The Complexity of
Optimization Problems

N INTRODUCTORY computer programming courses we learn that com-
Iputers are used to execute algorithms for the solution of problems. Ac-
tually, the problems we want to solve by computer may have quite varying
characteristics. In general, we are able to express our problem in terms of
some relation P C I x S, where [ is the set of problem instances and S is
the set of problem solutions. As an alternative view, we can also consider
a predicate p(x,y) which is true if and only if (x,y) € P. If we want to
analyze the properties of the computations to be performed, it is necessary
to consider the characteristics of the sets I, S and of the relation P (or of
the predicate p) more closely.

In some cases, we just want to determine if an instance x € [ satisfies
a given condition, i.e., whether n(x) is verified, where ® is a specified
(unary) predicate. This happens, for example, when we want to check if
a program is syntactically correct, or a certain number is prime, or when
we use a theorem prover to decide if a logical formula is a theorem in a
given theory. In all these cases, relation P reduces to a function f: [+ S,
where S is the binary set S = {YES,NO} (or S = {0,1}), and we denote
our problem as a decision (or recognition) problem. We may also consider
search problems, where, for any instance x € I, a solutiony € S has to be
returned such that (x,y) € P is verified. This includes such problems as, for
example, finding a path in a graph between two given nodes or determining
the (unique) factorization of an integer. In other cases, given an instance
x € I, we are interested in finding the “best” solution y* (according to some
measure) among all solutions y € § such that (x,y) € P is verified. This
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is the case when, given a point ¢ and a set of points Q in the plane, we
want to determine the point ¢’ € Q which is nearest to g or when, given a
weighted graph, we want to find a Hamiltonian cycle, if any, of minimum
cost. Problems of this kind are called optimization problems and have
occurred frequently in most human activities, since the beginning of the
history of mathematics.

The aim of this book is to discuss how and under what conditions op-
timization problems which are computationally hard to solve can be effi-
ciently approached by means of algorithms which only return “good” (and
possibly not the best) solutions. In order to approach this topic, we first
have to recall how the efficiency of the algorithms and the computational
complexity of problems are measured. The goal of this chapter is, indeed,
to introduce the reader to the basic concepts related to the complexity of
optimization problems. Since the whole setting of complexity theory is
built up in terms of decision problems, we will first discuss these concepts
by showing the main results concerning decision problems. In particular,
we will introduce the two complexity classes P and NP, whose proper-
ties have been deeply investigated in the last decades, and we will briefly
discuss their relationship. Subsequently, we will shift our attention to the
optimization problem context and we will show how the previously intro-
duced concepts can be adapted to deal with this new framework.

1.1 Analysis of algorithms and complexity of problems

HE MOST direct way to define the efficiency of an algorithm would
Tbe to consider how much time (or memory), for any instance, the
algorithm takes to run and output a result on a given machine. Such a
point of view depends on the structural and technological characteristics
of the machines and of their system software. It is possible to see that, as
a matter of fact, the cost of the same algorithm on two different machines
will differ only by no more than a multiplicative constant, thus making cost
evaluations for a certain machine significant also in different computing
environments.

As a consequence, the algorithms presented throughout the book will be
usually written in a Pascal-like language and will be hypothetically run on
an abstract Pascal machine, composed by a control and processing unit,
able to execute Pascal statements, and a set of memory locations identified
by all variable and constant identifiers defined in the algorithm. Unless
otherwise specified, all statements concerning the efficiency of algorithms
and the complexity of problem solutions will refer to such a computation
model.
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Section 1.1

1.1.1 Complexity analysis of computer programs
ANALYSIS OF

ALGORITHMS AND
COMPLEXITY OF
PROBLEMS

The simplest way to measure the running time of a program in the model
chosen above is the uniform cost measure and consists in determining the
overall number of instructions executed by the algorithm before halting.

This approach to computing the execution cost of a program is natu-
ral, but, since it assumes that any operation can be executed in constant
time on operands of any size (even arbitrarily large), it may lead to serious
anomalies if we consider the possibility that arbitrarily large values can
be represented in memory locations. Thus, in practice, the uniform cost
model may be applied in all cases where it is implicitly assumed that all
memory locations have the same given size and the values involved in any
execution of the algorithm are not greater than that size, i.e., any value to be
represented during an execution of the algorithm can be stored in a mem-
ory location. In all other cases (for example, where a bound on the size of
the values involved cannot be assumed) a different cost model, known as
logarithmic cost model should be used.

The logarithmic cost model is obtained by assigning to all instructions a
cost which is a function of the number of bits (or, equivalently for positive
integefs, of the logarithm) of all values involved. In particular, basic in-
structions such as additions, comparisons, and assignments are assumed to
have cost proportional to the number of bits of the operands, while a cost
O(nlogn) for multiplying or dividing two n-bit integers may be adopted.

For example, in the execution of an assignment instruction such as a :=
b+ 5, we consider the execution cost equal to log|b| 4 1og5. Notice that
we did not specify the base of the logarithm, since logarithms in different
bases differ only by a multiplicative constant.

Such a cost model avoids the anomalies mentioned above and corre-
sponds to determining the number of operations required to perform arith-
metical operations with arbitrary precision on a real computer.

Both approaches can also be applied to evaluate the execution cost in
terms of the amount of memory (space) used by the algorithm. In this
framework, the uniform cost model will take into account the overall num-
ber of distinct memory locations accessed by the algorithm during the com-
putation. On the other hand, according to the logarithmic cost model it
should be necessary to consider the number of bits of the maximum value
contained in such locations during the computation.

Consider Program 1.1 for computing r = x’, where x,y € IN. In the uniform cost < Example 1.1

model, this algorithm has time cost 2 + 3y, while in the logarithmic cost model,

it presents a time cost bounded by the expression aylogy + by*logx(logy +

loglogx) + ¢, where a, b, ¢ are suitable constants (see Exercise 1.1). Concern- R

w
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Program 11 :_~EXpo‘r'1ériytiatiio'n .

input Nonnegative integers x, y;
output Nonnegative integer r = x;

begin
7= g
while y # 0 do
begin
ri=rkx;
3 e ==l
end;
return r
end.

ing the amount of memory used, the resulting uniform cost is 3 (the variables x,
y, r), while the logarithmic cost is logy + (y+ 1) logx.

In the following, we will refer to the uniform cost model in all (time
and space) complexity evaluations performed. This is justified by the fact
that the numbers used by the algorithms described in this book will be
sufficiently small with respect to the length of their inputs. Before going
into greater detail, we need to make clear some aspects of cost analysis
that may help us to make the fon easier and more expressive and to
introduce itable notation.

Worst case analysis. The first aspect we have to make clear is that, for
most applications, at least as a first step of the analysis, we are not inter-
ested in determining the precise running time or space of an algorithm for
all particular values of the input. Our concern is rather more in determin-
ing the behavior of these execution costs as the input size grows. However,
instances of the same size may anyway result in extremely different exe-
cution costs. It is well known, for example, that sorting algorithms may
have a different behavior, from the point of view of the running time, if
they have to sort an array whose elements are randomly chosen or an array
of partially sorted items. For such reasons, in order to specify the per-
formance of an algorithm on inputs of size n, we determine the cost of
applying the algorithm on the worst case instance of that size, that is on
the instance with highest execution cost.

In contrast with worst case analysis, in several situations a different ap-
proach may be taken (known as average case analysis), consisting of de-
termining the average cost of running the algorithm on all instances of size
n, assuming that such instances occur with a specified (usually uniform)
probability distribution.
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Section 1.1

Worst case analysis is widely used since it provides us with the certainty
that, in any case, the given algorithm will perform its task within the estab-
lished time bound. Besides, it is often easier to obtain, while the average
case analysis may ;equire complex mathematical calculations and, more-
over, has validity limited by the probabilistic assumptions that have been
made on the input distribution.

ANALYSIS OF
ALGORITHMS AND
COMPLEXITY OF
PROBLEMS

Input size. As stated above, we are interested in expressing the execution
costs as a (growing) function of the size of the instance of the problem to
be solved. But, how to measure that size? In Example 1.1 the running time
of the algorithm was provided as a function of the input values x, y. Even
if this seemed a reasonable choice in the case of the computation of an
integer function, conventionally, a different input size measure is adopted:
the length or size of the input, that is the number of digits (possibly bits)
needed to present the specific instance of the problem. This conventional
choice is motivated by the fact that problems may be defined over quite het-
erogeneous data: integers or sequences of integers, sets, graphs, geometric
objects, arrays and matrices, etc. In all cases, in order to be submitted as
input to a computer algorithm, the data will have to be presented in the
form of a character string over a suitable finite alphabet (e.g., the binary
alphabet {0,1}). It is therefore natural to adopt the length of such a string
as a universal input size measure good for all kinds of problems.

Thus we assume there exists an encoding scheme which is used to de-
scribe any problem instance in a string of characters over some alphabet.
Even if different encoding schemes usually result in different strings (and
input sizes) for the same instance, it is important to observe that for a
wide class of natural encoding schemes (i.e., encoding schemes that do
not introduce an artificially redundant description) the input sizes of the
same instance are not too different from each other. This is expressed
by saying that for any pair of natural encoding schemes ej, e, and for
any problem instance x, the resulting strings are polynomially related, that
is there exist two polynomials py, p, such that |e;(x)| < pi(le2(x)|) and
lea(x)] < pa(le1(x)]), where |e;(x)| denotes the length of string e;(x), for
i=1,2.

