Skip intro.

N THE previous two chapters we have seen examples of NPO problems
Ithat can be approximated either within a specific constant factor or
within any constant factor. We also saw examples of NPO problems for
which no approximation algorithm exists (unless P=NP) and examples of
NPO problems for which an approximation algorithm but no approxima-
tion scheme exists (unless P=NP). To deal with these two latter kinds of
problem, in this chapter we will relax the constraint on the performance
ratio in two ways.

We will first allow the performance ratio to be dependent on the input
size. Clearly, any NPO problem for which a solution can be computed
in polynomial time is approximable with respect to this weaker notion of
performance ratio. Indeed, since the measure function can be computed
in polynomial time, the ratio between the optimal measure and the mea-
sure of any feasible solution is always bounded by a function exponen-
tial in the length of the input. However, our goal is to find algorithms
that produce solutions whose ratio is bounded by a more slowly increasing
function. In particular, we will provide an O(logn)-approximate algorithm
for MINIMUM SET COVER, where n denotes the cardinality of the set to
be covered, an O(n/logn)-approximate algorithm for MINIMUM GRAPH
COLORING, where n denotes the number of nodes of the graph, and an
O(logk)-approximate algorithm for MINIMUM MULTI-CUT, where k de-
notes the number of pairs of vertices that have to be disconnected.

We will then consider asymptotic approximation schemes, that 1is,
schemes whose performance ratio is bounded by a constant, for any in-

alabert
Cuadro de texto
Skip intro.

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

124

Theorem 4.1 B

PROOF

fProblem 4.1: l\/hnlmum Set Cover
INSTANCE: Collectlon C of subsets of a finite set S

SOLUTION: A set cover for S, i.e., a subset C' C C such that every ele-
ment in S belongs to at least one member of C'.

MEASURE: |C'].

stance whose optimal measure is large enough. In this case, we will show
that MINIMUM EDGE COLORING and MINIMUM BIN PACKING admit an
asymptotic approximation scheme. We have already seen in Sect. 2.2.2
that the latter problem belongs to the class APX and in Sect. 3.2.2 that it
does not belong to PTAS (unless P=NP). We will see in this chapter that
the same holds for the former problem. In a certain sense, the existence of
an asymptotic approximation scheme shows that these two problems are
easier than other problems in APX — PTAS.

4.1 Between APX and NPO

s WE already saw in the preceding chapters, for several problems
A.(such as MINIMUM TRAVELING SALESPERSON) it is possible to
prove that a constant performance ratio is not achievable unless P = NP. In
these cases we can relax the constant requirement on the ratio by looking
for algorithms whose performance depends on the length of the instance.
In this section we will give three examples of these algorithms.

4.1.1 Approximating the set cover problem

The first problem we consider is MINIMUM SET COVER (see Prob-
lem 4.1). For this problem, let us consider Program 4.1, which is a simple
polynomial-time greedy procedure to cover set S. At each iteration, the
algorithm chooses the set that covers the maximum number of uncovered
elements (breaking ties arbitrarily) and updates the remaining sets.

Program 4.1 is a (|Inn| + 1)-approximate algorithm for MINIMUM SET
COVER, where n denotes the number of elements of the universe 158

Given an instance of MINIMUM SET COVER, let k denote the largest cardi-
nality of the sets in the collection. We will now prove that, for any optimal

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea poligonal

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Rectángulo

Program 4.1: Greedy Set Cover

Section 4.1

BETWEEN APX

input Collection C of subsets of a finite set S; AND NPO
output Set cover C’;
begin
U .= §;
for each set ¢; in C do ¢} := ¢;; ————Make a copy of collection C
C':=0;
while U # 0 do
begin
Let clj be a set with maximum cardinality; Find the b_ig_gest set in the copy co!lection.
C' : C'U {Cj}; Pgt the orlglngl corresponding set in C'. .
; Disregard all its elements from S and from each set in
U:=U-c}; the copy collection.
for each cf- do C; = C; - C'j Repeat until all elements are disregarded.
end;
return C'
end.
solution C*,
>, Hlal) > |, (4.1)
cieCt

where, for any integer r > 0, #{(r) denotes the r-th harmonic number (that
is, H(r) =¥!_, 1/i)and C' is the set cover obtained by Program 4.1. Since
|lci] <k, for any i with 1 < i <m, H (k) < |Ink]+ 1, and k < n, the above
inequality implies that

€< 3, H(k) < H(n)|C'] < ([lnn]+1)]C7].

cieC*

That is, the performance ratio of Program 4.1 is at most |Inn | + 1.

For any instance x = (S,{c1,...,¢n) of MINIMUM SET COVER, let us
denote by ajy,...,ac| the sequence of indices of the subsets that belong
to the set cover C'. Moreover, for any j € {1,...,|C'|} and for any i €
{1,...,m},let ¢! be the surviving part of c; before index a; has been chosen
(that is, the subset of ¢; that does not intersect any chosen set). Clearly,

c} = ¢;, for any i. Moreover, for the sake of simplicity, we will adopt the

convention that ci-C’Hl =0, forany i € {1,...,m}. The set of elements of
c; that are covered for the first time by ¢,; is given by
ciﬂcgj:c{ﬂcéj:c{~c{+l. (4.2)
For any i € {1,...,m}, let [; denote the largest index such that lcf" | > 0:
that 1s, after Ca, has been included into C' the subset ¢; has been covered.
The proof of Eq. (4.1) consists of the following two steps:

125

alabert
Cuadro de texto
Make a copy of collection C

alabert
Línea

alabert
Cuadro de texto
Find the biggest set in the copy collection.
Put the original corresponding set in C'.
Disregard all its elements from S and from each set in the copy collection.
Repeat until all elements are disregarded.

alabert
Línea

alabert
Línea

alabert
Línea poligonal

Chapter 4

1. Prove that, forany i € {1,...,m},
INPUT-DEPENDENT “

AND ASYMPTOTIC IC'|

c
APPROXIMATION ﬂ(lcil)z; a

leinel|

2. Prove that, for any set cover C" (and, therefore, for any optimal so-

lution),
Il c;neh
3, 3 a0 e
ciecnj=1 |ca;

Both steps consist of simple algebraic calculations. For what regards the
first step, notice that, for any iwith1 <i<m,

c j |y +1 R, +1
Clend) _ Eliol ¢ =19
j=1 lez,-‘ j=1 |Cglj‘ j=1 \Ct]l
f IC{ 1 ; el “lczjﬂi 1
— — <

,)
< Y (301 - H D) = H(ef) = H el
where the first equality follows from Eq. (4.2) and the first inequality is due
to the fact that, for any j with 1 < j <|C'|, |c!] < |cl ;| (since the algorithm
always chooses the biggest surviving set).

