B(0, r).
(3.46)

Then, ū(x) = u(rx) solves (3.43) with ḡ(x) = g(rx) replacing g in (3.43). After a direct
change of variables, we obtain the Poisson’s formula

u(x) =
r2 − |x|2

nα(n)r

∫

∂B(0,r)

g(y)

|x− y|n dSy, ∀x ∈ B(0, 1). (3.47)
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The function

K(x, y) =
r2 − |x|2

nα(n)r

1

|x− y|n , x ∈ B(0, r), y ∈ ∂B(0, r), (3.48)

is called Poisson’s Kernel for the ball B(0, r).
(3.47) was established under the assumption that (3.46) has a smooth solution. We

now prove that in fact (3.47) gives a solution.

Theorem 3.3.7 (Poisson’s formula for a ball). Assume g ∈ C(∂B(0, r)) and u is defined
by (3.47). Then u is harmonic in B(0, r) and for each point x0 ∈ ∂B(0, r),

lim
x→x0

u(x) = g(x0), x ∈ B(0, r).

Proof. It is clear that K(x, y) ≥ 0 is harmonic when x (= y. Therefore, for x ∈ B(0, r)
and y ∈ ∂B(0, r), we have

∆u(x) =

∫

∂B(0,r)

∆xK(x, y)g(y) dSy = 0.

To verify the boundary condition, we first remark that
∫

∂B(0,r)

K(x, y) dSy = 1. (3.49)

Indeed, for each fixed y ∈ ∂B(0, r), we denote x = σz where 0 ≤ σ < 1 and z ∈ ∂B(0, r).
By the mean-value formula for harmonic function, we have

1 = K(0, y)nα(n)rn−1 =

∫

∂B(0,r)

K(σz, y) dSz.

Now,

1 =

∫

∂B(0,r)

K(σz, y) dSz

=

∫

∂B(0,r)

K(σy, z) dSz

=

∫

∂B(0,r)

K(x, z) dSz.

Now, fix x0 ∈ ∂B(0, r), ε > 0. Choose δ > 0 so small that

|g(y)− g(x0)| < ε, if |y − x0| < δ, y ∈ ∂B(0, r). (3.50)

Then, if |x− x0| < δ
2 , x ∈ B(0, r), setting

Vδ = ∂B(0, r) ∩B(x0, δ),
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we compute

|u(x)− g(x0)| =

∣∣∣∣
∫

∂B(0,r)

K(x, y)[g(y)− g(x0)] dSy

∣∣∣∣

≤
∫

Vδ

K(x, y)|g(y)− g(x0)| dSy

+

∫

∂B(0,r)\Vδ

K(x, y)|g(y)− g(x0)| dSy

≡ I + J.

(3.51)

Now, (3.49)–(3.50) implies that

I ≤ ε

∫

∂B(0,r)

K(x, y) dSy = ε.

For J , we note that if |x− x0| < δ
2 and |y − x0| ≥ δ, then

|y − x| ≥ 1

2
|y − x0|.

Thus,

J ≤ 2‖g‖L∞

∫

∂B(0,r)\Vδ

K(x, y) dSy

≤ 2n+1‖g‖L∞(r2 − |x|2)
nα(n)r

∫

∂B(0,r)\Vδ

|y − x0|−n dSy

→ 0, as x → x0.

Therefore, we could choose δ > δε > 0 so small such that

|u(x)− g(x0)| < 2ε, if |x− x0| < δε.

This proves that
lim

x→x0

u(x) = g(x0), x ∈ B(0, r).

3.3.2 Green’s function on half space

Again, we fix n ≥ 3. Let us consider the half space

Rn
+ = {x = (x1, · · · , xn) ∈ Rn|xn > 0}.

Although this region is unbounded, and so the calculations for Theorem 3.3.2 is not
valid. We will try to build Green’s function using the ideas developed so far. Later, we
will check directly that the derived representation formula gives the solution. We will also
use the reflection idea about the boundary of the domain.
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Definition 3.3.8 If x = (x1, · · · , xn−1, xn) ∈ Rn
+, its reflection in the plane ∂Rn

+ is the
point

x̄ = ((x1, · · · , xn−1,−xn).