In the following, for any problem instance x, we will denote with the
same symbol x the string resulting by any natural encoding of the instance
itself. In general, we will denote with the same symbol both an object and
its encoding under any encoding scheme.

Let us consider the problem of determining if an integer x € Z* is a prime number. < Example 1.2

A trivial algorithm which tries all possible divisors d, 1 < d < y/x, can perform (if

x is prime) a number of steps proportional to \/x. If we use the natural encoding

scheme which represents integer x as a binary string of length n = |x| ~ logx, the —

o
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Chapter 1

execution cost is instead proportional to 2"2. Even if the two values are equal,

THE COMPLEXITY  he second one gives greater evidence of the complexity of the algorithm, which

OF OPTIMIZATION  grows exponentially with the size of the input. Actually, at the current state of
PROBLEMS : ges : ; ' —— ' ‘

A Gges -, - ~- - = & a - S

a polynomial number of steps exists. Notice that using a unary base encoding
(an unnatural scheme) would result in an evaluation of the execution cost as the
square root of the instance size.

Asymptotic analysis of algorithms. If we go back to the analysis of the
running time of Program 1.1, we realize the following two facts. First, the
expressions contain constants, which represent both the cost of some in-
structions (such as during the initialization phase of an algorithm) whose
execution does not depend on the particular instance and the fact that sin-
gle instructions, on real machines, present execution costs which are not
unitary but depend on technological characteristics of the machine (and
system software) and would have been extremely difficult to determine
precisely. Second, the expressions themselves are upper bounds and not
precise evaluations of the computation costs.

For the above two reasons, by making use of the standard O-notation
(see Appendix A), we may as well describe the execution costs of th

the logarithmic cost model.
More generally, let us see how the notation used to express the asymp-
totic behavior of functions can be used to describe the running time (or
space) of an algorithm.
Let us denote as 74(x) the running time of algorithm A4 on input x. The
worst case running time of A is then given by

ta(n) = max{fa(x) | Vx: x| < n}.

Similarly, let us denote as §4(x) the running space of algorithm 4 on input
x. The worst case running space of A is then given by

sa(n) = max{Sq(x) | Vx: |x| < n}.

Definition 1.1 » We say that algorithm A4
Algorithm complexity bounds

1. has complexity (upper bound) O(g(n)) ifta(n) is O(g(n));
2. has complexity (lower bound) Q(g(n)) ifta(n) is Q(g(n));

3. has complexity (exactly) ©(g(n)) ifta(n) is ©(g(n)).

Similar definitions can be introduced for the space complexity.
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Section 1.1

By using the preceding notation, if an algorithm performs a number of
steps bounded by an? + blogn to process an input of size n, we say that
its complexity is O(n?). If, moreover, we are able to prove that for any
n sufficiently large there exists an input instance of size n on which the
algorithm performs at least cn? steps, we say that its complexity is also
Q(n?). In such a case we also say that the complexity of the algorithm is
O(n?).

ANALYSIS OF
ALGORITHMS AND
COMPLEXITY OF
PROBLEMS

Let us again consider the analysis of Program 1.1 in Example 1.1. As we <« Example 1.3
have already seen, the running time of this algorithm under logarithmic cost

measure is aylogy -+ by*logx(logy + loglogx) + c. As noticed above, the term

by*logx(logy + loglogx) dominates all others. Let n = |x| + |y| be the overall

input size: a proper expression for the asymptotic cost analysis as a function of

the input size would be O(n?2%").

The typical procedure to perform a complexity analysis of an algorithm
requires deciding, case by case, on the following issues:

1. How to measure the execution cost. Usually, in the case of evalu-
ating the running time, this is done by determining a dominant op-
eration, that is an operation which is executed at least as often as
any other operation in the algorithm, thus characterizing the asymp-
totic complexity of the algorithm. More formally, if the asymptotic
complexity of the algorithm is ©(g(n)), a dominant operation is any
operation whose contribution to the cost is ©(g(n)).

Typically, in a sorting algorithm a dominant operation is the compar-
ison of two elements, in matrix multiplication a dominant operation
may be assumed to be the multiplication of elements, etc.

2. Which cost measure we want to adopt. As said above, the logarith-
mic cost model is more precise, but the simpler uniform cost model
can be applied if we make the assumption that all values involved in
the algorithm execution are upper bounded by some value (usually
some function of the input size).

3. How to measure the input size, that is what characteristic parameter
of the input instance is the one whose growth towards infinity deter-
mines the asymptotic growth of the computation cost. In this case,
typical examples are the number of graph nodes and edges in graph
algorithms, the number of rows and columns of matrices in algebraic -
algorithms, etc.

Let us consider a simple version of the well known Insertion Sort algorithm (see < Example 1.4
Program 1.2). Suppose that an array of size n is given and that we want to sort

-
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Chapter 1 o , ,
Program 1.2: Insertion Sort
THE COMPLEXITY ‘
OF OPTIMIZATION | input Array A[l,...,n] of integers;
PROBLEMS | output Array A sorted in increasing order;
begin
fori := lton—1do
begin
ji=1i+1
while j > 2 and A[j] < A[j— 1] do
begin
swap A[j] and A[j — 1];
ji=j—1
end
end;
return A
end.

it in increasing order. Without loss of generality let us assume that the range
of the elements is the finite interval {1,...,M}, where M is a constant. Here
the input size is characterized by the number n of elements in the array. In the
uniform model we may simply take into consideration comparison operations.
Since the algorithm contains two loops each of which is repeated at most » times,
the running time is clearly bounded by O(n?). On the other side, it is not difficult
to observe that the number of comparisons performed by the algorithm is indeed
n(n—1)/2 in the worst case, that is when the array is ordered in decreasing order.
Hence, the algorithm also has a lower bound Q(n?) on the running time.

Regarding the running space of the algorithm, it is immediate to see that an
Q(n) lower bound holds, due to the need for accessing all values in the input
instance. The algorithm accesses such values plus a constant number of additional
locations, thus resulting in a O(n) upper bound.

1.1.2 Upper and lower bounds on the complexity of problems

Suppose we have to solve a problem and we have an algorithm whose time
complexity is O(g(n)). According to the following definition, we say that
O(g(n)) is an upper bound to the time complexity of the given problem.

Definition 1.2 » Given a problem P we say that the time complexity upper bound of P is

Problem complexity};tppeg O(g(n)) if there exists an algorithm for P whose running time is O(g(n)).
oun

In other words, the complexity upper bound for a problem provides
information on the amount of time which is asymptotically sufficient to

8



alabert
Rectángulo

alabert
Línea poligonal

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Línea

Alabert
Línea


Section 1.2

solve the problem. Knowing the upper bound does not mean that a precise

knowledge of the complexity of the problem is available. In fact, other COMPLEXITY

more efficient algorithms with smaller running times may exist, and we CLASSES OF

may just be unaware of their existence. DECISION
PROBLEMS

A more precise characterization of the time complexity of a problem is
achieved when we are-also able to find a time complexity lower bound, that
is we are able to establish how much time is anyhow needed (asymptoti-
cally) to solve the problem, no matter what algorithms are used. Knowing
a lower bound for a problem provides important information on the intrin-
sic difficulty of solving the problem, especially in the case that the lower
bound is sufficiently close to (or even coincides with) the upper bound.

Given a problem P we say that the time complexity lower bound of P is <« Definition 1.3

Q(g(n)) if any algorithm for P has a running time Q(g(n)), and that the ~ Problem complexity bounds
time complexity of P is ©(g(n)) if its upper bound is O(g(n)) and its lower

bound is Q(g(n)).

Establishing a complexity lower bound for a problem is a hard task, since
it requires stating (and proving) a property that has to hold for all (known
and unknown) algorithms that solve the problem.

In the case of sorting, by means of an information theoretic argument,
it can be proved that, in terms of comparisons, the time complexity lower
bound is Q(nlogn), that is any algorithm for sorting that uses only com-
parisons requires € (nlogn) comparisons. Since the time complexity upper
bound for sorting is also O(nlogn), this means that, in terms of compar-
isons, the time complexity of sorting is exactly determined to be ©(nlogn).

Unfortunately, such a precise characterization is not achieved in all
cases. For most problems of great practical interest (the satisfiability of
a Boolean formula in the propositional calculus, the multiplication of two
matrices, the decomposition of a number into prime factors, etc.) the time
complexity has not presently been precisely determined. In particular, this
is the case for all optimization problems which form the subject of this
book. Despite this difficulty, a classification of (both decision and opti-
mization) problems according to their complexity can be established in
formal terms. Before examining how the complexity of optimization prob-
lems can be defined, let us recall some basic notions about the complexity
of decision problems.

1.2 Complexity classes of decision problems

Q PROBLEM P is called a decision problem if the set Ip of all instances

of P is partitioned into a set Y of positive instances and a set Np of N
9
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Figure 1.1

Solving a decision problem

Definition 1.4 »
Problem solution

negative instances and the problem asks, for any instance x € /p, t0 verify
whether x € Yop.

