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Introduction

It is well known that the quality of the initial conditions plays an important role in the
analysis of atmospheric dynamics and weather forecast. This is a direct consequence of
the nonlinearity of all these geophysical processes which imposes an important sensitivity
to the initial conditions [1, 23].

Parameter Identification has become a relevant topic in the environmental science,
since it combines effectively all the sources of information (e.g. Observations of the ocean)
with models and numerical methods to obtain an optimal representation of the state of
the ocean, atmosphere, etc [29, 42]. This technique can rely on variational methods [38],
while others use Kalman filtering and its extensions [17, 28], statistical interpolation [36]
or more empirical approaches such as the nudging method [22, 39].

In this project we present an application of this technique on the Shallow Water Equa-
tions (SWE) based on a Galerkin finite element approach. The Shallow Water Equations
model the propagation of disturbances in water and other incompressible fluids. They can
also be used in numerical weather prediction to study large-scale wave in the atmosphere
and ocean [33].

In Chapter 1, we present a brief outlook of the viscous SWE, we refer to the deduction
of the SWE as well as the different ways to model the viscosity term and its properties.
Finally, we state the settings that we considered in our formulation.

In Chapter 2, we describe the strategy used to simulate the SWE. Further, in order to
examine the properties of the simulation solver, we consider three relevant examples and
we address the following questions: Which time scheme fits our forward problem better?
What is the effect that the addition of a viscosity term to the transport equation has on
the simulation of the phenomenon? In the case of a quasistationary process, how can we
improve our solutions without changing our current framework?

In Chapter 3, we refer to the Parameter Identification problem, we examine the opti-
mization problem settings as well as the solution process that we followed. At the end of
this section we present different examples under many settings to corroborate the proper
performance of our solver.
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Chapter 1

Shallow Water Equations

The SWE are used to model the motion of a shallow layer of homogeneous incom-
pressible fluid in a three-dimensional rotating sub-domain and, in particular, to simulate
the vertical average dynamics of the fluid in terms of the horizontal velocity and depth
variation [21].

In general, this ODE system is modeled by the three-dimensional incompressible
Navier-Stokes-Coriolis system in R3 together with a (nonlinear) free moving surface bound-
ary condition and the underlying assumption that the depth of the fluid is small compared

to the wave length of the disturbance, i.e.
H

L
<< 1, where H and L are the characteristics

values for the vertical and horizontal length scales of motion [44].

1.1 Derivation of the SWE

In order to have a better understanding of the phenomena described by the SWE, we
will first have a short overview on the deduction of the SWE from the Navier Stokes
equations for incompressible flows and the “free surface conditions”, which are explained
in [41, 44].

For our notation, p represents the pressure, η is the vertical displacement of the free
surface, u = (u, v, w) the three-dimensional velocity, v = (u, v) the two-dimensional ve-
locity, ρ the density, g the acceleration due to gravity and h0(x, y) the bottom topography
(see Figure 1.1).

The three dimensional Navier Stokes equations and the “free surface conditions” are
given by:

Momentum equation:
∂u

∂t
+ u ·∇u+

1

ρ
∇p+ gẑ = 0, (1.1)

Continuity equation: ∇ · u = 0, (1.2)

Free surface condition: p = 0,
∂η

∂t
+ v ·∇η = w on z = η(x, y, t), (1.3)

Bottom boundary condition: u ·∇(z + h0(x, y)) = 0, on z = −h0(x, y). (1.4)
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Figure 1.1: Definition of h0 and η

First, we integrate the continuity equation vertically:

0 =

η∫

−h0

[∇ · u] dz

=

η∫

−h0

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

]
dz

Leibniz
=

∂

∂x

η∫

−h0

u dz − u
∣∣∣
z=η

∂η

∂x
+ u
∣∣∣
z=−h0

∂(−h0)

∂x

+
∂

∂y

η∫

−h0

v dz − v
∣∣∣
z=η

∂η

∂y
+ v
∣∣∣
z=−h0

∂(−h0)

∂y

+w
∣∣∣
z=η

− w
∣∣∣
z=−h0

(1.5)

Using (1.4), the last term in (1.5) is canceled. Hence, (1.5) can be rewritten as:

0 =
∂

∂x

η∫

−h0

u dz − u|z=η
∂η

∂x
+

∂

∂y

η∫

−h0

v dz − v|z=η
∂η

∂y
+ w|z=η. (1.6)

Substituting (1.6) in the surface condition (1.3), one gets:

∂η

∂t
+

∂

∂x

η∫

−h0

u dz +
∂

∂y

η∫

−h0

v dz = 0. (1.7)

On the other hand, the last term of the momentum equations (1.1) is:

∂

∂t
w + u

∂

∂x
w + v

∂

∂y
w + w

∂

∂z
w = −−1

ρ

∂

∂z
p− g,
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or, in terms of the material derivative
dw

dt
:

dw

dt
=

−1

ρ

∂p

∂z
− g. (1.8)

Using the “long wave approximation” the last equation can be used to determine a
relation between the pressure and the acceleration due to gravity.

Long wave approximation: the wave length is much longer than the depth of the
fluid, therefore we can assume that there are no vertical variations in (u, v) and neglecting
the vertical acceleration, dw

dt = 0, in (1.8) (you can think of the SWE as a boundary layer
[27]). We obtain:

η∫

z

∂p

∂z
dz = −

η∫

z

ρg dz,

p(x, y, η, t)− p(x, y, z, t) = −ρg(η(x, y, t)− z),

p(x, y, z, t) = ρg(η(x, y, t)− z), (1.9)

where we used the surface condition p(x, y, η, t) = 0. Using this expression for the hydro-
static pressure (1.9) and further assuming that there are no vertical variations in (u, v),
the horizontal momentum equations of the shallow-water system are obtained as follows,

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂η

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂η

∂y
= 0.

(1.10)

The conservation of mass given by (1.7) becomes:

∂η

∂t
+

∂

∂x
[(η + h0)u] +

∂

∂y
[(η + h0)v] = 0. (1.11)

Equations (1.10) and (1.11) are the shallow-water equations.

The non-viscous SWE system ((1.10),(1.11)) can be written in the following matrix
form:

∂

∂t

⎛

⎝
η
u
v

⎞

⎠+

⎡

⎣
u η + h0 0
g u 0
0 0 u

⎤

⎦ ∂

∂x

⎛

⎝
η
u
v

⎞

⎠+

⎡

⎣
v 0 η + h0

0 v 0
g 0 v

⎤

⎦ ∂

∂y

⎛

⎝
η
u
v

⎞

⎠ = −

⎛

⎜⎜⎝
u
∂h

∂x
+ v

∂h

∂y
0
0

⎞

⎟⎟⎠ .

The eigenvalues of the first coefficient matrix are:

u, u±
√

g(η + h0), (1.12)

and those of the second coefficient matrix are:

v, v ±
√
g(η + h0). (1.13)
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Since the eigenvalues (1.12) and (1.13) are real and distinct, the non-viscous shallow-
water equations are hyperbolic partial differential equations [41]. Therefore, as we can
see in [24], the SWE admit discontinuous solutions. Such discontinuities are called ”bore”
and they approximate a breaking wave [41].

Additionally, if we consider the shallow-water equations in a rotating frame (the ro-
tation axis is perpendicular to x − y plane), the Coriolis term should be added to the
momentum equation [41]. In that case, Vallis [46] proposes:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂η

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g

∂η

∂y
= 0,

∂η

∂t
+

∂

∂x
[(η + h0)u] +

∂

∂y
[(η + h0)v] = 0,

(1.14)

where f is the Coriolis parameter.

In terms of the two-dimensional velocity, v = (u, v), (1.14) can be rewritten as:

{
∂tv + (v ·∇)v + fk̂ × v + g∇η = 0,

∂tη +∇ · [v(h0 + η)] = 0.
(1.15)

1.1.1 Adding viscosity: Hyperbolic-Parabolic problems

Similarly, as we described in the previous section, Gerbeau and Marche [19, 32] derived
the viscous SWE. Various models (or approximations) for the viscosity term are possible.
In general, Hao [21] expressed the nonlinear viscous SWE as follows:

⎧
⎪⎨

⎪⎩

ht + div(hv) = 0,

(hv)t + div(hv ⊗ v) + gh∇h+ f(hv)⊥ = div (2ξ(h)D(v)) +∇(λ(h)div v),

h(0) = h0, v(0) = v0,

(1.16)

where h(x, y) = h0(x, y)+η(x, y), D(v) =
1

2
(∇v+(∇v)T ), ξ ≥ 0 and λ are the dynamical

viscosities satisfying λ+ ξ ≥ 0.

As seen in [21, 33], the SWE with viscosity fits into the class of hyperbolic-parabolic
systems.

1.2 Settings for our formulation

For our analysis, as in [3, 31], we define the viscous SWE as:

{
∂tv + (v ·∇)v + fk̂ × v + g∇η − Avisc∆v = 0 in Ω× [0, T ]

∂tη +∇ · [v(h0 + η)] = 0 in Ω× [0, T ]
(1.17)
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This formulation is obtained after setting the dynamical viscosities as ξ(h) = Avisc ≥ 0
and λ(h) = −Avisc in (1.16), additionally taking h0(x, y) constant.

Moreover, for our model we also consider a supplementary Laplacian term, ε△η (ε ≥
0), in the transport equation, as described in [3]. The addition of this term changes the
nature of our model. For a big enough ε > 0, the system becomes parabolic.

We know that a major problem associated with the finite element solution of the dif-
ferential equations describing such transport type phenomena is that solutions, in general,
fail to capture non-smooth behavior of the unknown variables. In particular, if the field
variables change rapidly within the thin internal or boundary layers, different numerical
schemes have shown inaccurate and unstable results (see Yazdani [37]). Since our modified
model is parabolic, it does not admit discontinuous solutions. Hence, our finite element
based solver is applicable under these settings.

The model that we will consider in our analysis is:

⎧
⎪⎪⎨

⎪⎪⎩

∂tv + (v ·∇)v + fk̂ × v + g∇η − Avisc∆v = 0 in Ω× [0, T ],

∂tη +∇ · [v(h0 + η)]− ϵ∆η = 0 in Ω× [0, T ],

η(0) = η0, v(0) = v0.

(1.18)

We assume periodic boundary conditions on ∂Ω, where Ω = [0, Lx]× [0, Ly] and [0, T ]
is the observed time interval. In the next section we specify the regularity conditions of
the initial data (η0,v0).

Further, our functional space V is defined as:

V :=
{
f = (η,v) ∈ H1(Ω)3 s.t. f is periodic in ∂Ω

}
. (1.19)

Considering (1.18) one can get the associated weak formulation of the viscous SWE
by multiplying with test functions ψ = (χ,φ)T ∈ V and integrating over the domain Ω:

{
(∂tv,φ) + (v ·∇v,φ) + (fk̂ × v,φ) + (g∇η,φ)− Avisc(△v,φ) = 0, ∀ ψ ∈ V,

(∂tη,χ) + (∇ · (v(h0 + η)),χ)− (ε△η,χ) = 0.
(1.20)

For the second order terms, using the boundary conditions, we get:

(△v,φ) =

∫

Ω

φ ·△v dΩ
Green’s Identity

=

∫

∂Ω

φ
∂v

∂n
dΓ−

∫

Ω

∇v∇φ dΩ
by periodicity in ∂Ω

= −
∫

Ω

∇v∇φ dΩ

Analogously, (△η,χ) = −
∫

Ω

∇η∇χ dΩ. Therefore, the weak formulation of the SWEs

that we will consider is the following:

{
(∂tv,φ) + (v ·∇v,φ) + (fk̂ × v,φ) + (g∇η,φ) + Avisc(∇v,∇φ) = 0, ∀ ψ ∈ V

(∂tη,χ) + (∇ · (v(h0 + η)),χ) + (ε∇η,∇χ) = 0
(1.21)
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1.3 Existence of solution and well-posedness:

There are different papers where the existence and uniqueness of the SWE is approached
under different settings and boundary conditions [43]. Bui [10] proved local existence and
uniqueness of classical solutions to the Dirichlet problem for the unforced viscous SWE
and fix ξ(h) = h and λ(h) = 0, using Lagrangian coordinates and Hölder space estimates,
he assumed initial data h0 ∈ C1,α(Ω) and v0 ∈ C2,α(Ω).

Other authors considered the solution to be spatially periodic, e.g. Kloeden [26], he
proved global existence and uniqueness using Sobolev space estimates by following the
energy method of Matsumura and Nishida [34], he considered the initial data (h0,v0) ∈
H4(Ω). Both authors do not include the Coriolis force, however both state that the
inclusion of this force will not alter the results of their respective theorems [43].

Sundbye [43] proves global existence of strong solutions for the unforced initial value
problem and for the forced initial boundary value problem. Polynomial L2 and L∞ decay
rates are established for the Dirichlet problem.

Cheng and Tadmor [12] considered the non-viscous SWE (1.15) and proved the long
time existence of approximate periodic solutions for initial data (h0,v0) ∈ Hm(Ω)3 with
m > 5.

