Approximation Classes

TN THE first chapter we have seen that, due to their inherent complexity,
AL NPp-hard optimization problems cannot be efficiently solved in an exact
way, unless P = NP. Therefore, W-hmd optimiza-
tion problem by means of an @fficient (polynomial-timep algorithm, we
have to accept the fact that the algomThm does not always return an optimal
solution but rather an approximate one. In Chap. 2, we have seen that, in
some cases, standard algorithm design techniques, such as local search or
greedy techniques, although inadequate to obtain the optimal solution of
Np-hard optimization problems, are powerful enough to reach good ap-
proximate solutions in polynomial time.

In this chapter and in the following one, we will formally introduce
an important type of approximation algorithms. Given an instance of an
Np-hard optimization problem, such algorithms provide a solution whose
performance ratio is guaranteed to be bounded by a suitable function of
the input size. This type of approximation is usually called performance
_guarantee approximation. In particular, while in the next chapter we will
deal with slowly increasing bounding functions, we will here consider the
case in which the function is a constant. An example of this kind is the
greedy algorithm for MAXIMUM KNAPSACK, which we have already met
in Sect. 2.1, that efficiently finds a solution whose value is always at least
one half of the optimal one.

After giving the basic definitions related to the notion of performance
guarantee approximation, we will state both positive results, showing that
several computationally hard problems allow efficient, arbitrarily good ap-
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Chapter 3

APPROXIMATION

CLASSES

Definition 3.1 b

Approximation algorithm

88

Definition 3.2 »
Absolute error

proximation algorithms, and negative results, showing that for other prob-
lems, by contrast, there are intrinsic limitations to approximability.

The different behavior of Np-hard optimization problems with respect to
their approximability properties will be captured by means of the definition
of approximation classes, that is, classes of optimization problems sharing
similar approximability properties. We will see that, if P # NP, then these
classes form a strict hierarchy whose levels correspond to different degrees
of approximation.

We will, finally, discuss some conditions under which optimization prob-
lems allow approximation algorithms with arbitrarily good guaranteed per-
formance.

3.1 Approximate solutions with guaranteed performance

EFORE WE formally introduce algorithms that provide approximate
B solutions of optimization problems with guaranteed quality, let us
first observe that according to the general framework set up in Chap. 1,
given an input instance x of an optimization problem, any feasible solution
y € SOL(x) is indeed an approximate solution of the given problem. On
such a ground an approximation algorithm may be defined as follows.

Given an optimization problem P = (I,SOL,m, goal), an algorithm A is
an approximation algorithm for P if, for any given instance x € I, it returns
an approximate solution, that is a feasible solution A(x) € SOL(x).

See Chapter 2, page 39

3.1.1 Absoclute approximation

Clearly, for all practical purposes, Def. 3.1 is unsatisfactory. What we are
ready to accept as an approximate solution is a feasible solution whose
value is ‘not too far’ from the optimum. Therefore we are interested in
determining how far the value of the achieved solution is from the value of
an optimal one.

Given an optimization problem P, for any instance x and for any feasible
solution y of x, the absolute error of y with respect to x is defined as

D(x,y) = |m" (x) —m(x,y)]

where m*(x) denotes the measure of an optimal solution of instance x and
m(x,y) denotes the measure of solution y.
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Indeed, given an NP-hard optimization problem, it would be very satis-
factory to have a polynomial-time approximation algorithm that, for every
instance x, is capable of providing a solution with a bounded absolute error,
that is a solution whose measure is only a constant away from the measure
of an optimal one.

Given an optimization problem P and an approximation algorithm A for
P, we say that A is an absolute approximation algorithm if there exists a
constant k such that, for every instance x of P, D(x, A(x)) < k.

Let us consider the problem of determining the minimum number of colors needed
to color a planar graph. We have seen in Theorem 2.12 that a 6-coloring of a planar
graph can be found in polynomial time. It is also known that establishing whether
the graph is 1-colorable (that is, the set of edges is empty) or 2-colorable (that
is, the graph is bipartite) is decidable in polynomial time whereas the problem of
deciding whether three colors are enough is NP-complete. Clearly, if we provide
an algorithm that returns either a 1- or a 2-coloring of the nodes if the graph is 1-
or 2-colorable, respectively, and returns a 6-coloring in all other cases, we obtain
an approximate solution with absolute error bounded by 3.

A second related (but less trivial) example, concerning the edge coloring
problem, will be considered in Chap. 4.

Unfortunately, there are few cases in which we can build absolute ap-
proximation algorithms and, in general, we cannot expect such a good per-
formance from an approximation algorithm. The knapsack problem is an
example of an NP-hard problem that does not allow a polynomial-time
approximation algorithm with bounded absolute error.

Unless P = NP, no polynomial-time absolute approximation algorithm ex-
ists for MAXIMUM KNAPSACK.

Let X be a set of n items with profits py, ..., p, and sizes ay, .. .,a,, and let
b be the knapsack capacity. If the problem would allow a polynomial-time
approximation algorithm with absolute error k, then we could solve the
given instance exactly in the following way. Let us create a new instance
by multiplying all profits p; by k+ 1. Clearly, the set of feasible solutions
of the new instance is the same as that of the original instance. On the other
side, since the measure of any solution is now a multiple of k+ 1, the only
solution with absolute error bounded by k is the optimal solution. Hence,
if we knew how to find such a solution in polynomial time, we would also
be able to exactly solve the original instance in polynomial time.

Similar arguments apply to show that most other problems, such as MIN-
IMUM TRAVELING SALESPERSON and MAXIMUM INDEPENDENT SET,
do not allow polynomial-time absolute approximation algorithms.

Section 3.1

APPROXIMATE
SOLUTIONS WITH
GUARANTEED
PERFORMANCE

< Definition 3.3
Absolute approximation

algorithm

< Example 3.1

< Theorem 3.1

PROOF

QED
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Chapter 3

3.1.2 Relative approximation
APPROXIMATION

CLASSES Iy order to express the quality of an approximate solution, more interest-

ing and more commonly used notions are the relative error and the perfor-
mance ratio.

Definition 3.4 » Given an optimization problem P, for any instance x of P and for any
Relative error  feqsible solution y of x, the relative error of y with respect to x is defined as

|m* (x) —m(x,y)|
max{m*(x),m(x,y)}

E(x,y) =

Both in the case of maximization problems and of minimization prob-
lems, the relative error is equal to 0 when the solution obtained is optimal,
and becomes close to 1 when the approximate solution is very poor.

Definition 3.5 » Given an optimization problem P and an approximation algorithm A for
e-approximate algorithm P, we say that A is an e-approximate algorithm for P if, given any input in-
stance x of ‘P, the relative error of the approximate solution A(x) provided

by algorithm A is bounded by €, that is:

E(x,A(x)) <.

The greedy algorithm we analyzed in Sect. 2.1 for MAXIMUM KNAP-
SACK is an example of a polynomial-time 1/2-approximate algorithm. In
fact, such an algorithm always provides a solution whose relative error is
at most 1/2.

As an alternative to the relative error, we can express the quality of the
approximation by means of a different, but related, measure.

Deduced from | _—
Theorem 2.1

Definition 3.6 » Given an optimization problem P, for any instance x of P and for any
Performance ratio  feqsible solution y of x, the performance ratio of y with respect to x defined

rie) w0

m*(x) " m(x,y)

R(xy) = max

Both in the case of minimization problems and of maximization prob-
lems, the value of the performance ratio is equal to 1 in the case of an op-
timal solution, and can assume arbitrarily large values in the case of poor
approximate solutions. The fact of expressing the quality of approximate
solutions by a number larger than 1 in both cases is slightly counterintu-
itive, but it yields the undoubted advantage of allowing a uniform treatment
of minimization and maximization problems.

90
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Clearly the performance ratio and the relative error are related. In fact,

in any case, the relative error of solution y on input x is equal to £ (x,y) =

1-1/R(x,y).

As in the case of the relative error, also for the performance ratio it is in-
teresting to consider situations in which such a quality measure is bounded
by a constant for all input instances.

Given an optimization problem P and an approximation algorithm A for
P, we say that A is an r-approximate algorithm for P if, given any input
instance x of P, the performance ratio of the approximate solution A(x) is
bounded by r, that is:

R(x,A(x)) <

For example, the greedy algorithm for MAXIMUM KNAPSACK is an exam-
ple of a 2-approximate algorithm since it always provides a solution whose
value is at least one half of the optimal value.

Notice that, according to our definition, if, for a given optimization prob-
lem P and a given algorithm 4 for P, we have that, for all instances x of 7,
ma(x,y) < rm*(x) +k we do not say that algorithm 4 is r-approximate, but
that it is at most r + k-approximate. In the literature it is widely accepted
that, in such case, the algorithm is called r-approximate, under an asymp-
totic point of view. For example, Theorem 2.9 states that, given an instance
x of MINIMUM BIN PACKING, First Fit Decreasing returns a solution such
that mppp(x) < %m* (x) + 1. Such an algorithm is indeed usually known as
a %—approximate algorithm. The asymptotic point of view in the evaluation
of the performance ratio of algorithms will be taken into consideration in
Chap. 4.

