Applied Partial Differential Equations (MathMods) Exercise sheet 7

Wave equation

- Do the following exercises from Salsa's book [1]: 5.2, 5.3, 5.5, 5.10, 5.16, 5.17, 5.18.

In addition, do the following exercises:

1. (a) Prove that the solution to the second order equation $u_{x y}=0$, is given by $u(x, y)=F(x)+G(y)$, with F and G arbitrary functions.
(b) Use the change of variables $\xi=x+c t$ and $\eta=x-c t$ to show that the equation $u_{t t}-c^{2} u_{x x}=0$ gets transformed into its canonical form $u_{\eta \xi}=0$. Use (a) to obtain D'Alembert's formula again.
2. Let $f, g \in C_{0}^{1}(\mathbb{R} ; \mathbb{R})$, that is, of class C^{1} and with compact support: $f=g \equiv 0$ outside a bounded interval $|x| \leq R$, for some $R>0$. Show that the solution $u \in C^{2}(\mathbb{R} \times(0,+\infty) ; \mathbb{R})$ to

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x} & =0, \quad x \in \mathbb{R}, t \geq 0, \\
u(x, 0) & =f(x), \\
u_{t}(x, 0) & =g(x),
\end{aligned}
$$

is of compact support in the variable x (with a different R, of course), for each $t>0$ fixed. (Hint: Use D'Alembert's formula.) Since the solution has the form $u(x, t)=F(x+c t)+G(x-c t)$, show that the functions $F, G: \mathbb{R} \rightarrow \mathbb{R}$ hace compact support only if

$$
\int_{-\infty}^{+\infty} g(y) d y=0 .
$$

3. Define the linear wave operator in one dimension as

$$
L u:=u_{t t}-c^{2} u_{x x} .
$$

(a) Prove that $L\left(u_{t} v_{t}+c^{2} u_{x} v_{x}\right)=0$ for any pair of solutions u, v of the homogeneous wave equation ($L u=L v=0$).
(b) Suppose that u is a solution to $L u=0$ in $(x, t) \in \mathbb{R} \times(0,+\infty)$, subject to the initial conditions

$$
\begin{aligned}
u(x, 0) & =f(x), \quad x \in \mathbb{R}, \\
u_{t}(x, 0) & =g(x),
\end{aligned}
$$

where f and g are functions of class C^{2} and with compact support. Prove that the total energy,

$$
E(t)=E_{\text {cin }}(t)+E_{p o t}(t),
$$

is constant. Here the potential and kinetic energies are defined as
$E_{\text {cin }}(t)=\frac{1}{2} \int_{-\infty}^{+\infty} u_{t}^{2}(x, t) d x$, and $\quad E_{p o t}(t)=\frac{1}{2} \int_{-\infty}^{+\infty} c^{2} u_{x}^{2}(x, t) d x$,
respectively. (Hint: Use (a) to compute $d E / d t$. Apply D'Alembert's formula and use the fact that both f and g, and all their derivatives are zero outside a compact interval.)
(c) Under the same assumptions in (b), prove the principle of equipartition of energy: there exists $T>0$ such that $E_{\text {cin }}(t)=E_{p o t}(t)$ for all $t \geq T$.
4. Apply Duhamel's principle to solve

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x} & =x^{2}, & & x \in \mathbb{R}, t \geq 0, \\
u(x, 0) & =x, & & x \in \mathbb{R}, \\
u_{t}(x, 0) & =0, & & x \in \mathbb{R} .
\end{aligned}
$$

5. Solve the following problem:

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x} & =x t, & & x \in \mathbb{R}, t \geq 0, \\
u(x, 0) & =e^{x}, & & x \in \mathbb{R}, \\
u_{t}(x, 0) & =\sin x, & & x \in \mathbb{R} .
\end{aligned}
$$

with $c \neq 0$ constant.
6. Solve the homogeneous wave equation

$$
u_{t t}-c^{2} \Delta u=0
$$

for $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, t>0$ with initial conditions $u(x, 0)=0$, $u_{t}(x, 0)=x_{2}$. Verify that the solution is correct.
7. Consider the homogeneous wave equation in \mathbb{R}^{3},

$$
u_{t t}-c^{2} \Delta_{x} u=0
$$

with $t \geq 0, x \in \mathbb{R}^{3}$.
(a) Show that any solution with spherical symmetry (that is, $u=$ $u(r, t)$, where $r=|x|)$ has the form

$$
u=\frac{1}{r}(F(r+c t)+G(r+c t)) .
$$

(b) Show that, if the initial data are $u(x, 0)=0, u_{t}(x, 0)=g(r)$, where g is an even function then the solution is

$$
u(r, t)=\frac{1}{2 c r} \int_{r-c t}^{r+c t} \rho g(\rho) d \rho .
$$

(c) Suppose that g is given by:

$$
g(r)= \begin{cases}1, & \text { for } 0<r<a, \\ 0, & \text { for } r>a,\end{cases}
$$

with $a>0$. Find the solution explicitly. (Hint: Use (b) to determine u in the different regions bounded by the cones $r=$ $a \pm c t$ in space-time.) Show that u is discontinuous in ($0, a / c$) (this is because of the focusing effect of the discontinuity of u_{t} in $t=0,|x|=a)$.
8. Consider the non-homogeneous wave equation:

$$
u_{t t}-\Delta u=1
$$

where $u=u(x, y, z, t)$ (that is, in \mathbb{R}^{3}), with initial conditions

$$
u_{\mid t=0}=\sqrt{x^{2}+y^{2}+z^{2}}, \quad u_{t \mid t=0}=x^{2}+y^{2}+z^{2}
$$

(a) Express the laplacian in spherical coordinates

$$
(x, y, z)=(r \cos \phi \sin \theta, r \sin \phi \sin \theta, r \cos \theta)
$$

with $r \geq 0, \theta \in[0, \pi), \phi \in[0,2 \pi)$.
(b) Find a solution depending only on $r=|\bar{x}|, \bar{x}=(x, y, z) \in$ \mathbb{R}^{3}. (Hint: Reduce the problem to the non-homogeneous wave equation in one dimension for $r>0, t>0$. Use Green-Lagrange formula and analyze the cases $r \geq t$ and $r<t$.)
(c) Is the solution unique? (Hint: Use Duhamel's principle to prove that any other solution depends only on r as well; apply uniqueness of the solution to the one-dimensional wave equation and conclude.)
(d) Discuss the differentiability of the solution at the curve $t=|\bar{x}|$.
(e) Now, find the solution directly. First find one solution to:

$$
\begin{aligned}
u_{t t}-\Delta_{x} u & =1 \\
u_{\mid t=0}=u_{t \mid t=0} & =0
\end{aligned}
$$

(Hint: Apply Duhamel's principle.) Then, find the solution to

$$
\begin{aligned}
u_{t t}-\Delta_{x} u & =0 \\
u_{\mid t=0} & =\sqrt{x^{2}+y^{2}+z^{2}} \\
u_{t \mid t=0} & =x^{2}+y^{2}+z^{2}
\end{aligned}
$$

using Kirchhoff's formula and computing the surface integrals. The sum of the particular solution and the homogeneous solution must be identical to the solution you obtained in (b).

References

[1] S. Salsa, Partial differential equations in action. From modelling to theory, Universitext, Springer-Verlag Italia, Milan, 2008.