The second step follows as easily as the first one. Namely, for any set

cover C",
Clienc €1 el
s Slnal S L5 andiz 3 el
cieC" j=1 |ca,| j=1]ca;| ciecr i=1ca;

where the inequality is due to the fact that C" is a set cover. In conclusion,
QED Eq. (4.1)1s satisfied and the theorem follows.

Example 4.1 B Let us consider the instance of MINIMUM SET COVER with S = {1,...,24}
and with C given by the following seven subsets of : 1 ={1,...,8}, 2 =
{9,...,16},¢c3 = {17,...,24}, ca = {5,6,7,8,13,14, 15,16,21,22,23,24},¢5 =
{3,4,11,12,19,20}, c6 = {2,10,18}, ¢7 = {1,9,17}. The first subset cho-
sen by Program 4.1 is c4. As a consequence, the first three subsets become
cd =A{1,...,4} a=A19,.., 12}, and c% = {17,...,20}, respectively. The next
subset chosen is cs and, once again, the algorithm modifies the first three subsets
that become ¢; = {1,2}, c3 ={9,10}, and 3 = {17,18}, respectively. At the next
two iterations of the loop, the subsets chosen are cg and c7, respectively, so that
the solution computed by the algorithm uses four subsets. On the other hand, it is
easy to verify that the first three subsets form an optimal solution.

126

Program 4.2: Greedy Graph Color‘ihg .

input Graph G = (V,E);
output Node coloring of G;
begin
=0
U:=V,;
while U # 0 do
begin
ii=1i4+1;
W .=U,;
while W #£ 0 do
begin
H := graph induced by W;
v := node of minimum degree in H;

) =1
W :=W — {v} — {z]zis a neighbor of vin H}
end;
U:=U- f~1i);
end;
return f

end.

The analysis of Theorem 4.1 is tight: indeed, it is possible to generalize
the previous example in order to prove such statement (see Exercise 4.1).

4.1.2 Approximating the graph coloring problem

In this section we provide an O(n/logn)-approximate algorithm for MIN-
IMUM GRAPH COLORING based on repeatedly finding an independent set
(i.e., a set of vertices that can be colored with one color) and coloring it
with a new color, until all vertices have been colored. This algorithm is
given as Program 4.2 and, clearly, runs in polynomial time. The next result
gives an upper bound on its performance ratio.

Program 4.2 colors any k-colorable graph G = (V,E) with at most
3|V|/log, |V| colors.

Let H be the graph considered by the algorithm at the beginning of a
generic iteration of the inner loop and let W be the corresponding set
of vertices. Since H is a subgraph of a k-colorable graph, H is a k-
colorable graph and, therefore, it must contain an independent set of size
at least |[W|/k. Each vertex of this set has degree at most |W| — |W|/k =

Section 4.1

BETWEEN APX

AND NPO

4 Lemma 4.2

PROOF

127

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Rectángulo

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

128

QED

Theorem 4.3 ¥

PROOF

QED

Example 4.2 &

|W|(k — 1)/k. This implies that the minimum degree of H is at most
|W|(k —1)/k so that at least |W|—|W|(k—1)/k = |W|/k nodes will still
be in W at the beginning of the next iteration. Since the inner loop ends
when W becomes empty, we have that at least [log, |W|] iterations have to
be performed, which in turn implies that, at the end of the inner loop,

[{v|veWASf(y) =i} = [log|WIl.

Hence, for each used color i, the number of vertices colored with i 1s at
least [log,|U|], where U denotes the set of nodes uncolored just before
color i is considered.

Let us now analyze the size of U at the beginning of an iteration of the
outer loop. If |U| > |V|/1og, |V, then we have that

oge|U1] > logg [U] > Tog V1 oy V1) > loge v/IV] = 5 o V1

This implies that the size of U decreases by at least +log,|V| at each
iteration: as a consequence, the first time |U| becomes smaller than
|V|/log; |V, the algorithm has used no more than 2|V|/log, |V| colors.

If |U| < |V|/log|V], it is clear that the algorithm colors all remaining
nodes in U with at most |U| < |V|/log|V| colors. It follows that the
algorithm uses at most 3[V|/log; |V| colors.

MINIMUM GRAPH COLORING admits an O(n/logn)-approximate algo-
rithm, where n denotes the number of nodes.

The previous lemma implies that, for any input graph G with n nodes,
the solution returned by Program 4.2 uses at most 3n/10gu (g1 =
3nlog (m*(G)) /logn colors, where m*(G) denotes the minimum number
of colors necessary to color G. This implies that the performance ratio of
this algorithm is at most

3nlog (m*(G)) /logn
W@

(n/logn)

and the theorem follows.

Let us consider the graph of Fig. 4.1(a). In this case m*(G) =3: indeed, we can
assign to nodes a, d, and h the first color, to nodes b, e, and g the second color,
and to nodes ¢ and f the third color. Program 4.2, instead, could first choose node
a and assign to it the first color. The resulting graph H is shown in Fig. 4.1(b): at
this step, node e is chosen and the first color is assigned to it. The new graph H 1s
shown in Fig. 4.1(c): in this case, the algorithm could choose node & and assign

to it the first color. In conclusion, after exiting the inner loop, nodes a, e, and &
have been assigned the first color.

alabert
Línea

alabert
Rectángulo

Section 4.1

BETWEEN APX

AND NPO
d e
f g f g
h h h Figure 4.1
The first iteration of the
(a) (b) (c) outer loop of Program 4.2
Since uncolored nodes exist (see Fig. 4.2(a)), the algorithm will continue exe-
cuting the outer loop and a possible run of the algorithm could assign the second
color to nodes b and g. Successively, the third color could be assigned to nodes ¢
and f and, finally, the fourth color is assigned to node d (see Figs. 4.2(a) and (b)).
Hence, in this case the algorithm produces a 4-coloring.
b c c
d d
f & / Figure 4.2
The next steps of
(a) (b) (©) Program 4.2

4.1.3 Approximating the minimum multi-cut problem

In this section, we give another example of how duality relationships be-
tween integer linear programming problems (see Appendix A) can be ex-
ploited to derive efficient approximation algorithms (a first example of an
approximation algorithm based on the duality relationship has been given
in Sect. 2.4.2).

First of all, let us recall that MAXIMUM FLOW (see Problem 4.2) con-
sists in finding the maximum flow that can be routed in a network from a

129

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

130

Problem 4.2: Maximum Flow
INSTANCE: Graph G = (V,E), edge capacity function ¢ : E — Q™ pair
(5,0) €V X V.

SOLUTION: A flow from s to ¢, that is, a function f: VXV = Q™ such
that:

1. f(u,v) is defined if and only if (u,v) € E;

2. fu,v)+ f(v,u) < c(u,v), for each (u,v) € E, that is, the total flow
in an edge cannot exceed its capacity;

3. Suev—n (V) = 2Zuev-{v} f(v,u) foreachveV - {s,t}, that s,
the flow entering in a node must equate the flow exiting the same
node, for all nodes except the source and the destination.