As we have seen, in order to qualify the degree of approximation
achieved by an approximation algorithm we may refer either to the bound
€ on its relative error (and speak of an e-approximate algorithm) or to the
bound r on its performance ratio (and speak of an r-approximate algo-
rithm). In the following, we will mainly refer to the performance ratio in
order to estimate the quality of the computed solutions: however, since
the relative error is always smaller than 1 and the performance ratio is al-
ways larger than or equal to 1, it will be always clear which approximation
quality measure we are referring to.

The existence of polynomial-time approximation algorithms qualifies
different kinds of Np-hard optimization problems.

An Np-hard optimization problem ‘P is e-approximable (respectively, r-

approximable) if there exists a polynomial-time €-approximate (respec-
tively, r-approximate) algorithm for P.

Section 3.1

APPROXIMATE
SOLUTIONS WITH
GUARANTEED
PERFORMANCE

< Definition 3.7
r-approximate algorithm

< Definition 3.8
e-approximable problem
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Chapter 3

APPROXIMATION

CLASSES | input Set C of disjunctive clauses on a set of variables V;
output Truth assignment f : V + {TRUE, FALSE};

Pyr‘ogrémi3.1:' G;ré,edyf,Sat |

begin
forallveV do f(v) := TRUE;
repeat
ldea of "Greedy Sat Let [ be the literal that occurs in the maximum number of

clauses in C (solve ties arbitrarily);

- If, with the initial assignment f(v)=TRUE, | Let C; be the set of clauses in which / occurs;
s finel 1 e Eppeans Wi Mos Ehes | I Cy be the set of clauses in which / occurs;
WD VELS R oIS, IO SIS s Let v; be the variable corresponding to /;

involved variable to FALSE, and . o

disregard from further consideration the if / is positive then (means | = TRUE)
clauses where "no |" appears and the begin

literals "I" from all other clauses. C .=C-Cj

Delete  from all clauses in (7, Delete all empty clauses in C

-If not, do not change any value, and
end

disregard from further consideration the
clauses where "I" appears and the literals else
"no I" from all other clauses. begin

f(v) := FALSE; C := C—Cy;

Delete [ from all clauses in Cj; Delete all empty clauses in C
end

until C = 0;

return f
end.

-Repeat this until all clauses are
disregarded.

MAXIMUM KNAPSACK is an example of a 2-approximable problem. In
the previous chapter, we have seen several other examples of approximable
problems, and more examples will be shown in this chapter and in the
following ones.

Let us now consider MAXIMUM SATISFIABILITY. For this problem,
we have already shown in Sect. 2.6 a randomized algorithm whose ex-
pected performance ratio is bounded by 2. We now show a deterministic
2-approximate algorithm for MAXIMUM SATISFIABILITY which runs in
polynomial time (namely, Program 3.1), that is a simple example of apply-
ing the greedy technique and can be considered as a “derandomized” ver-
sion of the algorithm shown in the previous chapter (a different approach
based on the local search technique can also be followed in order to obtain
a similar result, as stated in Exercise 3.1).

Theorem 3.2 B Program 3.1 is a polynomial-time 2-approximate algorithm for MAXI-
MUM SATISFIABILITY.

- PROOF Given an instance with ¢ clauses, we prove, by induction on the number of
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Section 3.1

variables, that Program 3.1 always satisfies at least ¢/2 clauses. Since no
optimal solution can have value larger than c, the theorem will follow.
The result is trivially true in the case of one variable. Let us assume that
it is true in the case of n — 1 variables (n > 1) and let us consider the case
in which we have n variables. Let v be the variable corresponding to the
literal which appears in the maximum number of clauses. Let ¢; be the
number of clauses in which v appears positive and ¢, be the number of
clauses in which v appears negative. Without loss of generality suppose
that ¢; > ¢y, so that the algorithm assigns the value TRUE to v. After
this assignment, at least ¢ — ¢ — ¢2 clauses, on n— 1 variables, must be
still considered. By inductive hypothesis, Program 3.1 satisfies at least
(¢—c1 —¢) /2 such clauses. Hence, the overall number of satisfied clauses
is at least c1 + (¢ —¢1 —¢2)/2 > ¢/2. QED

APPROXIMATE
SOLUTIONS WITH
GUARANTEED
PERFORMANCE

Within the class NPO, the class of problems that allow polynomial-time
r-approximate algorithms (or, equivalently, €-approximate algorithms)
plays a very important role. In fact, the existence of a polynomial-time
r-approximate algorithm for an NP-hard optimization problem shows that,
despite the inherent complexity of finding the exact solution of the prob-
lem, such a solution can somehow be approached.

APX is the class of all NPO problems P such that, for some r > 1, there < Definition 3.9
exists a polynomial-time r-approximate algorithm for P. Class APX

As shown above and in the previous chapter, MAXIMUM SATISFIABIL-
ITY, MAXIMUM KNAPSACK, MAXIMUM CUT, MINIMUM BIN PACK-
ING, MINIMUM GRAPH COLORING restricted to planar graphs, MINI-
MUM SCHEDULING ON IDENTICAL MACHINES, and MINIMUM VERTEX ———{Problems in APX
COVER are all in APX.

The definition of the class APX provides a first important notion for char-
acterizing NPO problems with respect to their degree of approximability.
For several important NPO problems, in fact, it can be shown that they do
not allow any r-approximate algorithm, unless P = Np. In other words,
for these problems, approximate solutions with guaranteed performance
are as hard to determine as the optimal solutions. This means that, under
the hypothesis that P # NP, the class APX is strictly contained in the class
NPO.

In the next subsection we will show that MINIMUM TRAVELING
SALESPERSON is a problem for which determining approximate solutions
with constant bounded performance ratio is computationally intractable. /Problems inNPO, butnotin APX
Other NPO problems that do not belong to APX, such as MAXIMUM
CLIQUE and MAXIMUM INDEPENDENT SET, will be seen in Chap. 6,

where some techniques needed to prove such results will also be provided. S
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Chapter 3

APPROXIMATION
CLASSES

Theorem 3.3 &

PROOF

3.1.3 Approximability and non-approximability of TSP

MINIMUM TRAVELING SALESPERSON is an important example of an op-
timization problem that cannot be r-approximated, no matter how large is
the performance ratio r.

If MINIMUM TRAVELING SALESPERSON belongs to APX, then P = NP.

The result is proved by reduction from the HAMILTONIAN CIRCUIT
decision problem. HAMILTONIAN CIRCUIT is the problem of decid-
ing whether a directed graph admits a circuit which passes exactly once
through every node: this problem is known to be Np-complete. Let
G = (V,E) be an instance of HAMILTONIAN CIRCUIT with |V| = n. For
any r > 1, we construct an instance of MINIMUM TRAVELING SALES-
PERSON such that if we had a polynomial-time r-approximate algorithm
for MINIMUM TRAVELING SALESPERSON, then we could decide whether
the graph G has a Hamiltonian circuit in polynomial time. From this con-

" struction the theorem will then follow.

Given G = (V,E), the instance of MINIMUM TRAVELING SALESPER-
SON is defined on the same set of nodes V and with distances

(1 i) €R
d(vi,vj) = { 1+nr otherwise.

This instance of MINIMUM TRAVELING SALESPERSON has a solution of
measure 7 if and only if the graph G has a Hamiltonian circuit: in that

So, any r-approx. solution will
give the optimal solution, with

case, the next smallest approximate solution has measure at least n(l+r)
and-its-performanceratio is_hence greater than r. Besides, if G has no

value n.

So, any r-approx. solution will
give a measure at least n(1+r)

QED

Corollary 3.4 »

94

Hamiltonian circuit, then the optimal solution has measure at leastn(1l+r
Therefore, if we had a ial-t = imate algorithm for MIN-
IMUM TRAVELING SALESPERSON, we could use it to decide whether G
has a Hamiltonian circuit in the following way: we apply the approxima-
tion algorithm to the instance of MINIMUM TRAVELING SALESPERSON
corresponding to G and we answer YES if and only if it returns a solution
of measure n.

If P # NP, then APX C NPO. —(strictly)

The hardness of approximating MINIMUM TRAVELING SALESPERSON
significantly reduces if we make suitable assumptions on the problem in-
stances. In particular, recall that MINIMUM METRIC TRAVELING SALES-
PERSON is defined as MINIMUM TRAVELING SALESPERSON restricted to
instances that satisfy the triangular inequality (see Sect. 2.1.3). Note also
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Section 3.1

that, as a particular case, all instances of MINIMUM TRAVELING SALES-
PERSON which make use of the Euclidean distance satisfy the triangular
inequality.

From a complexity point of view, MINIMUM TRAVELING SALESPER-
SON does not really become easier when the triangular inequality 18 sat-
isfied: indeed, it remains Np-hard. From an approximation point of
view the situation is quite different and MINIMUM METRIC TRAVELING
SALESPERSON can be shown to be, in a sense, “easier” than MINIMUM
TRAVELING SALESPERSON. In fact, we now define a 3/2-approximate
polynomial-time algorithm for MINIMUM METRIC TRAVELING SALES-
PERSON, called Christofides’ algorithm.

To this aim, let us first introduce some definitions and preliminary results
that are needed for understanding and analyzing the algorithm.