Flori, Orenga and Peybernes in [18] proposed a free boundary shallow water model
for which they gave an existence theorem. Such model is fairly similar to (1.17) without
the Coriolis force and g = 1:

⎧
⎪⎪⎨

⎪⎪⎩

∂v

∂t
+ (v ·∇)v − µ△v +∇h = 0 in Ω,

∂h

∂t
+ div(hv) = 0 in Ω,

(1.22)

with initial data (h0,v0) satisfying:

h0 logh0 ∈ L1(Ω), h0 ≥ 0, (1.23)

v0 ∈ H5/2(Ω), (1.24)

and the small data condition:

M0 =
1

2
∥v0∥2L2(Ω) +

∫

Ω

h0 logh0 +
1

e
meas(Ω) +

1

2
∥v0∥H2(∂Ω)2

< βmin

((
2µ

CGN

)2

;

(
2α

TCGN

)2
)
, (1.25)

∥v0∥L2(Ω) < min

(
2

µ

CGN
, 2

α

CGNT

)
, (1.26)

where α and β are two positive numbers such that α+β =
1

2
and CGN is the best constant

satisfying Gagliardo-Niremberg inequality:

∥v∥L4(Ω) ≤ CGN∥v∥L2(Ω)∥v∥H1(Ω). (1.27)
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Under the conditions (1.23), (1.24), (1.25), (1.26) and (1.27), Flori, Orenga and Pey-
bernes [18] proved existence of solutions for problem (1.22). Additionally, they showed
that (h,v) verify the following regularity conditions:

v ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (1.28)

h logh ∈ L∞(0, T ;L1(Ω)), h ≥ 0, (1.29)

h ∈ L2(Ω). (1.30)

Since our goal is to obtain the solution of the weak formulation of the viscous SWE,
we pay special attention to the work of Bresh and Desjardins in [6]. They proved the
global existence of weak solutions for arbitrarily large data for the viscous shallow water
equation with periodic boundary conditions and additional drag friction and capillary
terms:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂th+ div(hv) = 0,

∂t(hv) + div(hv ⊗ v) +
(hv)⊥

Ro
+ r0v + r1h|v|v − κh∇△h+

+
h∇h

Fr2
− νdiv(h∇v) = hf,

(1.31)

where Fr > 0 denotes the Froude number, Ro > 0 the Rossby number and κ ≥ 0 the
capillary coefficient. System (1.31) is supplemented with initial conditions (h0,m0 =
h0v0) satisfying:

h0 ∈ L2(Ω),
|m0|2

h0
∈ L1(Ω),

√
k∇h0 ∈ (L2(Ω))2,

∇
√
h0 ∈ (L2(Ω))2, −r0 log h0 ∈ L1(Ω),

(1.32)

where m0 = 0 on h−1
0 ({0}) and log g = logmin(g, 1).

Additionally, Bresh and Desjardins proved that the weak solution (h,v) satisfies the
following regularity properties:

∇
√
h ∈ L∞(0, T ; (L2(Ω))2),

√
hv ∈ L∞(0, T ; (L2(Ω))2),

√
h∇v ∈ L2(0, T ; (L2(Ω))4), ∇h ∈ L2(0, T ; (L2(Ω))2),

√
r0v ∈ L2(0, T ; (L2(Ω))2), r1/31 h1/3v ∈ L3(0, T ; (L3(Ω))2),

√
κ∇2h ∈ L2(0, T ; (L2(Ω))4).

(1.33)

In our case, we are not considering drag friction nor capillary terms. Therefore, we set
r0 = r1 = κ = 0 and the initial conditions (1.32) are set as:

h0 + η0 ∈ L2(Ω),
|(h0 + η0) · v0|2

h0 + η0
∈ L1(Ω) and ∇

√
h0 + η0 ∈ (L2(Ω))2. (1.34)

From now on we will consider our initial data (η0,v0) of (1.18) satisfying (1.34). If
we additionally assume h0(x, y) constant in the bounded domain Ω, then we can neglect
h0(x, y) from the initial conditions (1.34).

11



Chapter 2

Simulation (Forward Problem)

In this section we analyze the strategy followed to solve the problem:
{

(∂tv,φ) + (v ·∇v,φ) + (fk̂ × v,φ) + (g∇η,φ) + Avisc(∇v,∇φ) = 0, ∀ ψ ∈ V

(∂tη,χ) + (∇ · (v(h0 + η)),χ) + (ε∇η,∇χ) = 0,
(2.1)

given initial data (η0,v0) satisfying (1.34) and periodic boundary conditions on ∂Ω.

Problem (2.1) can be rewritten in the form:
⎧
⎪⎪⎨

⎪⎪⎩

(∂tu,ψ) = a(u,ψ), ∀ψ = (χ,φ)t ∈ V on [0, T ]× Ω,

where u = (η,v)t ∈ [0, T ]× Ω,

and the initial condition u0 = (η0,v0)t ∈ Ω,

(2.2)

where a(u,ψ) is given by:

a(u,ψ) = −[(v ·∇v,φ) + (fk̂ × v,φ) + (g∇η,φ) + Avisc(∇v,∇φ) +
+(∇ · (v(h0 + η)),χ) + (ε∇η,∇χ)]. (2.3)

Since we are dealing with a nonstationary problem, we need to define a time stepping
scheme for our numerical approximation. In this project, we consider three different time
stepping schemes: the Backward Euler scheme (BE), Crank Nicolson Scheme (CN) and
Fractional-step θ scheme (FS). These methods are based on finite differences and have
different properties that can be useful for our simulation.

2.1 Time discretization: Short overview on the time
stepping schemes

Suppose we have a partial differential equation of the form:
{

(∂tu,ψ) = a(u,ψ), on [0, T ]× Ω

u0 = (η0,v0)t ∈ Ω,
(2.4)

The time scheme produces a sequence {u0,u1,u2, . . .} such that uk ≈ u(tk) for 0 =
t0 < t1 < · · · < tk < · · · < tn = T and tk is given by tk = k · dt, ∀k = {0, . . . , n} (dt being
the time step size).

12
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2.1.1 Backward Euler Scheme (BE)

The Backward Euler Scheme is an implicit method which computes the approximations
using:

(
uk+1 − uk

dt
,ψ

)
= a(uk+1,ψ), ∀k = {0, . . . , n− 1}. (2.5)

The Backward Euler method has order one, i.e. the error at a specific time t is O(h).
The region of absolute stability for the BE method includes the whole left half of the
complex plane, therefore it is strongly A-stable, making it suitable for the solution of stiff
equations. Moreover, the BE scheme is L-stable. However, this method tends to be very
dissipative [11].

2.1.2 Crank Nicolson Scheme (CN)

The Crank Nicolson scheme is a second-order convergence in time method which is
motivated on the trapezoidal rule. This method is a combination of the Forward Euler
method at k and the Backward Euler method at k + 1:

(
uk+1 − uk

dt
,ψ

)
=

1

2
[a(uk+1,ψ) + a(uk,ψ)] , ∀k = {0, . . . , n− 1}. (2.6)

This method is A−stable and, in comparison to the BE scheme, has very little
dissipation. However it may have instabilities caused by rough initial and/ or boundary
data and spurious oscillations when large time steps or small spatial steps are needed; in
those cases the less accurate BE scheme is preferred, which is both stable and immune to
oscillations [15, 45].

2.1.3 Fractional-Step θ Scheme (FS)

This is one of the most attractive time discretization schemes for incompressible flows,
as it combines several attributes like strong A− stability, very little numerical dissipation
and second order accuracy [35].

One iteration of the one step theta scheme in tk → tk+1 is given by:
(
uk+1 − uk

dt
,ψ

)
= θa(uk+1,ψ) + (1− θ)a(uk,ψ), ∀k = {0, . . . , n− 1}. (2.7)

The FS scheme is based on this one step theta scheme by combining three substeps

tk → tk+α → tk+1−α → tk+1,

using time step sizes α · dt, (1 − 2α)dt and α · dt. It can be shown that the resulting

scheme is second order accurate if we choose α = 1 −
√

1

2
≈ 0.293. Each of the three

substeps is a theta step using the three values θ, 1 − θ and θ. For every θ ∈ (1/2, 1]
strong A−stability of the combined scheme is given, therefore this scheme is well-suited
for computing solutions with rough data [9].

The FS scheme between tk and tk+1 can be written as:

13



Marco Capó

Step 1: Compute an approximation to uk+α

(
uk+α − uk

α · dt ,ψ

)
= θa(uk+α,ψ) + (1− θ)a(uk,ψ). (2.8)

Step 2: Compute an approximation to uk+1−α

(
uk+1−α − uk+α

(1− 2α) · dt ,ψ

)
= (1− θ)a(uk+1−α,ψ) + θ(uk+α,ψ). (2.9)

Step 3: Compute an approximation to uk+1

(
uk+1 − uk+1−α

α · dt ,ψ

)
= θa(uk+1,ψ) + (1− θ)a(uk+1−α,ψ). (2.10)

2.2 Space discretization: Short overview Q1 finite el-
ement

After discretization in time, the space is treated, as usually, with a Galerkin finite
element scheme, here based on the Q1 finite element.

Definition 2.2.1 Following Ciarlet’s definition of a finite element [13], (K,P ,N ) is a
finite element if:

(i) K ⊆ Rn be a bounded closed set with nonempty interior and piecewise smooth bound-
ary (the element domain).

(ii) P be a finite-dimensional space of functions on K (the space of shape functions).

(iii) N = {N1,N2, . . . ,Nk} be a basis for P ′ (the set of nodal variables).

Definition 2.2.2 Let (K,P ,N ) be a finite element. The basis {φ1,φ2, . . . ,φk} of P dual
to N (i.e. Ni(φj) = δij) is called the nodal basis of P.

2.2.1 Q1 Finite Element

This finite element is defined as K being any rectangle, P = Q1 = span{1, x, y, xy}
and N = {N1,N2,N3,N4}, where Ni(v) = v(zi) and z1, z2, z3, z4 are the corners of K (see
Figure 2.1 ):

Figure 2.1: Q1 finite element
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Following the definition (2.2.2), given any rectangle K with corners: z1 = (x1, y1), z2 =
(x2, y1), z3 = (x2, y2), z4 = (x1, y2), the nodal basis can be defined by:

φ1(x, y) =
(x− x2)(y − y2)

(x1 − x2)(y1 − y2)
, φ2(x, y) =

(x− x1)(y − y2)

(x2 − x1)(y1 − y2)
,

φ3(x, y) =
(x− x1)(y − y1)

(x2 − x1)(y2 − y1)
, φ4(x, y) =

(x− x2)(y − y1)

(x1 − x2)(y2 − y1)
.

Definition 2.2.3 A subdivision of a domain Ω is a finite collection of element domains
{Ki}i such that:

1) int Ki ∩ int Kj = ∅ if i ̸= j and

2)
⋃
i
Ki = Ω̄.

In our case Ω is a rectangular domain and the subdivision {Ki}i is such that in each
domain Ki we define a Q1 finite element, i.e. in each Ki, we define the space discretization
Vh := (Q1)

3. Hence, the basis of Vh, ({ψi}N=12
i=1 ) in each subdivision is of the form:

⎧
⎨

⎩

⎛

⎝
φi

0
0

⎞

⎠ ,

⎛

⎝
0
φi

0

⎞

⎠

⎛

⎝
0
0
φi

⎞

⎠

⎫
⎬

⎭

4

i=1

The subdivision of the rectangular domain Ω can be easily implemented by using the
Deal.II command:

domain.refine_global(level).

This command refines all cells in the domain level times, therefore the generated mesh
will have 22·level cells (see Figure 2.2).

Figure 2.2: Mesh refinement for level = 1, 2, 3, 4, 5
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2.3 Numerical Approximation of the SWE

Considering the time and space discretization described in Section 2.1 and Section 2.2,
problem (2.2) can be seen as:

(P)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Given an initial data u0 satisfying (1.34) :

Determine uk+1 ∀k = {0, . . . , n− 1}, satisfying

(uk+1 − uk,ψ) = θ · dt · a(uk+1,ψ) + (1− θ) · dt · a(uk,ψ), ∀ψ ∈ Vh and θ ∈ [0, 1].

For θ = 1 gives the Backward Euler scheme, θ = 0 Backward Forward scheme, θ = 1/2
Crank Nicolson scheme and for any θ ∈ [0, 1] a one step theta scheme (one of the three
substeps of the Fractional step θ scheme).

Hence, problem (P) is equivalent to finding u ∈ Vh such that

F (u) = adt(u,ψ)− f(ψ) = 0, ∀ψ ∈ Vh,

with u = (η,v)t = (ηk+1,vk+1)t = uk+1 and adt(u,ψ), f(ψ) given by:

adt(u,ψ) = (u,ψ)− θ · dt · a(u,ψ)

f(ψ) = (uk,ψ) + (1− θ) · dt · a(uk,ψ)
(2.11)

To do so, we use the Newton method with line search, which is already implemented
in DopeLib [20]:

Algorithm 2.3.1 Newton Method with line search

Given u0 ∈ Vh. Fix k = 0, ρ ∈ (0, 1), σ ∈ (0, 1/2).

While (∥F (uk)∥L2(Ω) is not small enough) do

1.Step 1: Determine a direction u+ ∈ Vh satisfying F ′
u(uk)u+ = −F (uk), i.e.

adt
′

u (uk,ψ)(u
+) = −adt(uk,ψ) + f(ψ), ∀ψ ∈ Vh

Since u+ ∈ Vh, there exist coefficients {cj}Nj=1 s.t. u+ =
N∑
j=1

cjψj.

We determine c = {cj}Nj=1 solving the system Akc = bk,

Ak
ij = adt

′

u (uk,ψi)(ψj), bk = −adt(uk,ψi) + f(ψi).
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1.Step 2: Determine Step-Length:

Set l = 0; uk+1 = uk + ρlu+;

While
(
∥F (uk+1)∥L2(Ω) is not small enough

)
do

l = l + 1; uk+1 = uk − ρlu+

End While

k = k + 1

End While

2.4 Demonstrative Examples

Next we introduce four examples that will let us understand the properties of our
solver. These results were obtained using a computer with an Intel Core i3-2310M 2.10
GHz Processor and 4.00 GB of RAM memory:

2.4.1 Lake at rest (Initial Test)

This is the most simple test that is implemented to verify a SWE solver [16]. It consists
on setting η0(x, y) ≡ 0 and v0(x, y) ≡ (0, 0)t in Ω. As in [3], we fix the parameters
ε = Avisc = 0.1, T = 1, the coriolis force f(x, y) = 4 ·86164.1 ·π · sin(2πy) and the domain
Ω = [0, 1]2.

