
Chapter 1
The Discrete Fourier Transform

1 Introduction
The spectral analysis of time series is a complementary technique to Box-Jenkins modelling which
emphatizes different aspects of the data set. It has many applications in all fields of Science and
Technology; for example, it is used to look for cyclical (or periodical) components in time series that
are not caused by seasonality, in a unending and (almost always) unsuccessful look for regularity and
reduction of uncertainty in life. In these notes, we will focus on the estimation of the spectral density
that can help in the analysis of time series.

The main tool of spectral analysis is the discrete Fourier Analysis, from which we will study some
essential aspects. A good reference of Fourier Analysis with no much mathematical background is
Weaver [8]. First at all, we should point out that there are three very related theories under the name
of Fourier:

• Fourier Series expansion of a periodic function. Given a periodic function x : R → R, that
is, there is a number p such that

x(t+ p) = x(t), ∀t ∈ R,
under some conditions on x(t) it can be expressed as a (generally infinite) sum of sinus and
cosinus:

x(t) =
∞∑

k=1

(
ak cos(2πtk/p) + bk cos(2πtk/p))

The series on the right hand side is called the Fourier series expansion of f . This was an
extraordinary result that have many applications in both theoretical and applied mathematics.

• Fourier transform. The Fourier transform of an integrable function x : R→ R, is the function

ϕ : R→ C

defined by

ϕ(s) =

∫ ∞

−∞
x(t)e−i2πts dt,

Under some conditions, the function x(t) can be reconstructed from ϕ(s) applying the inverse
Fourier transform

x(t) =

∫ ∞

−∞
ϕ(s)ei2πts dt.

In probability theory, there is the equivalent notion of the characteristic function of a random
variable. Again, these results form a masterpiece in Mathematics, and many difficult problems
couldn’t be solved until that theory was on service.
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• Discrete Fourier Tranform. The discrete Fourier transform (DFT) of a sequence of N real or
complex numbers, x0, . . . , xN−1, is the sequence of complex numbers c0, . . . , cN−1 defined by

cj =
1

N

N−1∑
n=0

xne
−2πijn/N , j = 0, . . . , N − 1.

The original numbers x0, . . . , xN−1 can be recovered from its DFT, through the so-called In-
verse Discrete Furier Transform (IDFT)

xj =
N−1∑
n=0

cne
2πijn/N , j = 0, . . . , N − 1.

So we have a bijection
x0, . . . , xN−1 ←→ c0, . . . , cn−1

This apparently innocent property has many applications, specially after the discovering in the
1960s of an efficient algorithm to compute the DFT for large sequences of numbers, called Fast
Fourier Transform (FFT). The FFT is a topic by itself and we do not study it.

2 Continuous periodic functions
We will only consider discrete time series. However, it is convenient to comment the concept of
periodic function in continuous time. Let x be a real function

x : R −→ R
t 7−→ x(t)

We say that {x(t), t ∈ R} is periodic with period p if

x(t+ p) = x(t), ∀t ∈ R,

and p is the smallest positive number that satisfies that condition. The addition of two functions with
periods p1 and p2 such that p1/p2 is rational number is also a periodic function.

Figure 1. x(t) = sin(2πλt)

The prototype of a periodic fucntion is the sinus func-
tion: x(t) = sin t which is periodic with period 2π. More
generally, for any µ > 0, the function

x(t) = sin(µt)

has period p = 2π/λ. To facilitate the interpretation, it is
more convenient to write the function as

x(t) = sin(2πλt)

that has period 1/µ and frequency λ. This λ is measured
in cicles/unit of time, and it counts the number of times
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that all the structure of the function goes away for unit
of time. If the time is measured in seconds, then the frequency is measured in cicles/second= 1
Hertz. Usually, Hertz is the unit used in Physics. That frequency λ (also called circular frequency)
should not be confused with the radial frequency=2πλ used in Mathematics, and that is measured in
radians/unit of time.