A multigraph is a pair M = (V,F) where V is a finite set of nodes and
F is a multiset of edges. A weighted multigraph is a multigraph where a
weight c(e) is associated to each edge e € F. A walk on a multigraph is
a sequence of nodes (vy,...,V,), where each node may appear more than
once and such that, for every i with 1 < i < m, there is an edge connecting
v; and vy 1. A walk (vi,...,vy) is said to be closed if vi = v;,. An Eulerian
walk is a closed walk in which each node is visited at least once and each
edge is traversed exactly once. A multigraph is Eulerian if it admits an
Eulerian walk. For example, the multigraph of Fig. 3.1 is an Eulerian
graph since the walk

APPROXIMATE
SOLUTIONS WITH
GUARANTEED
PERFORMANCE

(VI,V2,V3,V5,V6,V4,V3,V2,V1,V6,V5,V4,V1>

is Eulerian.

V2 V3

Vi V4

N N Figure 3.1
6 5 An Eulerian multigraph

It is well-known that a polynomial-time algorithm exists that, given in
input a multigraph M, decides whether M is Eulerian and, eventually, re-
turns an Eulerian walk on M (see Bibliographical notes). Christofides’ -
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Chapter 3

APPROXIMATION

CLASSES

Lemma 3.5 &

PROOF

QED

algorithm is based on this fact and on the possibility of extracting a tour
from an Eulerian walk, as stated in the following lemma.

Let G = (V,E) be a complete weighted graph satisfying the triangular in-
equality and let M = (V,F) be any Eulerian multigraph over the same set
of nodes such that all edges between two nodes u and v in M have the
same weight as the edges (u,v) in G. Then, we can find in polynomial time
a tour I in G whose measure is at most equal to the sum of the weights of
the edges in M.

Let w be any Eulerian walk over M. Since all nodes vi,...,v, ap-
pear at least once in the walk, there must exist at least one permutation
n(1),...,m(n) of the integers in {1,...,n} such that w can be written
as (Va(1), Ol1, Vr(2), 02, - - -, Va(n)» Oin, V(1)) Where the symbols oy, .. ., 0y, de-
note (possibly empty) sequences of nodes (for example, such a permutation
can be obtained by considering the first occurrences of all nodes). Due
to the triangular inequality, the weight of any edge (vy(j), Vu(j41)), With
1 < j < n,1s no greater than the total weight of the path (vn(j),oc js Vil j+1))
and the weight of the edge (v.n(n),vn(l)) 18 no greater than the total weight
of the path (vn(n) , Oy, vn(l)). Hence, if we consider the tour / corresponding
to permutation 7, the measure of / is at most equal to the total weight of
the Eulerian walk w, that is, the sum of the weights of the edges in M.

Given an instance G of MINIMUM METRIC TRAVELING SALESPER-
SON, a general approach to approximately solve this instance could then
consists of the following steps: (1) compute a spanning tree T of G in order
to visit all nodes, (2) starting from 7', derive a multigraph M satisfying the
hypothesis of the previous lemma, (3) compute an Eulerian walk w on M,
and (4) extract from w a tour according to the proof of the lemma.

The only unspecified step of this approach is how the multigraph M is
derived from 7'. A simple way to perform this step consists of just doubling
all edges in T': that is, for each edge (u,v) in T, M contains two copies
of this edge with the same weight. It can be easily shown that such an
algorithm returns a tour whose performance ratio is bounded by 2 (see
Exercise 3.5).

A more sophisticated application of this approach is shown in Pro-
gram 3.2 where the multigraph M is obtained by adding to T the edges
of a minimum weight perfect matching among the vertices in T of odd
degree. The following result shows that this new algorithm provides a sen-
sibly better performance ratio.

—— Theorem 3.6 » Given an instance G of MINIMUM METRIC TRAVELING SALESPERSON,
96
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Program 32 Christoﬁdesl

input Weighted complete graph G = (V,E);
output Tour [;
begin
Find a minimum spanning tree T = (V,E7) in G;
Let C be the set of nodes in T with odd degree;
Find a minimum weight perfect matching H in the subgraph of G induced by C;
Create a multigraph M = (V, Er UH);
Find a Eulerian walk w in M;
Extract a tour I from w (according to the proof of Lemma 3.5);
return /
end.

Christofides’ algorithm returns, in polynomial time, a solution of G whose
performance ratio is at most 3/2.

Let us consider the multigraph M = (V,Er UH) and an Eulerian walk w
on M. Let us denote by ¢(T) and c(H) the sums of the weights of the
edges belonging to T and H, respectively. Since M clearly satisfies the
hypothesis of Lemma 3.5, we can find in polynomial time a tour / such
that

m(G,I) < c(T)+c(H). (3.1)

We now prove the following two facts.

Fact 1: m*(G) > 2c(H). Let (i, - .-, Viy,) be the sequence of odd-degree
vertices of T in the order in which they appear in an optimal tour I
Let Hy and H, be the following two matchings:

Hy = {(vi,v2),(v3,v4), -+, (V=1,V8) }

and
H2 == {(Vz,Vg),.. .y (vk,vl)}.

By making use of the triangular inequality, we have that m*(G) >
c(H,) + c(H,), where c(H;) denotes the sum of the weights of the
edges in H;, for i = 1,2. Since H is a minimum weight perfect
matching, we have that both ¢(H;) and c(H) are greater than or
equal to ¢(H) and, hence, m*(G) > 2¢(H).

Fact2: ¢(T) < m*(G). In order to prove this fact, it is enough to observe
that a tour is also a spanning tree (plus one additional edge): since T
is a minimum spanning tree, we have ¢(T) < m* (G).
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From Eq. 3.1 and from the above two facts, we then have that m(G,I) <
m*(G) +m*(G) /2 =3m*(G)/2.

As far as the running time is concerned, it is easy to see that the most
expensive step is the computation of the minimum weight perfect match-
ing. This task can, indeed, be performed in polynomial time by means of
a primal-dual algorithm (see Bibliographical notes).

Let us consider the instance G of MINIMUM METRIC TRAVELING SALESPER-
SON consisting of eight cities (i.e., Amsterdam, Berlin, Geneva, Milan, Prague,
Rome, Warsaw, and Wien) with distances shown in Fig. 3.2 (these distances are
the real road-distances between the specified cities).

AMS| 685 925/1180] 96011755|1235|1180
BER |1160]1105| 340 |1530] 585 | 630
GEN | 325]| 950 880 [ 1575|1025

MIL | 870|575 |1495| 830

PRA|1290] 625 | 290

rROMI1915[1130

WAR| 795

WIE

In Fig. 3.3(a) the minimum spanning tree 7 of G computed in the first step
of Christofides’ algorithm is shown: note that, in this tree, there are six odd-
degree nodes (that is, Amsterdam, Berlin, Geneva, Milan, Rome, and Warsaw).
A minimum weight perfect matching H among these six nodes consists of edges
Amsterdam-Geneva, Berlin-Warsaw, and Milan-Rome. In Fig. 3.3(b) the multi-
graph M obtained by joining T and H is given: clearly, this is an Eulerian graph
satisfying the hypothesis of Lemma 3.5. An Eulerian walk on M starting from
Amsterdam is

AMS-BER-WAR-BER-PRA-WIE-MIL-ROM-MIL-GEN-AMS.

By considering only the first occurrence of each city in the walk, we obtain the
approximate tour shown in Fig 3.3(c) whose measure is 5395. In Fig 3.3(d) the
optimal tour is given: the corresponding optimal measure is 5140, that is, about
5% better than the measure of the approximate tour.

As a consequence of Theorem 3.6, we have that MINIMUM METRIC
TRAVELING SALESPERSON belongs to the class APX. The next example
shows that the bound of the theorem is tight: that is, there exists a family
of weighted complete graphs such that Christofides’ algorithm returns a
solution whose measure is asymptotically 50% greater than the measure of
an optimal tour.
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Amsterdam Berlin

Warsaw
@ ——D

| Prague

w Wien

@ Rome
(a) The spanning tree T

Amsterdam Berlin Warsaw

Amsterdam Berlin Warsaw

QPrague

o Wien

® Rome
(b) The multigraph M

Amsterdam Berlin Warsaw
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(c) The approximate tour / (d) The optimal tour I*
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GUARANTEED
PERFORMANCE

Figure 3.3
A sample application of
Christofides’ algorithm

For any positive integer n, let us consider the instance G,, of MINIMUM METRIC < Example 3.3

TRAVELING SALESPERSON shown in Fig. 3.4(a), where all distances that are not
explicitly specified must be assumed to be computed according to the Euclidean
distance. It is easy to see that one possible minimum spanning tree is the tour
shown in the figure without the edge (a;, an+1). If Christofides’ algorithm chooses
this spanning tree, then the approximate tour shown in figure results: note that this
tour has measure 31+ 2¢. On the contrary, the optimal tour is shown in Fig. 3.4(b)
and has measure 2n+ 1 +4e. As n grows to infinity, the ratio between these two
measures approaches the bound 3/2.