We set

h(x, y) = Φ(y − x̄) = Φ(y1 − x1, · · · , yn−1 − xn−1, yn + xn), (x, y ∈ Rn
+).

we note that
h(x, y) = Φ(y − x), if y ∈ ∂Rn

+,

and hence {
∆h(x, y) = 0 in Rn

+

h(x, y) = Φ(y − x) on ∂Rn
+.

We thus has

Definition 3.3.9 Green’s function for the half-space Rn
+ is

G(x, y) = Φ(y − x)− Φ(y − x̄), (x, y ∈ Rn
+, x (= y).

Clearly, if y ∈ ∂Rn
+,

∂G

∂ν
(x, y) = − ∂G

∂yn
(x, y) =

2xn

nα(n)

1

|x− y|n .

Suppose u is a solution to the boundary-value problem
{

∆u = 0 in Rn
+

u = g on ∂Rn
+.

(3.52)

Then, formally, we expect from (3.38) that

u(x) =

∫

∂Rn
+

K(x, y)g(y) dy, (x ∈ Rn
+) (3.53)

to be a representation formula for the solution. Here the function

K(x, y) =
2xn

nα(n)

1

|x− y|n , (x, y ∈ Rn
+, x (= y), (3.54)

is the Poisson’s kernel for Rn
+ and (3.53) is called the Poisson’s formula.

Similar to the case for a ball, we could verify directly that

Theorem 3.3.10 (Poisson’s formula for half-space). Assume g ∈ C(Rn−1 ∩ L∞(Rn−1),
and u is defined by (3.53). Then u is uniformly bounded harmonic function on Rn

+ and for
each x0 ∈ ∂Rn

+, it holds that

lim
x→x0

u(x) = g(x0), x ∈ Rn
+.
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3.4 Hopf’s maximum principle

We have put a lot of efforts in the last section for the Dirichlet boundary value problem
for Poisson equation. The Green’s function method is particularly designed for this type of
problems. The second boundary value problem, namely the Nuemann problem, is not well
studied. We will establish the maximum principle for Nuemann problem in this section.

Theorem 3.4.1 (Hopf’s Lemma) Let B(y, R) ⊂ Rn (n ≥ 3), x0 ∈ ∂B(y, R), u ∈
C2(B(y, R)) ∩ C1(B̄(y, R)) is sub-harmonic on B(y, R) such that

u(x0) > u(x), ∀x ∈ B(y, R),

then
∂u

∂ν
(x0) > 0,

where ν is the outer unit normal of ∂B(y, R) at x0.

Proof. For ρ ∈ (0, R), and a positive parameter α > 0, we define

v(x) = e−αr2 − e−αR2
, r = |x− y| > ρ.

Direct computation gives
∆v = e−αr2

(4α2r2 − 2na).

Therefore, if we choose α big enough, say α = n
ρ , then ∆v ≥ 0 on the region A =

B(y, R) \ B̄(y, ρ). We note that u(x) − u(x0) < 0 on ∂B(y, ρ), there exists a ε > 0 such
that

w(x) = u(x)− u(x0) + εv(x) ≤ 0, x ∈ ∂B(y, ρ).

We note that v(x) = 0 on ∂B(y, R) and thus

w(x) ≤ 0, x ∈ ∂B(y, ρ).

We also note that w(x) is sub-harmonic on A, therefore the maximum principle for w on
A implies that

w(x) ≤ 0, ∀x ∈ A.

But w(x0) = 0 and thus
∂u

∂ν
(x0) ≥ 0,

that is
∂u

∂ν
(x0) ≥ −ε

∂v

∂ν
(x0) = −εv′(R) > 0.

We now introduce a concept concerning the structure of the boundary.
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Definition 3.4.2 Let x0 ∈ ∂Ω, if there exists a ball B ⊂ Ω such that {x0} = B̄ ∩ Ω̄, we
say Ω satisfies the inner ball condition at x0. Meanwhile, we say Rn \ Ω̄ satisfies the outer
ball condition at x0.