Since sin(−x) = − sin(x) we can also consider (non intuitive) negative frequencies.

Figure 2. b sin
(
2π(λt+ ϕ)

)

Consider now x(t) = b sin(2πλt). The period is again
p = 1/λ. The number b is called the amplitude; the func-
tion varies between −b and b. Finally, a sinusoid or sine
wave is

x(t) = b sin
(
2π(λt+ ϕ)

)
,

where ϕ is called the phase and shifts left the function
bsin(2πλt) the amount ϕ/λ. Note that

b sin
(
2π(λt+ ϕ)

)
= a cos(2πλt) + c sin(2πλt).

Adding sinus and cosinus of different frequencies (satisfying the condition that the quocient of
frequencies is a rational number) we get periodic functions with very diferent shapes (see the Figure
3).

(a) x(t) = 10 cos(2πt/100) +
3 cos(2πt/10) + cos(2πt/4)

(b) x(t) = cos(2πt/100) +
10 cos(2πt/10) + 3 cos(2πt/4)

(c) x(t) = cos(2πt/100) +
3 cos(2πt/10) + 10 cos(2πt/4)

Figure 3. Periodic functions

The fundamental result of Fourier Analysis is that every periodic function of period p enough
regular can be written in a sum (possibly, infinite) called Fourier series or spectral representation:

x(t) =
∞∑

k=0

(
ak cos(2πtk/p) + bk sin(2πkt/p)

)
,

and
k

p
are called the Fourier frequencies. The numbers ak and bk are given by

ak =
2

p

∫ p/2

−p/2

x(t) cos(2πλkt) dt
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and

bk =
2

p

∫ p/2

−p/2

x(t) sin(2πλkt) dt

The frequency 1/p is called fundamental frequency , and the other frequencies k/p, k ≥ 2 are
called the harmonics. This representation is the mathematical version of the decomposition of light
in its monochromatic factors: each color corresponds to a frequency.

Using the complex exponential representation of the sinus and cosinus

sin θ =
1

2i

(
eiθ − e−iθ

)

cos θ =
1

2

(
eiθ + e−iθ

)

we deduce

x(t) =
∞∑

k=−∞
ck exp{i2πtk/p}, (1)

where

c0 = a0,

ck =
ak − ibk

2
, j ≥ 1,

cj = c∗−j =
aj + ibj

2
, j ≤ −1.

where c∗ denotes the complex conjugate of c.
Note that the condition cj = c∗−j implies that the sum of the series is a real number.

Remark. From now on, |c| will denote the absolute value or the module of c depending if it is a real
or complex number.

2.1 Fourier analysis of a discrete periodic function

All previous analysis can be repeated for a function x : Z → R. Assume that our function is the
restriction toZ of a function onR; this is a very standard setup: the phenomena happens in continuous
time but we observe in discrete time; it is said that the continuous signal is sampled at discrete units
of time ∆t. So we have x1, x2, . . . , at times ∆t, 2∆t. Then happens a very interesting fact that we
study on an example:
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Figure 4. Aliasing phenom-
ena

Consider the functions

x(t) = sin
(2πt

3

)
and y(t) = sin

(8πt
3

)
.

They coincide in the integer points ∀n ∈ Z,

y(n) = sin(2πn+ 2πn/3) = sin(2πn/3) = x(n).

The function y(t), has frequency λ = 8π/3 > π, has
oscillations between two consecutive integers n and n+1
that we cannot observe if we only have the values y(n),
for n ∈ Z.

Return to the general case: based on a function observed at the integer numbers only the frequen-
cies λ ≤ 0.5; can be recorded; more specifically, each frequency λ > 0.5 has a frequency in [0, 0.5]
(called the alias) witch gives the same values of the function at the points n ∈ Z. This phenomena is
called alialiasing. By this reason, the spectral representation of a periodic discrete function of period

p, {x(n), n ∈ Z} only includes frequencies λk =
k

p
∈ [0, 0.5].