Until now Christofides’ algorithm is the best known approximation al-
gorithm for MINIMUM METRIC TRAVELING SALESPERSON. While in
the Euclidean case arbitrarily good polynomial-time approximation al-
gorithms can be found (see Bibliographical notes), no polynomial-time
approximation algorithm with a better guaranteed performance ratio is
known for MINIMUM METRIC TRAVELING SALESPERSON, neither it is
known whether the existence of any such algorithm would imply P = NP.
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Figure 3.4 g Apt1
Worst case of Christofides’ .
algorithm (b) The optimal tour

3.1.4 Limits to approximability: The gap technique

From the point of view of practical applications, it may be observed that
knowing that a problem belongs to APX, while interesting in itself, is only
partially satisfactory. In fact, in some cases, the existence of guaranteed
approximate solutions with large relative errors (e.g., a 50% error as in
the case of MAXIMUM SATISFIABILITY or MINIMUM VERTEX COVER)
may not be enough for practical purposes. We may be interested in finding
stronger approximations, with much smaller relative errors (say 1%). With
respect to this need, the optimization problems that belong to APX may
behave quite differently. For some problems, not only we can find tight
approximate solutions but we can even find arbitrarily good approximate
solutions. For such problems we can construct particular polynomial-time
algorithms, called polynomial-time approximation schemes (see Sects. 2.5
and 3.2), that, given an instance x of the problem and a constant r > 1, pro-
duce an r-approximate solution for x. For other problems (unfortunately,
the vast majority of problems in APX) the performance ratio can only be
reduced up to a certain point: sometimes the approximation techniques
can even lead to very tight approximate solutions, but then a threshold ¢
exists such that r-approximability, with » < 7, becomes computationally
intractable.




In order to prove this latter type of result, a simple but powerful tech-
nique is frequently used. Such technique is known as gap technique and is
strictly related to the technique that we have used for proving the non-
approximability of MINIMUM TRAVELING SALESPERSON. The tech-
nique will now be described in the case of minimization problems but it
can also be applied to maximization problems by performing simple mod-
ifications to our exposition.

Let P' be an Np-complete decision problem and let P be an NPO min-
imization problem. Let us suppose that there exist two polynomial-time
computable function f : Ip — Ip and ¢ : Ip — N and a constant gap > 0,
such that, for any instance x of P,

if x is a positive instance,
c(x)(14gap) otherwise.

Then no polynomial-time r-approximate algorithm for P with r < 14 gap
can exist, unless P = NP.

Suppose we have a polynomial-time r-approximate algorithm A with r <
1 + gap for problem P. We can make use of this algorithm for solving
problem ?’ in polynomial time in the following way. Given an instance x
of 7', we compute f(x) and then we apply the approximation algorithm A
to f(x). Let us distinguish the following two cases.

1. x is a negative instance. By hypothesis, in this case m*(f(x)) >
c(x)(1+gap) and, a fortiori, m(f(x), A(x)) > c(x)(1 +gap).

2. x is a positive instance. In this case, since 4 is an r-approximate
algorithm, we have that

m(f(x), A(x))
m*(f(x))

By hypothesis, m*(f(x)) = ¢(x). Hence, m(f(x),A(x)) < c(x)(1+
gap).

<r<1l+gap.

Therefore, x is a positive instance of P’ if and only if m(f(x), A(x)) <
c(x)(1+gap), and we would be able to solve problem #' in polynomial
time. Since P’ is NP-complete, this would imply P = NP.

Let us consider MINIMUM GRAPH COLORING. For this problem, the gap tech-
nique can be applied by reduction from the coloring problem for planar graphs.
In fact, while a well-known result states that any planar graph is colorable with
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at most four colors (see Bibliographical notes), the problem of deciding whether
a planar graph is colorable with at most three colors is NP-complete. Hence, in
this case, the gap is 1/3 and we can hence conclude that no polynomial-time r-
approximate algorithm for MINIMUM GRAPH COLORING can exist with r < 4/3,
unless P = NP. Actually, much stronger results hold for the graph coloring prob-
lem: it has been proved that, if P £ NP, then no polynomial-time algorithm can
provide an approximate solution whatsoever (that is, MINIMUM GRAPH COLOR-
ING belongs to NPO — APX).

The considerations of the previous example can be extended to show
that, for any NPO minimization problem P, if there exists a constant k
such that it is NP-hard to decide whether, given an instance x, m*(x) < k,
then no polynomial-time r-approximate algorithm for P with r < (k+1) /k
can exist, unless P = NP (see Exercise 3.8). Another application of the
gap technique has been shown in the proof of Theorem 3.3: in that case,
actually, we have seen that the constant gap can assume any value greater
than 0. Other results which either derive bounds on the performance ratio
that can be achieved for particular optimization problems or prove that a
problem does not allow a polynomial-time approximation scheme can be
obtained by means of a sophisticated use of the gap technique. Such results
will be discussed in Chap. 6.

3.2 Polynomial-time approximation schemes

S WE noticed before, for most practical applications, we need to ap-
A. proach the optimal solution of an optimization problem in a stronger
sense than it is allowed by an r-approximate algorithm. Clearly, if the
problem is intractable, we have to restrict ourselves to approximate solu-
tions, but we may wish to find better and better approximation algorithms
that bring us as close as possible to the optimal solution. Then, in order
to obtain r-approximate algorithms with better performances, we may be
also ready to pay the cost of a larger computation time, a cost that, as we
may expect, will increase with the inverse of the performance ratio.

Let P be an NPO problem. An algorithm A is said to be a polynomial-time
approximation scheme (PTAS) for P if, for any instance x of ‘P and any ra-
tional value r > 1, A when applied to input (x,r) returns an r-approximate
solution of x in time polynomial in |x|.

While always being polynomial in |x|, the running time of a PTAS may
also depend on 1/(r— 1): the better is the approximation, the larger may
be the running time. In most cases, we can indeed approach the optimal so-
lution of a problem arbitrarily well, but at the price of a dramatic increase
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Problem 3.1: Minimum Partition (s ,
INSTANCE: Finite set X of items, for each X; € X a We10ht a; €Z".

SOLUTION: A partition of the items into two sets ¥} and 5.
MEASURE: max{ Y, cy, @i 2y ey, &) -

Program 3.3: Partition PTAS |

input Set of items X with integer weights a;, rational r > 1;
output Partition of X into two sets Y| and ¥»;
begin
if r > 2 then return X, 0
else
begin
Sort items in non-increasing order with respect to their weight;
(*Let (xj,...,x,) be the obtained sequence*)
k(r) :=[(2=r)/(r=1)1;
(* First phase *)
Find an optimal partition ¥, Y2 of x1, ..., x(»;
(* Second phase *)
for j := k(r)+1tondeo
if ey, @i < Xrer, @ then

i =n U{xj}
else
Y 1= qu{xj};
return Yy, 1
end;
end.

in the computation cost. In other cases, we may construct approximation
schemes whose running time is polynomial both in the size of the instance
and in the inverse of the required degree of approximation. In such cases
the possibility of approaching the optimal solution in practice with arbi-
trarily small error is definitely more concrete. Problems that allow this
stronger form of approximation are very important from the practical point
of view and will be discussed in the Sect. 3.3.

Let us now consider MINIMUM PARTITION, that is, Problem 3.1: a sim-
ple approach to obtain an approximate solution for this problem is based
on the greedy technique. Such an approach consists in sorting items in
non-increasing order and then inserting them into set ¥ or into set ¥, ac-
cording to the following rule: always insert the next item in the set of
smaller overall weight (breaking ties arbitrarily). It is possible to show

Section 3.2
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Figure 3.5
The analysis of Program 3.3

Theorem 3.8 B

PROOF
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that this procedure always returns a solution whose performance ratio is
bounded by 6/5 and-thatthis-boundtsindeed+tight (see Exercise 3.9).

Program 3.3 basically consists in deriving an optimal solution of the
subinstance including the k heaviest items and, subsequently, extending
this solution by applying the greedy approach previously described. The
next result shows that this algorithm provides a stronger approximation for
MINIMUM PARTITION.

- — — — —wI)
@atmostahﬁ
T — o L
ay - "W(YQ)
——————— w(Y{)-ay
Yy 0

Program 3.3 is a polynomial-time approximation scheme for MINIMUM
PARTITION.

Let us first prove that, given an instance x of MINIMUM PARTITION and
a rational r > 1, the algorithm provides an approximate solution (¥;,Y>)
whose performance ratio is bounded by r. If » > 2, then the solution (X, 0)
is clearly an r-approximate solution since any feasible solution has mea-
sure at least equal to half of the total weight w(X) = ¥, cx a;. Let us then
assume that r < 2 and let w(Y;) = ¥, ¢y aj, fori=1,2, and L = w(X)/2.
Without loss of generality, we may assume that w(Y1) > w(Y>) and that x;,
is the last item that has been added to ¥; (see Fig. 3.5). This implies that
w(Y1) —a, < w(¥z). By adding w(Y;) to both sides and dividing by 2 we
obtain that

ap
If x;, has been inserted in Y; during the first phase of the algorithm, then
it is easy to see that the obtained solution is indeed an optimal solution.
Otherwise (that is, x;, has been inserted during the second phase), we have
that aj, < a;, for any j with 1 < j < k(r), and that 2L > ay, (k(r)+1). Since

implies
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Section 3.2

Problem 3.2: MaXImum Integer Knapsack
POLYNOMIAL-TIME

APPROXIMATION
$CHEMES

INSTANCE: Finite set X of types of items, for each X € X value Di E ZJr
and size a; € Z*, positive integer b.

