Applied Partial Differential Equations (MathMods)
Second Midterm Exam: Solution

1: Let x € R? and R > 0 be arbitrary. Since u is harmonic in the whole space R3
it satisfies the mean value property in the ball Br(x). Therefore,
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as R — +o0o. Therefore u(z) = 0 for all x € R3.

2(a): By Green’s formula: [, Audxzdy = [,,, 0u/0OndS. Therefore.

2m 2m
/ kdrdy = kra® = / cos® 0 adf = g/ (14 cos20)df = ma.
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Hence, k = 1/a.
2(b): Using the ansatz:

u = Ao(r —|—Z Ap(r)cos(nd), u, +Z Al (r)cos(nf), wup = Af(r —I—Z A (1) cos(nb),

n=1

Z nA,(r)sin(nd), Ugy = Zn A, (r) cos(nb),

Upon substltutlon,

n2

T—QAn(r)> cos(nf) = —,
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Au = ur,«—i—;ur—i—ﬁugg = Ay (T)+;A0(r)+nz::1 (An(r)—&—;An(r)—

and we obtain a hierarchy of equations:

1 1
Ag(r) + ;AB(T) =%
n2

1
An(r) + ZAL() = 5 An(r) =0, n=1,2,...

First we solve the equation for Ag. Multiply by r so that rAj + Ay = d%(rAg) =ZI,
Thus,
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Integrating Ag(r) = g +C1 log r4Cs, for some constants C1, Cs. Since the solution

is bounded at » = 0 we have C7; = 0. Thus:
2

r
Ap(r) = — + Cs.
o(r) 1a + C2

Next we solve the equation for A,: Al + %Aﬁl — Z—;A" = 0. Proposing a solution

of the form A, = r® we arrive at r*~2(a? — n?) = 0, yielding a = 4+n. Therefore
the solutions have the form

Cn

An(r) = Kpr™ + —,

,rn
with C,, K, constants. Since the solution is bounded at r = 0 we get C,, = 0.
Therefore the solution has the general form:

r? =
u(r,0) = " +Co + Z K, r" cos(nd).

n=1

From the boundary condition we obtain

ou

1 5 11
i~ ur(a,8) = 5+ nz_:l Kona" cos(nf) — 5+3 cos(20).

This implies that K7 = 0, 2Ksa = 1/2 and K,, = 0 for all n > 3. Therefore the
solution is given by

2 2
u(r,@)zi—a(l—&—cos%)—kc:;—GCOSQG—FC, (1)
where C' is an arbitrary constant. We verify that this is a solution by computing:
2 1 1
Au= =cos?0 + —(1 —2cos? ) = —,
a a a
and (Ou/On)|,—q = u,(a,0) = cos? 6.

2(c): Suppose that v is another solution to the same problem. Then w = u — v
is a solution to Aw =0 in D, and dw/On = 0 at dD. By Green’s formula we have

0:/ wAwdxdy:/ wa—wds—/ |Vw|2dasdy:—/ |Vw|? dzdy.
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Therefore [Vw| = 0 in D, which means that w is constant in D. Therefore the
solution is unique up to a constant. In view of the form of u (equation (1)) with C
arbitrary we conclude that all solutions have the form (1).

3(a): We have two cases: either z > ¢t > 0 (region I), or 0 < x < ct (region II).
In region I, since x +ct > x —ct > 0, the solution is given by D’Alembert’s formula:
x+ct

) = 5+ + fa—ct)+ 5 [ oy
In the region II, consider a point P = (z,t) such that 0 < z < ct, and draw the
characteristic rhomboid PQRS like in Figure 1. Since PQ is characteristic with
xg = 0 we have x = ¢(t—tg). Therefore Q = (0,t—z/c), withtg =t—x/c > 0. By
the boundary condition: u(Q) = h(t — z/c). Now, take QR characteristic. Thus,
since tgp = 0 we have xg = ¢t —x > 0, and R = (¢t — x,0). By the initial condition
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F1GURE 1. Characteristic rhomboid PQRS for P in region II.

u(R) = f(ct —x). In the same fashion, S = (ct,z/c) = (zg,ts) and since S belongs
to region I we have, by D’Alembert’s formula:

rg+cts
u(S) = 3((os +ets) + flos—cts) + o [ o)y

2¢ s—ctg
1 1 ct+x
— Ut +fet—a)+ 5o [ gy
CJet—ax
By the parallelogram theorem we have: u(P) = u(Q) + u(S) — u(R). Hence,
1 ct+x
u(P) = ulw,t) = (e — /) + 5(f(a+ct) = flet =) + 5o [ gw)dy
ct—x
The full solution is given by:
x+ct
Sfatet+ e+ o [ gy D<et<a

2¢ x—ct

1 ct+x
h(t—z/c) + 2(f(z +ct) — f(ct —2)) + 2—0/ gly)dy, 0<z<ct.
ct—zx
(2)
3(b): The solution (2) is clearly of class C! in the interior of the regions I and IT

because f, g and h are continuously differentiable functions. To see what happens
in the line x = ¢t we compute:

" — L(f'(@+ct) + f'(x —ct) + = (g(z + ct) — g(z — ct)), 0<ect<uz,
v —IW(t—z/c)+ (f (x +ct) + f'(ct — 2)) + 5= (g9(ct + ) + glct — x)), 0<z <ct.