MEASURE: Xyev—{i} flu,t) — Xuev-{1) f(t,u), that is, the total flow en-
tering the destination.

source s to a destination ¢ without violating some specified edge capacity
constraints. Moreover, MINIMUM CUT (see Problem 4.3) requires to find
the set of arcs of minimum total capacity whose removal disconnects the
source from the destination in a network. These two problems are related
through the maxflow-mincut theorem (see Bibliographical notes), a central
result in flow theory, that lies at the basis of the solution of many relevant
optimization problems. Such theorem states that, since a duality relation-
ship holds between MAXIMUM FLOW and MINIMUM CUT, their optimal
solutions have the same value.

Let us now consider the generalization of MAXIMUM FLOW to the case
in which more than one commodity has to flow in the network (see Prob-
lem 4.4). This problem has the following linear programming formulation

LPymr:
k . .
maximize Z Z (fou — fiv)
=1 VEV"‘.{H} .
subject to Y, fou— Z fin=0 VeV —{syti},i=1,...,k
(vu)eE (u,v)€EE
ko ko
thlzv+ Zf\l/u < Cuy V(LL,V) cE
i=1 i=1 -
fin >0 V(u,v) € E,

where £, is the flow of commodity i along edge (u,v) from u to v) and ¢,y
denotes the capacity of edge (u,v). The first set of constraints represents

Section 4.1

P‘roblemk4.3: Minimum Cut S S i

INSTANCE: Graph G = (V,E), edge capacity function ¢ : E Q7, pair BETWEEN APX
AND NPO

(s,1) eV V.

SOLUTION: A set E' C E of edges whose removal disconnects s and 7.

MEASURE: The overall capacity of E', i.e., X.cp c(e).

flow conservation at vertices, while the second set of inequalities states
that the total flow value assigned to each edge does not exceed its capacity.

Let us also consider the corresponding generalization of MINIMUM
CuUT, shown.n Problem 4.5. This problem has the following integer linear
programming formulation:

minimize Z dyCuy

(u,v)EE ' '

subject to 2 dpml(u,v) > 1 Vol € Byi=1,...,k
(uv)eE
d,, €N V(u,v) € E,

where P, denotes the set of all paths connecting s; to ;, 7’51] is the j-th of
such paths, T/ (u,v) is 1 if (u,v) is an edge in n/, and ! (u,v) is O other-
wise. Notice that, indeed, any solution of the above problem corresponds
to a multi-cut, defined as the set of edges (u,v) such that d,,, > 0. Notice
also that the above formulation has an exponential number of constraints:
however, an equivalent, less natural, formulation /LPyc with polynomially
many constraints is the following one (see Exercise 4.8):

minimize Z diCuy
(u,v)EE
subject to dw>p, —p, Y,v)€E, i=1,...,k
pLeN wev,i=1,...,k
dy €N V(u,v) € E,

where d,,, is a variable that, by the minimization requirement, will assume
value at most 1 in the optimal solution and with such a value will denote
that edge (u,v) is in the multi-cut. Intuitively, variables p', denote a poten-
tial associated to flow i at vertex v. In this way, the constraints impose that,
for each pair (s;,7%), they must be sufficiently “far apart” to always have at
least one edge in the multi-cut between them.
It is possible to see that, by applying the well-known primal-dual trans-
formation (see Appendix A) to LPyyr, we obtain the same linear program -

131

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

132

Problem 4.4: Maximum Multi-commodity Flow o
INSTANCE: Graph G = (V,E), edge capacity function ¢ : E Q" k
pairs (s;,1;) € VX V.

SOLUTION: A set of k flows ft, each from s; to 1, fori=1,...,k, such
that the total flow value Sy; f(u,v) that passes through edge (u,v) does
not exceed its capacity.

MEASURE: The sum of the total flows entering all destinations.

T e
INSTANCE: Graph G = (V,E), edge capacity function ¢ : E—QF, k
pairs (s;,4;) € VX V.

SOLUTION: A subset E' C E of edges whose removal disconnects s; and
t, 1= 1,...,](.

MEASURE: The overall capacity Y ez c(e) of E'.

as by relaxing the integrality constraints of ILPyc. Such a program is
the linear programming formulation of MINIMUM FRACTIONAL MULTI-
CUT. This situation is similar to what happens in the case of MAXIMUM
FLOW, whose dual is MINIMUM FRACTIONAL CUT, i.e., the relaxation of
MINIMUM CUT to include also non integral solutions. However, the com-
binatorial structure of MINIMUM FRACTIONAL CUT guarantees that any
optimal solution is an integral one and, as a consequence, an optimal solu-
tion also for MINIMUM CUT. Unfortunately, the equality does not hold for
MINIMUM FRACTIONAL MULTI-CUT and all we can say in this case is
that the capacity of the minimum multi-cut in a graph is at least the value
of the maximum multi-commodity flow in the same graph.

Actually, a stronger relationship has been shown between MINIMUM
MULTI-CUT and MAXIMUM MULTI-COMMODITY FLOW: given a graph
G = (V,E) with k commodities, the capacity of the minimum multi-cut is
at most O(logk) times the maximum flow in G.

In the following, we present an approximation algorithm that, given an
instance of MINIMUM MULTI-CUT, returns a solution whose capacity is
bounded by O(logk) times the maximum multi-commodity flow in the
graph. This guarantees that the value of such a solution is at most O(logk)
times the capacity of the minimum multi-cut. The algorithm exploits the
knowledge of an optimal fractional multi-cut, which can be efficiently
computed by solving in polynomial time either MINIMUM FRACTIONAL

MULTI-CUT or its dual MAXIMUM MULTI-COMMODITY FLOW.

Letd: E — Q7 be a function that associates to each edge (u,v) the value
of variable d,,, in the optimal solution of MINIMUM FRACTIONAL MULTI-
CuT. If we consider the graph G = (V,E) with functions ¢ : E — Q7
and d : E+— Q% and k pairs {(s1,11),..., (S, %) }, we may see it as a set
of pipes (edges) connected at nodes, where pipe (u,v) has length d(u,v)
and cross section c¢(u,v) (and thus volume c(u,v)d(u,v)). In particu-
lar, this pipe system is the one of minimum volume such that, for each
pair (s;,%;), the distance between s; and #; is at least 1. Moreover, let
¥ = ¥(uv)er c(#,v)d(u,v) be the overall volume of G: clearly, since MIN-
IMUM FRACTIONAL MULTI-CUT is a relaxation of MINIMUM MULTI-
CuT, ¥ is a lower bound on the optimal measure of the corresponding
MINIMUM MULTI-CUT problem.