SOLUTION: An assignment ¢ : X — IN such that ¥, cx a;c(x;) < b.

MEASURE: Total value of the assignment, i.e., ¥, cx pic(xi).

w(Y) > L > w(Y;) and m*(x) > L, the performance ratio of the computed
solution is

W(Yl)gw(YI)Sl—i—ﬂ <14 1 <1+ 1

=F

m* (x) L ~ 2L k()+1 =E4l
Finally, we prov!hat the algo n works in time O(nlogn + nk‘i)\
In fact, we need time O(nlogn) to sort the n items. Subsequently, the 2MK(r)} ?
first phase of the algorithm requires time exponential in k(r) in order to
perform an exhaustive search for the optimal solution over the k(r) heaviest
items xi,...,%() and all other steps have a smaller cost. Since k(r) is
O(1/(r—1)), the theorem follows. QED

3.2.1 The class PTAS

Let us now define the class of those NPO problems for which we can obtain
an arbitrarily good approximate solution in polynomial time with respect
to the size of the problem instance.

PTAS is the class of NPO problems that admit a polynomial-time approxi- < Definition 3.11
mation scheme. Class PTAS

The preceding result shows that MINIMUM PARTITION belongs to
PTAS. Let us now see other examples of problems in PTAS. The first exam-
ple will also show another application of the algorithmic technique of Pro-
gram 3.3, which essentially consists of optimally solving a “subinstance”
and, then, extending the obtained solution by applying a polynomial-time
procedure.

Problem 3.2 models a variant of MAXIMUM KNAPSACK in which there
is a set of types of items and we can take as many copies as we like of
an item of a given type, provided the capacity constraint is not violated
(observe that this problem is equivalent to Problem 2.8 with d = 1).

MAXIMUM INTEGER KNAPSACK belongs to the class PTAS. < Theorem 39 _____
105
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Chapter 3

APPROXIMATION
CLASSES  input Set X of n types of items, values p;, sizes a;, b € N, rational r > 1;
output Assignment c : X — IN such that ¥, cy a;c(x;) < b;
begin
8:=[41;
Sort types of items in non-increasing order with respect to their values;
(* Let (x1,x2,...,X,) be the sorted sequence *)
fori := 1tondoc(x;) := 0;
Fo= {f|f: X = NAZL, f(x) <SATL aif () < b);
for all fin F do
begin
k := maximum i such that f(x;) # 0;
by := b— Y aif (xi);
Let xpnd be the type of items with maximal value/size ratio in {xx,...,x, };
f(xma) = f(xma) + b/ ama];
if 3 ex pif (xi) > pex pic(x:) then
fori := 1tondoc(x) = f(x);
end,;
return ¢
end.

Program 3.4:,'Integer Knapsack Scheme

PROOF Given an instance I of MAXIMUM INTEGER KNAPSACK, we first notice
that if we relax the integrality constraint on the values of function ¢ (that
is, if we allow fractions of items to be included in the knapsack), then the
optimal solution can be easily computed as follows. Let xyq be a type
of item with maximal value/size ratio: then, the optimal assignment for
the relaxed problem is given by ¢;(Xmd) = b/ama and ¢;(x;) = 0 for all
other types of items. For any type of item x, let c(x) = [c (x)]: since
m* (1) < bpmd/amd, we have that function c is a feasible solution of I such
that the following holds:

m*(I) —m(I,¢) < bpmd/amd — Pmd|P/md] < Pmd < Pmax

where pmax 1S the maximal value.

The approximation scheme described in Program 3.4 makes use of the
above observation in order to extend a partial solution. Let us first show
that, for any instance / of MAXIMUM INTEGER KNAPSACK and for any
r > 1, the algorithm indeed returns an r-approximate solution of /. Let ¢*
be an optimal solution of I. If Y cx c*(x) < &, then m(I,c) = m*(I) where
c is the solution returned by the algorithm.

Otherwise (thatis, Y, .cx ¢*(x) > 0), let (x1,x2,...,x,) be the sequence of
types of items sorted in non-increasing order with respect to their values
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and let c§ be an assignment defined as follows:
POLYNOMIAL-TIME

c*(x;) if ¥ g et (x) <8, | APPROXIMATION
Cg(xi) = 6—2;;11 c* (xj) if Z};ll o (XJ) < 8and sz:1 o* (xj) > 8, SCHEMES
0 otherwise.

n

Clearly, c5 € F since X
such that c&(x;) # 0, let by = b — ¥5_ a;c§(x;), and let xpma be the type of
items with maximal value/size ratio among {x,...,x,}. Then, m(l,c) >
m(1,ct) + pma| b/ ama] and m*(I) < m(I,c3) + biPmd/ama- Therefore,

_1¢§(x;) = 8. Let k be the maximum index i

m* (1) < m(I, cg) + b Pmd/ Amd
m(l’ C) B m(I, Cg) + Pmd Lbk/amdj
m(l,c§) -+ (bi/amd — | bi/@ma]) Pma
m(I,c3)
(br/ama — |br/amd|) Pma
m(l,c§)
pe O+1

< 1 = —

VAN

where the last inequality is due to the fact that (bx/amq — | bk/ama]) Pma <
Pma < pr and that m(I, c§) > Opy. From the definition of 9, it follows that
the performance ratio is at most r.

Finally, let us estimate the running time of Program 3.4. Since |F| =
O(n®) (see Exercise 3.10), the overall time is clearly O(n!*%), that is,

O(n' 7). QED

The last example of a polynomial-time approximation scheme that we
consider is a scheme for computing approximate solutions of MAXIMUM
INDEPENDENT SET restricted to planar graphs. The algorithm is based
on the fact that MAXIMUM INDEPENDENT SET is polynomial-time solv-
able when restricted to a special class of graphs, called k-outerplanar and
defined below.

Given a planar embedding of a planar graph G, the level of a node is
inductively defined as follows:

1. All nodes that lie on the border of the exterior face are at level 1.

2. For any i > 1, if we remove from the embedding all nodes of level
j with 1 < j < i, then all nodes (if any) that lie on the border of the
exterior face of the remaining embedding are at level i. I
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A planar graph is said to be k-outerplanar if it admits a k-outerplanar

APPROXIMATION embedding, that is, a planar embedding with maximal node level at most
CLASSES

Example 3.5 ® The embedding shown in Fig. 3.6 is a 6-outerplanar embedding. Indeed, for i =
1,...,18, the level of node v; is [i/3].

Figure 3.6
An example of a
6-outerplanar embedding

The following result, whose proof is here omitted (see Bibliographical
notes), will be used by the approximation scheme.

Theorem 3.10 » For any k, MAXIMUM INDEPENDENT SET restricted to k-outerplanar
graphs can be solved optimally in time 0(8/‘n) where n is the number of
nodes.

The approximation scheme for MAXIMUM INDEPENDENT SET re-
stricted to planar graphs exploits this result by considering a cover of the
original graph formed by k-outerplanar graphs, where the parameter k de-
pends on the required approximation ratio. In particular, the approximation

— scheme works in the following way (see Program 3.5).
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Program 3.5: Independent Set Scheme
o o T B POLYNOMIAL-TIME

input Planar graph G = (V, E), rational r > 1; APPROXIMATION
output Independent set I C V; SCHEMES
begin

k= [1/(r=1)1;

Compute a planar embedding of G (see Bibliographical notes);
Compute node levels;
(* Let V; be the set of nodes of level i *)
fori := Otokdo
begin
Let V; be the union of all sets V; with j =i (modk+1);
Let G; be the subgraph of G induced by V —V;;
(* FJi is k-outerplanar *)
Compute a maximal independent set /; on G;;
end
I := I, such that |I,| = maxo<;<k(|1]);
return /
end.

Let r be the required approximation ratio and k = [1/(r—1)]. Given a
planar embedding of a planar graph G, for all i with 0 < i < k, let V; be the
set of nodes whose level is congruent to i modulo k+ 1 and let G; be the
subgraph of G induced by all nodes notin V;. Since we have deleted at least
one level every k+ 1 levels, it is easy to verify that G; is a k-outerplanar
graph: indeed, G; is a collection of connected components, each with a
k-outerplanar embedding. Therefore, we can compute the maximal inde-
pendent set I; of G; in time O(8*n). Let I,, be the maximal cardinality
independent set among {ly, ..., I}

If I* denotes a maximal independent set of G, then there must exist an
integer r with 0 < r < k such that |V, NI*| < |I*|/(k+1). Hence, the
maximal independent set I, of G, contains at least k|I*|/(k+ 1) nodes.
Since |I,] > |I;|, we have that the performance ratio of I, is at most (k4
D/k<r.

The running time of the algorithm is O(8%kn), since we apply k+ 1 times
the exact algorithm for k-outerplanar graphs implied by Theorem 3.10.
Hence, we have proved the following result.

MAXIMUM INDEPENDENT SET restricted to planar graphs belongs to the <€ Theorem 3.11
class PTAS.

