Applied Partial Differential Equations (MathMods)

Exercise sheet 1

- Do the following exercises from Salsa's book [1]: 4.1, 4.2, 4.13(b), 4.15, 4.16 .

In addition, do the following exercises:

1. Solve the problem

$$
\begin{array}{rlrl}
\rho_{t}-c \rho_{x} & =0, & x \leq 0, & t \geq 0 \\
\rho(x, 0) & =0, & x \leq 0 \\
\rho(0, t) & =g(t), & t \geq 0
\end{array}
$$

with $c>0$ constant. Interpret the results in terms of traffic flow.
2. Solve the problem

$$
\begin{aligned}
\rho_{t}+c \rho_{x} & =0, & x \geq 0, t \geq 0 \\
\rho(x, 0) & =0, & x \geq 0 \\
\rho(\alpha t, t) & =g(t), & \alpha>0, t \geq 0
\end{aligned}
$$

where $(x, t) \in \mathbb{R} \times[0,+\infty), \alpha>0$ and $c>0$ are constant. Write the explicit solution and provide a geometric interpretation for it. What happens if $\alpha=c$? Interpret your solution in terms of traffic flow.
3. Study the characteristics and the solution to the linear equation

$$
\begin{aligned}
y u_{x}-x u_{y} & =1, & & (x, y) \in \mathbb{R}^{2}, \\
u(x, 0) & =0, & & x \in \mathbb{R} .
\end{aligned}
$$

Find the system of ordinary differential equations and study the transformation $(\eta, \xi) \mapsto(x, y)$. Where is it invertible? Is the solution continuous at $x=0$? If the initial data is now

$$
u(x, 0)=f(x)
$$

and the solution $u=u(x, y)$ is continuous at $x=0$, what can we say about the function $f(x)$? And about $f(0)$?
4. Solve the initial value problem

$$
\begin{aligned}
u_{t}+u u_{x} & =1 \\
u(x, 0) & =-\frac{1}{2} x
\end{aligned}
$$

Find the characteristic curves (draw a picture) and give an explicit formula for the solution. Where does it exist? Does it exist for all $(x, t) \in \mathbb{R} \times[0,+\infty)$? Explain your answer.
5. Solve the linear equation

$$
x u_{y}-y u_{x}=u,
$$

under condition $u(x, 0)=f(x)$, where f is a function of class C^{1}. Where is the solution valid? Classify the set of functions f for which
a global solution of class C^{1} exists. (Global solution here means that the solution exists and it is of class C^{1} for all $(x, y) \in \mathbb{R}^{2}$.)
6. Solve the Cauchy problem

$$
u_{x}+u_{y}=u^{4},
$$

where $u(x, 0)=f(x)$ where f is of class C^{1}. Discuss the invertibility of the mapping and the range of existence of a C^{1} solution.
7. For the quasi-linear Cauchy problem

$$
u_{y}=x u u_{x},
$$

with initial data $u(x, 0)=x$, study the characteristics and discuss the invertibility of the mapping (this may not be possible explicitly). Write the solution to the Cauchy problem (implicitly).
8. Determine the solution to

$$
u_{x}+(x+y) u_{y}=x y,
$$

with data $u(x, 0)=x$. Again, study the system of ODEs, the invertibility of the mapping, etc.

References

[1] S. Salsa, Partial differential equations in action. From modelling to theory, Universitext, Springer-Verlag Italia, Milan, 2008.