Actually, since any algorithm for 2 also can receive inputs that do not
correspond to legal instances of P, the set of inputs to such an algorithm
is partitioned in Yp, Np and Dp, the set of inputs not corresponding to
instances of P.

We assume that any algorithm for a decision problem is able to return a
YES or NO answer, for example by printing it (see Fig. 1.1).

xisin Y7 —— YES
______?_) }7[

————3 NO

A decision problem P is solved by an algorithm A if the algorithm halts
for every instance x € Ip, and returns YES if and only if x € Ye. We also
say that set Yp is recognized by A. Moreover, we say that P is solved in
time t(n) (space s(n)) if the time (space) complexity of A is t(n) (s(n)).

Notice that, if x € Np U Do, then A4 may either halt returning NO, halt
without returning anything, or never halt.

There are several reasons why the main concepts of computational com-
plexity have been stated in terms of decision problems instead of compu-
tation of functions.

First of all, given an encoding scheme, any decision problem can be
seen, independently from its specific kind of instances (graphs, numbers,
strings, etc.), as the problem of discriminating among two sets of strings:
encodings of instances in Yp and strings in Np U Dp. This allows a more
formal and unifying treatment of all of them as language recognition prob-
lems. In general, for any decision problem P, we will denote the corre-
sponding language as L.

Secondly, decision problems have a YES or NO answer. This means that
in the complexity analysis we do not have to pay attention to the cost of
producing the result. All the costs are strictly of a computational nature
and they have nothing to do with the size of the output or the time needed
to return it (for example by printing it).

The main aim of the theory of computational complexity is the character-
ization of collections of problems with respect to the computing resources
(time, space) needed to solve them: such collections are denoted as com-
plexity classes.

Let us now define some important complexity classes (it is intended that
Defs. 1.2 and 1.3 can be applied —mutatis mutandis— to space complexity).
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Section 1.2
Prob!em 1.1: Satlsfymg truth assngnment : e c
OMPLEXITY
INSTANCE CNF formula ¥ on a set V of Boolean Varlables truth as-
nmenton V, f ..V — {TRUE,FALSE } CLASSES OF
sig av.Je ' - DECISION
QUESTION: Does f satisfy F? PROBLEMS

For any function f(n), let TIME(f(n)) (SPACE(f(n))) be the collection < Definition 1.5
of decision problems which can be solved with a time (space) complexity Complexity classes

O(f(n)).

Often, we are more interested in classifying problems according to less
refined classes. Thus, we may define the following complexity classes:

1. the class of all problems solvable in time proportional to a polyno-
mial of the input size: P = Up_, TIME(n*);

2. the class of all problems solvable in space proportional to a polyno-
mial of the input size: PSPACE = Uj_, SPACE(r¥);

3. the class of all problems solvable in time proportlonal to an expo-
nential of the input size: EXPTIME = U;_,, TIME(Z” ).

Clearly, P C PSPACE: indeed, any algorithm cannot access more memory
locations than the number of computing steps performed. Moreover, under
suitable assumptions on the computation model, it is also easy to prove
that PSPACE C EXPTIME (see, for example, Exercise 6.11 which refers to
the Turing machine model of computation). Whether these inclusions are
strict (that is, P C PSPACE and PSPACE C EXPTIME), are open problems in
complexity theory. The only separation result already known concerning
the above defined classes is P C EXPTIME.

The class P is traditionally considered as a reasonable threshold between
tractable and intractable problems.

[pspace]

Let us consider SATISFYING TRUTH ASSIGNMENT, that is, Problem 1.1. This <« Example 1.5
problem is in P. In fact, there exists a trivial decision algorithm which first plugs

in the truth values given by f and then checks whether each clause is satisfied.

The time complexity of this algorithm is clearly linear in the input size.

Let us consider SATISFIABILITY, that is, Problem 1.2. It is easy to show that <« Example 1.6
this problem belongs to PSPACE. Consider the algorithm that tries every possible -

truth assignment on V and for each assignment computes the value of #. As

soon as the value of ¥ is TRUE, the algorithm returns YES. If ¥ is false for all

truth assignments, the algorithm returns NO. The space needed by the algorithm

to check one truth assignment is clearly polynomial in the size of the input. Since

11
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PROBLEMS

Example 1.7 »

Problem 1.2: Satisfiability
INSTANCE: CNF formula ¥ on a set V of Boolean variables.

QUESTION: Is ¥ satisfiable, i.e., does there exist a truth assignment f:
V — {TRUE,FALSE } which satisfies F?

this space can be recycled and at most polynomial space is required for the overall
control, this algorithm has indeed polynomial-space complexity.

Given a sequence of Boolean variables V = {v;,vs,...,v,} and a CNF Boolean
formula ¥ onV, let the corresponding quantified Boolean formula be defined as

O1viQ2v203v3 ... 0pvn F(vi,v2, ..., Vn),

where, forany i =1,...,n, Q; =d if i is odd and Q; = V if i is even. We can
see that QUANTIFIED BOOLEAN FORMULAS, that is Problem 1.3, belongs to
PSPACE by modifying the PSPACE algorithm for SATISFIABILITY above. We
try all truth assignments on V by assigning values to the variables from left to
right, and after each assignment computing the value of the expression to the
right. For example, assume that v; ...v;—; have been assigned values zj,...,z;_1,
respectively. Besides, let r| be the value of the expression

Oir1vie1-..Ouwvn F(z1,22, - .-, 2i—1, TRUE, Vit 1, . . ., Viy)

and rg the value of the expression

Q,-+1v,-+1 .. -annf(m,Zz, -+, Zi—1,FALSE | Viy1, .. ,,vn).

Then the value of expression

OviQiv1Vig1 - - Onvn F(21,22, - -, Zie1, Vi, Vit 1y - - -, V)

isroArpifiis even (ie, O;=V)and roVr; if i is odd (i.e., Q; = ). This
algorithm can easily be implemented in order to compute the value of the whole
expression using space polynomial in the input size (see Exercise 1.6).

Note that no polynomial-time algorithm is known for the problems con-
sidered in the last two examples; indeed, it is widely believed that no such
algorithm can exist. However, as we will see in the next subsection, these
problems present rather different complexity properties, that make them
paradigmatic problems in different complexity classes.

1.2.1 The class NP

The classification of problems that we have provided so far is indeed too
coarse with respect to the need for characterizing the complexity of sev-
eral problems of great practical interest. For example, even though we have



alabert
Línea poligonal

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo


Problem13 Quantn‘led Boolean fqrymulké,s; L Lo
INSTANCE: CNF Boolean formula # on a set V = {v;,v,,...,v,} of
Boolean variables._

QUESTION: Is the quantified Boolean formula
Vv vs ... Qv F(v1,v2,---,Vn)

true, where Q = Jif n is odd, otherwise Q = V?

Section 1.2

COMPLEXITY
CLASSES OF
DECISION
PROBLEMS

shown that both QUANTIFIED BOOLEAN FORMULAS and SATISFIABIL-
ITY belong to PSPACE, it is possible to see that these two problems present
quite different characteristics if we consider their behavior when we ana-
lyze, instead of the cost of solving a problem, the cost of verifying that a
given mathematical object is indeed the solution of a problem instance.

According to the definition of decision problem given in the preceding
section, given an instance x of a decision problem P (encoded as a string of
symbols), the corresponding solution consists of a single binary value 1 or
0 (YES or NO, TRUE or FALSE), expressing the fact that x belongs to the set
Yp of positive instances or not. Actually, in most cases, determining that
a problem instance x belongs to Yz should also be supported by deriving
some object y(x) (string, set, graph, array, etc.) which depends on x, whose
characteristics are stated in the problem instance and whose existence is
what is asked for in the decision problem. In this case we would call y(x)
a constructive solution of P.

Let us consider again SATISFIABILITY. Any positive instance of this problem has
(at least) one associated solution y(x) represented by a truth assignment f which
satisfies the Boolean formula ¥.

Given a decision problem P and an instance x € Yp, verifying whether
a string of characters ¢ is the description of a constructive solution y(x)
of P is often a much easier task than solving the decision problem itself.
In the case of SATISFIABILITY, whereas deciding whether there exists a
truth assignment which satisfies a CNF Boolean formula is a complex task
(no algorithm is known which solves this problem in time polynomial in
the length of the input), verifying whether a string represents a satisfying

truth assignment can be done in time linear in the size of the instance (see .

Example 1.5).

The cost of verifying problem solutions can be used as an additional
measure to characterize problem complexity. In order to do this, the con-
cept of a nondeterministic algorithmhas been introduced to provide a com-

< Example 1.8

13
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Chapter 1

THE COMPLEXITY
OF OPTIMIZATION

PROBLEMS

P,ro‘g'ra‘m 1.3: Nondetérministic SAT

input CNF Boolean formula ¥ over a set V of Boolean variables;
output YES if ¥ is satisfiable;
begin
for each vin V do
begin
guess y € {0,1};
if y =0 then f(v) := FALSE else f(v) := TRUE
end;
if f satisfies F then return YES else return NO
end.

Definition 1.6 »

Nondeterministic problem

solution

Example 1.9 »

putational framework coherent to the one assumed when problem solving
is considered.