The algorithm (see Program 4.3) works by iteratively producing a se-
quence V = (V,Vs,...,V,) of disjoint subsets of V such that, for each
r=1,...,q:

1. at most one between s; and #; is contained in V,,, foreachi=1,...,k;

2. there exists [€ {1,...,k} such that either s; or #; is contained in V.

Note that, for any » with 1 < r < g, the subsequence (V1,...,V,) separates
at least r pairs (s;,%;).

The algorithm works in phases, where at each phase a new set V, is
added to 7/, until each vertex is included in one subset of V. In particular,
let G, = (V,,E,) be the graph induced by V, =V — (U;;ivj): if there
exists no pair (s;,#;) such thats; € V, and t; € V,, then the algorithm sets
V, = V, and returns the multi-cut {(u,v) € E |u € V,Av € V,Ap #q}.

Otherwise, let (s;,1;) be an arbitrarily chosen pair such that both s; € vV,
and t; € V,. The algorithm then computes a suitable set V, C V, such that
exactly one between s; and #; is contained in V,. This is performed by
selecting a set of vertices that are within a certain distance p from s;. This
set of vertices is a ball centered at s; and of radius p. The algorithm starts
with p = 0 and iteratively increases p until a suitable condition is verified.

In order to describe more in detail how this is done, let us first introduce
some definitions. For any u,v € V, let 8(u,v) be the length of a shortest
path from u to v, with respect to edge length d : £ +— Q*. Foranyv eV,
and for any p € Q, the ball of radius p around v (with respect to d) is
defined as

Bs(v,p) ={ueV,|du,v) <p}.

Section 4.1

BETWEEN APX

AND NPO

133

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

Figure 4.3

Sample graph G: square
srackets contain the values of
function d

134

Vs

1 [3/8]
O

V6

2 [1/8]
2 [1/3]

6 [1/12] -

T

4 [1/3]

4 [1/9] 3 [1/4]

Vi

Moreover, let
Ty(vp) = {(m2) € E, | w € Bs(v,p) A2 € Bs(vP)]
be the set of edges completely contained in Bs(v,p) and let
TFy(v,p) = {(w,2) € E,— Eo(v,p) | w € Bs(v,p) V2 € Bs(v,p)}

be the set of edges partially contained in Bs(v,p). Finally, the volume of
Bs (v, p) is defined as

¥
Viup) = o+ X cmadtna+
(wz) € Es(v:pP)
Z C(W7Z) (p——min(?)(v,w),ﬁ(v,z))).
(W?Z)GES(WP)

while the cost of Bs(v,p) is defined as

Cs(mp)= 2 <cwa).

(W,Z) €E5(V7p)

Note that, apart from a fixed amount of volume ¥ /k (that we assume lo-
cated on v), each edge contributes t0 the volume of Bs(v,p) for its frac-
tion contained in Bs(v,p). On the other side, an edge contributes to the
cost of Bs(v,p) for its capacity, if it is in the cut separating Bs(v, p) from
V- @5 (V, p) .

p=3/8 p=25/63 p=1

Section 4.1

BETWEEN APX
AND NPO

Figure 4.4
The balls Bg(v;, p) for som
values of p

Let us consider the graph shown in Fig. 4.3, where the square brackets contain the <€ Example 4.3

values of function d, and assume that k = 2. Hence, the amount of volume that
the algorithm assumes to be located at each node is

2
¥ _ma 23,
k 2 48

Moreover, if we consider v; as the center of the balls, we have that 8(vy,v2) =
1/4, 8(v1,v3) = 7/36, 8(vi,va) = 1/9, 8(v1,vs) = 3/8, 8(v1,ve) = 25/63. In
Fig. 4.4 we show the balls centered in v; corresponding to p = 8(vy,v4) — €, p =
S(vi,v3) — &, p=8(vi,v2) —€, p=0(v1,vs) —¢&, p=298(vi,v6) &, and p=1—
g, where € is abitrarily small. Let us now consider, for example, Bs(vi,1/4 —
g). This ball contains vertices v1, v3, and v4 and we have that Fs(vi,1/4—¢) =
{(v1,v3),(v1,v4),(v3,v4)} and that E5(v;,1/4—¢) = {(vi,v2), (v3,v6), (v4,v6)}.
Hence, it results

1 Y 4 4 1 1 1 7 1 1
Va(vl,Z—S) = 'k-"i—g‘l“§+§+3(Z—~8)+2(Z—8~§6‘)+7(Z——8—~§)
213 10, .

and
Cs(vi,1/4—e)=34+2+T=12.

135

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

Example 4.4 »

Figure 4.5
The function Cs(v,p)/Vs(v, p)

Lemma 4.4 b

PROOF

136

Observe that we can consider the ratio Cg(v,p)/Vs(v,p) as a function
of p. Let {uy,ua,..., 4y, _1} be the set of nodes in V, —{v} ordered by
non decreasing distance from v (that is, i < j = 6(v,u;) < 8(v,u;)) and
let {ry,72,.. .,qul_l} be the corresponding distances from v. It is easy
to see that the function Cs(v,p)/Vs(v,p) is continuous and non-increasing,
for 0 < p < ry and for r; < p < ripy (i = 1,...,]V,| —2). This implies
that it tends to its minimum as it approaches some r; from below. Notice,
moreover, that the derivative of Cg(v,p)/Vs(v,p) with respect to p is well
defined for all values p & {r1,..., 7y, -1 } (see Fig. 4.3).

Let us consider again the graph shown in Fig. 4.3 and assume that v; is the center
of the balls. In this case, 1] = v4, Uy = v3, U3 = Vo, Ugq = vs, and us = vg. More-
over, r{ = 1/9, rp =7/36, r3 = 1/4, r4 = 3/8, and rs = 25/63. In Fig. 4.5 the
behavior of function Cg(v,p)/Vs(v,p) is shown in the interval of interest (that is,
(0,25/63)).

A

Cs(v.p)/V5(v,p) |

P
1/9 7/36 1/4 3/8 25/63 p

Let us now prove that there exists a value p, < 1/2 for which the corre-
sponding value Cg(v,p,)/Vs(v, p,) is sufficiently small.

There exists a value p, < 1/2 such that

Cﬁ(v7 p)”)

V5(Va pr)

Let us first notice that Cg(v,p) is the derivative of V3(v,p) with respect to
p. As a consequence, whenever such a derivative is defined, we have
Cs(v, 0
vP) _ 9 1y 0, p)).
Vs(v,p) 9p
Assume now, by contradiction, that, for every p € (0,1/2), we have
Cs(v,p)/Vs(v,p) > 2In2k. Two cases are possible:

< 21n2k.