3 Discrete Fourier Transform
Consider N numbers (real or complex), x0, . . . , xN−1, indexed by convenience by 0, . . . , N − 1. We
can construct the periodic sequence (in principle, of period N )

. . . , x0, . . . , xN−1, x0, . . . , xN−1, . . . (2)

and apply a similar reasoning as in the continuous case. However, it is easier to proceed directly. The
Discrete Fourier Transform, DFT henceforth, of x0, . . . , xN−1 is the sequence of complex numbers
c0, . . . , cN−1 defined by

cj =
1

N

N−1∑
n=0

xne
−2πijn/N , j = 0 . . . , N − 1. (3)

We will prove later that the data x0, . . . , xN−1 can be recovered from its DFT c0, . . . , cN−1 applying
the Inverse Discrete Fourier Transform (IDFT),

xj =
N−1∑
n=0

cne
2πijn/N , j = 0 . . . , N − 1. (4)

At this point to gain a bit of intuition, it is convenient to practice. Remember the formula

eiθ = cos θ + i sin θ, θ ∈ R.
Compute the DFT of the following sequences (after the first one, the other are immediate):
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(a) 1, 2, 3, 4.

(b) 1, 2, 1, 2.

(c) 1, 1, 1, 1.

(d) 1, 0, 0, 0.

In practice, the DFT is computed using the Fast Fourier Transform (FFT) that is an algorithm
(indeed a family of algorithms). Here there is subtle distinction between DFT, that is a mathematical
concept, and FFT that is a way to compute the DFT; anyway, it is important to know that the FFT
gives the right value of a DFT. In R program there is the instruction fft(x) where x is a vector,
however it does not divide by N , so in agreement with our definitions, we use the instruction

fft(x)/length(x)

The IDFT is obtained with fft(x,inverse=T).

Remarks.

1. There is no total agreement about where to put the factor 1/N , in (3) or in (4). There are still other
possibilities, since the important fact is to put constants in (3) and (4) such that their product is
equal to 1/N . Some authors use 1/

√
N in each formula, that has some advantages. I have choose

the factor that seems more suitable for time series analysis.

2. The sequence cj, j = 0, . . . , N − 1 can be extended to all Z with the same definition:

cj =
1

N

N−1∑
n=0

xne
−2πijn/N , j ∈ Z.

This sequence has period N . From that periodicity if follows that

cN−j = c−j.

3. A traditional notation in Fourier analysis is to write WN = e−2πi/N , which is a N–root of unity.
Since the number N is fixed in all chapter, we suppress the subindex to short the notation. The
following relations are trivial but very important (please, check!):

WN = 1, W ∗ = W−1, W j+k = W j W k, and WN−j = W−j.

(Remember, W ∗ is the complex conjugate of W ). With this notation,

cj =
1

N

N−1∑
n=0

xnW
nj. (5)

The periodicity of cj is obvious from such expression.
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4. From the previous points, it is deduced that an alternative expression for the IDFT is

xj =

[N/2]∑

n=−[(N−1)/2]

cne
2πijn/N ,

which appears in some books and looks more coherent with (1).

5. This property is very important:

x0, . . . xN−1 ∈ R =⇒ cN−j = cj
∗

This is easily deduced from the expression (5) and the properties of W .

3.1 Vectorial notations
We write the vectors in column. Let x = (x0, . . . , xN−1)

t and c = (c0, . . . , cN−1)
t its DFT, where at

means the transposed of a vector or matrix a. Set

F =




1 1 1 · · · 1
1 W W 2 · · · WN−1

1 W 2 W 4 · · · W 2(N−1)

...
...