A nondeterministic algorithm is an algorithm which, apart from all usual
constructs, can execute commands of the type “guess y € {0,1}”. Such an
instruction means that y can take as its value either O or 1. Essentially, a
nondeterministic algorithm has the additional option of “guessing” a value,
in particular of guessing a continuation (in a finite set of possible continu-
ations) of the computation performed so far. Thus, while the computations
performed by the (deterministic) algorithms considered so far have a linear
structure (since at any time there is only one possible next step of the com-
putation), nondeterministic computations can be described by a tree-like
structure (called computation tree), where guess instructions correspond
to branching points.

Notice also that a deterministic algorithm presents one outcome for each
input instance, while a nondeterministic one will have many different out-
comes, in correspondence to different sequences of guesses. If, in particu-
lar, we consider nondeterministic algorithms for acceptance or rejection of
strings, some sequences of guesses will lead the algorithm to return YES,
some to return NO.

Given a decision problem P, a nondeterministic algorithm A solves P if,
for any instance x € Ip, A halts for any possible guess sequence and x € Yp
if and only if there exists at least one sequence of guesses which leads the
algorithm to return the value YES.

Program 1.3 is a nondeterministic algorithm for the SATISFIABILITY problem. As
one can see, the algorithm essentially guesses a candidate truth assignment among
the 2!Vl possible ones and then verifies whether the guess has been successful.
The behavior of the algorithm with input the Boolean formula containing the two
clauses v; V vo V713 and ¥; V¥, V v3 is shown in Fig. 1.2 where the computation tree
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is represented. Each path in this tree denotes a possible sequence of guesses of the

Section 1.2

algorithm: the input is accepted if and only if at least one path produces a truth COMPLEXITY
assignment that satisfies the formula. Notice that, since the verification phase can CLASSES OF
be performed in polyhomial time (see Example 1.5) and the sequence of guesses =~ DECISION
is polynomially long, the nondeterministic algorithm itself takes polynomial time.  pROBLEMS
V1
TRUE FALSE
V2 V2
TRUE FALSE TRUE FALSE
V3 V3 V3 V3
TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
h p)
Figure 1.2
A nondeterministic
algorithm for
NO v SATISFIABILITY with input
YES YES YES YES ES YES VIV V2V 73,51V T2V s

A nondeterministic algorithm A solves a decision problem P in time com-
plexity t(n) if, for any instance x € lp with |x| = n, A halts for any possible
guess sequence and x € Yp if and only if there exists at least one sequence
of guesses which leads the algorithm to return the value YES in time at
most t(n).

Without loss of generality, we may assume that all (accepting and non-
accepting) computations performed by a nondeterministic algorithm that
solves a decision problem in time #(n) halt: we may in fact assume that the

algorithm is equipped with a step counter which halts the execution when

more than 7(n) steps have been performed.

Moreover, without loss of generality, we may also consider a simplified
model of a polynomial-time nondeterministic algorithm which performs
a polynomially long sequence of guess operations at the beginning of its

< Definition 1.7
Complexity of

nondeterministic algorithm

15
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Definition 1.8 »
Nondeterministic complexity

classes

Verifying a positive solution reduces
to the SATISFYING TRUTH
ASSIGNMENT, or:

A nondeterministic algorithm is given

in Figure 1.2

execution. Such a sequence can be seen as a unique overall guess of all the
outcomes of the at most polynomial number of guesses in any computation,
that is, we assume that all nondeterministic choices to be performed during
any computation are guessed at the beginning of the computation.

For any function f(n), let NTIME(f(n)) be the collection of decision prob-
lems which can be solved by a nondeterministic algorithm in time O( f (n)).

We may then define the class NP as the class of all decision problems
which can be solved in time proportional to a polynomial of the input
size by a nondeterministic algorithm, i.e., NP = U;_, NTIME(r"). By the
above considerations, this is equivalent to the class of all decision prob-
lems whose constructive solutions can be verified in time polynomial in
the input size.

It is easy to see that P C NP, since a conventional (deterministic) algo-
rithm is just a special case of a nondeterministic one, in which no guess
is performed. Moreover, several problems in EXPTIME (and probably not
belonging to P) are also in NpP. For all such problems a solution to the
corresponding constructive prpblem, if any, has to be found in an expo-
nentially large search space. Therefore, their complexity arises from the
need to generate and search spch an exponentially large space, whereas,
given any element of the search space, checking whether it is a solution or
not is a relatively simpler task. A paradigmatic example of such problems
is SATISFIABILITY (see Example 1.5).

On the other side, in the case of QUANTIFIED BOOLEAN FORMULAS,
there is no known method of exploiting nondeterminism for obtaining a
solution in polynomial time. In fact, this problem is believed not to belong
to Np, and that, therefore, NP C PSPACE. Observe that in the case of
QUANTIFIED BOOLEAN FORMULA’S the natural constructive solution for

This inclusion is true, but not
obvious at this moment.

a positive instance would be a subtree of the tree of all truth assignments:
this subtree alternatively contains nodes with branching factor 1 and nodes
with branching factor 2. Then, this solution has size exponential in the
input length and cannot be guessed in polynomial time.

Before closing this section we point out that nondeterministic algorithms
present an asymmetry between instances in Yp and instances in Np U Dep.
In fact, while in order for an instance to be recognized as belonging to
Yp there must exist at least one accepting computation, the same instance
is recognized to be in Np U Do if and only if all computations are non-
accepting. Even in the case that all computations halt, this makes the con-
ditions to be verified inherently different, since they correspond to check-
ing an existential quantifier in one case and a universal quantifier in the
other case.
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Section 1.3

Problem 1 4: FaISIty

| o | REDUCIBILITY
INSTANCE A CNF formula 7 onasetV of Boolean Varlables

AMONG PROBLEMS
QUESTION: Is it frue that there does not exist any truth assignment f :

V + {TRUE, FALSE } which satisfies F?

Let us consider the FALSITY problem, that is, Problem 1.4. Clearly, this
problem has the same set of instances of SATISFIABILITY, but its set of
YES instances cotresponds to the set of NO instances of SATISFIABILITY,
and vice versa. Checking whether an instance is a YES instance is a pro-
cess that, in the case of SATISFIABILITY, can stop as soon as a satisfying
truth assignment has been found, while, in the case of FALSITY, it has to -
analyze every truth assignment in order to be sure that no satisfying one
exists. The relation between SATISFIABILITY and FALSITY is an example
of complementarity between decision problems.

For any decision problem P the complementary problem P€ is the decision < Definition 1.9
problem with Ipc = Ip, Ypc = Np, and Npc = Yp. Complementary problem

The class of all decision problems which are complementary to decision
problems in NP is called co—NP (e.g., FALSITY belongs to co—NP).

1.3 Reducibility among problems

EDUCTIONS ARE a basic tool for establishing relations among the
Rcomplexities of different problems. Basically, a reduction from a
problem P; to a problem P, presents a method for solving 7} using an
algorithm for 7. Notice that, broadly speaking, this means that P, is at
least as difficult as P; (since we can solve the latter if we are able to solve
the former), provided the reduction itself only involves “simple enough”
calculations.

1.3.1 Karp and Turing reducibility

Different types of reducibilities can be defined, as a consequence of the .
assumption on how a solution to problem % can be used to solve 7.

A decision problem P, is said to be Karp-reducible (or many-to-one re- <4 Definition 1.10
ducible) to a decision problem P, if there exists an algorithm R which ~ Karp reducibility

17



alabert
Línea

alabert
Rectángulo


Chapter 1

THE COMPLEXITY
OF OPTIMIZATION
PROBLEMS

Figure 1.3

How to use a Karp reduction

Do Exercise 1.7 (transitivity

Beware the "output size".

of polynomial Karp reducibility).

18

given any instance x € Ip, of ‘P, transforms it into an instance y € Ip, of
P, in such a way that x € Yo, if and only if y € Yp,. In such a case, R is
said to be a Karp-reduction from P, to P, and we write Py <,, ‘B>. If both
P <P oand P, <, Py we say that Py and ‘P, are Karp-equivalent (in
symbols P =, P»).

As a consequence of this definition, if a decision problem P, is Karp-
reducible to a decision problem P, then for any instance x of Py, x is
a positive instance if and only if the transformed instance y is a positive
instance for P.

It should then be clear that, if a reduction ® from P; to P, exists and if
an algorithm 4, is known for P, an algorithm A; for ; can be obtained
as follows (see Fig. 1.3):

1. given x < Ip, apply X to x and obtainy € Ip,;

2. apply A, to w_if A, returns YES then return YES, otherwise (4,
returns NO) retu

answer

As a particular case, we define the polynomial-time Karp-reducibility by
saying that P, is polynomially Karp-reducible to %, if and only if ?; is
Karp-reducible to P, and the corresponding reduction X _is a polynomial-
time algorithm. In such a case we write P; <P P, (again, if both P, <k P
and P, <& P, then P, =5, P). ,

In the case P; <}, P, efficiently solving P,, i.e. in polynomial time,
implies that also P can bWt is, P, € P implies P, € P.
On the contrary, if it is proved that P can e solved in polynomial time,

then also P, cannot be solved efficiently, that is, 7 ¢ P implies 7, ¢ P.
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Problem 1.5: {0,1}-Linear Programming e ,
INSTANCE: Set of variables Z = {z1, ..., 2, } with domain {0,1}, set I of
linear inequalities on Z.