Section 4.1

1. r; > 1/2. This implies that Cs(v,p)/Vs(v,p) is differentiable in

(0,1/2). As a consequence, we have that BETWEEN APX

AND NPO

P
é—a(ang(v,p)) > 21n2k

and, by integrating both sides in (0,1/2),

n VS(V’ 1/2)

In2k
VS(Vao) -

which implies Vs(v,1/2) > 2kV5(v,0) = 2¥. This contradicts the
fact that W ++¥/k is the maximum possible value of Vs(v,p), which
is obtained when p > 17, |-1> i.e., when all the graph is included.

2. There exists ¢, with 1 < ¢ < |V,| =1, such that r1,...,7 € (0,1/2)
(therefore, Cs(v,p)/Vs(v, p) might not be differentiable in (0, 1/2)).
Let ro = 0 and r;yy = 1/2. If we apply the same considerations
above to each interval (r;,7:41), for i =0,...,t, we obtain that

InVs(v,riy1) — InVs(v,ri) > (rip1 —ri)21n2k.

Since the volume does not decrease in correspondence to each ver-
tex, by summing over all intervals we get

VES(Va 1/2)

=InVs(v,1/2) = 1nV5(v,0) > In2k
Vg(V,O) n 5(\), /) n 5(V7)> nzik,

thus reducing to the previous case.
The lemma is thus proved. QED
We are now ready to prove the main result of this section.

Given an instance x of MINIMUM MULTI-CUT, the solution returned by < Theorem 4.5
Program 4.3 with input x is a feasible solution whose cost myic (x) satisfies

the inequality
myc(x) < 4In(2k)m*(x).

Let us first observe that the solution returned by the algorithm is feasible. PROOF

Indeed, since distances d(u,v) are derived by solving MINIMUM FRAC-

TIONAL MULTI-CUT, we have that d(s;,z;) > 1, fori=1,...,k. As we

may observe, for all i = 1,...,k, Program 4.3 separates s; from all vertices

at distance at least 1/2: in particular, it separates s; from ;. Hence, the

solution returned by the algorithm is a multi-cut. o

137

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

QED

138

Program 4.3: Multi-cut

input Graph G = (V, E), pairs (s;,1;), functions ¢, d;
output Multi-cut E';
begin
ro= 1
VvV, =V,
while V, # 0 do begin
if there exists i such that s; € V,At; € V, then
begin
Let p, be such that Cs(si, pr)/Va(si,pr) < Ca(si,p)/Va(si, p)
forall p = 8(s;,u) —e,u€Vandp <1/2;

V= By(si,pr);
ri=r+l
V=V —=Viep
end
else
V, =0
end;
E' := set of edges between vertices in V; and vertices in V}, for i £ Ji
return E’
end.

For what concerns the performance ratio, let us now prove that myc (x) <
In(2k)¥. The theorem will then follow since ¥ is a lower bound on the
optimal measure of MINIMUM MULTI-CUT.

Let Vi, Va,...,Vu (h < k) be the subsets of V produced by Program 4.3.
Let Vs(si,,p1), Vs(Sizs P2), - - -» Va(Si,» Pi) be the volumes of the correspond-
ing balls and let Cs(si,,p1),Cs(Si,P2)5- ..,Cs(si,,pn) be the costs of the
corresponding cuts.

By Lemma 4.4, the cost of the multi-cut returned by the algorithm is

h

h
myc(x) = Z Cg(Sij,pj) < 21n(2k) V5(S,'j, pj)-
. —

Jj=1 J

Notice now that 3_, Vs(s;,,p;) is equal to the overall volume Y of the
system, plus /2 < k contributions of size Y /k. As a consequence,

h
myc(x) < 21n(2k) Y, Vs(si;, p)) < 41n(2k)Y,
j=1

and the theorem is proved.

Section 4.2

4.2 Between APX and PTAS
BETWEEN APX

5 N ASYMPTOTIC approximation scheme is a weaker form of approx- AND PTAS

imation scheme based on the idea that the performance ratio of the
returned solution may improve as the optimal measure increases. As we
will see in this section, NPO problems exist for which no PTAS can be
developed (unless P = NP) but that admit an asymptotic approximation
scheme. Let us start with the formal definition of this latter notion.

An NPO problem P admits an asymptotic approximation scheme if there 4 Definition 4.1

exist an algorithm A and a constant k such that, for any instance x of P Asymptotic approximation
and for any rational r > 1, A(x,r) returns a solution whose performance scheme

ratio is at most r +k/m* (x). Moreover, for any fixed r, the running time of

A is polynomial.

The class PTAS™ is the set of all NPO problems that admit an asymptotic
approximation scheme. Clearly,

Ptas C PTAS™ C APX.

Moreover, it is possible to prove that these inclusions are strict if and only
if P £ NP (see Exercise 4.2).

4.2.1 Approximating the edge coloring problem

In this section we consider MINIMUM EDGE COLORING, that is, the prob-
lem of coloring the edges of a graph with the minimum number of colors
(see Problem 4.2.1).

Minimum Edge Coloring
INSTANCE: Graph G = (V,E).

SOLUTION: A coloring of E, i.e., a partition of E into disjoint sets
Ey,E,,...,Exsuchthat, for 1 <i<k, notwoedges in E; share a common
endpointin G.

MEASURE: The number of colors, i.e., k.

Given a graph G whose maximum degree is A, it is easy to see that the
optimal value of MINIMUM EDGE COLORING is greater than or equal to A.
The next result will show that, on the other hand, this value is never greater
than A + 1. Deciding which one of the two cases holds is an Np-complete
problem (see Bibliographical notes) thus implying that MINIMUM EDGE

COLORING is not in PTAS (see Exercise 4.9). -
139

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea poligonal

alabert
Rectángulo

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

Figure 4.6

The star starting from (i, v)

Theorem 4.6 » There exists a polynomial-time algorithm A such that, for any graph G

PROOF

140

of maximum degree A, A(G) returns an edge-coloring with at most A+ 1
colors.

Let G = (V,E) be an instance of MINIMUM EDGE COLORING and let A
denote the maximum degree of G. The algorithm starts from a new graph
G' = (V,E' = 0) (which can be trivially edge-colored with 0 colors) and
repeatedly performs the following operations until all edges of E have been
moved to G

1. Consider an uncolored edge (i,v) ¢ E'.

2. Extend the edge-coloring of G’ = (V,E’) into an edge-coloring of
G" = (V,E'U{(u,v)}) with at most A+ 1 colors.

3. Delete (u,v) from E and add it to E'.

We now present step 2 above in detail. Let us assume that a (partial)
edge-coloring of G' with at most A+ 1 colors is available such that all
edges are colored but edge (u,v). For any node v, in the following we
denote by u(v) the set of colors that are not used to color edges incident
to v. Clearly, if the coloring uses A+ 1 colors, then, for any v, u(v) # 0.
In this case, we denote by ¢(v) one of the colors in u(v) (for instance, the
color with minimum index).

We can easily find in linear time a sequence (1, Xp), .. ., (#,%s) of distinct
edges of G' incident to u such that (see Fig. 4.6 where s = 4):

1. xo=v.