Let us consider the graph G in Fig. 3.6 and assume we wish to find an in- < Example 3.6
dependent set on G with performance ratio 3/2. By applying the algorithm
described in Program 3.5, we obtain k = 2, which implies that we obtain —
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Chapter 3

three sets Vo = {v7,v8,Vv9,V16,V17,v18 }> V1 = {V1,V2,V3,V10,V11,V12}, and Vo =
APPROXIMATION {V4,V5, V6,V13,V14,V15 }. Three possible corresponding maximal independent sets

CLASSES  of G; are Ip = {v1,vs,vi0,vi4}, [t = {va,vg,v13,vis}, and I = {v1,v7,v11,V16}.
Hence, we obtain that the solution returned by the algorithm contains 4 nodes.
Clearly, m*(G) = 6: indeed, we can choose exactly one node for every triangle
formed by nodes of level i, for i = 1,...,6. As a consequence, we have that
m*(G)/m(G,I) =6/4=r.

3.2.2 APX versus PTAS

By definition, it is clear that the class PTAS is contained in the class APX.
Henceforth, those problems that do not belong to APX, such as MINIMUM
TRAVELING SALESPERSON, a fortiori cannot have a polynomial-time ap-
proximation scheme. A natural question hence arises at this point: Does
there exist any NP optimization problem that for some value of r can be r-
approximated in polynomial time, but which does not allow a polynomial-
time approximation scheme? In other words the question is whether PTAS
is strictly contained in APX. The answer is yes, provided that P = NP.
Again the main technique for proving the non-existence of a PTAS for an
NPO problem is the gap technique.

Theorem 3.12 » If P # NP, then MINIMUM BIN PACKING does not belong to the class
PTAS.

PROOF  We show that, if P % NP, then no r-approximate algorithm for MINIMUM
BIN PACKING can be found with r < 3/2 — ¢, for any € > 0. To this aim,
let us consider the PARTITION decision problem which consists in decid-
ing whether a given set of weighted items can be partitioned into two sets
of equal weight: this problem is NP-complete (see Bibliographical notes
of Chap. 2). Given an instance x of PARTITION, let B be the sum of the
weights of all items. We then define the corresponding instance x' of MIN-
IMUM BIN PACKING as follows: for each item of x of weight w, X’ has an
item of size 2w/ B (observe that we can always assume w < B/2 since, oth-
erwise, x is a negative instance). If x is a positive instance, then m* (x') = 2.
Otherwise, m*(x') = 3. From Theorem 3.7, it then follows the 3/2 lower
bound on the approximability of MINIMUM BIN PACKING. Therefore,

QED unless P = Np, MINIMUM BIN PACKING does not admit a PTAS.

Since in Sect. 2.2.2 we have shown that MINIMUM BIN PACKING be-
longs to the class APX, the next corollary immediately follows.

__ Corollary 3.13 » [fP £ NP, then PTAS C APX.
110
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Section 3.3

Other examples of problems that belong to APX but do not admit a PTAS

are MAXIMUM SATISFIABILITY, MAXIMUM CUT, and MINIMUM MET-  FULLY

RIC TRAVELING SALESPERSON. Actually, the negative results on the ex- POLYNOMIAL-TIME

istence of a PTAS for these problems make use of the gap technique in a APPROXIMATION
SCHEMES

more sophisticated way, as we will see in later chapters.

3.3 Fully polynomial-time approximation schemes

HE RUNNING time of the approximation schemes we have described
Tin Chap. 2 and in this chapter depends on both the size of the input
x and the inverse of the desired degree of approximation r — 1: the better
the approximation, the greater the running time. While, by definition of
a PTAS, the running time must be polynomial in the size of the input x,
the dependency on the quality of approximation may be very heavy. For
example, in the case of MINIMUM PARTITION and MAXIMUM INDEPEN-
DENT SET restricted to planar graphs, the dependency of the running time
on the performance ratio has been shown to be exponentialin 1/(r —1).

In some cases, such bad behavior strongly hampers the advantages of
having a polynomial-time approximation scheme. In fact, the increase in
the running time of the approximation scheme with the degree of approxi-
mation may prevent any practical use of the scheme.

3.3.1 The class FPTAS

A much better situation arises when the running time is polynomial both
in the size of the input and in the inverse of the performance ratio.

Let P be an NPO problem. An algorithm A is said to be a fully polynomial- < Definition 3.12

time approximation scheme (FPTAS) for P if, for any instance x of P and Fully P?ly71?771ial‘fi’7le
for any rational value r > 1, A with input (x,r) returns an r-approximate approximation scheme
solution of x in time polynomial both in |x| and in 1/(r —1).

MAXIMUM KNAPSACK is an example of an optimization problem that
admits an FPTAS: Program 2.9, in fact, is a fully polynomial-time approxi- — — Isee Thm. 2.18
mation scheme for this problem, since its running time is O(r|x|?/(r — 1)).

FPTAS is the class of NPO problems that admit a fully polynomial-time < Definition 3.13
approximation scheme. Class FPTAS
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Clearly, the class FPTAS is contained in the class PTAS. Henceforth,
those problems that do not belong to PTAS (such as MINIMUM TRAVEL-
ING SALESPERSON, which is not even in APX, or MINIMUM BIN PACK-
ING, which is in APX but not in PTAS) a fortiori cannot have a fully
polynomial-time approximation scheme.

The existence of a FPTAS for an NP-hard combinatorial optimization
problems provides evidence that, for such a problem, despite the difficulty
of finding an optimal solution, for most practical purposes the solution can
be arbitrarily and efficiently approached.

PO<FPTAS < PTAS < APX < NPO, strictly, unless P=NP

3.3.2 The variable partitioning technique

In Sect. 2.5 we have shown how to derive a FPTAS for MAXIMUM KNAP-
SACK. Let us now consider the related MAXIMUM PRODUCT KNAPSACK
problem in which the measure function is the product of the values of the
chosen items. We will prove that also MAXIMUM PRODUCT KNAPSACK
admits a FPTAS. In order to prove the result, we introduce a new technique,
called variable partitioning, which is a variant of the fixed partitioning
technique that we described in Sect. 2.5.

Observe that, in the case of MAXIMUM PRODUCT KNAPSACK, the
value of the objective function can be as large as pJ, .., where pp,, is the
maximum value and #» is the number of items. Therefore, if we make use
of the fixed partitioning technique, it is possible to see that, when we di-
vide the range into a polynomial number of equal size intervals (in order
to obtain a polynomial-time algorithm), the relative error of the obtained
solution cannot be bounded by any constant smaller than 1. The idea of the
variable partitioning technique then consists in dividing the range of possi-
ble measures into a suitable collection of polynomially many variable size
intervals.

More precisely, given an arbitrary instance x and given a rational » > 1,
we divide the range of possible measures into the following intervals:

'{(0’61]7 (61762}7- ) (61_1,&]},

where € = (r—1)/rand §; = (14 5)/ for j=1,...,r. Notice that, since
the range of the possible measures is (0, p};.,.], ¢ is the smallest integer such
that (1+¢&/(2n))" > ph.- Hence, ¢ is O(%-10g pax) and the algorithm has

. . 3
time complexity O(*-10g pjuax)-

Concerning the approximation, let Y be the solution returned by the al-
gorithm and assume that m(x,Y) € (6;-1,9;]: hence, the optimal measure
must be contained in (8;—1,9;1,—1]. It is then possible to show that ¥ sat-
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isfies the following inequality:

m*(x) —m(x,Y) =1
) ST T

(see Exercise 3.12), which implies that the performance ratio of Y is at
most r. Thus the following theorem derives.

MAXIMUM PRODUCT KNAPSACK belongs to the class FPTAS.

3.3.3 Negative results for the class FPTAS

We now present some negative results which show that, unfortunately,
many problems are not in FPTAS.

Actually, a first general result drastically reduces the class of combinato-
rial problems in PTAS which admit a FPTAS since it excludes the existence
of a fully polynomial-time approximation scheme for all those optimiza-
tion problems for which the value of the optimal measure is polynomially
bounded with respect to the length of the instance. This result, in turn, will
allow us to show that the containment of FPTAS in PTAS is proper.

An optimization problem is polynomially bounded if there exists a poly-
nomial p such that, for any instance x and for any y € SOL(x), m(x,y) <

p(|x]).

No NP-hard polynomially bounded optimization problem belongs to the
class FPTAS unless P = NP.

Let P be an NP-hard polynomially bounded maximization problem (the
minimization case would lead to a similar proof). Suppose we had a FPTAS
A for P which, for any instance x and for any rational r > 1, runs in time
bounded by ¢(|x|,1/(r— 1)) for a suitable polynomial g. Since P is poly-
nomially bounded, there exists a polynomial p such that, for any instance
x, m*(x) < p(|x]). If we choose r = 141/p(|x|), then A(x,r) provides an
optimal solution of x. Indeed, since A4 is a FPTAS, we have that

that 1s,

Section 3.3
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<4 Theorem 3.14

<« Definition 3.14
Polynomially bounded
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< Theorem 3.15

NP-hard: See Def. 1.19
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QED

Corollary 3.16 b

PROOF

QED

where the last inequality is due to the fact that m*(x) < p(]x|). From
the integrality constraint on the measure function m, it follows that
m(x, A(x,r)) = m*(x), that is, A(x, r) is an optimal solution.

Since the running time of A(x,r) is bounded by ¢(|x|, p(|x])), we have
that P is solvable in polynomial time. From the NP-hardness of P, the
theorem thus follows.