3(g(z + ct) + gz — ct)), 0<ct<u,
W(t—az/c)+5(f(x+ect)— f(ct—2)+ (g(ct +2) — g(ct —2)), 0<z<ct
We observe that

S(7(2et) 4 FO) + 5 [ aw)dy=h0)+ 30 - 10D+ - [ gt

= {S(f/(x +ct) — f'(x —ct)) +
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because h(0) = f(0). Therefore u is continuous at x = ¢t. Moreover, note that
3(f/(2et)+f(0)+5:(9(2ct) = g(0)) = — 21/ (0)+ 5 (f'(2ct)+ f'(0)) + 32 (9(2¢t) +9(0))

inasmuch as h'(0) = g(0). Therefore u, is continuous at = ct. Finally, notice
that

5(f'(2ct) = '(0)) + 5(9(2ct) + g(0)) = 1'(0) + §(f'(2ct) — £'(0)) + 3 (g(2¢t) — 9(0)),

again because h/(0) = g(0). Therefore u; is continuous at x = c¢t. We conclude that
the solution (2) is of class C'! in the domain x > 0 and t > 0.

3(c): If f(z) =z, g(z) = 1 and h(t) = t then %(f(m +ct) + flz —ct)) = z,
(f(ct+a)— flct —x)) ==, h(t —x/c) =t — x/c, and
1 x+ct 1 ct+x

dy =t, dy =

x
Cc

2¢ r—ct 2c ct—x

Therefore the solution in region I is u(z,t) = x + ¢; in region II it is also u(z,t) =
x + t, verifying the conclusion in (b).

4: By Kirchhoff’s formula and Duhamel principle the solution is given by (in view
of f=0):

1 1t
)= —— sy + — [ —— h(y,s)dS, d
u(z,t) Inc2l ~/|z—y—ctg(y) y+47r/0 2(t—s) /|m—y—c(t—s) (y,5)dSy ds

Substituting g(y) = y2 and h(y, s) = s we obtain:

1 / t
Yo d.S z—/ To + ctne dS,
P Joyimer ™ AT i !
tr ct?
:472 U+T ngdsn:t{ﬁg,
T Jinl=1 T Jin|=1

because flnlzl 12dS; = 0 (odd function integrated in a symmetric domain; you can

verify this in cartesian coordinates or in spherical coordinates®). Also,

L s L [ sies) s(ts)ds =&
— _ sdS, ds:—/ s(t—s / dsS, d5:/ s(t—s)ds = —.
dm Jo At —5) Jiomymct—s) 4 Jo =1 0 6

The solution is:
3

t
u(z,t) = teg + 5 (3)

It clearly satisfies the initial conditions: u(z,0) = 0 and wu;(x,0) = x2. It solves the
equation because Au = 0 and uy = t.

5:  The solution is given by D’Alembert’s formula:

x+ct
) = H(fla+et) + fa—ct) + 3 [ atw)ds

Since f and g have compact support, they (and all their derivatives) are zero
outside an interval |z| < R. Therefore, for any fixed ¢ > 0 the solution also has

LFor example, in spherical coordinates f\n|=1 n2dSy = [ OQW sin® ¢sin 6 df d¢ = 0.
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compact support in the x variable. Actually, if |z| > R+ ct for fixed ¢t > 0, then wu,
u, and u; are zero. Then we compute the derivative of the total energy:

dE(t 1d [T oo
% = 2d uf + C2ui dr = / Uty + CUptigy dx
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oo
after integrating by parts and in view that u; and u, have compact support for
each t > 0 fixed. This shows that the energy is conserved:

E(t) = E(0),

for all ¢ > 0. To show the equipartition of energy we have by D’Alembert’s formula
that

= 62(uzut)|

r=—

we = (/@4 )+ [ — ct)) + 5 (gl + ct) — gl — ct),

we = §(7/ () — ' — ) + 3ol +ct) + gl — ct),
Therefore,

uf — cQui = (ut + cug)(usr — cuy)

= (cf'(x +ct) + gl + ct) (—cf'(x —ct) + g(x — ct)) .

Now, since f’ and g have support in |z| < R, then taking either |x — ct| > R
or |z + ct| > R we have f/ = 0 and g = 0. Then, taking ¢ sufficiently large, more
precisely ¢t > T := R/c, we have that for each fixed z € R, either |z — ct| > R
or |+ ct| > R. Indeed: if # > 0 then t > T = R/c > (R — x)/c and thus
|z + ct| >z + ct > R. On the other hand, if # < 0 then ¢t >T = R/c > (R+ x)/c,
yielding |z — c¢t| > = — ¢t > R. Thus, for all times greater than T'= R/c we have

u? = c?u?. This implies the equipartition of energy:

Foo +oo
Ea®)=} [ wtde—Buu) =} [ cuan

for all times ¢t > T..