In the following figure we can see the simulation of η(t, x, y) for the BE scheme, CN
scheme and FS scheme for different time steps and a spatial grid with 256 elements.
Besides the time scheme, we obtained the following stationary solution:

Figure 2.3: Stationary solution η(t, x, y) , v(t, x, y) for t = [0, 1]

This is, η(t, x, y) ≡ 0 , v(t, x, y) ≡ (0, 0)t, which is the expected result [16].

2.4.2 Double Bump (Time Schemes)

In this example we consider a height fluctuation η0 with two bumps (one positive
and one negative). To do so, we take η0(x, y) = sin(2πx) + sin(2πy) and, additionally,
v0(x, y) ≡ (0, 0)t in Ω. We fix the parameters ε = 0, Avisc = 0.1, T = 1, the Coriolis force
f(x, y) = 4 · π · sin(2πy), h0(x, y) = 1000, g = 9.81 and the domain Ω = [0, 1]2.
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Figure 2.4: Initial data η0(x, y) = sin(2πx) + sin(2πy) in Ω = [0, 1]2

In the following plots we can see the simulation of η(t, x, y) for the BE scheme, CN
scheme and FS scheme for different number of time steps = {50, 500, 5000} and a spatial
grid with 256 elements.

• Backward Euler

◦ Time steps = 50. CPU time = 3.64 sec.

Figure 2.5: 50 time steps BE Simulation for t = {0, 0.10, 0.20, 0.50, 1}

◦ Time steps = 500. CPU time = 34.15 sec.

Figure 2.6: 500 time steps BE Simulation for t = {0, 0.10, 0.20, 0.50, 1}
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◦ Time steps = 5000. CPU time = 216.10 sec.

Figure 2.7: 5000 time steps BE Simulation for t = {0, 0.10, 0.20, 0.50, 1}

• Crank Nicolson

◦ Time steps = 50. CPU time = 4.70 sec.

Figure 2.8: 50 time steps CN Simulation for t = {0, 0.10, 0.20, 0.50, 1}

◦ Time steps = 500. CPU time = 44.70 sec.

Figure 2.9: 500 time steps CN Simulation for t = {0, 0.10, 0.20, 0.50, 1}

◦ Time steps = 5000. CPU time = 396.71 sec.

Figure 2.10: 5000 time steps CN Simulation for t = {0, 0.10, 0.20, 0.50, 1}
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• Fractional-Step θ

◦ Time steps = 50. CPU time = 15.40 sec.

Figure 2.11: 50 time steps FS Simulation for t = {0, 0.10, 0.20, 0.50, 1}

◦ Time steps = 500. CPU time = 163.63 sec.

Figure 2.12: 500 time steps FS Simulation for t = {0, 0.10, 0.20, 0.50, 1}

◦ Time steps = 5000. CPU time = 1159.16 sec.

Figure 2.13: 5000 time steps FS Simulation for t = {0, 0.10, 0.20, 0.50, 1}

In the previous figures we observe that, for the different schemes and number of time
steps, both bumps do not vanish ”strictly” in time. As we will see in Figure 2.14, η(middle
point of Ω) oscillates till converging to an equilibrium state as t → T . In the next examples
we will also verify the smoothness effect that the laplacian term (ε△η, ε > 0) adds to
such descent.

For the smallest number of time steps (50), in the CN scheme, the final height profile is
not vanished at time T . However, as we increase the number of time steps, the CN scheme
has a similar behavior as the FS scheme (more details will be provided later). In that
sense, the CN scheme did not offer reliable results for small time steps (the description
of the evolution of the model changes greatly as we increase the number of time steps).
As we commented in the previous chapter, it is well known that this scheme can have
instabilities for small number of time steps depending on the initial data [11, 45].

The BE scheme showed a very dissipative behavior which improved as we increased
the number of time steps (see Figure 2.14). In general, the FS method is better suited
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for these computations. Given the oscillating behavior of this case, the number of time
steps play an important role when determining the dynamics of the model and we observe
that, even for small number of time steps (50), the FS scheme manages to anticipate
such an oscillating behavior with convergence to an equilibrium state (which can not be
achieved for big time steps in the case of BE and CN schemes, see figures 2.5, 2.8 and
2.14). Similar results were obtained by other authors in the simulation of incompressible
flows [9, 35]. The behavior of the different time schemes for the height profile in this
example is repeated for other values of η0(x, y).

For the reasons given above, we expect that η(middle point of Ω)
t→∞−→

∫

Ω

η0(x, y)dΩ/|Ω|,

in other words, that the bump(s) vanishes in time, in this example
∫

Ω

η0(x, y)dΩ = 0. In

the next figures we show the relation between time vs η (middle point of Ω) for the
different time schemes:

Figure 2.14: Middle point evaluation w.r.t. time at different time steps

21



Marco Capó

Figure 2.15: Middle point evaluation w.r.t. time at different time steps

In Figure 2.14 and Figure 2.15 is simpler to see that, for smaller number of time
steps, the CN scheme may have instabilities and that the BE scheme tends to exhibit a
dissipative behavior for the different time steps that we analyzed. One can also see that,
as the time step decreases, the FS and CN schemes seems converge to the same solution,
as we can observe in Figure 2.16.

One of the possible drawbacks of the FS scheme is associated to the computation time.
As it is expected, when performing the simulation for a fixed number of time steps, the
FS method has a higher CPU time. This is due to the fact that it requires three implicit
sub-steps per time step. In the next figure we compare the solution achieved with 20000
time steps, η20000,FS

middle point Ω, with respect to the approximations obtained for the BE, CN, FS
schemes with different time steps. Such comparison is made by calculating the relative
errors:

20000∑
i=0

(
η20000,FS

middle point Ω(ti)− ηts,method
middle point Ω(ti)

)2

20000∑
i=0

(
η20000,FS

middle point Ω(ti)
)2 ,

where ts = {50, 100, 200, 500, 1000, 2000, 3000, 4000, 5000, 7500, 9000, 20000} and method
is any of the three time schemes that we have been considering. The additional points
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needed to calculate the error for number of time steps smaller than 20000 are obtained
via linear interpolation.

Time steps BE CN FS

50 3.64 4.70 15.40
100 8.28 9.36 29.91
200 50.35 17.90 63.64
500 34.15 44.07 163.63
1000 62.56 88.25 354.96
2000 101.40 181.52 660.11
3000 162.14 274.40 867.73
4000 200.31 363.29 1041.91
5000 216.10 396.71 1159.16
7500 325.06 584.14 1622.51
9000 471.96 671.07 1787.18
10000 551.13 739.02 1987.40
20000 1029.03 1440.98 3848.23

Table 2.1: CPU time (sec) for different time steps

Figure 2.16: Comparison CPU time vs accuracy

As we previously commented, in this figure we observe the convergence of the FS and
CN scheme to the same solution, while the BE scheme does not suffer a relevant variation
as we decrease the time step. This pointwise comparison is specially relevant for a large
number of time steps since, in this particular case, the dynamic of the model is oscillatory.
Therefore, it is normal to expect that for small time steps we observe a larger error in

23



Marco Capó

the FS scheme, even when it predicts correctly the behavior of η(middle point of Ω) (see
Figure 2.14).

Additionally, we observe in Table 2.1 that the FS scheme has a higher CPU time for a
fixed number of time steps. However, we notice that in order to achieve “realistic” results
the BE and CN schemes need a much greater time step and, therefore, a possible higher
CPU time than the one required for the FS scheme simulation with a bigger time step.
For example, as we can see in Figure 2.16 the FS scheme with 2000 time steps (CPU
time = 660.11 sec) is closer to the optimal solution than the BE scheme with 20000 time
steps (CPU time = 1029.03 sec). In that sense, the comparison of the CPU time at a fix
number of time steps is not necessarily a relevant indicator.

For the initial settings of our model, we can not observe an evident impact of the
Coriolis force over the dynamics of the model. In order to see this, we variate the Coriolis
force f(x, y) for a fixed 500 time steps FS scheme. We obtained the following results:

◦ f(x, y) ≡ 0

Figure 2.17: Simulation with f(x, y) ≡ 0 and t = {0, 0.10, 0.20, 0.50, 1}

◦ f(x, y) = 4 · π sin(2πy)

Figure 2.18: Simulation with f(x, y) = 4 · π sin(2πy) and t = {0, 0.10, 0.20, 0.50, 1}

◦ f(x, y) = 4 · 861.641 · π sin(2πy)

Figure 2.19: Simulation with f(x, y) = 4·861.641·π sin(2πy) and t = {0, 0.10, 0.20, 0.50, 1}
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◦ f(x, y) = 4 · 8616.41 · π sin(2πy)

Figure 2.20: Simulation with f(x, y) = 4·8616.41·π sin(2πy) and t = {0, 0.10, 0.20, 0.50, 1}

◦ f(x, y) = 4 · 86164.1 · π sin(2πy)

Figure 2.21: Simulation with f(x, y) = 4·86164.1·π sin(2πy) and t = {0, 0.10, 0.20, 0.50, 1}

Further, in Figure 2.22, we can see the evolution of ∥η(t)∥2L2(Ω) for all the Coriolis forces
used before.

Figure 2.22: ∥η(t)∥2L2(Ω), t ∈ [0, 1] for all Coriolis forces used before

We see that, if we neglect or consider a small enough Coriolis force (f(x, y) = 0,
f(x, y) = 4 · π sin(2πy)), the bumps tend too the equilibrium state as we increase the
time, even when it does not vanish strictly in time. As we increase the Coriolis force, the
bump takes longer to vanish or simply does not vanish at all. This is due to a higher
presence of the inertial force, which, as we can see in Figure 2.19, 2.20 and 2.21, has a
bigger effect on the dynamics of the wave rather than other forces (i.e. gravity). Such
effect is represented in an apparent deflection in the dynamics of the model. However,
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as we will analyze in the upcoming chapter, if we add a large enough viscous term to
the transport equation we can achieve a smooth solution with a decay effect due to the
viscous laplacian term. In the next figure we take again f(x, y) = 4 · 86164.1 · π sin(2πy)
and we add the viscous term with ε = 0.1 :

Figure 2.23: Simulation with f(x, y) = 4 · 86164.1 · π sin(y), ε = 0.1 and t =
{0, 0.10, 0.20, 0.50, 1}

Figure 2.24: Midpoint evaluation and ∥η(t)∥2L2(Ω), t ∈ [0, 1] for f(x, y) = 4 · 86164.1 ·
π sin(y), ε = 0.1

As we will refer in the next example, the addition of the viscous term in the transport
equation (ε > 0) generates a solution with a smooth decay to the stationary solution
(η(t, x, y) = 0) as we observe in Figure 2.24 with respect to the non-smooth decay obtained
for f(x, y) = 0 and ε = 0 (Figure 2.22).

2.4.3 Bump (Relation ε vs Avisc)

The consideration of a supplementary viscosity term in a transport type equation is
a common practice as wee can see in [5, 14]. Córdoba analyzed a 1D transport type
equation and verified the formation of singularities in finite time for a generic family of
initial data [14]. By adding the viscosity term described in Section 1.2, the finite time
singularity is prevented and the solutions exist globally in time [8, 14].

In this example, we take one single bump given by η0(x, y) = sin(πx)2 · sin(πy)2. We
fix T = 2. The Coriolis force f(x, y) = 4 ·86164.1 ·π · sin(2πy) and the domain Ω = [0, 1]2.
In this example we analyze the solution for different values of ε and Avisc, with the FS
scheme (for the reasons given before), 200 time steps and a spatial grid with 256 elements.
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Figure 2.25: Initial data η0(x, y) = sin(πx)2 · sin(πy)2 in Ω = [0, 1]2

Next, we see the simulation for three cases: ε = Avisc = 0, ε = 0 and Avisc = 0.1 and
ε = Avisc = 0.1.

• ε = 0, Avisc = 0

Figure 2.26: ε = 0, Avisc = 0. Simulation for t = {0, 0.01, 0.02, 0.05, 0.2, 0.5, 1, 2}

In the next case, we take Avisc ̸= 0.

• ε = 0, Avisc = 0.1

Figure 2.27: ε = 0, Avisc = 0.1. Simulation for t = {0, 0.01, 0.02, 0.05, 0.2, 0.5, 1, 2}

Now we consider, ε ̸= 0.
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• ε = 0.1, Avisc = 0.1

Figure 2.28: ε = 0.1, Avisc = 0.1. Simulation for t = {0, 0.01, 0.02, 0.05, 0.2, 0.5, 1, 2}

Adding the viscous term (ε ̸= 0) has an important effect: it suppresses the “wave-
breaking” phenomenon. This term generates a dispersion effect which causes the wave
to spread and acts against the steeping effect of the nonlinearity [30]. Hence, we expect
to obtain a smooth solution which, depending on the initial data, might approach a
shock wave as ε → 0. In the theory, this is known as the vanishing viscosity effect [5].
Further, in the case ε ̸= 0, we observe that the middle point evaluation converges to∫

Ω

η0(x, y)dΩ = 0.25 in time:

Figure 2.29: Middle point evaluation and ∥η(t)− 0.25∥2L2(Ω) for ε = 0.1 and Avisc = 0.1

As expected, we observe in Figure 2.29 a smooth decay of η(t, x, y) to the stationary
state in time. In the next plots we see the results for vx and vy for ε = 0.1 and Avisc = 0.1.
We observe that the velocity in the x direction is of order O(10−3) and in the y direction
is of order O(10−5). Therefore, the bump will vanish faster in the x direction (as seen in
Figure 2.28).