QUESTION: Does there exist any solution of I, that is, any assignment
of values to variables in Z such that all inequalities are verified?

Let us consider {0,1}-LINEAR PROGRAMMING, that is, Problem 1.5. It is not
hard to see that SATISFIABILITY</,{0,1}-LINEAR PROGRAMMING. In fact, any
instance xsa7 = (V, F) of SATISFIABILITY can be reduced to some instance x; p =
(Z,I)of {0,1}-LINEAR PROGRAMMING as follows. Let [;, V[, V---V[; be the
J-th clause in ¥ a corresponding inequality {;, +Cj, +---+;, > lis derived
forx;p, where (j, = z; if 1, = v; (forsome v; € V) and (;, = (1 —z) if1;, = ¥; (for
some v; € V). It is easy to see that any truth assignment f : V — {TRUE, FALSE }
satisfies ¥ if and only if all inequalities in [ are verified by the value assignment
f':Z+ {0,1} such that f'(z;) = 1 if and only if f(v;) = TRUE. Moreover, the
reduction is clearly polynomial-time computable.

Let us now introduce a different, more general, type of reducibility,
which can be applied also to problems which are not decision problems
and that, basically, models the possibility, in writing a program to solve a
problem, to use subprograms for solving another problem as many times
as it is required. Such a situation is formalized in complexity theory by the
use of oracles.

Let P be the problem of computing a (possibly multivalued) function
f: Ip— Sp. An oracle for problem ‘P is an abstract device which, for
any x € Ip, returns a value f(x) € Sp. It is assumed that the oracle may
return the value in just one computation step.

Let Py be the problem of computing a (possibly multivalued) function
g: Ip — Sp. Problem P) is said to be Turing-reducible (see Fig. 1.4)
to a problem ‘P, if there exists an algorithm R which solves P, by querying
an oracle for ‘P5. In such a case, R is said to be a Turing-reduction from
P, to P, and we write Py <7 P,.

Again, if P, <r P, and P, <7 P, we have that P, and P, are Turing-
equivalent (P, =1 P,).

Clearly, Karp-reducibility is just a particular case of Turing-reducibility, |

corresponding to the case when P, and P, are both decision problems,
the oracle for P, is queried just once, and X returns the same value an-
swered by the oracle. In general, Karp-reducibility is weaker than Turing-

Section 1.3

REDUCIBILITY
AMONG PROBLEMS

< Example 1.10

|l instead of t in this line

<« Definition 1.11
Oracle

< Definition 1.12
Turing reducibility

19
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Chapter 1

reducibility. For example, for any decision problem P, P is always Turing-
reducible to P°¢ (and vice versa), while the same does not hold for Karp-
reducibility (see Bibliographical notes).

THE COMPLEXITY
OF OPTIMIZATION

PROBLEMS
x1in I?x —_— R L g(x)
Y1,y With y;inlp
Jy1S2)--
Figure 1.4 oracle
Turing-reduction for P,
from P, to P»

—>

As in the case of Karp-reducibility, we may also introduce a polynomial
Turing-reducibility g‘;, by saying that P, §§ P, if and only if P, <r P,
and the Turing-reduction X is polynomial-time computable with respect
to the input size.

Again, in the cas€
implies that also ¢, can be §
On the contrary, if it is proved that
then also P, cannot be solved efficiently, t

efficiently solving 7, (in polynomial time)
tis, P € P implies P, € P.
nnot be solved in polynomial time,
is, P; ¢ P implies P, & P.

Example 1.11 » Given two CNF Boolean formulas % and %, the EQUIVALENT FORMULAS
problem consists of deciding whether F is equivalent to P, that is, if, for any
assignment of values, 7 is satisfied if and only if ‘ is satisfied.

It is easy to verify that SATISFIABILITY can be solved in polynomial time by a
deterministic Turing machine with oracle EQUIVALENT FORMULAS.

Indeed, let F be a Boolean formula in conjunctive normal form. To decide
whether 7 is satisfiable it is sufficient to check whether ¥ is equivalent to % =
xAX (observe that % cannot be satisfied by any assignment of values). If this is
the case, F is not satisfiable, otherwise it is satisfiable. Clearly, this check can be
done by querying the oracle EQUIVALENT FORMULAS about the instance formed
by F and %. If the oracle answers positively,  is not satisfiable, otherwise it is
satisfiable.

Let us now introduce two definitions valid for any complexity class and
type of reducibility.

Definition 1.13 » A complexity class C is said to be closed with respect to a reducibility <,
Complexity class closure if, for any pair of decision problems Py, B, such that P, <, P, P, € C
implies Py € C.

Definition 1.14 » For any complexity class C, a decision problem P € C is said to be com-
Complete problem  plete in C (equivalently, C-complete) with respect to a reducibility <, if,
for any other decision problem P, € C, P; <, P.

20
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The above definition immediately implies that, for any two problems P
and P, which are C-complete with respect to a reducibility <,, P =, P>.

It is easy to see that, for any pair of complexity classes C; and (; such
that C; C G and ( is closed with respect to a reducibility <,, any G-
complete problem P belongs to G, — (. In fact, for any problem P, €
G — (1, P <, P by the completeness of P. Then, by the closure of (;,
P ¢ C; would imply P, € C;, which is a contradiction. This property
suggests that if C; C G, then the best approach to determining whether
Ci C G or C; = G is to study the complexity of (;-complete problems.
In fact, if for any Gy-complete problem P we prove that P € (7, then we
have that C; = G,; conversely, if we have that P ¢ C; then C; C G,.

1.3.2 NP-complete problems

The above definitions turn out to be particularly relevant when applied to
the class NP in order to define complete problems in NP with respect to
Karp-reductions.

A decision problem P is said to be NP-complete if it is complete in NP
with respect to <h, that is, P € NP and, for any decision problem P, € NP,
P <L P

Since P C NP, by the closure of NP with respect to <P (see Exer-
cise 1.10), P # Np if and only if for each NP-complete problem P, P ¢ P.
At the moment, it is not known whether polynomial-time algorithms exist
for Np-complete problems and only superpolynomial time algorithms are
currently available, even if no superpolynomial lower bound on the time
complexity has been proved for any of these problems.

SATISFIABILITY is Np-complete. We have already seen in Example 1.9 that this
problem is in NP. Showing its NP-completeness is quite a harder task, which we
will present in Chap. 6.

By the definition of NP-completeness and by the transitive property of
polynomial-time Karp reductions (see Exercise 1.7), any problem P can
be proved to be NP-complete by first showing a polynomial-time nonde-
terministic algorithm for P (which proves that P € NP) and then providing
a polynomial-time Karp-reduction from some other problem 7', already
known to be NP-complete, to P.

{0,1}-LINEAR PROGRAMMING is Np-complete. Indeed, this problem can be
shown to be in NP by considering a polynomial-tjme nondeterministic algorithm
similar to the one considered for SATISFIABILITY (that is, Program 1.3).

Section 1.3

REDUCIBILITY
AMONG PROBLEMS

< Definition 1.15
NP-complete problem

< Example 1.12

A polynomial-time algorithm
for SATISFIABILITY
implies

P =NP

implies

1,000,000 $

< Example 1.13
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Chapter 1

THE COMPLEXITY
OF OPTIMIZATION
PROBLEMS

e NP-completeness can be shown by providing a polynomial-time Karp-
rednction & from any other problem which is known to be NP-complete. In par-
tictilar, a polynomial-time Karp-reduction from SATISFIABILITY has been shown
in Example 1.10.

As said above, it is not known whether NP-complete problems can be
solved efficiently or not. However, due to the fact that even after a wide
effort from the whole computer science community, polynomial-time algo-
rithms for such problems (now numbering in the thousands) are still lack-
ing, NP-completeness is considered as a sign that the considered problem
is intractable.

1.4 Complexity of optimization problems

ET US now turn our attention to optimization problems. As already
L observed, most of the basic concepts of complexity theory have been
introduced with reference to decision problems. In order to extend the
theoretical setting to optimization problems we need to reexamine such
concepts and consider how they apply to optimization.

1.4.1 Optimization problems

The study of the cost of solving optimization problems is probably one of
the most relevant practical aspects of complexity theory, due to the impor-
tance of such problems in many application areas.

In order to extend complexity theory from decision problems to opti-
mization problems, suitable definitions have to be introduced. Also, the
relationships between the complexity of optimization problems and the
complexity of decision problems have to be discussed.

First, let us provide a formal definition of an optimization problem.

Definition 1.16 » An optimization problem P is characterized by the following quadruple of
Optimization problem

objects (Ip, SOLp, mp, goalyp), where:
1. Ip is the set of instances of P;

2. SOLp is a function that associates to any input instance x € Ip the
set of feasible solutions of x;

3. mep is the measure function, defined for pairs (x,y) such that x € Ip
and y € SOLgp(x).| For every such pair (x,y), me(x,y) provides a

(also called "Objective function")
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Problem 1.6: Minimum Vertex Cover
INSTANCE: Graph G= (V,E).

SOLUTION: A subset of nodes U C V such that V(v;,v;) € E, v; €
Uorv;eU.