1 WN−1 W 2(N−1) · · · W (N−1)2




which is a Vandermonde matrix, that has non zero determinant. The formula for the DFT (5) can be
written as

c =
1

N
Fx. (6)

Since detF is non zero, the application

CN −→ CN

x 7→ c =
1

N
Fx

is a bijection. Indeed, we see that DFT (and IDFT) is a linear map (as vector transforms).
Denote by a∗ the conjugate transposed of the vector or matrix a. Then

FF ∗ = NI. (7)

This is proved using the key property that if z is a N root of the unity different from 1, then

1 + z + z2 + · · ·+ zN−1 =
N−1∑
n=0

zn =
zN − 1

z − 1
= 0,

by the formula of the sum of a geometric sequence.
From (7) it follows

F−1 =
1

N
F ∗,
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so, inverting (6),
x = NF−1c = F ∗c,

which is the formula (4) for IDFT.
Write

en =
(
1,W−n,W−2n, . . . ,W−(N−1)n

)t
, n = 0, . . . , N − 1,

and note that
(e0, . . . , eN−1) = F ∗,

so the determinant of these vectors is non zero, and this implies that they form a basis of Cn. More-
over, as before it is proved that

en e
∗
m = N δnm.

In the light of these results, the IDFT is nothing more (and nothing less!) that the expression of
the vector x in the orthogonal basis e0, . . . , eN−1.

Moreover,
N−1∑
j=0

|cj|2 = c c∗ = xFF ∗x∗ =
1

N

N−1∑
j=0

|xj|2,

so we have the Parseval’s Theorem for DFT,

‖c‖2 = 1

N
‖c‖2. (8)

This formula have important applications.

3.2 The sinusoidal expression or the IDFT.

From now on, we will assume that x0, . . . , xN−1 are real numbers. So cN−j = cj
∗.

The expression of the IDFT using complex exponential has the advantage of its analytical sim-
plicity; however, to have an intuitive interpretation it is better to rewrite using sinusoids. It is needed
to separate the case N even or odd.

Using the formula
eiθ = cos θ + i sin θ, θ ∈ R

and with the help of the properties of the trigonometric functions (in particular that cos 0 = 1, sin 0 =
0, cos(πj) = (−1)j, and sin(πj) = 0), we get the following representations:

xj = a0 +

N/2−1∑
n=1

(
an cos(2πjn/N) + bn sin(2πjn/N)

)
+ aN/2(−1)j, if N is even,

and

xj = a0 +

(N−1)/2∑
n=1

(
an cos(2πjn/N) + bn sin(2πjn/N)

)
, if N is odd,
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where,

a0 = c0, an = 2<(cn), bn = −2=(cn), n = 1, . . . ,
N

2
− 1, and aN/2 = <(cN/2), if N is even,

and
a0 = c0, an = 2<(cn) and bn = −2=(cn), n = 1, . . . ,

N − 1

2
, if N is odd.

Note that whether N is even or odd there are in total N parameters an and bn in these expressions.
As a consequence, the IDFT gives the representation of the sequence of numbers x0, . . . , xN−1

as a superposition of sinusoids with frequencies 0, 1/N, . . . , [N/2]/N , that are called the Fourier
frequencies.

3.3 Computing the sinusoids
Of course, de easiest way to compute the coefficients an and bn is using the DFT and the previous
formulas. An alternative way is by linear regression. The unknown an and bn enter linearly in the
expression of xj , so we have in hands a linear model. Since there are N numbers (x0, . . . , xN−1) and
we want to compute N numbers (the an and bn) the fit is perfect and there is zero degrees of freedom.
The independent variables are cos(2πjn/N) and sin(2πjn/N).

3.4 The periodogram
Write

Ij =
N

2
|cj|2, j = 0, . . . , [N/2].

The plot of the points (j/N, Ij) for j as above, is called the periodogram. Note that j/N ∈ [0, 0.5],
in agreement with the aliasing phenomena. Normally there are strong variations between de different
frequencies, and then the periodogram is plotted in a vertical logarithmic scale.