Figure 2.30: ε = 0.1, Avisc = 0.1. Simulation of vx for t = {0, 0.02, 0.05, 0.1, 0.15, > 0.2}
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Figure 2.31: ε = 0.1, Avisc = 0.1. Simulation of vy for t = {0, 0.02, 0.05, 0.1, 0.15, > 0.2}

As we increase ε, as expected, the bump decays faster:

• ε = 0.1, Avisc = 0.1

Figure 2.32: ε = 0.1, Avisc = 0.1. Simulation of η0 for t = {0, 0.02, 0.05, 0.20, 0.50, 1, 2}

• ε = 0.5, Avisc = 0.1

Figure 2.33: ε = 0.5, Avisc = 0.1. Simulation of η0 for t = {0, 0.02, 0.05, 0.20, 0.50, 1, 2}

• ε = 1, Avisc = 0.1

Figure 2.34: ε = 1, Avisc = 0.1. Simulation of η0 for t = {0, 0.02, 0.05, 0.20, 0.50, 1, 2}

As ε > 0 increases, the second order term will have a bigger effect on the equation
describing the dynamics of η(t, x, y). This term has the same effect as the thermal diffu-
sivity in the heat equation [48]. In other words, ε quantifies the rate at which the upper
topography is “smoothed out” in time.
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Finally, we analyze the effect of the space and time discretization over the viscous
formulation that we proposed in this example. First, we consider the simulation for
f(x, y) = 4 · 86164.1π sin(2πy) and ε = 0.1, with different level of refinements = {3,4,5,6}
and 200 time steps. As we will see in example 2.4.4, the refinement of the mesh in sectors
for which the dynamics of the state variable changes rapidly, has an important effect in
the outcome of the simulation. In the next figures we see the simulation for the different
levels of refinement:

• level = 3

Figure 2.35: Simulation of η0 for level = 3 and t = {0, 0.02, 0.05, 0.10, 0.20, 0.50, 1, 2}

• level = 4

Figure 2.36: Simulation of η0 for level = 4 and t = {0, 0.02, 0.05, 0.10, 0.20, 0.50, 1, 2}

• level = 5

Figure 2.37: Simulation of η0 for level = 5 and t = {0, 0.02, 0.05, 0.10, 0.20, 0.50, 1, 2}

• level = 6

Figure 2.38: Simulation of η0 for level = 6 and t = {0, 0.02, 0.05, 0.10, 0.20, 0.50, 1, 2}

Figure 2.39: Middle point evaluation ∥η(t, x, y) − 0.25∥2L2(Ω) for different levels of refine-
ment
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In general, we observe the expected behavior for the different levels of refinement of
η(t, x, y). However, for higher level refinements we obtain a more accurate description of
the dynamics of the bump. For example, for the mesh of level 3, 4 and t = 0.02 (Figure
2.35, 2.36), we notice that the middle point (where at time t = 0, the height fluctuation
achieves the maximum height) vanishes drastically to zero for t → 0, while, as we increase
the mesh refinements, the sector around the middle point vanishes smoothly till achieving
the equilibrium state (See Figure 2.38 and 2.39). After some t < 0.50, we obtain a similar
result for the different levels of refinements in terms of the middle point evaluation of the
height fluctuation and ∥η(t, x, y)− 0.25∥2L2(Ω).

Refining the mesh, as seen in Figure 2.39, shows the smooth decay for η0(x, y) =
sin(π · x) + sin(π · y) to the stationary state η(t, x, y) = 0.25. Further, for a fix mesh with
4 levels of refinement, we variate the number of time steps= {100, 200, 500, 1000, 5000} :

• Number of time steps = 100

Figure 2.40: Simulation of η0 for number of time steps = 100 and
t = {0, 0.02, 0.05, 0.20, 0.50, 1, 2}

• Number of time steps = 200

Figure 2.41: Simulation of η0 for number of time steps = 200 and
t = {0, 0.02, 0.05, 0.20, 0.50, 1, 2}

• Number of time steps = 500

Figure 2.42: Simulation of η0 for number of time steps = 500 and
t = {0, 0.02, 0.05, 0.10, 0.20, 0.50, 1, 2}
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• Number of time steps = 1000

Figure 2.43: Simulation of η0 for number of time steps = 1000 and
t = {0, 0.02, 0.05, 0.10, 0.20, 0.50, 1, 2}

• Number of time steps = 5000

Figure 2.44: Simulation of η0 for number of time steps = 5000 and
t = {0, 0.02, 0.05, 0.10, 0.20, 0.50, 1, 2}

Figure 2.45: Middle point evaluation ∥η(t, x, y)− 0.25∥2L2(Ω) for different
number of time steps

In Figures 2.45,2.40, 2.41,2.42,2.43,2.44, we observe that the patterns shown for 200,
500, 1000 and 5000 time steps are fairly similar in both ∥η(t, x, y) − 0.25∥2L2(Ω) and the
middle point evaluation. Considering these results, it seems that for a fix level of refine-
ments, the variation of the number of time steps does not introduce a relevant change in
the dynamics description of the problem; on the other hand, increasing the level of re-
finement introduced greater modifications in this example, for which we can still observe
the vanishing effect. To see this, we consider the variation of the time steps for a spatial
mesh with 6 levels of refinement:
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Figure 2.46: Simulation of η0 for level = 6 and t = {0, 0.02, 0.05, 0.10, 0.20, 0.50, 1, 2}

In this case, the variation of the number of time steps is superfluous. The dynamics
of this model, for a large ε, differs from the oscillatory behavior that we had in the
last example (for which the selection of the time step was relevant). For this kind of
problems, the refinement of the space discretization give us a more accurate description
of the bump’s vanishing at every point of the domain Ω.

2.4.4 Advection of a quasistationary vortex ( Mesh Modifica-
tion)

The quasi-stationary vortex is advected in 2D with flat bottom topography. Ω =
[0, 100]2. The following example is taken from S. Vater [47] and Beckers [3], the vortex is
defined in polar coordinates, where the tangential velocity vθ(r) is given by

vθ(r) =

⎧
⎪⎨

⎪⎩
vmax

s · r
r2m − r2

·

√

2a exp

(
a

r2 − r2m

)
0 ≤ r < rm,

0 otherwise,

(2.12)

as function of the radius
r =

√
(x− 50)2 + (y − 50)2,

which is defined as the distance from the central point Ω. The quantity vmax is the
maximum tangential velocity within the vortex, rm is the radius of the vortex, and a a
smoothness scaling factor. In the test case at hand, these parameters are set to vmax =
0.01, rm = 25 and a = 2000. Furthermore, the scaling factor is:

s =
|r2vm − r2m|

rvm
√

2a exp (a/(r2vm − r2m))
, (2.13)

where:

rvm =
1

2

√
−2a+ 2

√
a2 + 4r4m,

is the radius at which vmax is attained.

The initial height field can be computed to:

η0(x, y) =

⎧
⎨

⎩
hbg −

v2maxs
2

g
exp

(
a

r2 − r2m

)
for 0 ≤ r < rm,

hbg, otherwise.
(2.14)
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The vortex is advected in x-direction with (ubg, vbg) = (0.0025, 0). The initial velocity
field is:

u0(x, y) = ubg − vθ(r) sin θ and v0(x, y) = vbg + vθ(r) cos θ,

with θ = arctan

(
y − 50

x− 50

)
.

Figure 2.47: Initial values u0, v0, η0. Example 2.4.4

Since the dynamics of this example takes place in a sector of the whole domain Ω
(around the middle point), it could be useful to modify the mesh around the area of
interest:

A modification to the mesh

In this case, we are interested in refining the mesh in a neighborhood around the middle
point of the domain Ω.

Given a mesh {(xi, yi)}ni=1 of a rectangular domain Ω with corners {(0, 0), (0, b),
(a, 0), (a, b)}, a slope m > 1 and a1, a2 ∈ R such that

a1 < min

(
a

2
,
b

2

)
≤ max

(
a

2
,
b

2

)
< a2.

The new mesh is given by {f(xi), f(yi)}ni=1 where f : [z1, z2] → [z1, z2] is a strictly
increasing mapping. In this example, z1 = 0, z2 = a (if the modification is in the x
direction) and z2 = b (if it is in the y direction). f(xi) is given by:

f(xi) =

⎧
⎨

⎩

mxi, 0 ≤ xi ≤ a1,
ma1 +m∗(xi − a1), a1 < xi ≤ a2,
a−m(a− a2) +m(x− a2), a2 < xi ≤ a (b for yi),

where m∗ =
a−m(a− a2 + a1)

a2 − a1
. In order to guarantee that f is strictly increasing we

need to impose the condition m ≤ a

a− a2 + a1
. Analogously, f(yi) is defined. The

implementation of this mapping can be found in the main file (main.cc).

An example of the output of the mesh modification can be seen in Figure 2.48. In this
case, a = b = 100, a1 = 40, a2 = 60 and m = 1.2.
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Figure 2.48: Mesh modification example

Alternatively, we can also achieve a higher level of refinement in small sectors of Ω
by taking m∗ = 1

2s (s being the number of refinements that we wish to increase). Since
f(a2)−f(a1) = m∗(a2−a1), the length of the refined sector will increase as a2−a1 is bigger.
Naturally, as we increase the length of the sector, in the outsides of it we will get a much
less accurate approximation. In particular, if we want to modify a mesh level k so that we
obtain a mesh with k + s level of refinements and symmetric with respect to the middle

point of Ω, the length of the outer elements of the mesh is Lk =
a

2s+1

(
(2s − 1)

1

2k−1

)
. If

we want to increase one level of refinement, i.e. s = 1, the length of the outer element is

Lk =
a

4

(
1 +

1

2k−1

)
≥ a

4
. This is, if we gather all the elements of the mesh around the

middle point of Ω (a1 → 0, a2 → a), then the outer element will have a length of at least
one quarter of the length of the whole domain. Therefore, the approximation outside the
central sector can be unsatisfactory if the dynamics of the phenomena in this area are
complex.

Further, in this example we want to make a refinement around one sector of the domain
Ω. Following the same reasoning we could modify the mesh in order to refine it around
M different sectors, given a set of slopes {m∗

i }M−1
i=1 and limit points {ai1, ai2}Mi=1.

For example, we want to modify ”Mesh level 3”, so that we can achieve a centered
sector with a refinement of the same length as ”Mesh level 4”:

Figure 2.49: Mesh 3, Mesh 320,80, Mesh 310,90, Mesh 4

For the quasistationary vortex example, we will perform the simulation for T = 0.05 (50
time steps), ε = Avisc = 0, f(x, y) ≡ 0 and g = 1 as in [47]. We will compare the results
obtained for a space discretization of level = 7 with respect to level = 6 and level = 5.
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Figure 2.50: Initial height for: Mesh level 7, Mesh level 6, Mesh level 6 Modified (a1 = 10,
a2 = 90, m = 1.20)

• Level = 7, CPU time = 1149.91 sec.

Figure 2.51: Simulation of the quasistationary vortex for mesh level 7
and t = {0, 0.01, 0.02, 0.03, 0.04, 0.05}

• Level = 6, CPU time = 215.20 sec.

Figure 2.52: Simulation of the quasistationary vortex for mesh level 6
and t = {0, 0.01, 0.02, 0.03, 0.04, 0.05}

• Level = 6. Modified mesh (a1 = 10, a2 = 90, m = 1.20), CPU time = 264.87 sec

Figure 2.53: Simulation of the quasistationary vortex for mesh level 6
modified and t = {0, 0.01, 0.02, 0.03, 0.04, 0.05}

We notice some small displacements around the vortex respect to the solution obtained
for level = 7. Since the bottom surface is almost flat with a shallow vortex in the center,
for less refined meshes we obtain bigger perturbations around the vortex. Additionally,
we observe that the reduction of one level of refinement implies a considerable reduction
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of CPU time. For example, level 6 (Modified case) has a CPU time = 264.87 sec, which
represents a 23% of the CPU time for level 7. This situation is more evident as we keep
reducing the level of the refinement:

• Level = 7.

Figure 2.54: Simulation of the quasistationary vortex for mesh level 7
and t = {0, 0.01, 0.02, 0.03, 0.04, 0.05}

• Level = 5.

Figure 2.55: Simulation of the quasistationary vortex for mesh level 5
and t = {0, 0.01, 0.02, 0.03, 0.04, 0.05}

• Level = 5. Modified mesh (a1 = 10, a2 = 90, m = 1.20):

Figure 2.56: Simulation of the quasistationary vortex for mesh level 5
modified and t = {0, 0.01, 0.02, 0.03, 0.04, 0.05}

Having a good understanding of the phenomena’s evolution given some initial setting
allows us to perform modifications to the mesh such that it is adapted in critical areas of
the domain Ω. In this example, we adapted the mesh in a neighborhood of the middle
point, where the dynamics of the model takes place, specially in the thin ring-shaped
sector (in green color in Figure 2.54), which serves as a ”boundary” between the vortex
area and the flat surface where the dynamic of the phenomena is almost nonexistent. On
the other hand, the mapping that we proposed allows us to obtain more accurate results
by keeping the same amount of degrees of freedom in the forward model as well as keeping
the conforming nature of our finite element framework.
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Chapter 3

Parameter Identification

In our analysis we consider a cost functional of the form:

J(u, q) =
1

2

[
c0∥v(T )− vd∥2 + c1∥η(T )− ηd∥2

]
+
α

2
∥q −Qd∥2. (3.1)

We are interested in measuring the velocity and height profile at final time T with
respect to an expected profile ud = (ηd,vd)t. c0, c1 ∈ {0, 1} allows us to consider which
profile we want to match in the optimization problem. q ∈ Q = V is the control, in our
case q = u0 = (η0,v0)t.