If P % NP, then FPTAS C PTAS.

As we have seen in Sect. 3.2.1, MAXIMUM INDEPENDENT SET restricted
to planar graphs belongs to class PTAS. On the other side, this problem
is clearly polynomially bounded and by the previous theorem it does not
belong to the class FPTAS (unless P = NP).

3.3.4 Strong NP-completeness and pseudo-polynomiality

We conclude this section by giving another general condition that assures
that a problem is not in FPTAS. Let us first introduce some definitions
which are intrinsically interesting because they allow us to relate the ap-
proximability properties of a problem to its combinatorial structure. In
particular, we are going to study the different ways in which numbers play
a role in an NPO problem.

Let us consider, for example, MAXIMUM CUT. This problem is NP-
hard: since no number appears in its instances (but the vertex indices), we
may conclude that it is the combinatorial structure of MAXIMUM CUT, i.e.
the property that the graph has to satisfy, that makes the problem hard.

When we consider other problems the situation is somewhat different.
Let us consider MAXIMUM KNAPSACK. As we already noted in Sect. 2.5,
by using a dynamic programming algorithm, we can solve this problem
in time O(n2pmax): IMOTEOVer, SINCE Ppqy 1S an integer contained in the
instance whose encoding requires [10g pyqy| bits, this algorithm is not a
polynomial-time one. However, if we restrict ourselves to instances in
which the numbers p; have values bounded by a polynomial in the length
of the instance, we obtain a polynomial-time algorithm. This means that
the complexity of MAXIMUM KNAPSACK is essentially related to the size
of the integers that appear in the input.

For any NPO problem ? and for any instance x of P, let max(x) de-
note the value of the largest number occurring in x. We note that, from
a formal point of view, the definition of the function max depends on the
encoding of the instance. However, we can repeat for the function max
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the same kind of considerations that are usually made when considering
the computational complexity of a problem assuming the length of the in-
stance as the main parameter. In fact, if we choose two different functions
max and max’ for the same problem, the results we are going to present do
not change in the case that these two functions are polynomially related,
that is, two polynomials p and g exist such that, for any instance x, both
max(x) < p(max’(x)) and max’(x) < g(max(x)) hold.

For the NPO problems we are interested in, all the intuitive max func-
tions we can think of are polynomially related. Thus, the concept of max
is sufficiently flexible to be used in practice without any limitation.

An NPO problem P is pseudo-polynomial if it can be solved by an algo-
rithm that, on any instance x, runs in time bounded by a polynomial in |x|
and in max (x).

In the case of MAXIMUM KNAPSACK, the max function can be defined as
max (x) = max(ai,...,an, P1,. -, Pn,b).

The dynamic programming algorithm for MAXIMUM KNAPSACK thus shows that
this problem is pseudo-polynomial. Indeed, for any instance x, the running time
of this algorithm is O(n? pynay) and, hence, O(n® max (x)).

The following result shows an interesting relationship between the con-
cepts of pseudo-polynomiality and full approximability.

Let P be an NPO problem in FPTAS. If a polynomial p exists such that,
for every input x, m*(x) < p(|x|,max(x)), then P is a pseudo-polynomial
problem.

Let A be a fully polynomial-time approximation scheme for . We will
now exhibit an algorithm 4’ that solves any instance x of P in time poly-
nomial both in |x| and in max (x). This algorithm is simply defined as:

, 1
A=A (54 )
Since the optimal measure is bounded by p(|x|,max(x)), A'(x) must be an
optimal solution. Regarding the running time of 4’, recall that 4 operates
within time g(|x|,1/(r— 1)), for some polynomial g. Therefore, A4’ oper-
ates in time ¢(|x|, p(|x|,max(x)) + 1), that is, a polynomial in both |x| and
max(x).

X
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< Theorem 3.17
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Definition 3.16 »
Strongly Np-hard problem

Theorem 3.18 B
PROOF

QED
Example 3.8 »

Corollary 3.19 »

Let ? be an NPO problem and let p be a polynomial. We denote by
PM%P the problem obtained by restricting P to only those instances x for
which max(x) < p(|x|). The following definition formally introduces the
notion of an optimization problem whose computational hardness does not
depend on the values of the numbers included in its instances.

An NPO problem P is said to be strongly NP-hard if a polynomial p exists
such that P™**%P is Np-hard.

If P NP, then no strongly NP-hard problem can be pseudo-polynomial.

Let us assume that P is a strongly Np-hard problem, which is alsd pseudo-
polynomial. This means that an algorithm exists that solves P in time
q(|x|,max(x)) for a suitable polynomial g. Then, for any polynomial p,
PP can be solved in time g(|x|, p(|x])). IFrom the strong NP-hardness
of P, it also follows that a polynomial p exists such that P™2%? js Np-hard. |
Hence, P = NP and the theorem follows.

MAXIMUM CUT is an example of strongly NP-hard problem. Indeed, it is suffi-
cient to consider the polynomial p(n) = n. Therefore, unless P = NP, MAXIMUM
CUT is not pseudo-polynomial.

From Theorems 3.17 and 3.18, the following result can be immediately
derived.

Let P be a strongly NP-hard problem that admits a polynomial p such
that m*(x) < p(|x|,max(x)), for every input x. If P # NP, then P does not
belong to the class FPTAS.

The concepts of pseudo-polynomiality and strong NP-hardness allow us
to classify NPO problems in different classes. Once we have shown that an
NPO problem is pseudo-polynomial, we can think that it is computation-
ally easier than a problem that is strongly Np-hard (see Theorem 3.18).
On the other hand, we can capture some connections of these concepts
with the approximability properties. Also from this point of view, even
if we only have partial relationships, it is clear that pseudo-polynomiality
is linked to well-approximable problems (see Theorem 3.17) while strong
NP-hardness seems to be one of the characteristics of problems that behave
badly with respect to approximability (see Corollary 3.19).

Recommende page:

http://www.math.ucdavis.edu/~greg/zoology/

Exercises
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Exercise 3.1 Define a polynomial-time local search algorithm for MAX-
IMUM SATISFIABILITY. Prove that the algorithm finds a solution with
measure at least one half of the optimum.
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Program 3.6: ‘G‘arvrkili

input Graph G = (V,E);
output Vertex cover V',
begin
repeat
Choose any edge ¢ = (vi,v;) € E;
V= Viu{v, vk
E := E—{¢ | € E incident to v; or v };
until £ = 0;
return V'
end.

Problem 3.3: Maximum k-Dimensional Matching
INSTANCE: Set M C X; X X5 X ... X X where X;,X>,...,X; are disjoint
sets having the same number g of elements.

SOLUTION: Subset M’ C M such that no two elements of M’ agree in
any coordinate.

MEASURE: Cardinality of M'.

Exercise 3.2 Prove that Program 3.1 can be extended to the case in which
each clause has an associated weight preserving the performance ratio.

Exercise 3.3 Show that Program 3.6, also known as Gavril’s algorithm,
is a 2-approximate algorithm for MINIMUM VERTEX COVER. (Hint: ob-
serve that the algorithm computes a maximal matching of the input graph.)

Exercise 3.4 Consider Problem 3.3. Show that, for any k& > 3, MAXI-
MUM k-DIMENSIONAL MATCHING is k-approximable. (Hint: consider
maximal matchings, that is, matchings that cannot be extended without
violating the feasibility constraints.)

Exercise 3.5 Consider the following variant of Christofides’ algorithm
(known as the tree algorithm for MINIMUM TRAVELING SALESPERSON):
after finding the minimum spanning tree 7, create the multigraph M by
using two copies of each edge of 7. Show that this algorithm is 2-
approximate and that the bound 2 1s tight.

Exercise 3.6 Consider Problem 3.4. Prove that a minimum spanning tree
on S is a 2-approximate solution for this problem.

Section 3.4
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Problem 3.4: Minimumum Metric Steiner Tree o
INSTANCE: Complete graph G = (V,E), edge weight functionw : E +— IN
satisfying the triangle inequality, and subset S C V of required vertices.

SOLUTION: A Steiner tree T, i.e., a subgraph of G that is a tree and
includes all the vertices in S.

MEASURE: The sum of the weights of the edges in T'.

Problem 3.5: Minimum Knapsack : ; \
INSTANCE: Finite set X of items, for each x; € X, value p; € Z* and size
a; € ZT, positive integer b. ‘

SOLUTION: A setofitemsY C X such that ¥ .y p; > b.

MEASURE: Total size of the chosen items, i.e., Y, cy a;.

Exercise 3.7 Show that the greedy heuristic for MINIMUM VERTEX
COVER based on repeatedly choosing a vertex with highest degree does
not provide a constant approximation ratio.

Exercise 3.8 Prove that, for any NPO minimization problem P, if there
exists a constant £ such that it is NP-hard to decide whether, given an in-
stance x, m*(x) < k, then no polynomial-time r-approximate algorithm for
P with r < (k1) /k can exist, unless P = NP.

Exercise 3.9 Prove that the greedy algorithm for MINIMUM PARTITION
described at the beginning of Sect. 3.2.1 is a polynomial-time 6/5-
approximate algorithm. (Hint: use the proof of Theorem 3.8.)