MEASURE: |U]|.

Section 1.4

COMPLEXITY OF
OPTIMIZATION
PROBLEMS

positive integer which is the value of the feasible solution y; 1

4. goalp € {MIN,MAX} specifies whether P is a maximization or a
minimization problem.

Given an input instance x, we denote by SOL%(x) the set of optimal
solutions of x, that is the set of solutions whose value is optimal (minimum
or maximum depending on whether goal, = MIN or goalp = MAX). More
formally, for every y*(x) such that y* (x) € SOL}(x):

mo(x,y"(x)) = goalp{v | v=mp(x,z) Az € SOLp(x)}.

The value of any optimal solution y*(x) of x will be denoted as m;(x). In
the following, whenever the problem we are referring to is clear from the

context we will not use the subscript that explicitly refers to the problem
P.

Given a graph G = (V, E), the MINIMUM VERTEX COVER problem is to find a
vertex cover of minimum size, that is a minimum set U of nodes such that, for
each edge (v;,v;) € E, either v; € U or v; € U (that is to say, at least one among
v; and v; must belong to U). Formally, this problem is defined as follows:

1. I={G=(V,E)| Gisa graph};

2. SOL(G) = {U CV | ¥(v,v;) € E[v; € UVv; € U]};
3. m(G,U)=1U|;

4. goal = MIN.

In the following, however, whenever a new problem will be introduced, we will
make use of the more intuitive notation shown in Problem 1.6.

It is important to notice that any optimization problem 2 has an associ-
ated decision problem %p. In the case that P is a minimization problem, p

INotice that, in practice, for several problems the measure function is defined to have
values in Q. It is however possible to transform any such optimization problem into an
equivalent one satisfying our definition.

< Example 1.14

23
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THE COMPLEXITY
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PROBLEMS

Example 1.15 »

Example 1.16 »

Problem 1.7: Vertex cover =
INSTANCE: Graph G = (V,E),K € N.

QUESTION: Does there exist a vertex cover on G of size < K, that is a
subset U C V such that [U| < K and V(u,v) € E,u € Uorve U?

asks, for some K > 0, for the existence of a feasible solution y of instance
x with value m(x,y) < K. Analogously, if © is a maximization problem,
the associated decision problem asks, given K > 0, for the existence of a
feasible solution y of x with m(x,y) > K. Moreover, an evaluation problem
Pz can also be associated with P, which asks for the value of an optimal
solution of P.

More precisely, we can say that the definition of an optimization problem
P naturally leads to the following three different problems, corresponding
to different ways of approaching its solution.

Constructive Problem (?-) — Given an instance x € I, derive an optimal
solution y*(x) € SOL*(x) and its measure m*(x).

Evaluation Problem (Pz) — Given an instance x € I, derive the value
m*(x).

Decision Problem (?Pp) — Given an instance x € [ and a positive integer
K € Z*, decide whether m*(x) > K (if goal = MAX) or whether
m*(x) < K (if goal = MIN). If goal = MAX, the set {(x,K) | x €
Inm*(x) > K} (or {(x,K) | x € [ Am*(x) < K} if goal = MIN) is
called the underlying language of P.

The decision problem relative to MINIMUM VERTEX COVER is Problem 1.7,
This problem can be shown to be NP-complete (see Exercise 1.12).

Notice that, for any optimization problem P, the corresponding decision
problem Pp is not harder than the constructive problem %c. In fact, to
answer Pp on instance x it is sufficient to run some algorithm for Z¢, thus
obtaining the optimal solution y*(x) together with its value m(x,y*(x));
then, it is sufficient to check whether m(x,y*(x)) < K, in the minimization
case, or whether m(x,y*(x)) > K, in the maximization case.

Let us consider MINIMUM TRAVELING SALESPERSON (TSP), that is, Prob-
lem 1.8. An instance of this problem can also be represented by a complete graph
G = (V, E) of n vertices with positive weights on the edges (the vertices represent
the cities and the weight of an edge is equal to the distance between the corre-
sponding pair of cities). Feasible solutions of the problem are then subsets / of



alabert
Rectángulo

alabert
Rectángulo

alabert
Línea poligonal

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea poligonal


Section 1.4

,Prdblem 1.8: l\/linimum‘yTravéli'th S',alésper:'sdh’l : o ,

' . R o \f o I COMPLEXITY OF
INSTANCE: Set of cities {cy,...,cn}, n X n matrix D of distances in Z™. OPTIMIZATION
SOLUTION: A (traveling salesperson) tour of all cities, that is, a permu- | PROBLEMS
tation {c;,,...,¢;, }-

MEASURE: Y71 D(i, ik+1) + D(in, i1).
Problem 1.9: Minimum Graph Coloring
INSTANCE: Graph G = (V,E).
SOLUTION: Anassignment f:V ~ {1,...,K} of K colors to the vertices
of G such that V(u,v) € E, f(u) # f(v).
MEASURE: K.
edges such that the graph (V,/) is a cycle. In Fig. 1.5 it is shown an instance of
MINIMUM TRAVELING SALESPERSON in both ways (observe that in this case
the distance matrix is symmetric): the thick edges in the graph denote the optimal
tour. Since the problem is an optimization problem it cannot belong to NP, but
it has a corresponding decision problem that is NP-complete (see Bibliographical
notes).
a b c d 1
a b
a 0 1 2 5 C\ /)
5 6
b 1 0 6 2
2 2
c 2 6 0 1
Figure 1.5
An instance of MINIMUM
d > 2 ! 0 (CJ ) @ TRAVELING
SALESPERSON represented
(a) as a matrix and (b) as a
(a) (b) graph

The problem MINIMUM GRAPH COLORING is defined as follows (see Prob- < Example 1.17
lem 1.9): given a graph G = (V,E), find a vertex coloring with a minimum num-
ber of colors, that is a partition of V in a minimum number of classes {V1, ..., Vx}
such that for any edge (u,v) € E, u and v are in different classes. For example,

in the left side of Fig. 1.6 a sample graph is given with a coloring using 4 colors. —

25
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THE COMPLEXITY
OF OPTIMIZATION
PROBLEMS

Figure 1.6

A coloring of a graph with 4
colors and an optimal
coloring requiring 3 colors

Example 1.18 »

Note that such a coloring is not optimal: a minimum coloring for the same graph
is shown in the right side of the same figure. As above, the problem cannot belong
to NP, but the corresponding decision problem can be shown to be Np-complete
(see Exercise 1.14).

V2 V4

1.4.2 PO and NPQ problems

In order to characterize the complexity of optimization problems and to
classify such problems accordingly, various approaches may be followed.

The most direct point of view is to consider the time needed for solv-
ing the given problem and to extend to optimization problems the theory
developed for decision problems.

Of course, the most relevant issue is to characterize optimization prob-
lems P which can be considered tractable, i.e. such that there exists a
polynomial-time computable algorithm A that, for any instance x € I re-
turns an optimal solution y € SOL*(x), together with its value m*(x). This
means that our main concern will be the study of constructive versions of
optimization problems: this will indeed be the approach that will be fol-
lowed throughout the book (even though we will usually avoid to explicitly
return the measure of the computed solution).

The problem MINIMUM PATH is defined as follows (see Problem 1.10): given a
graph G = (V,E) and a pair of nodes v, and v,, derive the shortest path from v, to
vy. This problem can be proved to be tractable by showing the polynomial-time
Program 1.4 which constructs all minimum paths from all nodes in V to v;. The
algorithm visits the graph in a breadth-first order and constructs a tree with root v4
by setting in any node a pointer 7 to its parent node. An example of the behavior
of the algorithm is shown in Fig. 1.7 where the lower part represents the resulting
tree obtained with input the graph depicted in the upper part and vy = v;: the
arrows denote the pointers to the parents while the values in the square brackets
represent the visiting order.
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Section 1.4

Problem 1.10: Minimum Path

INSTANCE: Graph G = (V,E), two nodes vy,vg € V. COMPLEXITY OF

OPTIMIZATION

MEASURE: The number k of nodes in the path.

'Prog‘vrar‘n' 1.4: Syh'c:)rtestk péth by bréadthffirst Seé'rc:h, -

input Graph G = (V,E) and two nodes v;,v4 € V;
output Minimum path from v; to v; in G;
begin

Enqueue(vy, Q);

Mark node v, as visited;

n[vy] = nil;
while Q is not empty do
begin

v := Dequeue(Q);
for each node u adjacent to v do
if u has not been already visited then
begin
Enqueue(u, Q);
Mark u as visited;
nu] = v;
end
end;
if v; has been visited then
return the path from v; to v; by following pointers 7;
end.

In this book we are mainly interested in those optimization problems
which stand on the borderline between tractability and intractability and
which, by analogy with the NP decision problems, are called NPO prob-
lems.

