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“Mathematical analysis is as extensive as nature itself; it defines all perceptible relations,

measures times, spaces, forces, temperatures ; this di�cult science is formed slowly, but

it preserves every principle which it has once acquired; it grows and strengthens itself

incessantly in the midst of the many variations and errors of the human mind.

It’s chief attribute is clearness; it has no marks to express confused notations. It brings

together phenomena the most diverse, and discovers the hidden analogies which unite

them.”

Jean Baptiste Joseph Fourier
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A two-layer reaction-di↵usion model for transdermal drug delivery: a

semi-analytical approach

by Mauricio Garcia Vergara

We present a two-phase two-layer mathematical model for transdermal drug delivery and

percutaneous absorption. A set of coupled partial di↵erential equations describes the

reaction di↵usion process in both layers. Using the Method of Eigenfunctions Expansion

with shifted data and solving a Volterra Integral Equation of Second Kind we obtain a

solution in the form of an infinite series.
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Chapter 1

The Mathematical Model

1.1 Introduction

Transdermal drug delivery (TDD for short) is an approach used to deliver drugs through

the skin for therapeutic purposes as an alternative to oral, intravascular, subcutaneous

and transmucosal routes. Various TDD technologies are possible including the use of

suitable drug formulations, carriers such as nanoparticles and penetration enhancers to

facilitate drug delivery and transcutaneous absorption1. TDD o↵ers several advantages

compared to other traditional delivery methods: controlled release rate, noninvasive

administration, less frequent dosing, and simple application without professional medical

aids, improving patient compliance. For these reasons it represents a valuable and

attractive alternative to oral administration [4].

Drugs can be delivered across the skin to have an e↵ect on the tissues adjacent to the

site of application (topical delivery) or to be e↵ective after distribution through the

circulatory system (systemic delivery). While there are many advantages to TDD, the

skin’s barrier properties provide a significant challenge.To this aim, it is important to

understand the mechanism of drug permeation from the delivery device (or vehicle,

typically a transdermal patch or medicated plaster, fig. 1.1) across the skin [25]. In

TDD, the drug should be absorbed to an adequate extent and rate in order to achieve

and maintain uniform, systemic, e↵ective levels throughout the duration of use.TDD

must be carefully tailored to achieve the optimal therapeutic e↵ect and to deliver the

correct dose in the required time [20]. The pharmacological e↵ects of the drug,tissue

accumulation, duration and distribution could potentially have an e↵ect on its e�cacy

and a delicate balance between an adequate amount of drug delivered over an extended

1
The term “drug delivery” refers to the release of drug from a polymeric platform where it is initially

contained. The name “percutaneous absorption” is generally related to the same process viewed from

the perspective of the living tissue where the drug is directed to.

1
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period of time and the minimal local toxicity should be found [29]. Most drugs do not

penetrate skin at rates su�cient for therapeutic e�cacy and this restrictive nature limits

the use of the transdermal route to molecules of low molecular weight and with moderate

lipophilicity. In general, the first skin layer, the stratum corneum, presents most of the

resistance to di↵usive transport into skin. Thus, once the drug molecules cross it, transfer

into deeper dermal layers and systemic uptake occurs in a relatively short time. In order

to speed up transdermal permeation of drugs in the stratum corneum, new delivery

techniques are currently underinvestigation, for example the use of chemical enhancers

or microneedles and techniques such as ultrasound, electroporation and iontophoresis

[19, 20].

Figure 1.1: The transdermal patch, a typical vehicle in transdermal drug delivery.

Mathematical modelling for TDD constitutes a powerful predictive tool for the funda-

mental understanding of biotransport processes, and for screening processes and stability

assessment of new formulations. In the absence of experiments, a number of mathemat-

ical models and numerical simulations have been carried out regarding TDD, its e�cacy

and the optimal design of devices [13, 14, 23, 27]. Recent extensive reviews deal with

various aspects of transdermal delivery at di↵erent scales [1, 6, 10, 25, 30]. In general,

drug absorption into the skin occurs by passive di↵usion and most of the proposed mod-

els consider this e↵ect only. On the other hand, there is a limited e↵ort to explain

the drug delivery mechanism from the vehicle platform.This is a very important issue

indeed, since the polymer matrix acts as a drug reservoir, and an optimal design of its

microstructural characteristics would improve the release performances [15]. For exam-

ple, in the vehicle, the dissolution of the drug from encapsulated to free phase occurs at
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a given reaction rate. Another relevant feature in TDD is the similar binding/unbind-

ing process through the receptor sites in the skin. These drug association-dissociaton

aspects are often neglected or underestimated by most authors who consider purely

di↵usive systems in the skin or in the vehicle [16, 18]. One exception is the work of

Anissimov et al.[25, 29], where a linear reversible binding is considered, but the vehicle

is taken into account only through a boundary condition of the first kind.