With this notion, based on Hopf’s lemma, we are able to prove the following

Theorem 3.4.3 (Hopf’s maximum principle) Assume u ∈ C2(Ω) ∩ C1(Ω̄) and −∆u ≤ 0
(−∆u ≥ 0), and x0 ∈ ∂Ω such that

u(x0) > u(x) (u(x0) < u(x)), ∀x ∈ Ω.

If Ω staisfies the inner ball condition at x0, then

∂u

∂ν
(x0) > 0 (

∂u

∂ν
(x0) < 0).

We now apply Hopf’s maximum principle to the Neumann problem. Consider
{

−∆u = f, in Ω
∂u
∂ν = g, on ∂Ω.

(3.55)

It is easy to see that the solution of the above Neumann problem, if exists, is not unique.
For if u is one solution, then u + C for any constant C is another solution. However, we
could prove the following

Theorem 3.4.4 If Ω satisfies the inner ball condition at each boundary point, then the
solutions of Neumann problem (3.55) can only differ by a constant.

Proof. Let u1 and u2 be two solutions to (3.55), then w = u1 − u2 is the solution of

{
−∆w = f, in Ω
∂w
∂ν = 0, on ∂Ω.

Now, if w is not constant, by the maximum principle for harmonic function w, we know w
attains its maximum at some x0 ∈ ∂Ω. According to Hopf’s maximum principle, we know

∂w

∂ν
(x0) > 0

which contradicts the boundary condition. So w is a constant.

So far, we proved the uniqueness and stability for Dirichlet problem by maximum prin-
ciple, showed the relative uniqueness for Neumann problem via Hopf’s maximum principle.
For the Dirichlet problem of Laplace equation on some special domains (such as a ball, and
half space), we constructed Green’s functions and thus gave the existence for continuous
boundary data. However, the solvability of Dirichlet and Neumann problems on general
domains are not clear yer. These, however, will require the concept of weak solutions, for
which the functional analysis will play central role. This topic will be presented later.
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3.5 Examples

In the first two examples we construct the Green’s functions for the disk and upper half
plane in R2.

Example 3.5.1 Find the Green’s function for the unit disk

D(0, 1) = {(x1, x2)|x2
1 + x2

2 < 1} ⊂ R2.

Solution: We use the same idea as for n ≥ 3. Let ρ =
√

x2
1 + x2

2 < 1, Φ(x) be the
fundamental solution. We recall that

Φ(x) = − 1

2π
log(|x|) = Φ(ρ).

We will also use the inversion to invert the singularity out of the disk. Note for x̄ = x
|x|2

|x||y − x̄| = |y − x|, if |y| = 1.

The function Φ(|x|(y − x̄)) is harmonic in y if x, y ∈ D(0, 1) and

Φ(|x|(y − x̄)) = Φ(x− y), for y ∈ ∂D(0, 1).

Therefore, we have the Green’s function for the unit disk

G(x, y) = Φ(x− y)− Φ(|x|(y − x̄)), x (= y ∈ D(0, 1).

We now solve the Laplace equation on D(0, 1) with boundary data g(x). For this purpose,
for |y| = 1, we compute

∂G(y − x)

∂ν
= − 1

2π

1− |x|2

|x− y|2 , ∀|y| = 1.

Therefore, we arrived at the Poisson’s formula

u(x) =
1− |x|2

2π

∫

∂D(0,1)

g(y)

|x− y|2 dσy. (3.56)

We could now use polar coordinate to have another form of the above equation. Let
x1 = ρ cos(θ), x2 = ρ sin(θ). and y1 = cos(φ), y2 = sin(φ), we thus have

u(ρ, θ) =
1

2π

∫ 2π

0

(1− ρ2)g(φ)

1− 2ρ cos(φ− θ) + ρ2
dφ. (3.57)

If the unit disk is replaced by a general disk D(0, r), (3.56) and (3.57) are replaced by

u(x) =
r2 − |x|2

2πr

∫

∂D(0,r)

g(y)

|x− y|2 dσy. (3.58)

u(ρ, θ) =
1

2π

∫ 2π

0

(r2 − ρ2)g(φ)

r2 − 2rρ cos(φ− θ) + ρ2
dφ. (3.59)
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Example 3.5.2 Find the Green’s function for the upper half plane

R2
+ = {(x1, x2)|x2 > 0}.