The last term of the cost functional, with α > 0 is used as a regularization term which
guarantees the well-posedness of the optimization problem. Qd ∈ Q is usually set as 0.
However, it can also be taken as Qd = (Qη, Qv)t, where Qv and Qη are the initial velocity
and height profile that we suspect generating ud = (ηd,vd)t at final time. Qd is supposed
to satisfy the regularity conditions specified in (1.34).

Consequently the optimization problem that we want to solve is:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
q∈Q

J(u, q) = c0
1

2

[
∥v(T )− vd∥2 + c1∥η(T )− ηd∥2

]
+
α

2
∥q −Qd∥2,

s.t. a∗(q, u,ψ) = (∂tu,ψ)− a(u,ψ) + (u(0)− q,ψ(0)) = 0, ∀ ψ ∈ V and t ∈ [0, T ].

with periodic boundary conditions on ∂Ω.

(3.2)

By fixing the initial data u0 = q the last term in (3.2) disappears. With this fixed
initial data we can solve the forward problem (simulation). In our case, we take the
initial control q = 0.

Since q = u0, we have that u = u(q). Hence, we can instead consider the reduced
optimization problem:

min
q∈Q

j(q) ⇐⇒ min
q∈Q

J(q, u(q)) s.t. a∗(q, u(q))(ψ) = 0, ∀ψ ∈ V. (3.3)

Assuming the existence and sufficient regularity of u, the necessary optimal conditions
of the first and second order are: j′(q)(δq) = 0, j′′(q)(δq, δq) ≥ 0, ∀δq ∈ Q.

To solve the reduced optimization problem, we use the inexact Newton method with
Armijo type line-seach, which is already implemented in DopeLib [20].
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Algorithm 3.0.1 Inexact Newton method for the reduced formulation

Choose q0 ∈ Q, ρ ∈ (0, 1), σ ∈ (0,
1

2
) and let k = 0.

Choose 0 < TOL < 1 and kmax ∈ N
Calculate u(q0) and z(q0)

Calculate d0 satisfying ∇2j(q0)d0 = −∇j(q0) (Use a CG method (inexact). Needs
δu and δz in each iteration.)

Set δ0 = ∥∇j(q0)∥Q
while δk > TOL and k < kmax do

Determine Step-Length: Set l = 0

qk+1 = qk − ρldk

r = (∇j(qk), dk)Q.

while j(qk+1) > j(qk) + σρlr do (Armijo type line-search)

l = l + 1

qk+1 = qk − ρldk

end while

Calculate u(qk+1) and z(qk+1)

Calculate dk+1 satisfying ∇2j(qk+1)dk+1 = −∇j(qk+1) (Use a CG methods (in-
exact). Needs δu and δz in each iteration.)

Set δk+1 = ∥∇j(qk+1)∥Q
k = k + 1

end while

The difficulty in the Newton formulation rises in the calculation of ∇2j(qk+1) and
∇j(qk+1). Additionally, we can obtain the gradient and the hessian of j(q) using the
Lagrange formalism.

We define the Lagrangian (using the weak form of a∗(q, u)(z)):

L(q, u, z) = J(q, u)− a∗(q, u)(z)

= J(q, u)−
[

T∫

0

(
(∂tv + v ·∇v + fk̂ × v + g∇η, zv) + Avisc(∇v,∇zv)

+ (∂tη +∇ · [v(h0 + η)], zη) + ε(∇η,∇zη))dt] + (q − u(0), z(0))

The adjoint state z = (zη, zv) is the Lagrange multiplier for the equality constraint
a∗(q, u)(ψ) = 0, ∀ψ ∈ V .
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Solution Process

• Step 1: Calculation of j′(q)δq:

First, notice that j′(q) is the Riesz representation for the gradient ∇j(q), i.e.

(∇j(q), δq)Q = j′(q)δq, ∀δq ∈ Q.

Since j(q) = L(x) with x = (q, u, z), we know that

j′(q)δq = L′
q(x)δq + L′

u(x)u
′(q)δq + L′

z(x)
d

dq
z · δq.

Due to the choice u = u(q), it holds L′
z(x)χ = 0, ∀χ ∈ V . We define z = z(q) such

that L′
u(x)φ = 0, ∀φ ∈ V (Adjoint Equation).

Therefore,

j′(q)δq = L′
q(x)δq = (z(0) + α(q −Qd), δq). (3.4)

Taking φ(t) = (η̃(t), ṽ(t)) periodic in Ω, we also assume z(t) = (zη(t), zv(t))t periodic
in Ω, the adjoint equation can be written as:

L′
u(x)φ = L′

v(x)ṽ + L′
η(x)η̃ = 0, ∀φ ∈ V.

= c0(v(T )− vd, ṽ(T )) + c1(η(T )− ηd, η̃(T ))− (3.5)

−
[

T∫

0

(∂tṽ + ṽ ·∇v + v ·∇ṽ + fk̂ × ṽ + g∇η̃, zv) + Avisc(∇ṽ,∇zv)

+ (∂tη̃ +∇ · [ṽ(h0 + η)] +∇ · (vη̃), zη) + ε(∇η̃,∇zη)) dt]− (ũ(0), z(0))

= 0.

By integration by parts (on the terms ∂tṽ and ∂tη̃) equation (3.5) can be rewritten as:

L′
u(x)φ = c0(v(T )− vd, ṽ(T )) + c1(η(T )− ηd, η̃(T )) +

T∫
0

[
(∂tzv, ṽ) + (∂tzη, η̃)−

−(ṽ ·∇v + v ·∇ṽ + fk̂ × ṽ + g∇η̃, zv)− Avisc(∇ṽ,∇zv)− (∇ · [ṽ(h0 + η)]+

+∇ · (vη̃), zη)− ε(∇η̃,∇zη)]dt− (ũ(0), z(0))− (ṽ(T ), zv(T )) + (ṽ(0), zv(0))−

−(η̃(T ), zη(T )) + (η̃(0), zη(0)) = 0

We can see that the terms at t = 0 disappear. In order to get the adjoint equation we
consider the different cases:

1) If we assume ũ(T ) = (η̃(T ), ṽ(T ))t = (0)3, the adjoint equation implies the solution
of the weak problem:

(∂tzv, ṽ) + (∂tzη, η̃)− (ṽ ·∇v + v ·∇ṽ + fk̂ × ṽ + g∇η̃, zv)− Avisc(∇ṽ,∇zv)

−(∇ · [ṽ(h0 + η)] +∇ · (vη̃), zη)− ε(∇η̃,∇zη) = 0, ∀ũ = (η̃, ṽ) ∈ V
(3.6)
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2) ṽ(T ) with compact support on Ω and η̃(T ) ≡ 0 on Ω, then:

(c0(v(T )− vd)− zv(T ), ṽ(T )) = 0

which gives the initial values of the adjoint variable zv:

zv(T ) = c0(v(T )− vd) in Ω (3.7)

3) η̃(T ) with compact support on Ω, and ṽ(T ) ≡ 0 on Ω, then:

(c1(η(T )− ηd)− zη(T ), η̃(T )) = 0.

Hence, the initial value of the adjoint variable zη is:

zη(T ) = c1(η(T )− ηd) in Ω (3.8)

Therefore, collecting the equations (3.6), (3.7) and (3.8), the weak system for the adjoint
variable z = (zη, zv)t is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tzv, ṽ) + (∂tzη, η̃)− (ṽ ·∇v + v ·∇ṽ + fk̂ × ṽ + g∇η̃, zv)− Avisc(∇ṽ,∇zv)

−(∇ · [ṽ(h0 + η)] +∇ · (vη̃), zη)− ε(∇η̃,∇zη) = 0, ∀ũ = (η̃, ṽ) ∈ V

zv(T ) = c0(v(T )− vd) in Ω

zη(T ) = c1(η(T )− ηd) in Ω

z = (zη, zv)t periodic in Γ

(3.9)

As one can see, the adjoint equation needs to be solved backward in time. Therefore we
need to introduce a reasonable dual time-stepping scheme (e.g. BE, CN, FS Schemes).

In order to solve the system (3.14) we use a similar strategy as in the simulation. Since

we assume z ∈ Vh, there exist coefficients {c1, . . . , cN} such that z =
N∑
j=1

cjψj, where N is

the number of degrees of freedom in the element and {ψj = (χj,φj)t}Nj=1 is the basis of
Vh.

Considering a time discretization of problem (3.14) as shown in section 2.3, and taking
ψ = (χ,φ)t = (η̃, ṽ)t, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(zv)n+1 − (zv)n

dt
,φ

)
+

(
(zη)n+1 − (zη)n

dt
,χ

)
− θ[(φ ·∇vn+1 + vn+1 ·∇φ, (zv)n+1)+

+(fk̂ × φ, (zv)n+1) + (g∇χ, (zv)n+1) + Avisc(∇φ,∇(zv)n+1) + (∇ · (φ(h0 + ηn+1))+

+∇ · (vn+1(χ)), (zv)n+1) + (ε∇χ,∇(zv)n+1)] = (θ − 1)[(φ ·∇vn + vn ·∇φ, (zv)n)

+(fk̂ × φ, (zv)n) + (g∇χ, (zv)n) + Avisc(∇φ,∇(zv)n) + (∇ · (φ(h0 + ηn))

+∇ · (vn(χ)), (zv)n) + (ε∇χ,∇(zv)n)].

41



Marco Capó

As we said before, the adjoint equation is solved backwards since we know the value of
z at final time T (this value can be found in ElementValue U at localfunctional.h).

Given the information of u = (η,v)t and z = (zη, zv)t at time step n + 1, we want to
approximate the value of z at time n. To do so, we solve a system of the form:

An+1cn = bn+1

where An+1 = K + dt(1 − θ)Bn+1. K is a N × N matrix given by Kij = (ψj,ψi) (this
matrix can be found in ElementTimeMatrix at localpde.h). On the other hand, Bn+1 is
defined:

Bn+1
ij = (φi ·∇vn + vn ·∇φi,φj) + (fk̂ × φi,φj) + (g∇χi,φj) + Avisc(∇φi,∇χj)+

+(∇ · (φi(h0 + ηn)) +∇ · (vn(χi)),χj) + (ε∇χi,∇χj)
(3.10)

Bt is prescribed in ElementMatrix at localpde.h. Finally, the right hand side bn+1 is

bn+1
i = (zn+1

v ,φi) + (zn+1
η ,χi)−∆tθ[(φ ·∇vn+1 + vn+1 ·∇φi, (zv)n+1) + (fk̂ × φi, (zv)n+1)+

+(g∇χi, (zv)
n+1) + Avisc(∇φi,∇(zv)n+1) + (∇ · (φi(h0 + ηn+1))+

+∇ · (vn+1(χi)), (zv)n+1) + (ε∇χi,∇(zv)n+1)]

The first term of bn+1
i is implemented in ElementEquation U and the second term in

ElementTimeEquation U at Localpde.h.

On the other hand, the Gradient Equation L′
q(x)q̃ = 0, ∀q̃ ∈ Q, implies:

L′
q(x)q̃ = J ′

q(q, u)q̃ − a′q(q, u)(z; q̃)

= α(q −Qd, q̃) + (q̃, z(0))

= (z(0) + α(q −Qd), q̃),

From the fundamental lemma in the calculus of variations, the gradient equation implies
that the optimal control q∗ satisfies:

q∗ =
−z(0) + αQd

α
. (3.11)

Regarding the State Equation L′
z(x)(χ) = 0, ∀χ ∈ V , we know that due to the choice

u = u(q) and the linearity of a∗(q, u)(z) w.r.t. z, the state equation is satisfied.

• Step 2: Calculation of j′′(q)(δr, δq):

As we know, j′′(q) is the Riesz representation for the hessian ∇2j(q), i.e.

(∇2j(q)δr, δq)Q = j′′(q)(δr, δq), ∀δq, δr ∈ Q.
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To calculate the second derivative we need to solve additional equations. Let
δq ∈ Q be a given direction. We search δu ∈ V solving the Tangent Equation:

L′′
qz(x)(δq,ψ) + L′′

uz(x)(δu,ψ) = 0, ∀ψ ∈ V.

We know that L′′
qz(x)(δq,ψ) = (δq,ψ(0)).

L′′
uz(x)(δu

v,ψ) = −
T∫

0

(
(∂tδu

v + δuv ·∇v + v ·∇δuv + fk̂ × δuv + g∇δuη,φ
)
+

+(Avisc∇δuv,∇φ) + (∂tδu
η +∇ · [δuv(h0 + η)] +∇ · (vδuη),χ) +

(ε ·∇δuη,∇χ))dt− (δu(0),ψ(0))

Following the same reasoning that we used to deduce the adjoint equation, the
tangent equation can be written as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(∂tδuv + δuv ·∇v + v ·∇δuv + fk̂ × δuv + g∇δuη,φ) + (Avisc∇δuv,∇φ)+
(∂tδuη +∇ · [δuv(h0 + η)] +∇ · (vδuη),χ) + (ε ·∇δuη,∇χ) = 0 in ΩT

δu(0) = (δuη(0), δuv(0))T = δq in Ω

δu = (δuη, δuv)t periodic in Γ.