An optimization problem P = (I,SOL,m, goal) belongs to the class NPO if <4 Definition 1.17
the following holds: Class NPO

1. the set of instances I is recognizable in polynomial time;

2. there exists a polynomial g such that, given an instance x € I, for any .
y € SOL(x), |y| < q(|x|) and, besides, for any y such that |y| < q(|x]),
it is decidable in polynomial time whether y € SOL(x);

3. the measure function m is computable in polynomial time. S

27
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Figure 1.7
An example of application of
Program 1.4

Vl v2
Y5
V4 v3
(1] [2]
Y1 V2
Vs
[5]
V4 V3
(3] [4]

Example 1.19 » MINIMUM VERTEX COVER belongs to NPO since:

1. the set of instances (any undirected graph) is clearly recognizable in poly-
nomial time;

2. since any feasible solution is a subset of the set of nodes its size is smaller
than the size of the instance; moreover, testing that a subset U C V is a

feasible solution requires testing whether any edge in E is incident to at
least one node in U, which can be clearly performed in polynomial time;

3. given a feasible solution U, the measure function (size of U) is trivially
computable in polynomial time.

Even if not explicitly introduced, underlying the definition of NPO prob-
lem there is a nondeterministic computation model. This is formally stated
by the following result which basically shows that the class NPO is the
natural optimization counterpart of the class NP.

Theorem 1.1 » For any optimization problem P in NPO, the corresponding decision prob-

PROOF

QED

28

lem Pp belongs to NP.

" Assume that P is a maximization problem (the proof in the minimization
case is similar). Given an instance x € I and an integer K, we can solve Pp
by performing the following nondeterministic algorithm. In time q(|x]),
where ¢ is a polynomial, any string y such that [y < g(]x]) is guessed.
Afterwards the string is tested for membership in SOL(x) in polynomial
time. If the test is positive, m(x,y) is computed (again in polynomial time)
and if m(x,y) > K the answer YES is returned. Otherwise (i.e., either y is

not a feasible solution or m(x,y) < K), the answer NO is returned.
\
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The relationship between classes NP and NPO, which holds in the case
of nondeterministic computations, can be translated, in the case of deter-
ministic algorithms, by the following definition, that introduces the class
of NPO problems whose constructive versions are efficiently solvable .

An optimization probléem P belongs to the class PO if it is in NPO and there
exists a polynomial-time computable algorithm A that, for any instance
x € I, returns an optimal solution y € SOL*(x), together with its value
m*(x).

MINIMUM PATH belongs to P0O. Indeed, it is easy to see that this problem satisfies
the three conditions of Def. 1.17. Moreover, as we have seen in Example 1.18,
MINIMUM PATH is solvable in polynomial time.

Practically all interesting optimization problems belong to the class
NPO: in addition to all optimization problems in PO (such as MINIMUM
PATH), several other problems of great practical relevance belong to NPO.
Beside MINIMUM VERTEX COVER, MINIMUM TRAVELING SALESPER-
SON, and MINIMUM GRAPH COLORING, many other graph optimization
problems, most packing and scheduling problems, and the general formu-
lations of integer and binary linear programming belong to NPO but are not
known to be in PO since no polynomial-time algorithm for them is known
(and it is likely that none exists). For some of them, not only does the exact
solution appear to be extremely complex to obtain but, as we will see, even
to achieve good approximate solutions may be computationally hard.

Indeed, for all the optimization problems in NPO — PO the intrinsic com-
plexity is not precisely known. Just as with the decision problems in
NP — P, no polynomial-time algorithms for them have been found but no
proof of intractability is known either. In fact, the question “PO = Np0?”
is strictly related to the question “P = NP?” since it can be proved that
the two questions are equivalent in the sense that a positive answer to the
first would imply a positive answer to the second and vice versa. In order
to establish such relationships between the two questions we have to make
more precise how the complexity of decision problems may be related to
the complexity of optimization problems.

1.4.3 NP-hard optimization problems
In order to assess the intrinsic complexity of optimization problems we

may think of proceeding as in the case of decision problems. In that
case the relative complexity of problems was established by making use

Section 1.4

COMPLEXITY OF

OPTIMIZATION
PROBLEMS

<4 Definition 1.18
Class PO

< Example 1.20

29
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Chapter 1

of polynomial-time Karp reductions and of the related notion of Np-
completeness. Unfortunately, Karp reductions are defined for decision
problems and cannot be applied to optimization problems. In this case,
instead, we can make use of the polynomial-time Turing reducibility (see
Sect. 1.3).

THE COMPLEXITY
OF OPTIMIZATION
PROBLEMS

Definition 1.19 » An optimization problem P is called NP-hard if, for every decision problem

NP-hard problem @' ¢ Np, P' <P P, that is, P’ can be solved in polynomial time by an
algorithm which uses an oracle that, for any instance x € lp, returns an
optimal solution y* (x) of x along with its value m},(x).?

Thus, a problem is NP-hard if it is at least as difficult to solve (in terms
of time complexity and apart from a polynomial-time reductioﬁ as any
problem in NP. As a consequence of the definition of NP-completeness, in
order to prove that an optimization problem ? is NP-hard it is enough to
show that " <4, P for an Np-complete problem ?’. Besides, if a problem
P 1s Np-hard, ? € Po implies P=NP.

Indeed, many interesting problems are NP-hard. For example, this hap-
pens with all problems in NPO whose underlying language is NP-complete.

Theorem 1.2 » Let a problem P € NPO be given; if the underlying language of P is Np-
complete then P is Np-hard. = decision problem

PROOF Clearly, the solution of the decision problem could be obtained for free
if an oracle would give us the solution of the constructive optimization
QED problem.

From the preceding result we may easily derive a first consequence con-
cerning the complexity of NPO problems. In fact it turns out that if we
could solve the problem P of Theorem 1.2 in polynomial time we could
also solve its underlying decision problem in polynomial time. Hence,
unless P = NP, no problem in NPO whose underlying language is Np-
complete (e.g., MINIMUM TRAVELING SALESPERSON) can belong to PO
and the next result follows.

Corollary 1.3 » f P # NP then PO # NPo.

The fact that an NPO problem P is NP-hard naturally places P at the
highest level of complexity in the class NPO, like what happens in NP with
the NP-complete problems.

Example 1.21 » As a consequence of Exercises 1.12 and 1.14 and of Example 1.16, we have
that MINIMUM VERTEX COVER, MINIMUM GRAPH COLORING, and MINIMUM
TRAVELING SALESPERSON are NP-hard.

2More formally, and according to the definition of Turing reducibility (i.e., Def. 1.12),
we should write P’ <% SOLY instead of P’ <% P.
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Section 1.4

1.4.4 Optimization problems and evaluation problems
COMPLEXITY OF

OPTIMIZATION

As we have seen, the results of the preceding section have provided us
- PROBLEMS

with some information on the relative complexity of decision problems
and optimization problems in some particular cases.

Let us now see the mutual relations existing among the various versions
of optimization problems (decision, evaluation, and constructive problems)
in a more systematic manner.

First of all, let us state more formally three results that have already been
mentioned in the preceding section.

For any problem P € Npo, Pp =8 Py <} Pc. < Theorem 1.4

The proofs of Pp <4 Pg and of Pg <7 Pc are immediate. Regarding Pz </ PROOF
Pp, due to the properties of NPO problems we have that, for any x € I and

for any y € SOL/(x), the range of possible values of m(x,y) is bounded by

M = 2P() for some polynomial p. Hence, by applying binary search, the

evaluation problem can be solved by at most logM = p(|x|) queries to the

oracle Pp. QED

Less clear is the possibility of deriving the constructive solution when
knowing only the solution of the evaluation problem.

Figure 1.8

A clique of size 4

Let us consider MAXIMUM CLIQUE, that is, Problem 1.11. An example of a <€ Example 1.22
clique of size 4 is shown in Fig. 1.8. Given the solution of the evaluation problem
for MAXIMUM CLIQUE we can construct an optimal solution in polynomial time
as described by Program 1.5 where, given a node v, G(v) denotes the subgraph
induced by v and the set of nodes adjacent to v and G~ (v) denotes the subgraph
induced by the set of nodes adjacent to v.
The cost of running Program 1.5 is given by the following recurrence relation
as a function 7 of the number of nodes in the graph:

1. T(1)is O(1), _
31
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Problem 1.11: ,I\y/laxiymkum Clique
INSTANCE: Graph G = (V,E).
SOLUTION: A clique in G, i.e., a subset of nodes U C V such that

V(vi,vj) €U XU, (vi,vm-::vj.\
MEASURE: |U]|.

= complete graph

Pr\okeré'm 1.5:,’Maxé|ique |

input Graph G = (V,E);
output Maximum clique in G;
begin
k := MAXIMUM CLIQUEE(G);
if ¥ = 1 then return any node in V;
Find node v such that MAXIMUM CLIQUEEg (G(v)) = k;
return {v} U Maxclique(G™(v))
end.

Theorem 1.5 »

PROOF

32

2. T(n)=(n+1)+T(n-1)

(recall that querying the oracle MAXIMUM CLIQUEE costs only one step). The
solution of the recurrence relation is O(n?).

Unfortunately, the straightforward construction of the previous exam-
ple cannot be applied in general. Intuitively it may be that the construc-
tive problem is indeed more complex than the evaluation problem since it
yields additional information.

The next result, however, shows that whenever the decision problem
is Np-complete the constructive, evaluation, and decision problems are
equivalent.

Let P be an NPO problem whose underlying language Pp is Np-complete.
Then Pe S}; Pp.