Solution. Similar to subsection 3.3.2, we choose

G(x, y) = Φ(y − x)− Φ(y − x̄)

where
x̄ = (x1,−x2), for x = (x1, x2) ∈ R2

+.

Therefore

G(x, y) = − 1

2π
log

(√
(y1 − x1)2 + (y2 − x2)2

√
(y1 − x1)2 + (y2 + x2)2

)
. (3.60)

The corresponding Poisson’s formula for Laplace equation with boundary data g(x) on
R2

+ is

u(x) =
1

π

∫ ∞

−∞

x2g(y1)√
(y1 − x1)2 + x2

2

dy1 (3.61)

Example 3.5.3 For a > 0, D(0, a) is the disk centered at the origin on R2. Solve the
following boundary value problem






−∆u = 0, in D(0, a),

u(a, φ) = g(φ) =

{
1, 0 < φ < π,

0, π < φ < 2π.

Solution: We could use (3.59) to solve this problem:

u(ρ, θ) =
1

2π

∫ 2π

0

(a2 − ρ2)g(φ)

a2 − 2aρ cos(φ− θ) + ρ2
dφ

=
a2 − ρ2

2π

∫ π

0

1

(a2 + ρ2)− 2aρ cos(φ− θ)
dφ.

Set c = a2 + ρ2, d = −2aρ and ξ = φ− θ, we reduce the above equation into

u(ρ, θ) =
a2 − ρ2

2π

∫ π−θ

−θ

1

c + d cos(ξ)
dξ.

Except for the singular points ξ = ±π, we have that

F (ξ) =
2√

c2 − d2
arctan

(√
c2 − d2 tan( ξ

2)

c + d

)
,



3.5. EXAMPLES 59

is the anti-derivative of
1

c + d cos(ξ)
.

We note that φ ∈ (0, π) and θ ∈ [0, 2π], therefore, if θ ∈ (0, π), ξ ∈ (−π, π), and so

u(ρ, θ) = lim
ε→0

(
a2 − ρ2

2π

2

a2 − ρ2
arctan

(√
c2 − d2 tan(φ−θ

2 )

c + d

))∣∣∣∣∣

φ=π−ε

φ=ε

=
1

π
arctan(

a + ρ

a− ρ
cot(

θ

2
)) +

1

π
arctan(

a + ρ

a− ρ
tan(

θ

2
))

However, if θ ∈ (π, 2π), then ξ ∈ (−2π, 0) which contains ξ = −π. We have to split the
integral at ξ = −π. Therefore, we have

u(ρ, θ) = lim
ε→0

(
1

π
arctan

(
a + ρ

a− ρ
tan(

φ− θ

2
)

))∣∣∣∣
φ=θ−π−ε

φ=ε

+ lim
ε→0

(
1

π
arctan

(
a + ρ

a− ρ
tan(

φ− θ

2
)

))∣∣∣∣
φ=π−ε

φ=θ−π+ε

=
1

π

π

2
+

1

π
arctan(

a + ρ

a− ρ
tan(

θ

2
))

+
1

π
arctan(

a + ρ

a− ρ
cot(

θ

2
)) +

1

π

π

2

= 1 +
1

π
arctan(

a + ρ

a− ρ
cot(

θ

2
)) +

1

π
arctan(

a + ρ

a− ρ
tan(

θ

2
)).

One easily verify the boundary condition by taking limit ρ → a in the above two cases.

The above example shows that using Poisson’s formula could lead to tedious calcula-
tions. We show in the following couple examples some specific tricks in two and three
dimensions.