(3.12)

After discretizing (3.12), as we did in the adjoint equation, the information of this
model can be found in ElementMatrix, ElementTimeMatrix, ElementEquation UT
and ElementTimeEquation UT in localpde.h and Init ElementRhs QT in localfunc-
tional.h.

Further, to find δz ∈ V we solve the Dual for Hessian equation:

L′′
qu(x)(δq,ψ) + L′′

uu(x)(δu,ψ) + L′′
zu(x)(δz,ψ) = 0, ∀ψ ∈ V.

In this example, L′′
qu(x)(δq,ψ) = 0, ∀ψ ∈ V .

L′′
uu(x)(δu,ψ) = c0(φ(T ), δu

v(T )) + c1(χ(T ), δu
η(T ))−

T∫

0

[(δuv ·∇φ+ φ ·∇δuv, zv) +

+(∇ · (δuv · χ) +∇ · (φ · δuη), zη)]dt

Finally, we determine

L′′
zu(x)(δz,ψ) = −

T∫
0

[(∂tφ+ φ ·∇v + v ·∇φ+ fk̂ × φ+ g∇χ− Avisc∆φ, δzv) +

+(∂tχ+∇ · [φ(h0 + η)] +∇ · [v · χ]− ε∆χ, δzη)]dt− (ψ(0), δz(0)) (3.13)
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Equivalently, as in the adjoint equation, we get the system for δz = (δzη, δzv)t ∈ V :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tδzv,φ) + (∂tδzη,χ)− (φ ·∇v + v ·∇φ+ fk̂ × φ+ g∇χ, δzv)− Avisc(∇φ,∇δzv)

−(∇ · [ṽ(h0 + η)] +∇ · (vχ), δzη)− ε(∇χ,∇δzη)− [((δuv∇)φ+

+(φ∇)δuv, zv) + (∇ · (δuv · χ) +∇ · (φ · δuη), zη)] = 0, ∀ψ = (χ,φ) ∈ V

δzv(T ) = c0δuv(T ) in Ω

δzη(T ) = c1δuη(T ) in Ω

δz = (δzη, δzv)t periodic in Γ.

The elements of the discretized dual for the Hessian Equation can be found
in ElementValue UU in localfunctional.h and ElementMatrix, ElementTimeMatrix,
Init ElementRhs QTT, ElementEquation UT and ElementEquation UTT in localpde.h.

Considering this choice of directions δq, δu, δz and for δr ∈ Q, the second derivative
of j can be expressed as:

j′′(q)(δq, δr) = L′′
qq(x)(δq, δr) + L′′

uq(x)(δu, δr) + L′′
zq(x)(δz, δr). (3.14)

We know that L′′
qq(x)(δq, δr) = α(δr, δq), L′′

uq(x)(δu, δr) = 0 and L′′
zq(x)(δz, δr) =

(δr, δz(0)). Hence,

j′′(q)(δq, δr) = α(δr, δq) + (δr, δz(0)). (3.15)

Using these terms, we can calculate the Newton direction δq as the solution of the
problem:

j′′(q)(δq,χ) = −j′(q)(χ), ∀χ ∈ Q (3.16)

as finding δq ∈ Q such that

α(δq,χ) + (δq, δz(0)) = −(δz(0) + α(q −Qd),χ), ∀χ ∈ Q. (3.17)

Using this direction we can compute the iteration of the inexact Newton method pro-
posed at the beginning of the chapter.
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3.1 Examples

In this section, we will analyze the results obtained for the Parameter Identification
problem for different settings.

In order to solve the forward and parameter identification problem, we set the following
parameters at dope.prm:

Newton Solver Parameters
Parameter Value
line maxiter 500
linesearch rho 0.5

nonlinear global tol 1.e-10
nonlinear maxiter 500
nonlinear rho 0.1
nonlinear tol 1.e-10

Table 3.1: Newton Solver Parameters

Reduced Newton Algorithm Parameters
Parameter Value
line maxiter 500

linear global tol 1.e-7
linear tol 1.e-7

linesearch c 0.05
linesearch rho 0.9

nonlinear global tol 1.e-7
nonlinear maxiter 500

nonlinear tol 1.e-7

Table 3.2: Reduced Newton Algorithm Parameters

3.1.1 Bump with different α = {0.01, 1, 10}
The objective of this example is to compare the optimal control q∗ for Qd(x, y) =

(Qη(x, y), Qv(x, y)) defined as Qv(x, y) = (0, 0) and Qη(x, y) = sin(πx)2 · sin(πy)2. Ad-
ditionally, we set ud(x, y) = (0, 0, 0.25), α = {0.01, 1, 10}, c0 = 0, c1 = 1 (we just want
to match at final time T the upper topography field), T = 0.40 (discretized in 20 time
steps), ε = Avisc = 0.1, h0(x, y) = 1000, the Coriolis force f(x, y) = 4 ·86164.1 ·π sin(2πy)
and the domain Ω = [0, 1]2 discretized in a 256 elements mesh as in the Example 2.4.3.

In other words, we want to understand the behavior of the initial velocity field so that
given an initial topography Qη(x, y) = sin(πx)2 · sin(πy)2, we obtain a flat topography
η(T, x, y) = 0.25 at final time T = 0.40.
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Figure 3.1: Expected initial and final upper topography. Example 3.1.1.

The Newton method for the reduced problem converged in 6 iterations for α = 0.01
and α = 1 and in 5 iterations for α = 10 for the parameters set in Table 3.1 and Table
3.2. In the next tables we can see the results for the method in each iteration:

α = 0.01, CPU time = 1551.67 sec.
Iteration Cost Functional Residual(rel) LinearIters Line search

0 0.032 1 - -
1 3.90e-04 1.10e-02 2 0
2 1.36e-04 5.46e-04 27 0
3 1.35e-04 6.17e-06 68 0
4 1.35e-04 6.57e-07 48 0
5 1.35e-04 4.05e-07 14 0
6 1.35e-04 3.70e-07 6 0

Table 3.3: Newton Iterations for α = 0.01. Example 3.1.1.

α = 1, CPU time = 285.37 sec.
Iteration Cost Functional Residual(rel) LinearIters Line search

0 0.1 1 - -
1 2.20e-02 3.76e-01 2 0
2 1.23e-03 6.53e-02 3 0
3 6.28e-04 4.85e-03 4 0
4 6.25e-04 2.30e-04 4 0
5 6.25e-04 1.92e-06 6 0
6 6.25e-04 9.77e-08 4 0

Table 3.4: Newton Iterations for α = 1. Example 3.1.1.

46



Marco Capó

α = 10. CPU time = 184.37 sec.
Iteration Cost Functional Residual(rel) LinearIters Line search

0 0.73 1 - -
1 7.15e-03 9.40e-02 2 0
2 7.19e-04 8.86e-03 2 0
3 6.62e-04 8.35e-04 2 0
4 6.62e-04 3.74e-06 3 0
5 6.62e-04 1.68e-08 3 0

Table 3.5: Newton Iterations for α = 10. Example 3.1.1.

As we decrease α the problem is ”harder” to solve, as we can verify in the CPU time
and number of linear iterations required to solve the optimization problem. As we will
see in the following subsections for smaller values of α we will obtain a solution that will
match better u(T ) to ud. However the associated inverse problem tends to be unstable
and, therefore, is more difficult to achieve a satisfactory result [25].

In the following plots we can see the optimal controls for the different values of α:

• Optimal control for α = 0.01

Figure 3.2: Optimal control (u0, v0), η0 for α = 0.01. Example 3.1.1.

• Optimal control for α = 1

Figure 3.3: Optimal control (u0, v0), η0 for α = 1. Example 3.1.1.
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• Optimal control for α = 10

Figure 3.4: Optimal control (u0, v0), η0 for α = 10. Example 3.1.1.

As we increase α > 1 our priority in the optimization problem is to match q as much
as possible to Qd (as we can see in Table 3.6). The optimal controls for α = 1 and α = 10
are fairly similar. However, the order of the velocities for α = 10 are smaller, which is to
expect since Qv = (0, 0). For the different values of α, the velocity in the x-direction is
larger than the velocity in the y-direction. Therefore, we expect the bump to dissipate
”faster” in the x-direction (as seen in Section 2.4.3).

α ∥q∗ −Qd∥2L2(Ω)

0.01 2.0378 · 10−2

1 5.17806 · 10−5

10 3.73543 · 10−6

Table 3.6: α vs ∥q∗ −Qd∥2L2(Ω). Example 3.1.1

For α = 0.01 we give more importance to matching u(T ) with ud in the optimization
problem. In this case, we obtained a different type of initial bump with a smaller height
and two negative bumps in the boundary (due to the periodicity on ∂Ω).

Considering the optimal control that we obtained, the bumps exhibit the next behavior
in time:

• α = 0.01

Figure 3.5: Evolution of η(t, x, y) for t = {0, 0.10, 0.20, 0.40} and
α = 0.01. Example 3.1.1.
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• α = 1

Figure 3.6: Evolution of η(t, x, y) for t = {0, 0.10, 0.20, 0.40} and α = 1.
Example 3.1.1.

• α = 10

Figure 3.7: Evolution of η(t, x, y) for t = {0, 0.10, 0.20, 0.40} and
α = 10. Example 3.1.1

As expected, the case α = 0.01 matches better η(T, x, y) with Qη(x, y) = 0.25 respect
to the other values of α, as we can see in the next figures:

Figure 3.8: Evaluation of η(t, x, y) for (x, y) middle point of Ω and t ∈ [0, 1]
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Figure 3.9: ∥η(t, x, y)− 0.25∥2L2(Ω) for t ∈ [0, 1]

For the optimal control for α = 0.01, we obtain ∥η(T, x, y) − 0.25∥2L2(Ω) = 6.71 · 10−5,

while for α= 1, α= 10, ∥η(T, x, y) − 0.25∥2L2(Ω) achieved bigger values, 1.198 · 10−3 and

1.286 · 10−3 respectively.

In order to have a better understanding of the obtained optimal control q∗ with respect
to the expected profile Qd, we examine the adjoint variable at time t = 0. From (3.11)
we know that z(0) = α(Qd− q∗), i.e. z(0) represents the difference of the expected profile
and the optimal control multiplied by α:

• Adjoint at t = 0 for α = 0.01

Figure 3.10: Adjoint at t = 0 for α = 0.01. Example 3.1.1

• Adjoint at t = 0 for α = 1

Figure 3.11: Adjoint at t = 0 for α = 1. Example 3.1.1.
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• Adjoint at t = 0 for α = 10

Figure 3.12: Adjoint at t = 0 for α = 10. Example 3.1.1.

If we set Qv ≡ 02 then in zv(0) we obtain the same pattern of the velocity field (with
the opposite sign) that we got for α = {0.01, 1, 10}. On the other hand, zη(0) indicates
that the main variation between the optimal initial bump and Qη occurs in the middle of
the mesh in the y-direction. In the case of α = 0.01, such difference is of order O(10−1),
while for the case α = 1 and α = 10 the difference is of order O(10−3). (α = {1, 10}
matches better the initial data)

Moreover,the evolution of zv(t) and zη(t) can be observed in the next plots for α =
{0.01, 1, 10} :

◦ Evolution of the adjoint variable zvx(t)

• Evolution of the adjoint variable zvx(t) for α = 0.01:

Figure 3.13: Evolution of zvx(t) for t = {0, 0.10, 0.20, 0.30, 0.40} and α = 0.01

• Evolution of the adjoint variable zvx(t) for α = 1:

Figure 3.14: Evolution of zvx(t) for t = {0, 0.10, 0.20, 0.30, 0.40} and α = 1

• Evolution of the adjoint variable zvx(t) for α = 10:
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Figure 3.15: Evolution of zvx(t) for t = {0, 0.10, 0.20, 0.40} and α = 10

◦ Evolution of the adjoint variable zvy(t):

• Evolution of the adjoint variable zvy(t) for α = 0.01:

Figure 3.16: Evolution of zvy(t) for t = {0, 0.10, 0.20, 0.30, 0.40} and α = 0.01

• Evolution of the adjoint variable zvy(t) for α = 1:

Figure 3.17: Evolution of zvy(t) for t = {0, 0.10, 0.20, 0.30, 0.40} and α = 1

• Evolution of the adjoint variable zvy(t) for α = 10:

Figure 3.18: Evolution of zvy(t) for t = {0, 0.10, 0.20, 0.40} and α = 10
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◦ Evolution of the adjoint variable zη(t):

• Evolution of the adjoint variable zη(t) for α = 0.01:

Figure 3.19: Evolution of zη(t) for t = {0, 0.10, 0.20, 0.30, 0.40} and α = 0.01

• Evolution of the adjoint variable zη(t) for α = 1:

Figure 3.20: Evolution of zη(t) for t = {0, 0.10, 0.20, 0.30, 0.40} and α = 1

• Evolution of the adjoint variable zη(t) for α = 10:

Figure 3.21: Evolution of zη(t) for t = {0, 0.10, 0.20, 0.40} and α = 10

As we can see in the figures 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18, zv vanishes for the
different values of α at final time T . This is due to the choice c0 = 0 and the definition
of the initial condition in the adjoint equation, zv(T ) = c0(v(T ) − vd) = 02 ∈ Ω. On
the other hand, the initial condition zη(T ) = η(T )− ηd ∈ Ω is the difference between the
height obtained at final time T and the expected height profile ηd = 0.25. We notice that
in this case, zη(T ) has a similar pattern as zη(0), as we can see in the figures 3.19, 3.20
and 3.21. However, for α = 0.01 and α = 1 such difference is of order O(10−3) and for
α = 10 is O(10−2) (for smaller values of α, η(T ) matches better with ηd).