Exercise 3.10 Prove that, for any integer ¢ and for any rational & > 0, the
number of ways of choosing ¢ positive integers whose sum is less than 0 is

equal to ( CTSLJSJ )

Exercise 3.11 By making use of a technique similar to the one used for
MINIMUM PARTITION, show that, for any integer k, there is a k/(k+ 1)-
approximate algorithm for MAXIMUM KNAPSACK.

Exercise 3.12 Fill in all the details of the proof of Theorem 3.14.

Exercise 3.13 Construct a FPTAS for MINIMUM KNAPSACK (see Prob-
lem 3.5) by making use of the variable partitioning technique.
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Exercise 3.14 An NPO problem P is simple if, for every positive integer
k, the problem of deciding whether an instance x of P has optimal mea-
sure at most k is in P. Prove that MAXIMUM CLIQUE is simple and that
MINIMUM GRAPH COLORING is not simple (unless P = NP).

Exercise 3.15 Prove that a problem is simple if it belongs to the class
PTAS.

Exercise 3.16 An NPO maximization problem P satisfies the boundedness
condition if an algorithm A and a positive integer constant b exist such
that the following hold: (a) for every instance x of P and for every positive
integer c, A(x, c) is a feasible solution y of x such that m*(x) < m(x,y) +cb,
and (b) for every instance x of P and for every positive integer c, the time
complexity of A4 (x,c) is a polynomial in |x| whose degree depends only on
the value m(x, A(x,c))/c. Prove that MAXIMUM KNAPSACK verifies the
boundedness condition.

Exercise 3.17 (*) Prove that an NPO maximization problem P admits a
PTAsS if and only if it is simple and satisfies the boundedness condition.

Exercise 3.18 An NPO problem P is p-simple if, for every positive integer
k, the problem of deciding whether an instance x of P has optimal measure
at most k is solvable in time bounded by a polynomial in |x| and k. Prove
that MAXIMUM KNAPSACK is p-simple.

Exercise 3.19 An NPO maximization problem P satisfies the polynomial
boundedness condition if an algorithm A4 and a univariate polynomial p
exist such that the following hold: (a) for every instance x of P and for
every positive integer ¢, A(x,c) is a feasible solution y of x such that
m*(x) < m(x,y)+ cp(|x|), and (b) for every instance x of P and for ev-
ery positive integer ¢, the time complexity of A(x,c) is a polynomial in
|x| whose degree depends only on the value m(x, 4(x,c))/c. Prove that
MAXIMUM KNAPSACK verifies the polynomial boundedness condition.

Exercise 3.20 (*) Prove that an NPO maximization problem P admits a
FpTAS if and only if it is p-simple and satisfies the polynomial bounded-
ness condition.

3.5 Bibliographical notes
THE CONCEPT of approximation algorithm with “guaranteed perfor-

mance” was introduced in the 1970s in the context of the first at-
tempts to provide a formal analysis of computer heuristics for the solution
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of difficult optimization problems. The problem of designing efficient al-
gorithms capable of achieving “good” feasible solutions of optimization
problems in those cases in which the exact solution could not be achieved
unless running exponential-time algorithms, has, of course, been addressed
since the beginning of computational studies in operations research. But
it was not until the late 1960s that people started to perceive the need to
go beyond computational experiments and to provide the formal analysis
of the performance of an approximation algorithm in terms of quality of
approximation. One of the first papers in which the performance af an ap-
proximation algorithm was analyzed is [Graham, 1966] which deals with
multiprocessor scheduling.

In the subsequent years the study of approximation algorithms started to
become more systematic. Among the papers that are considered to have
laid down the first basic concepts relative to approximation algorithms,
we may refer the reader to [Garey, Graham, and Ullman, 1972, Sahni,
1973, Johnson, 1974a, Nigmatullin, 1976]. In particular, in Johnson’s pa-
per the first examples of f(rn)-approximate algorithms (that is with non-
constant approximation ratio), and the first examples of approximation
schemes are shown. In [Garey and Johnson, 1976b] the first survey with a
complete view of the earliest results concerning approximation algorithms
is provided.

In the late 1970s a large body of literature on approximation algorithms
and on classes of approximability already existed. In [Horowitz and Sahni,
1978, Garey and Johnson, 1979] the authors provide the basic concepts and
the related terminology (approximate algorithm, polynomial-time approx-
imation scheme, fully polynomial-time approximation scheme). Those
books have been the common ground for all work in the field.

The greedy algorithm for MAXIMUM SATISFIABILITY 1s due to [John-
son, 1974a]: a careful analysis of this algorithm is given in [Chen, Friesen,
and Zheng, 1997] where it is shown that its performance ratio is at most
3/2. The approximation algorithm for MINIMUM VERTEX COVER based
on the matching construction (see Exercise 3.3) is due to Gavril.

The proof that MINIMUM TRAVELING SALESPERSON 1s not approx-
imable unless P = NP appears in [Sahni and Gonzalez, 1976] where the
first examples of NP-hardness of approximation are presented. Note that
such problems are called P-complete, a terminology never used afterwards
with this meaning. The 2-approximate algorithm for the MINIMUM MET-
RIC TRAVELING SALESPERSON based on the spanning tree construction
(see Exercise 3.5) appears for the first time in [Korobkov and Krichevskii,
1966]. In [Rosenkrantz, Stearns, and Lewis, 1977] several heuristics for
MINIMUM METRIC TRAVELING SALESPERSON are analyzed and vari-
ous 2-approximate algorithms are shown. The 1.5-approximate algorithm




(that s, Christofides’ algorithm) appears in [Christofides, 1976]. It is worth
noting that in the metric case this is still the best result known in terms of
approximation ratio.

The primal-dual algorithm for the minimum weight perfect matching
which is used in the proof of Theorem 3.6is due to [Gabow, 1990]. Cur-
rently, the best known algorithm for finding a minimum weight maximal
matching in a graph satisfying the triangular inequality is due to [Vaidya,
1990] and takes time O(n?>(logn)*). Since in the case of Christofides’
algorithm we have exactly this type of instances, we may also apply
Vaidya’s algorithm and the overall time of Christofides’ algorithm becomes
O(n*3(logn)*4).

The gap technique has been implicitly used for some time (for example,
in the cited results on NP-hardness of approximation of MINIMUM TRAV-
ELING SALESPERSON). The first proof of hardness of approximability (up
to ratio 2) for the MINIMUM GRAPH COLORING problem, based on the
gap technique, appeared in [Garey and Johnson, 1976a].

For a long time only a few problems admitting a PTAS were known.
Among them there was MAXIMUM INDEPENDENT SET restricted to pla-
nar graphs. A PTAS for this problem was due to [Lipton and Tarjan, 1980]
and, independently, to [Chiba, Nishizeki, and Saito, 1982]. In [Baker,
1994], by means of a new technique, it is proved a more general result for
such problem. The author proved that the MAXIMUM INDEPENDENT SET
can be solved in polynomial time for k-outerplanar graphs and, as a con-
sequence, showed that several problems restricted to planar graphs admit
a PTAS: beside MAXIMUM INDEPENDENT SET, such problems include
MINIMUM VERTEX COVER and MINIMUM DOMINATING SET.

More recently, by means of new techniques, polynomial-time approxi-
mation schemes have been designed for a large group of geometric prob-
lems in the Euclidean plane by [Arora, 1997]. Among them, the most rele-
vant are MINIMUM TRAVELING SALESPERSON and MINIMUM STEINER
TREE. Notice that the result is remarkable, because in [Papadimitriou and
Yannakakis, 1993] it is proved that in the general metric case MINIMUM
TRAVELING SALESPERSON does not allow a PTAS.

One of the first examples of a fully polynomial-time approximation
scheme, namely the FPTAS for the knapsack problem, was given by [Ibarra
and Kim, 1975]. Both notions are extensively discussed in [Horowitz and
Sahni, 1978] where more examples of problems in PTAS and FPTAS are
shown.

The technique of variable partitioning used in the FPTAS for MAXIMUM
PRODUCT KNAPSACK has been introduced in [Marchetti-Spaccamela and
Romano, 1985].

The strictinclusion of FPTAS in the class PTAS was proved in [Korte, and
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Schrader, 1981] by showing that MAXIMUM INTEGER m-DIMENSIONAL
KNAPSACK (previously shown to be in PTAS by [Chandra, Hirschberg,
and Wong, 1976]) is not in FPTAS. In the same paper, necessary and suf-
ficient conditions for showing the existence of PTAS and FPTAS (based
on generalizations of the dominance rules introduced for knapsack-type
problems) were presented. Other necessary and sufficient conditions, of
more general applicability, were provided by [Paz and Moran, 1981]. In
[Ausiello, Marchetti-Spaccamela, and Protasi, 1980] it is shown that these
conditions are strictly related to the notions of strong NP-completeness and
pseudo-polynomiality introduced by [Garey and Johnson, 1978].

Finally it is worth noting that even though the standard approach to
the study of approximation algorithms was based on the notions of rel-
ative error and performance ratio, as defined in Sect. 3.1.2, in [Hsu and
Nembauser, 1979, Ausiello, Marchetti-Spaccamela, and Protasi, 1980, De-
mange and Pascos, 1996] it is suggested to consider the so-called “differ-
ential performance measure” which relates the error made by an algorithm
to the range of possible values of the measure.