Example 3.5.4 Solve the following Dirichlet problem

{
−∆u = 0, in D(0, 1)

u(ρ, θ) = A sin2 θ + B cos2 θ, on ρ = 1,

where x = (x1, x2) = (ρ cos θ, ρ sin θ) and A and B are constants.

Solution. It is easy to check that ρn sin(nθ) and ρn cos(nθ) are harmonic functions on R2,
and

A sin2 θ + B cos2 θ =
A + B

2
+

B − A

2
cos(2θ),

therefore, we find the solution

u(ρ, θ) =
A + B

2
+

B − A

2
ρ2 cos(2θ).
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Example 3.5.5 Find a bounded solution to the following Dirichlet problem outside a unit
ball in R3:

{
−∆u = 0, r > 1,

u|r=1 = 2
5+4x2

,

where r = |x|.
Solution. We know that the function

u(x) =
1

|x− x0|
is a harmonic function out of the unit ball if x0 ∈ B(0, 1). We try to see if we could choose
a x0 so that the above function satisfies the boundary condition.

Since 2
5+4x2

= (5
4 + x2)−1, we need to find x0 such that

5

4
+ x2 = |x− x0|2 = 1− 2x · x0 + x2

0

which is equivalent to

x01 = x03 = 0, x02 = −1

2
.

And such a point is inside the unit ball. Therefore,

u(x) =
1√

x2
1 + (x2 + 1

2)
2 + x2

3

.

Example 3.5.6 Let Ω be the triangle on R2 with vertices (−1, 0), (1, 0) and (0,
√

3). Solve
the following Dirichlet problem

{
−∆u = 2, in Ω

u = 0, on ∂Ω.

Solution. We first observe the equations for the sides of the triangle are

y = 0, y +
√

3x−
√

3 = 0, y −
√

3x−
√

3 = 0.

We thus guess that the solution has the following form

u(x, y) = cy(y +
√

3x−
√

3)(y −
√

3x−
√

3)

with c the constant to be determined. Clearly, the boundary condition is fulfilled. A direct
calculation gives

−∆u = 4
√

3c = 2,

and so c =
√

3
6 and the solution is

u(x, y) =

√
3

6
y(y +

√
3x−

√
3)(y −

√
3x−

√
3).
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The following example is the famous Hadamard’s three circles theorem.

Example 3.5.7 Let D be a annular region on R2 centered at the origin. The outer circle
has radius R1 and the inner one has radius R1, u(x, y) is a sub-harmonic function on D.
Set

M(r) = max
x2+y2=r2

u(x, y), R1 < r1 < r < r2 < R2,

then

M(r) ≤
M(r1) log( r2

r ) + M(r2) log( r
r1

)

log( r2
r1

)
.

Solution. For r (= 0, we define

φ(r) = a + b log r

where a and b are chosen such that

φ(r1) = M(r1), φ(r2) = M(r2).

Therefore, we find

φ(r) =
M(r1) log( r2

r ) + M(r2) log( r
r1

)

log( r2
r1

)
.

Consider now

v(x, y) = u(x, y)− φ(
√

x2 + y2),

which satisfies {
−∆v ≤ 0, if r1 < r < r2

v ≤ 0, if r = r1 or r = r2.

By the maximum principle, we know that

v ≤ 0, if r1 < r < r2.

Therefore,

u(x, y) ≤ φ(r), if r1 < r < r2.

This implies that

M(r) ≤ φ(r), if r1 < r < r2.
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3.6 Problems

Problem 1. Show that the Laplace operator takes the following form under cylindrical
coordination (r, θ, z):

∆u =
1

r

∂

∂r
(r

∂u

∂r
) +

1

r2

∂2u

∂θ2
+

∂2u

∂z2
.

Problem 2. Show that the Laplace operator takes the following form under spherical
coordinate (r, θ, φ).

∆u =
1

r2

∂

∂r
(r2∂u

∂r
) +

1

r2 sin2 θ

[
∂

∂θ
(sin θ

∂u

∂θ
) +

∂2u

∂φ2

]
.