3.1.2 Advection of a quasistationary vortex for α = {0.01, 1, 10}
The objective of this example is to compare the optimal control q∗ with Qd(x, y) =

(Qη(x, y), Qv(x, y)) defined as Qv(x, y) = (0, 0) and Qη(x, y) = η(47,50)(x, y), where
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η(47,50)(x, y) is the vortex defined in Section 2.4.4 centered in the point (47, 50). Ad-
ditionally, we set ud(x, y) = (0, 0, η(50,50)(x, y)), α = {0.01, 1, 10}, c0 = 0, c1 = 1, T = 0.05
(discretized in 50 time steps), ε = Avisc = 0, the Coriolis force f(x, y) = 0 and the do-
main Ω = [0, 100]2 discretized in a 256 elements mesh (modified mesh with parameters
m = 1.60, a1 = 10 and a2 = 90).

As in the previous example, we want to understand the behavior of the initial veloc-
ity field so that given an initial topography Qη(x, y) = η(47,50)(x, y), we obtain a final
topography η(T, x, y) = η(50,50)(x, y) at final time T = 0.05.

Figure 3.22: Expected initial and final topography. Example 3.1.2.

The Newton method for the reduced problem converged in 10 iterations for α = 0.01, 8
iterations for α = 1 and 5 iterations for α = 10. In the next tables we can see the results
for the method in each iteration:

α = 0.01, CPU time = 24061.13sec.
Iteration Cost Functional Residual(rel) LinearIters Line search

0 5e+3 1 - -
1 6.03e-01 1.52e-01 2 0
2 8.96e-02 5.46e-02 3 0
3 9.57e-03 1.27e-02 4 0
4 1.13e-03 3.84e-03 6 0
5 1.82e-04 1.20e-03 6 0
6 4.18e-05 3.89e-04 8 0
7 1.36e-05 7.52e-05 18 0
8 1.76e-07 6.45e-06 214 0
9 2.20e-10 1.74e-07 -1 0
10 9.33e-11 1.46e-08 -1 0

Table 3.7: Newton Iterations for α = 0.01. Example 3.1.2.
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α = 1, , CPU time = 7862.27sec.
Iteration Cost Functional Residual(rel) LinearIters Line search

0 1e+4 1 - -
1 4.05e-02 1.98e-02 2 0
2 6.07e-03 7.18e-03 3 0
3 6.50e-04 1.67e-03 4 0
4 7.61e-05 5.07e-04 6 0
5 1.15e-05 1.58e-04 6 0
6 4.94e-07 2.27e-05 14 0
7 1.53e-08 1.48e-06 32 0
8 4.72e-11 2.52e-08 320 0

Table 3.8: Newton Iterations for α = 1. Example 3.1.2.

α = 10, CPU time = 1149.43sec.
Iteration Cost Functional Residual(rel) LinearIters Line search

0 5.5e+4 1 - -
1 5.82e-05 1.35e-04 2 0
2 9.32e-06 5.13e-05 3 0
3 4.94e-07 1.12e-05 5 0
4 2.01e-08 1.11e-06 6 0
5 3.07e-10 3.88e-08 34 0

Table 3.9: Newton Iterations for α = 10. Example 3.1.2.

As in example 3.1.1, we notice that for smaller values of α the optimization problem
is ”harder” to solve, the CPU time for α = 1 and 10 is 32.67% and 4.77% of the CPU
time for α = 0.01. In the following plots we can see the optimal controls for the different
values of α:

• Optimal control for α = 0.01

Figure 3.23: Optimal control (u0, v0), η0 for α = 0.01. Example 3.1.2.
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• Optimal control for α = 1

Figure 3.24: Optimal control (u0, v0), η0 for α = 1. Example 3.1.2.

• Optimal control for α = 10

Figure 3.25: Optimal control (u0, v0), η0 for α = 10. Example 3.1.2

As in the previous example, we see that one of the main difference in the optimal control
for α = {0.01, 1, 10} occurs in the optimal η0(x, y) for α = 0.01. In this case, the optimal
solution differs from the initial bump centered at (47, 50) (see Table 3.10).

α ∥q∗ −Qd∥2L2(Ω)

0.01 1.62 · 10−8

1 3.996 · 10−11

10 2.86 · 10−11

Table 3.10: α vs ∥q∗ −Qd∥2L2(Ω). Example 3.1.2

For α = {1, 10} , we observe small disturbances (of order O(10−7)) for the velocity
field in both directions. For α = 0.01, we do not see such disturbances. However, in this
case the initial ”vortex” does not seem to be centered at (47, 50) (see Figure 3.23 and
Table 3.10), the center is closer to (50, 50) and therefore the optimal initial velocity is
also centered in this sector (see Figure 3.23).

Considering the optimal control that we obtained, the initial vortexes exhibit the fol-
lowing behavior in time:
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• α = 0.01

Figure 3.26: Evolution of η(t, x, y) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and α = 0.01

• α = 1

Figure 3.27: Evolution of η(t, x, y) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and α = 1

• α = 10

Figure 3.28: Evolution of η(t, x, y) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and α = 10

Figure 3.29: ∥η(t)− η(50,50)∥2L2(Ω) for α = {0.01, 1, 10}

α ∥η(t)− η(50,50)∥2L2(Ω)

0.01 1.71 · 10−11

1 1.86 · 10−11

10 9.02 · 10−11

Table 3.11: α vs ∥η(t)− η(50,50)∥2L2(Ω). Example 3.1.2
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As expected, the solution for α = 0.01 adjusts better η(T ) to η(50,50). Additionally, the
optimal control for α = 10 fits better the optimal control q∗ with respect to the expected
profile Qd (see Table 3.10). For this problem, it seems appropriate to fix α = {1, 10},
since α = 0.01 does not improve significantly the matching of η(T ) vs η(50,50) (see Table
3.11), at the same time having an unsatisfactory performance when matching the optimal
control q∗ with Qd.

The evolution of zv(t) and zη(t) can be observed in the next plots for α = {0.01, 1, 10}:

◦ Evolution of the adjoint variable zvx(t):

• Evolution of the adjoint variable zvx(t) for α = 0.01:

Figure 3.30: Evolution of zvx(t) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and α = 0.01

• Evolution of the adjoint variable zvx(t) for α = 1:

Figure 3.31: Evolution of zvx(t) for t = {0, 0.10, 0.20, 0.30, 0.40, 0.50} and α = 1

• Evolution of the adjoint variable zvx(t) for α = 10:

Figure 3.32: Evolution of zvx(t) for t = {0, 0.10, 0.20, 0.40, 0.50} and α = 10

◦ Evolution of the adjoint variable zvy(t):

• Evolution of the adjoint variable zvy(t) for α = 0.01:

Figure 3.33: Evolution of zvy(t) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and α = 0.01
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• Evolution of the adjoint variable zvy(t) for α = 1:

Figure 3.34: Evolution of zvy(t) for t = {0, 0.10, 0.20, 0.30, 0.40, 0.50} and α = 1

• Evolution of the adjoint variable zvy(t) for α = 10:

Figure 3.35: Evolution of zvy(t) for t = {0, 0.10, 0.20, 0.40, 0.50} and α = 10

◦ Evolution of the adjoint variable zη(t):

• Evolution of the adjoint variable zη(t) for α = 0.01:

Figure 3.36: Evolution of zη(t) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and α = 0.01

• Evolution of the adjoint variable zη(t) for α = 1:

Figure 3.37: Evolution of zη(t) for t = {0, 0.10, 0.20, 0.30, 0.40, 0.50} and α = 1

• Evolution of the adjoint variable zη(t) for α = 10:

Figure 3.38: Evolution of zη(t) for t = {0, 0.10, 0.20, 0.40, 0.50} and α = 10
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As in the previous case, since z(0) = α(Qd − q∗) and we set Qv = 02, we expect
zv(0) = (zvx(0), zvy(0)) to have the same pattern as the optimal initial velocity (multiplied
by −α). Again, we observe that zv(t) vanishes in time till achieving zv(T ) = 0 ∈ Ω, this
is due to the choice of c0 = 0. Furthermore, for the different values of α, we observe a
quasistationary behavior of zη(t) for t ∈ [0, T ], this means that both differences z(0) =
α(Qd−q∗) and zη(T ) = η(T )−ηd, vary in two quasi symmetric areas respect to lx = x−50.
For the initial time (after dividing by α) such difference is of order O(10−8) for both
α = {1, 10} and O(10−5) for α = 0.01. (The initial data is adjusted better for bigger
values of α).

3.1.3 Advection of a quasistationary vortex for different levels
of refinement: level = {3, 4, 5}

This example has the same settings as Example 3.1.2. However, in this case we fix
α = 1 and we variate the level of refinements of the mesh: level 3, level 4, level 5, in order
to verify the solution that we obtained in the last example as well as the possible spatial
convergence of the optimal control q∗.

Figure 3.39: Qd for a mesh of level = 3, 4, 5 of refinement

The Newton method for the reduced problem converged in 6 iterations for level = 3, 8
iterations for level = 4 and 10 iterations for level = 5. In the next tables we can see the
results for the method in each iteration:

level = 3, CPU time = 659.06 sec
Iteration Cost Functional Residual(rel) LinearIters Line search

0 1e+4 1 - -
1 3.36e-03 3.25e-03 2 0
2 5.57e-04 1.19e-03 2 0
3 2.68e-05 2.33e-04 3 0
4 9.04e-07 3.68e-05 5 0
5 9.61e-09 1.93e-06 8 0
6 6.68e-10 3.64e-08 106 0

Table 3.12: Newton Iterations for level = 3. Example 3.1.3.
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level = 4. CPU time = 10080.71 sec.
Iteration Cost Functional Residual(rel) LinearIters Line search

0 1e+4 1 - -
1 2.99e-02 1.52e-02 2 0
2 4.28e-03 5.46e-03 3 0
3 4.19e-04 1.29e-03 4 0
4 1.14e-04 6.20e-04 4 0
5 1.21e-05 1.65e-04 6 0
6 4.96e-07 2.31e-05 12 0
7 1.12e-08 1.39e-06 26 0
8 6.89e-11 2.27e-08 240 0

Table 3.13: Newton Iterations for level = 4. Example 3.1.3.

level = 5. CPU time = 86760.82 sec.
Iteration Cost Functional Residual(rel) LinearIters Line search

0 1e+4 1 - -
1 7.80e-02 3.36e-02 2 0
2 1.73e-02 1.40e-02 3 0
3 4.29e-03 5.30e-03 4 0
4 7.88e-04 2.00e-03 6 0
5 1.89e-4 8.37e-04 6 0
6 3.54e-05 3.12e-04 8 0
7 2.63e-06 6.27e-05 14 0
8 1.28e-07 6.98e-06 32 0
9 7.38e-10 2.60e-07 304 0
10 2.93e-11 2.34e-08 -1 0

Table 3.14: Newton Iterations for level = 5. Example 3.1.3.

In the following plots we can see the optimal controls for the different values of level:

• Optimal control for level = 3

Figure 3.40: Optimal control (u0, v0), η0 for level = 3. Example 3.1.3.
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• Optimal control for level = 4

Figure 3.41: Optimal control (u0, v0), η0 for level = 4. Example 3.1.3.

• Optimal control for level = 5

Figure 3.42: Optimal control (u0, v0), η0 for level = 5. Example 3.1.3.

For the different levels of refinement we observe the same behavior (and possible con-
vergence) of the optimal control q∗ to the pattern shown in Figure 3.42. For level 3 the
CPU time = 659.06 sec represents 0.07% of the CPU time for level = 5 and for level
4 we had 10080.71 sec (11.61% of the CPU time for level = 5). For the different levels
of refinement (specially for level = {4, 5}) the optimal initial height matches η(47,50) (see
Table 3.15):

Level ∥q∗ −Qd∥2L2(Ω)

3 8.933 · 10−10

4 5.722 · 10−11

5 1.953 · 10−11

Table 3.15: level vs ∥q∗ −Qd∥2L2(Ω). Example 3.1.3

Considering the optimal controls that we obtained, the initial vortexes exhibit the
following behavior in time:

• level = 3

Figure 3.43: Evolution of η(t, x, y) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and level = 3
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• level = 4

Figure 3.44: Evolution of η(t, x, y) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and level = 4

• level = 5

Figure 3.45: Evolution of η(t, x, y) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and level = 5

Figure 3.46: ∥η(t, x, y)− η(50,50)∥2L2(Ω) for different levels of refinement

As we verified in the last example, the achieved optimal control allows a vortex of
the form η(47,50) to approximate η(50,50) at time T = 0.05. As we reduce the mesh, we
eliminate the ”noise” in the boundary of the vortex as we can see in Figures 3.44 and 3.45.
At the same time, the refinement of the mesh allows us to observe better the matching of
η(t, x, y) with the η(50,50). Besides the level of refinement, we observe a smooth decay to
the expected height profile (See Table 3.16 , Figure 3.46).
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Level ∥η(T )− ηd∥2L2(Ω)

3 8.023 · 10−10

4 4.465 · 10−11

5 3.438 · 10−12

Table 3.16: level vs ∥η(T )− ηd∥2L2(Ω). Example 3.1.3

Moreover,the evolution of zv(t) and zη(t) can be observed in the next plots for α =
{0.01, 1, 10}:

◦ Evolution of the adjoint variable zvx(t) :

• Evolution of the adjoint variable zvx(t) for level = 3:

Figure 3.47: Evolution of zvx(t) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and level = 3

• Evolution of the adjoint variable zvx(t) for level = 4:

Figure 3.48: Evolution of zvx(t) for t = {0, 0.10, 0.20, 0.30, 0.40, 0.50} and level = 4

• Evolution of the adjoint variable zvx(t) for level = 5:

Figure 3.49: Evolution of zvx(t) for t = {0, 0.10, 0.20, 0.40, 0.50} and level = 5

◦ Evolution of the adjoint variable zvy(t):

• Evolution of the adjoint variable zvy(t) for level = 3:
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Figure 3.50: Evolution of zvy(t) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and level = 3

• Evolution of the adjoint variable zvy(t) for level = 4:

Figure 3.51: Evolution of zvy(t) for t = {0, 0.10, 0.20, 0.30, 0.40, 0.50} and level = 4

• Evolution of the adjoint variable zvy(t) for level = 5:

Figure 3.52: Evolution of zvy(t) for t = {0, 0.10, 0.20, 0.40, 0.50} and level = 5

◦ Evolution of the adjoint variable zη(t):

• Evolution of the adjoint variable zη(t) for level = 3:

Figure 3.53: Evolution of zη(t) for t = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and level = 3

• Evolution of the adjoint variable zη(t) for level = 4:

Figure 3.54: Evolution of zη(t) for t = {0, 0.10, 0.20, 0.30, 0.40, 0.50} and level = 4
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• Evolution of the adjoint variable zη(t) for level = 5:

Figure 3.55: Evolution of zη(t) for t = {0, 0.10, 0.20, 0.40, 0.50} and level = 5

We can see that for the different levels of refinement we obtained the same pattern for
zv(t). However, for level = 3 the error of such approximation is of order O(10−5), while
for level = 4 the order is O(10−7) and for level = 5 of O(10−8). On the other hand, zη(t)
for level = 3 has a non-symmetric pattern with oscillations outside central area, which is
not supposed to happen since the dynamic in this sector is nonexistent. The refinement
of this mesh shows the possible convergence of the control q to the pattern obtained in
level 5.