In Table 1 from Newton [5] there are some interesting comments about the appearance of a peri-
dogram
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Table 1. Interpreting the periodogram

Appearance of the data Nature of periodogram

Smooth Excess of low frequency; that is, amplitudes of sinusoids
of low frequency (long period) are large
relative to other frequencies

Wiggly Excess of high frequency

No patern No frequencies dominate

Basically sinusoidal A peak at frequency 1/p
of period p

Periodic of period p A peak at fundamental frequency 1/p and
but not sinusoidal peaks at some multiples of 1/p (harmonics)

3.5 Periodic sequences

Assume that x0, . . . , xN−1 is periodic of period `, and that N is multiple of `. Then it is proved that
cj = 0 except for j = `, 2`, . . . . Interpret this property in terms of the decomposition in a sum of
sinusoids.

3.6 DFT and the decomposition of the variance

Write

x =
1

N

N−1∑
n=0

xn

the mean of the numbers x0, . . . , xN−1, and s2 its variance:

s2 =
1

N

N−1∑
n=0

(
xn − x

)2
=

1

N

N−1∑
n=0

x2
n − (x)2.

First, note that
c0 = x.

Second, by Parseval’s Theorem (8),

s2 =
N−1∑
n=1

|cn|2.
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Since cN−j = c∗j , the terms in the sum appear repited, so

s2 =





2
∑[N/2]

n=1 |cn|2, if N is odd,

2
∑N/2−1

k=1 |cn|2 + |c(N/2)|2, if N is even.

The following table is a type of decomposition of the variance when N is even (Cowpertwait and
Metcalfe [3, page 174]):

Harmonic Period Frequency Contribution to
variance

1 N 1/N 2|c1|2
2 N/2 2/N 2|c2|2
...

N/2− 1 N/(N/2− 1) (N/2− 1)/N 2|c(N/2−1)|2
N/2 2 1/2 |cN/2|2

Exercices
1. Compute (with R) the DFT of the sequences

(a) 1, 2, 3, 4.

(b) 1, 2, 1, 2.

(c) 1, 1, 1, 1.

2. Plot the periodograms of the previous sequences.

3. Using linear regression, compute the expression with sinusoids of the sequence 1, 2, 3, 4. First,
write the linear model as

x0 = a0 + a1 cos(2π1 · 0/4) + b1 sin(2π1 · 0/4) + a2 cos(2π2 · 0/4)
x1 = · · ·

...

The independent variables are cos(2πjn/4) and sin(2πjn/4), so you need to prepare a matrix with
that variables, called, for example, A, and a vector with the values (x0, . . . , x3), called, say, x. The
instruction to fit a linear model (with intercept) is

lm(x~A)

Check the relations given in the text between cj and aj and bj .
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4. Using the numbers a0, a1, b1, a2 of the previous exercise, consider the functions

a0(t) = a0,

c1(t) = a1 cos(2πt/4)

s1(t) = a1 sin(2πt/4)

c2(t) = a2 cos(2πt/4)

In the same graphic, plot the points (0, 1), (1, 2), (2, 3), (3, 4) and the functions (in continuous
time) a0(t), c1(t), . . . . Convince yourself that

xj = a0(j) + c1(j) + s1(j) + c2(j), j = 0, . . . , 3.

Repite the exercise with the sequences (b) and (c).

5. Give a function that in the integer values coincides with the function

x(t) = 2 cos(2πt/100) + 6 sin(2πt/20).

Plot both functions in the same graphic.

6. Plot the periodogram of the sequences corresponding to Figure 3:

• x(j) = 10 cos(2πj/100) + 3 cos(2πj/10) + cos(2πj/4), j = 0, . . . , 199.

• x(j) = cos(2πj/100) + 10 cos(2πj/10) + 3 cos(2πj/4), j = 0, . . . , 199.

• x(j) = cos(2πj/100) + 3 cos(2πj/10) + 10 cos(2πj/4), j = 0, . . . , 199.

Note that you can use the formulas given in this notes, or compute the FFT. Contrast the visual
information with the comments on Table 1.
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