Problem 3. Prove the following functions are harmonic.

• (a) x3 − 3xy2, and 3x2y − y3.

• (b) sh(ny)sin(nx), sh(ny)cos(nx), ch(ny)sin(nx), and ch(ny)cos(nx).

• (c) sh(x)(ch(x) + cos(y))−1 and sin(y)(ch(x) + cos(y))−1.

Problem 4. Prove the following functions are harmonic in the polar coordinate.

• (a) ln(r), and θ.

• (b) rn cos(nθ) and rn sin(nθ).

• (c) r ln(r) cos(θ)− rθ sin(θ) and r ln(r) sin(θ) + rθ cos(θ).

Problem 5. Find the Green’s function for the first quadrant of R2, namely the domain

Ω = {(x, y) ∈ R2|x > 0, y > 0}.

Problem 6. Find the Green’s function for the upper half ball B+(0, r) in R3.

Problem 7. Find the Green’s function for the first octant in R3, namely the domain

Ω = {(x, y, z) ∈ R3|x > 0, y > 0, z > 0}.

Problem 8. Find the Green’s function for the unit square in R2, namely the domain

Ω = {(x, y) ∈ R2|1 > x > 0, 1 > y > 0}.

Problem 9. Let D(0, r) is the disk on R2 with boundary C. For each of the following
boundary conditions, find the function u so that it is harmonic on D(0, r).
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• (a) u|C = A cos(φ).

• (b) u|C = A + B sin(φ).

Problem 10. Solve the following Dirichlet problem
{

uxx + uyy + uzz = 0, x2 + y2 + z2 < 1,

u(r, θ, φ)|r=1 = 3 cos(2θ) + 1,

where (r, θ, φ) is the spherical coordinate.

Problem 11. Let B be a unit ball in Rn (n ≥ 2), and u is the smooth solution of the
following problem {

−∆u = f in B

u = g, on ∂B.

Prove that there exists a constant C, depending only on n, such that

max
B

|u| ≤ C(max
∂B

|g| + max
∂B

|f |).

Problem 12. Assume u is harmonic, prove the following statements

• (a) If φ : R → R is a smooth convex function, then v = φ(u) is sub-harmonic.

• (b) Prove v = |Du|2 is sub-harmonic.

Problem 13. Use Poisson’s formula for the ball to prove

rn−2 r − |x|
(r + |x|)n−1

u(0) ≤ u(x) ≤ rn−2 r + |x|
(r − |x|)n−1

u(0),

where u(x) is harmonic for x ∈ B(0, r) ⊂ Rn with n ≥ 3. This is an explicit form of
Harnack’s inequality.

Problem 14. Let u be the solution of
{

−∆u = 0, in Rn
+

u = g on ∂Rn
+

given by the Poisson’s formula for the half-space. Assume g is bounded and g(x) = |x| for
x ∈ ∂Rn

+, |x| ≤ 1. Show Du is not bounded near x = 0.

Problem 15. Let Ω+ ⊂ Rn
+ and T = ∂Ω+ ∩ ∂Rn

+ is a non-empty open set. Assume
u ∈ C(Ω̄+) is harmonic in Ω+, with u = 0 on T . Set
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v(x) =

{
u(x1, · · · , xn−1, xn), xn > 0

−u(x1, · · · , xn−1,−xn), xn < 0.

Prove that v(x) is harmonic on Ω+∪T ∪Ω− where Ω− is the reflection of Ω+ about xn = 0.
This result is called Schwarz reflection theorem.

Problem 16. Using example to show that the maximum principle is not valid for

uxx + uyy + cu = 0, c > 0.

Problem 17. Find the Green’s function for the following wedge:

Ω = {(ρ, θ, z) : ρ > 0, 0 < θ <
π

4
, z ∈ R}.

Problem 18. Find the Green’s function for a domain between two parallel planes:

Ω = {(x, y, z) : 0 < z < 1}.