3.1.4 Double bump with different final time T = {0.50, 0.75, 1}
We want to compare the optimal control q∗ for Qd(x, y) = (Qη(x, y), Qv(x, y)) defined

as Qv(x, y) = (0, 0) and Qη(x, y) = sin(2πx) + sin(2πy). Additionally, we set ud(x, y) =
(0, 0, 0), α = 1, c0 = 1, c1 = 1, ε = Avisc = 0.1, the Coriolis force f(x, y) = 4 · 86164.1 ·
π sin(y) and the domain Ω = [0, 1]2 discretized in a 256 elements mesh.

We want to determine the behavior of the initial velocity field so that given an initial
topography Qη(x, y) = sin(2πx) + sin(2πy), we obtain the topography η(T, x, y) = 0 at
final time T = {0.50, 0.75, 1}. For T = 0.50 we take 100 time steps, for T = 0.75 we take
150 time steps and for T = 1 we take 200 time steps.

Figure 3.56: Expected initial and final topography. Example 3.1.4

The Newton method for the reduced problem converged in 3 iterations for T = 0.50
and T = 0.75 and in 2 iterations for T = 1. In the next tables we can see the results for
the method in each iteration:
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T = 0.50, CPU time = 95.44 sec
Iteration Cost Functional Residual(rel) LinearIters Line search

0 0.5 1 - -
1 5.10e-04 1.83e-03 2 0
2 5.09e-04 3.37e-06 2 0
3 5.09e-04 2.36e-08 3 0

Table 3.17: Newton Iterations for T = 0.50. Example 3.1.4.

T = 0.75, CPU time = 144.46 sec
Iteration Cost Functional Residual(rel) LinearIters Line search

0 0.5 1 - -
1 3.78e-05 8.40e-05 2 0
2 3.78e-05 2.18e-07 2 0
3 3.78e-05 3.32e-08 2 0

Table 3.18: Newton Iterations for T = 0.75. Example 3.1.4.

T = 1. CPU time = 510.57 sec
Iteration Cost Functional Residual(rel) LinearIters Line search

0 0.5 1 - -
1 1.80e-05 3.74e-06 2 0
2 1.80e-05 1.26e-08 3 0

Table 3.19: Newton Iterations for T = 1. Example 3.1.4.

In the following plots we can see the optimal controls for the different values of T :

• Optimal control for T = 0.50

Figure 3.57: Optimal control (u0, v0), η0 for T = 0.50. Example 3.1.4.
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• Optimal control for T = 0.75

Figure 3.58: Optimal control (u0, v0), η0 for T = 0.75. Example 3.1.4.

• Optimal control for T = 1

Figure 3.59: Optimal control (u0, v0), η0 for T = 1. Example 3.1.4.

In this example, the main difference in the optimal control for the different values of
T is in the velocity field. We can observe that for T = 0.50, the velocity field in the x
direction keeps the same pattern as the one that we discussed in Chapter 2. The velocity
in this direction seems to have a slightly bigger norm than for T = 0.75 and T = 1.
Additionally, the velocity in the y direction keeps the same pattern for all the cases.
However, for T = 0.5, it is of order O(10−3), while for T = 0.75 it is order O(10−5) and
for T = 1 is O(10−7). This might be due to fact that, theoretically, the bump in the first
case is supposed to vanish at a shorter time.

Considering the optimal control that we obtained, the initial bumps exhibit the follow-
ing behavior in time:

• T = 0.50

Figure 3.60: Evolution of η(t, x, y) for t = {0, 0.10, 0.25, 0.50} and T = 0.50.

68



Marco Capó

• T = 0.75

Figure 3.61: Evolution of η(t, x, y) for t = {0, 0.10, 0.25, 0.50, 0.75} and T = 0.75.

• T = 1

Figure 3.62: Evolution of η(t, x, y) for t = {0, 0.10, 0.25, 0.50, 0.75, 1} and T = 1

Figure 3.63: ∥η(t)∥2L2(Ω) for T = {0.50, 0.75, 1}

T ∥q∗ −Qd∥2L2(Ω)

0.5 3.607 · 10−5

0.75 3.427 · 10−5

1 3.427 · 10−5

Table 3.20: T vs ∥q∗ −Qd∥2L2(Ω). Example 3.1.4
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T ∥ηT (t)∥2L2(Ω), t = 0.50

0.50 9.813 · 10−4

0.75 9.848 · 10−4

1 9.849 · 10−4

T ∥ηT (t)∥2L2(Ω), t = 0.75

0.50 −
0.75 4.1391 · 10−5

1 4.1398 · 10−5

T ∥ηT (t)∥2L2(Ω), t = 1

0.50 −
0.75 −
1 1.7959 · 10−6

Table 3.21: T vs ∥ηT (t)∥2L2(Ω), t = {0.5, 0.75, 1}. Example 3.1.4

Besides the value of T = {0.50, 0.75, 1}, it seems that, in the three cases, the bump
approaches the flat solution for t < 0.50. However at time t = 0.50, the case T = 0.50,
as expected, slightly matches better η(t) to the equilibrium state uη = 0 ( ∥ηT (t)∥2L2(Ω),
with t = 0.50 is smaller for T = 0.50, see Table 3.21). As we can see in Table 3.21 the
same situation occurs for t = 0.75.

The evolution of zv(t) and zη(t) can be observed in the next plots for t = {0.5, 0.75, 1}:

◦ Evolution of the adjoint variable zvx(t):

• Evolution of the adjoint variable zvx(t) for T = 0.50:

Figure 3.64: Evolution of zvx(t) for t = {0, 0.10, 0.25, 0.50} and T = 0.50

• Evolution of the adjoint variable zvx(t) for T = 0.75:

Figure 3.65: Evolution of zvx(t) for t = {0, 0.10, 0.25, 0.50, 0.75} and T = 0.75

• Evolution of the adjoint variable zvx(t) for T = 1:

Figure 3.66: Evolution of zvx(t) for t = {0, 0.10, 0.25, 0.50, 0.75, 1} and T = 1
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◦ Evolution of the adjoint variable zvy(t):

• Evolution of the adjoint variable zvy(t) for T = 0.50:

Figure 3.67: Evolution of zvy(t) for t = {0, 0.10, 0.25, 0.50} and T = 0.50

• Evolution of the adjoint variable zvy(t) for T = 0.75:

Figure 3.68: Evolution of zvy(t) for t = {0, 0.10, 0.25, 0.50, 0.75} and T = 0.75

• Evolution of the adjoint variable zvy(t) for T = 1:

Figure 3.69: Evolution of zvy(t) for t = {0, 0.10, 0.25, 0.50, 0.75, 1} and T = 1

◦ Evolution of the adjoint variable zη(t):

• Evolution of the adjoint variable zη(t) for T = 0.50:

Figure 3.70: Evolution of zη(t) for t = {0, 0.10, 0.25, 0.50} and T = 0.50

• Evolution of the adjoint variable zη(t) for T = 0.75:

Figure 3.71: Evolution of zη(t) for t = {0, 0.10, 0.25, 0.50, 0.75} and T = 0.75
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• Evolution of the adjoint variable zη(t) for T = 1:

Figure 3.72: Evolution of zη(t) for t = {0, 0.10, 0.25, 0.50, 0.75, 1} and T = 1

As in the previous case, since z(0) = Qd − q∗ and Qv = 02, we expect zv(0) =
(zvx(0), zvy(0)) to have the same pattern as the optimal initial velocity (with opposite
sign), for this reason we observe that for zv the case T = 0.50 has a bigger order as we
commented in the beginning of the example. Additionally, zv(t) does not vanish in time
because we set c0 = 1. Further, we also notice that for different values of T , zv(T ) has a
similar pattern as zv(0) but with opposite sign, remember that zv(0) = v(T )− vd, while
z(0) = Qd − q∗ (The sign of the achieved result respect to Qd at time zero is the opposite
of ud respect to the optimal solution at final time)

Finally, for zη(t) the case T = 1 has the smallest order (O(10−8)) respect to the order
O(10−5) of T = 0.50 and O(10−3) of T = 0.75. This means that, in the last case, we
reproduce very accurately the expected initial height (Double Bump), while for the other
cases we obtain an approximation of the double bump but with a smaller maximum height
(or depth).
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Conclusions

We have been able to successfully implement the forward simulation and parameter
identification problem for the viscous SWE by the means of DopeLib and the deal.II
Finite Element Library in C++. To verify the correctness of the implementation, we
performed the simulation on different well known examples as well as different settings of
the formulation. The results that we obtained were the expected ones [3, 9, 16, 43].

In our simulation, we verified that the FS time scheme offers more realistic results
for small time steps. To do so, we considered different examples, in this report we show
the “Double Bump” case (example 2.4.2), in which we perform the simulation for a fix
mesh (256 elements) and variated the number of time steps for different time stepping
schemes (BE, CN and FS). After different tests and calculations, we noticed that the BE
scheme exhibited a dissipative behavior even for large number of time steps, furthermore
the CN scheme seemed to converge to the same solution as the FS scheme for small time
steps (dt < 10−3). However for larger time steps (dt > 10−2), the CN scheme showed
instabilities and failed to converge to the expected solution, while the FS scheme for
the different time steps that we analyzed predicted correctly the behavior of the state
variables. Therefore, this scheme was used in the parameter identification section.

Additionally, we corroborated the importance of modifying the transport equation
in our ODE system. As described in Section 1.2, we added, as in [3], a viscous term
which changes the nature of our original formulation and allows the correct solution of the
forward problem, also adding the expected descent effect in time [43, 48]. Moreover, in the
case of a single bump (example 2.4.3), we performed both time and space discretization.
We observed that the modification in the space discretization had a bigger effect on the
outcome of the simulation, specially in the centered sector of the domain, where the
Coriolis effect is smaller than in the other sectors of the bump. At the end of this section,
we considered a mesh of 6 levels of refinement and tested different number of time step
ranging from 50 to 1000. The simulation for these cases converged to the same solution.

On the other hand, we implemented in deal.II a mapping that modifies the element
sizes of our mesh. Hence, the system that we consider remains with the same amount of
degrees of freedom by redistributing the sizes of the elements in a way that the mesh adapts
better in the areas where the dynamics of the process are more complex. Additionally,
our finite element framework keeps its conforming nature.

In terms of the parameter identification, we proposed a cost functional that allows
us to consider which profile we want to match in the optimization problem (velocity field
or the upper topography of the fluid), as well as the expected behavior of such fields.
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The optimization problem is solved using the reduced formulation of the problem by the
means of the Newton method with Armijo type line search which is already implemented in
DopeLib [20]. Additionally, we used the lagrangian formulation to calculate the gradient
and hessian of the reduced cost functional. We performed different simulations for various
settings and we obtain coherent results, showing numerical convergence to the initial
behaviors that we set for the simulations in the second chapter. Further, we variated
some parameters in the formulation, e.g. α. α = 1 seems to be the ideal value for the
settings that we considered (Qd ̸= 03), with this value the optimal control and the value
of the state variable at final time T matches with the expected profiles. As we verified
in example 3.1.2. (Advection of a quasistationary vortex), for values of α < 1 it may
happen that the state variable at final time does not improve drastically respect to bigger
values of α, for which the initial data is much better adjusted, also, as we observed in
Example 3.1.1 and 3.1.2, for small values of α, it is harder to achieve convergence due to
the instability of the inverse problem.

Further steps in our work would be to make a deeper analysis of the adjoint variable
and its evolution in time. We would also like to verify that the optimal control q∗ sat-
isfies the regularity assumptions showed in (1.34) [6], in this sense, it could be useful to
implement other viscosity terms besides the one proposed in section 1.2, for which there
are more theoretical results in terms of existence and uniqueness of solution as well as the
regularities conditions, as we can see in [21, 43].
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