Let us assume, without loss of generality, that 2 is a maximization prob-
lem. To prove the theorem we will derive an NPO problem P’ such that
P <P P/, and then use the fact that, since £p is NP-complete, Pl < Pp
(actually, P, <h Pp). ”

Problem P’ has the same definition of P except for the measure function
mar, which is defined as follows. Let p be a polynomial which bounds the
length of the solutions of P with respect to the length of the corresponding
instances and, for any solution y € SOLp, let A(y) denote the rank of y
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in the lexicographic order. Then, for any instance x € Ip = Ip and for any
solutiony € SOLa (x) = SOLp(x), let mai (x,y) = 2P0+ mp (x, y) + A(y).

Notice that, for al] instances x of P and for any pair y;,y, € SOLgp (x),
we have that mq (x,y;) # me (x,y2). Therefore there exists a unique op-
timal feasible solution y}, (x) in SOL% (x). Note also that, by definition,
if mei(x,y1) > mp(x,y2) then mp(x,y1) > me(x,y2), thus implying that
i (x) € SOLp(x).

The optimal solution y}, (x) can be easily derived in polynomial time by
means of an oracle for Py, since, given mi, (x), the position of y, (x) in
the lexicographic order can be derived by computing the remainder of the
division between m (x) and 27(H)+1,

We know that an oracle for P}, can be used to simulate P, in polynomial
time. Thus we can construct an optimal solution of P in polynomial time
using an oracle for 7}, and since P}, € NP and Pp is NP-complete, an
oracle for Pp, can be used to simulate the oracle for 7;,.

The following question still remains open: Is there an NPO problem P
whose corresponding constructive problem is harder than the evaluation
problem P57 Indeed, there is some evidence that the answer to this ques-
tion may be affirmative (see Bibliographical notes).

1.5 Exercises

Exercise 1.1 Prove the cost evaluations given in Example 1.1.

Exercise 1.2 Program 1.6 is the Euclidean algorithm for the greatest com-
mon divisor of two integers x,y € Z. Determine its execution cost under
the uniform cost model and the logarithmic cost model. Moreover, show
which are the dominant operations and derive the asymptotic execution
cost.

Exercise 1.3 Given a set P of points in the plane, the convex hull of P is
defined as the minimal size convex polygon including all points in P. It
can be easily proved that the set of vertices of the convex hull is a subset of
P. Prove that the time complexity of the problem of computing the convex
hull of a set of n points is:

1. O(nz);
2. Q(nlogn) (by reduction from sorting);

3. (*) ©(nlogn).

Section 1.5

EXERCISES

QED
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Program 1.6: Euclid

input Integers x, y;
output Greatest common divisor z of x and y;

begin
while x > 0 do
if x > y then
X 1= x—Yy
else if x < y then .
y = y—-x
else begin
2= X
x:=0
end;
return z
end.

Problem 1.12: Maximum Path in a Tree
INSTANCE: Tree T, integer K > 0.
QUESTION: Is the length of the longest path in T less than K?

Exercise 1.4 Let us denote as LOGSPACE the class of all problems solv-
able in work space proportional to the logarithm of the input size where
the work space is the number of memory locations used for performing the
computation, not considering the space required for the initial description
of the problem instance (for example, we may assume that the problem
instance is represented on a read-only memory device, whose size is not
considered in the space complexity evaluation). Prove that SATISFYING
TRUTH ASSIGNMENT is in LOGSPACE.

Exercise 1.5 Show that Problem 1.12 is in LOGSPACE.

Exercise 1.6 Derive a polynomial-space algorithm solving QUANTIFIED
BOOLEAN FORMULAS.

Exercise 1.7 Show that polynomial-time Karp reductions have the transi-
tive property, that is, if P, <5, ® and P, </, B5, then P, <%, P;.

Exercise 1.8 Define a polynomial-time nondeterministic algorithm for the
Problem 1.13.

Exercise 1.9 Recall that a disjunctive normal form (DNF) formula is de-
fined as a collection of conjunctions C = {cy, ¢y, .. .yCm } and is assumed to
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Problem 1.13: Subset Sum ; i e
INSTANCE: Set S = {s1,52,...,5,}, weight functionw: S— N, K € N.

QUESTION: Does there exist any S’ C S such that 3, cgw(s;) = K?

,Pro‘ble'mk1.14:_ Téukto'klogy o o
INSTANCE: Boolean formula F in DNF.

QUESTION: Is it true that every truth assignment on ¥ is a satisfying
assignment?

be satisfied by a truth assignment f if and only if at least one conjunction
c;, with 1 <i < m, is satisfied by f. Show that Problem 1.14 is in co~NP.

Exercise 1.10 Show that NP is closed with respect to polynomial-time
Karp-reducibility. Is NP closed also with respect to polynomial-time Tur-
ing reducibility?

Exercise 1.11 Prove that if there exists a problem P such that both P and
P¢ are NpP-complete then NP = co-NP.

Exercise 1.12 (*) Prove that VERTEX COVER is NP-complete. (Hint: use
the NP-completeness of SATISFIABILITY.)

Exercise 1.13 Prove that the decision problem corresponding to the MAX-
IMUM CLIQUE problem is NP-complete. (Hint: use the previous exercise).

Exercise 1.14 (*) Prove that the decision problem corresponding to the
MINIMUM GRAPH COLORING problem is NP-complete. (Hint: use the
NP-completeness of SATISFIABILITY.)

Exercise 1.15 Prove that the problem of deciding whether a graph is col-
orable with two colors is in P. (Hint: assigna color to a vertex and compute
the consequences of this assignment.)

Exercise 1.16 Prove that the optimization problem corresponding to Prob-
lem 1.15 is in NPO.

Exercise 1.17 A problem P is called Np-easy if there exists a decision

problem ?' € NP such that P <4 ?’. Show that MINIMUM TRAVELING
SALESPERSON is Np-easy. (Hint: Use the language {(G,p,k) | G is a
graph, p is a path that can be extended to a Hamiltonian tour of cost < k}
as the problem 2’ in the definition.)
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OF OPTIMIZATION

PROBLEMS

Pr@blem 1.15: ‘4¥th ver‘t‘ex CO\(ér s
INSTANCE: Graph G = (V,E), integer K.

QUESTION: Is the size of the 4-th smallest vertex cover in G at most
equal to K?

Problem 1.16: MAXIMUM SATISFIABILITY
INSTANCE: Set C of dlSJunctlve clauses on a set of varlables V

SOLUTION: A truth assignment f : V — {TRUE, FALSE }.
MEASURE: The number of clauses in C which are satisfied by f.

Exercise 1.18 Given an oracle for the evaluation version of Problem 1.16,
show how it can be exploited to solve the constructive version of the same
problem.

1.6 Bibliographical notes

ENERAL INTRODUCTIONS to the theory of algorithms and tech-
G niques for their analysis are given in [Knuth, 1969, Knuth, 1971,
Knuth, 1973]. Other fundamental references to techniques for the design
and analysis of algorithms are [Aho, Hopcroft, and Ullman, 1974] and
[Cormen, Leiserson, and Rivest, 1990]. A recent text entirely devoted to
formal methods for the analysis of combinatorial algorithms is [Sedgewick
and Flajolet, 1996].

A detailed exposition of the theory of computational complexity of de-
cision problems and of structural properties of related complexity classes
is provided in several textbooks such as [Balcazar, Diaz, and Gabarro,
1988, Bovet and Crescenzi, 1994, Papadimitriou, 1994]. An excellent text-
book on the theory of computability is [Rogers, 1987], where a detailed
exposition of several types of reducibilities can be found.

The theory of NP-completeness is one of the bases for the topics devel-
oped 1n this textbook: the original concept of NP-complete problems has
been introduced independently in [Cook, 1971], where SATISFIABILITY
was proved to be Np-complete, and in [Levin, 1973]. The theory was fur-
ther refined in [Karp, 1972], where a first set of problems were shown to
be NP-complete by using reductions.

[Garey and Johnson, 1979] represents a landmark in the literature on NP-
completeness and provides a detailed survey of the theory and an extensive
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list of NP-complete problems. Still twenty years later, this book is a fun-
damental reference for people interested in the assessing of the computa-
tional tractability or intractability of decision problems. The compendium
of optimization problems contained in this book and the notation therein
adopted are directly inspired by the list of NP-complete problems given
in [Garey and Johnson, 1979]. This book is also a source of information
on PSPACE-completeness and on the first examples of PSPACE-complete
problems, such as QUANTIFIED BOOLEAN FORMULAS.

The characterization of the complexity of optimization problems has
been first addressed in [Johnson, 1974a, Ausiello, Marchetti-Spaccamela,
and Protasi, 1980, Paz and Moran, 1981], by establishing connections be-
tween combinatorial properties and complexity of decision and optimiza-
tion problems. In particular, the concept of strong NP-completeness intro-
duced in [Garey and Johnson, 1978] proved to be very fruitful in the the-
ory of approximation of optimization problems (see Chap. 3). In [Krentel,
1988] the first structural approach to the characterization of the complex-
ity of optimization problems is provided, by introducing a suitable com-
putation model and the corresponding complexity classes (see Chap. 6).
Further studies on the relationship between decision, evaluation, and op-
timization problems, including Theorem 1.5, are discussed in [Crescenzi
and Silvestri, 1990].
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