2. For any i with 1 < i < s, the color of edge (u,x;) is ¢(x;-1), that is,
edge (u,x;) is colored with a color not used for any edge incident to
Xi—-1-

alabert
Línea

alabert
Rectángulo

Section 4.2

3. The sequence is maximal, i.e., there is no other edge (i, w) which

does not belong to the sequence such that its color is c(x;). BETWEEN APX

AND PTAS
Note that if s = 1, that is, the sequence contains only (u,v), then u(u) N
u(v) # 0: in this case, coloring (u,v) is a trivial task.
We distinguish the following two cases:
xXo=V
U
Figure 4.7

The case in which
c(o) € u(u)

1. ¢(xs) € u(u): in this case, we can extend the coloring of G’ in or-
der to include (u,v) by shifting the colors of the sequence. More
formally, we start coloring (u,x;) with c(x;); then, c(x;-1) (that is,
the previous color of (u,x;)) is now in u(u), that is, ¢(xs—1) € u(u).
By repeatedly applying this reasoning, we modify the colors of all
edges in the sequence but the first one. At the end of this process,
we have that c(v) € p(u) so that (1,v) can be colored with ¢(v) (see
Fig. 4.7).

XO=V XOZV

Figure 4.8

The case in which

c(x4) & p(u) and P does
not end in u

2. ¢(xs) ¢ p(u): in this case, one edge (u,x;) must have been colored
with c(x;) (otherwise, the sequence is not maximal). This implies
that ¢(x;—1) = ¢(x;). Let P;_; be the maximal path starting from x;_; .
141

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

(a)

(b)

Figure 4.9

Py cannot intersect Py

formed by edges whose colors are, alternatively, ¢(u) and ¢(x;) and
let w be the last node of this path. Notice that P,_; may have length
0: in such a case, clearly, w = x;_;. Two cases may arise.

w # u: in this case we can interchange colors c(u) and c(x;)
in P,_; and assign color ¢(u) to (u,x;1). Note that in this way
c(x;-1) € p(u) and, thus, the subsequence preceeding x;—; can
be dealed as in Case 1 above (see Fig. 4.8).

w = u: in this case, we derive in linear time the path P starting
from x, formed by edges whose colors are, alternatively, c(u)
and c(xs). This path cannot intersect P,_1. On the contrary,
let z be the first node in P, that belongs to P;_1. If z = u then
there are two edges incident in i with color ¢(x,) contradicting
the property of a feasible edge coloring of G'. If z # u, then
there must exist three edges incident to z colored with c(u) or
c(xs): once again this contradicts the property of a coloring
(see Fig. 4.9).

Since P; does not intersect P;_1, it cannot end in u: thus, anal-
ogously to Case 2.1 above, we can interchange colors c(u) and
c(x;) in Py and assign color c(u) to (u,xs). Finally, the sub-
sequence preceeding x,; can be dealed as in Case 1 above (see
Fig. 4.10).

In both cases, we have obtained a valid edge-coloring of G’ with at most
A+ 1 colors. Since the updating of the coloring of G' has to be done |E|
times, it also follows that the running time of the algorithm is bounded by
QED a polynomial.

142

The above theorem implies that a polynomial-time algorithm exists such
that, for any graph G, the performance ratio of the solution returned by the
algorithm is at most

m*(G)+1 1

(G TG

that is, MINIMUM EDGE COLORING admits an asymptotic approximation
scheme with k = 1 (observe that a similar argument applies to any NPO
problem that admits a polynomial-time algorithm whose absolute error is
bounded by a constant). In conclusion, we have the following result.

MINIMUM EDGE COLORING belongs to the class PTAS™.

4.2.2 Approximating the bin packing problem

In this section we will prove that MINIMUM BIN PACKING belongs to
PTAS™: note that, in this case, no polynomial-time algorithm whose abso-
lute error is bounded by a constant exists (unless P=NP). We will provide
an asymptotic approximation scheme for MINIMUM BIN PACKING, which
is based on a combination of the First Fit algorithm and a partitioning tech-
nique and is structured into the following five steps.

1. Eliminate small items.
2. Group the remaining items into a constant number of size values.

3. Find an optimal solution of the resulting instance.

Section 4.2

BETWEEN APX
AND PTAS

Figure 4.10

The interchange of colors ir
Py and the shift in the
remaining sequence

<4 Theorem 4.7

143

alabert
Rectángulo

alabert
Rectángulo

alabert
Línea

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

alabert
Rectángulo

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

144

Example 4.5 »

4. Ungroup the items.
5. Reinsert small items.

We will first describe step 3, then steps 1 and 2 along with their “inverse”
steps 5 and 4, respectively.

Solving instances of restricted bin packing

For any integer constant ¢ >0 and for any rational constant 6 < 1, let us
consider a restricted version of MINIMUM BIN PACKING in which, for any
instance, there are at most ¢ different sizes for the items (i.e., the cardinality
of the range of the size function s is bounded by ¢) and the size of each
item is at least B -, where B denotes the size of the bins. For the sake
of clarity, we will denote this restriction as MINIMUM (¢, 8)-RESTRICTED
BIN PACKING. Observe that an instance of this problem can be described
by the size B of the bins and a multiset I = {s1 1 11,82 1 A2y .., 8¢ net in
which, the pair s; : 1, with 1 <i <, denotes the number n; of items having
size ;.

Let us consider the following instance of MINIMUM (3,3/8)-RESTRICTED BIN
PACKING:

[={3:4,5:2,7:1} and B=8.

In this case we have four items with size 3, two with size 5, and one with size 7.

We now show how an instance of MINIMUM (c,8)-RESTRICTED BIN
PACKING can be solved in time O(n9) where n denotes the number of
items and g depends on ¢ and & only. Equivalently, we show that, for any
two constants ¢ and 8, MINIMUM (c, 8)-RESTRICTED BIN PACKING is
solvable in polynomial-time.

Let (,B) be an instance of MINIMUM (c,8)-RESTRICTED BIN PACK-
ING. The rype of a bin is a c-vector { = (t1,...,t) of integers with
0 < t; < n; such that Y;_;#s; < B. In other words, the type specifies for
each element s; of the range of s the number of items having size s; that are
contained in the bin. Observe that for each type [

Si 1
L

This implies that the number of distinct bin types is bounded by the number
of ways of choosing c integers whose sum is less than [1/8]. It is easy to
prove that such a number is equal to

-(1)

Section 4.2

(see Exercise 3.10). Therefore, in any instance of MINIMUM (c,0)-
RESTRICTED BIN PACKING, the number of possible bin types depends
on ¢ and & and does not depend on n.

BETWEEN APX
AND PTAS

Let us consider the instance of Example 4.5. In this case we have that c =3 and < Example 4.6

|1/8] = 2. Then
i=(3)=n

Indeed, the possible bin types are only six (i.e., (0,0,0),(0,0,1),(0,1,0),(1,0,0),
(1,1,0), and (2,0,0)) since the other four bin types (i.e., (0,0,2), (0,1,1),
(0,2,0), and (1,0, 1)) are not feasible because they violate the bound given by
the size of the bin.

Since there are at most g different bin types, a feasible solution can
now be described by a g-vector ¥ = (y1,...,y,) where y; fori=1,...,n
specifies, for each bin type, the number of bins of that type (observe that
0<y <n).

Let us consider again the instance of Example 4.5. A feasible solution can be the < Example 4.7
one using two bins of type (2,0,0), two bins of type (0,1,0), and one bin of type

(O, 0, 1). One optimal solution, instead, uses two bins of type (1,1,0), one bin of

type (2,0,0), and one bin of type (0,0, 1).

It is clear that the number of feasible solutions is bounded by O(n9),
which implies that the instance can be solved in time O(n?p(n)) where p
is a polynomial by exaustively generating all these feasible solutions (see
Exercise 4.10).

Grouping and ungrouping items
Given an instance x of MINIMUM BIN PACKING, let us assume that the
items are ordered according to their size values so that

s(uy) > s(ug) >+ > s(up).

For any integer k < n, let m = |n/k| and partition the n items into m+
1 groups G; with G; = {u(i—1)k41,--- i} for i=1,...,m and Gpyy =

{1y -+ -y Un }-
We then define a new instance x, of MINIMUM BIN PACKING with
the same bin size B that, for i = 2,3,...,m+ 1, contains an item of size

S(u(l'_l)k_H) for each item of instance x that belongs to G; (that is, the size
of all items in the ith group are made equal to that of the largest item in
G;). Note that there at most mk items in x,.

145

Chapter 4

4 99,8
INPUT-DEPENDENT

AND ASYMPTOTIC

4 7.6,6—== 1,17
APPROXIMATION
x=((9.9.8,7,6,6,5,4,3:3.3).5) | =((7,7,7,5,5,5,3,3).B)
N 574,3 % 5,5,5
Figure 4.11
An example of grouping
items 33 =33

Example 4.8 » Let us consider the instance x formed by 11 items whose size values are 9, 9,
8,7,6,6,5,4,3,3, and 3, respectively, and let k = 3. We have four groups:
Gy = {u1,uz,u3}, G2 = {us,us,us}, G3 = {u7,ug,ug}, and Ga = {u10,u11}. The

instance x, contains eight items (see Fig. 4.11): three items of size 7 (correspond-
ing to the items in Gy), three items of size 5 (corresponding to the items in G3),
and two items of size 3 (corresponding to the items in Gy).

Clearly, any packing for the items in x can be transformed into a packing
for the items in x, with the same number of bins by eliminating items in the
last group and then substituting each item u in G; with an item of x, whose
size is equal to s(ui4+1) (that is, less than or equal to s(u)). Moreover, given
a packing of the items in xg we can obtain a packing of the items in x by
simply adding k bins in which we can put the first k items. This implies
that

m*(xg) < m*(x) <m*(xg) +k, (4.3)

that is, if we are able to optimally solve x,, then we can find a solution for
x whose absolute error is at most k.

Dealing with small items

Let x be an instance of bin packing and, for any rational constant d€
(0,1/2], let x5 be the instance obtained by eliminating all items whose
size is less than 6B. Given a packing of x5 with M bins, we can use the
First Fit approach to reinsert small items. That is, for each of these items,
we insert it into the first bin that can contain it: if it does not fit into any of
the currently available bins, then a new bin is created.

At the end of the above procedure two cases are possible.

1. No new bin has been created and the packing uses M bins.

146

Section 4.2

2. M' > 1 new bins have been created. In this case, similarly to the

analysis made in Sect. 2.2.2, we can show that all bins except at BETWEEN APX

most one have an empty space that is at most 8B. This implies that AND PTAS
: e s(uw)
(1-8)(M+M —-1)< —g5 = (x),
that s,
1
M+M < 7 8m”"(x) +1< (1428)m*(x)+1.

In conclusion, given a packing of xs with M bins, we can find in polyno-
mial time a solution for x whose measure is at most

max (M, (14 28)m* (x) +1). (4.4)

We have thus completed the description of the five steps of the pro-
posed algorithm for MINIMUM BIN PACKING which is summarized in
Program 4.4. Observe that if » > 2, the First Fit algorithm achieves the
desired performance ratio: hence, the input of the algorithm, without loss
of generality, is restricted to values of r smaller than 2. We can finally state
the main result of this section.

Program 4.4 is an asymptotic polynomial-time approximation scheme for <4 Theorem 4.8
MINIMUM BIN PACKING.

To show that, for any fixed r < 2, Program 4.4 runs in polynomial time, PROOF
it suffices to prove that an optimal solution for x5, can be found in
polynomial time. Indeed, x5, is an instance of MINIMUM (|n'/k/[,d)-
RESTRICTED BIN PACKING: since, for any fixed r, both |n'/k| and 6 are
constant, it follows that an optimal solution for x5, can be computed in
time O(n9p(n)) where g depends on r and p is a polynomial.

Let us now compute the performance ratio of the packing obtained by
the algorithm. To this aim, first observe that the measure of the solution
computed by Program 4.4 is m* (x5 5) + k. Since all items in x5 have size at
least 8B, it follows that dn' < m*(xs) and, therefore,

2
k < Q::é—l—)-—n'+l =(r—=1)8n"+1< (r—1)m"(x5) + 1.

From Eq. 4.3, it follows that the algorithm packs the items of xg into at
most

m* (x5 o) +k < m*(x5) + (r— 1)m* (x5) + 1 = rm* (x5) + 1. S
147

alabert
Línea

alabert
Rectángulo

Chapter 4

Program 4.4: Asymptotic Bin Packing
INPUT-DEPENDENT M i Bl s s
AND ASYMPTOTIC input Instance x of MINIMUM BIN PACKING, rational r with 1 <r < 2;
APPROXIMATION output Solution whose measure is at most rm* (x) + 1;
begin
§:=(r—1)/2;
Let x5 be the instance obtained by removing items whose size is less than OB;
k:= [(r—1)?n'/2] where n' is the number of items of xs;
Let x5 , be the instance obtained by grouping x5 with respect to k;
Find an optimal solution for x5 , with measure m* (X5.¢);
Insert the first k items of xg into k new bins;
Apply First Fit approach to reinsert the small items;
return packing obtained
end

Finally, by plugging r = (1+ 29) into Eq. 4.4, we obtain that the total
number of used bins is at most

max (rm* (xs) + 1,rm" (x) +1) < rm*(x)+1,
QED which provides the desired performance ratio.

The above theorem states that MINIMUM BIN PACKING belongs to
Pras>. It is indeed possible to prove a stronger result that states the exis-
tence of an asymptotic approximation scheme whose running time is poly-
nomial both in the length of the input and in 1/(r— 1) (see Bibliographical
notes).

FPTASAinfty})—

4.3 Exercises

Exercise 4.1 Prove that the analysis of Theorem 4.1 is tight. (Hint: gener-
alize the instance of Example 4.1.)

Exercise 4.2 (*) Prove that if P # NP then PTAS 3 PTAS™ and PTAS™ #
APX.

Exercise 4.3 Prove that Program 4.5 colors any graph G with n vertices
using O(m*(G)logn) colors.

Exercise 4.4 Prove that any 2-colorable graph G can be colored in poly-
nomial time using at most 2 colors.

Exercise 4.5 Prove that any graph G of maximum degree A(G) can be
colored in polynomial time using at most A(G) + 1 colors.

148

alabert
Rectángulo

alabert
Línea

alabert
Línea

alabert
Cuadro de texto
FPTAS^{\infty}

alabert
Línea

Section 4.3

Program 4.5: OptIS Graph Coloring
S ' ‘ ‘ EXERCISES
input A graph G = (V,E);
output A coloring of G with i colors;
begin
i=1;
while G is not empty do
begin
find a maximum independent set S; in G;
color vertices of S; with color i;
delete from G all vertices in S;;
i =i+1
end
end.

Program 4.6: 3-Coloring

input 3-colorable graph G = (V,E);
output Coloring of vertices of G;

begin
H := Gyn = |V|
= 1;
while the maximum degree in H is at least [\/n] do
begin

Let v be the vertex of maximum degree in H;

Let Hy(v) be the graph induced on H by the neighbors of v;
Color Hy(v) with colors i,i+ 1;

Color v with color i 4+ 2;

I = i+2;

H := the subgraph of H obtained by deleting v and its neighbors
end;
Color all nodes in H with A(H) + 1 colors

end.

Exercise 4.6 Prove that, for any 3-colorable graph G, Program 4.6 colors
G in polynomial time with at most 3[1/n] colors. (Hint: use the previous
two exercises in order to evaluate the running time.)

Exercise 4.7 (**) Prove that any k-colorable graph G, can be colored in
polynomial time with at most 2k[n!~1/(*=1)] colors. (Hint: extend the
ideas contained in Program 4.6.)

Exercise 4.8 Prove that the two integer linear programming formulations
of MINIMUM MULTI-CUT are, indeed, equivalent.

149

Chapter 4

INPUT-DEPENDENT
AND ASYMPTOTIC
APPROXIMATION

150

Exercise 4.9 Use the gap technique to show that MINIMUM EDGE COL-
ORING is not in PTAS.

Exercise 4.10 For any fixed ¢ and 0, give a polynomial-time algorithm to
solve MINIMUM (¢, 0)-RESTRICTED BIN PACKING.

4.4 Bibliographical notes

HE NOTION of input-dependent approximation algorithm is as old as
Tthat of constant approximation algorithm: they both appeared in
[Johnson, 1974a] which is widely considered as one of the starting points
of the systematic study of the complexity of approximation.

The approximation algorithm for MINIMUM SET COVER, which is de-
scribed in Sect. 4.1.1, was proposed in [Johnson, 1974a] and in [Chvatal,
1979]. This algorithm is optimal: in [Feige, 1996, Raz and Safra, 1997],
in fact, it is proved that, for any € > 0, there is no (Inn — €)-approximation
algorithm for MINIMUM SET COVER, unless some likely complexity the-
oretic conjectures fail. It is worth pointing out that it took more than
twenty years to close this gap and that MINIMUM SET COVER is one of
the very few problems for which optimal approximation algorithms have
been proved.

The O(n/logn)-approximate algorithm for MINIMUM GRAPH COLOR-
ING is due to [Johnson, 1974a] (from this reference, Exercise 4.3 is also
taken): this algorithm is not optimal. Indeed, the best known approxima-
tion algorithm for MINIMUM GRAPH COLORING is due to [Halldérsson,
1993a] and has a performance ratio O(n(loglogn)?/(logn)?®). On the other
hand, in [Bellare, Goldreich, and Sudan, 1998] it is shown that this prob-
lem is not approximable within n'/7-€ for any € > 0 unless P = Np. Exer-
cises 4.6 and 4.7 are due to [Wigderson, 1983].

The max-flow min-cut theorem in single-commodity networks was in-
troduced in [Ford and Fulkerson, 1956]. The first corresponding ap-
proximation result for the multi-commodity case has been presented in
[Leighton and Rao, 1988]. In this paper, the authors consider the related
SPARSEST CUT problem, where a cut E’ is required on a weighted graph
G = (V,E,c) on which k pairs {s;,#;} € V? are defined, such that the ratio
P(E") = Yeer c(€)/ Yies(py di is minimum, where i € I(E') if and only if s;
and ¢; are disconnected by the removal of E’. In the same paper an O(logn)
approximation algorithm for this problem is given and a relationship be-
tween this problem and the BALANCED CUT is shown, where BALANCED
CUT requires, given a value o. € (0, 1), to find a cut of minimum cost which
disconnects the graph into two subgraphs each of size at least on. Such a

problem presents particular relevance as a building block for the design of
divide and conquer algorithms on graphs.

The algorithm presented in Sect. 4.1.3 for MINIMUM MULTI-CUT is
from [Garg, Vazirani, and Yannakakis, 1996] and has been proved to be
applicable to the approximate solution of SPARSEST CUT (and of BAL-
ANCED CUT) in [Kahale, 1993]. Other approximation results for SPARS-
EST CUT has been derived in [Klein, Rao, Agrawal, Ravi, 1995, Plotkin,
Tardos, 1995, Linial, London, Rabinovich, 1995, Aumann and Rabani,
1995].

The definition of an asymptotic approximation scheme is taken from
[Motwani, 1992] and is based on the notion of asymptotic performance
ratio as given in [Garey and Johnson, 1979].

Theorem 4.6 is a fundamental result of graph theory and appeared in
[Vizing, 1964]: observe that this theorem also implies that MINIMUM
EDGE COLORING is 4/3-approximable. Deciding whether a graph is edge-
colorable with A colors was shown to be NP-complete in [Holyer, 1981].

The asymptotic approximation scheme for MINIMUM BIN PACKING
appeared in [Fernandez de la Vega and Lueker, 1981]: our presenta-
tion follows that of [Motwani, 1992]. Indeed, this scheme has been im-
proved in [Karmarkar and Karp, 1982]: in this paper, an asymptotic fully
polynomial-time approximation scheme is obtained by means of mathe-
matical programming relaxation techniques and of the ellipsoid method
introduced in [Khachian, 1979].

Section 4.4

BIBLIOGRAPHICAL

NOTES

151