The method used in the present thesis follows the mathematical approach developed in a

series of previously published papers by G. Pontrelli and F. de Monte which successfully

describe drug dynamics form an eluting stent embedded in an arterial wall [7–11]. In

these papers, it is proposed a number of models of increasing complexity to explain the

di↵usion-advection-reaction release mechanismof a drug from the stent coating to the

wall, constituted of a number of contiguous homogeneous media of di↵erent properties

and extents. Separation of variables leads to an eigenvalue problem with discontinuous

coe�cients and an exact solution is given in terms of infinite series expansion and is

based on a two- or multi-layer di↵usion model.

In the present thesis we extend the above study and remove some of the simplifying

assumptions on the interface condition, obtaining a solution in a more general form. To-

gether with di↵usive e↵ects, the drug dissolution process in the polymer constituting the

vehicle platform and the reversible drug binding process in the skin are also addressed.

A solution of the Sturm-Liouville problem serves as the building block to construct a

space-time dependent solution for the general equations using the Eigenfunctions expan-

sion method [3]. The interface condition is obtained as the solution of a Volterra integral

equation of second kind with a di↵erence kernel [22, 26]. A major issue in modelling

TDD is the assessment of the key parameters defining skin permeability, di↵usion coef-

ficients, drug dissociation and association rates. The results of the simulations provide

valuable insights into local TDD and can be used to assess experimental procedures to

evaluate drug e�cacy, for an optimal control strategy in the design of technologically

advanced transdermal patches.

1.2 Formulation of the problem

To model TDD, let us consider a two-layered system composed of: (i) the vehicle (the

transdermal patch or the film of an ointment), and (ii) the skin (the stratum corneum

followed by the skin-receptor cells and the capillary bed) (fig. 1.2). The drug is stored

in the vehicle, a reservoir consisting of a polymeric matrix. This is enclosed on one side

with an impermeable backing and having on the other side an adhesive in contact with

the skin. A rate-controlling membrane protecting the polymer matrix may exist. In this
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configuration, the first layer is shaped as a planar slab that is in direct contact with

the skin, the second layer. As most of the mass dynamics occurs along the direction

normal to the skin surface, we restrict our study to a simplified one-dimensional model.

In particular, we consideras x-axis the normal to the skin surface and oriented with the

positive direction outwards the skin. Without loss of generality, let x0 = 0 be the vehicle-

skin interface and l0 and l1 the thicknesses of the vehicle and skin layers respectively

(fig. 1.2). The vehicle and the skin are both treated from a macroscopic perspective so

that they are represented as two homogeneous media.

Figure 1.2: Cross-section of the vehicle and the skin layers, geometrical configuration
and reference system. Due to an initial di↵erence of free drug concentrations c0 and
c1, a mass flux is established at the interface and drug di↵uses through the skin. At a
distance x = l1 the skin-receptor (capillary bed) is present where all drug is assumed

to be absorbed. Figure not to scale.

Initially, the drug is encapsulated at maximum concentration within the vehicle in a

bound phase (e.g. nanoparticles or crystalline form) (c
e

): in a such state, it is unable to

be delivered to the tissue. Then, a fraction of this drug (�0ce) is transferred, through

an unbinding process, to an unbound – free, biologically available – phase (c0), and

conversely, a part of the free drug (�0c0) is transferred by a binding process to the

bound state, in a dynamic equilibrium (fig. 1.3). Also, at the same time, another

fraction of free drug (c1) begins to di↵use into the adjacent skin (delivery). Similarly, in

the skin – the release medium – a part of the unbound drug (�1c1) is metabolized by the

cell receptors and transformed in a bound state (c
b

) (absorption), and with the reverse
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unbinding process (�1c
b

) again in a unbound phase. Thus, the drug delivery-absorption

process starts from the vehicle and ends to the skin receptors, with bidirectional phase

changes in a cascade sequence, as schematically represented in fig. 1.3.

Figure 1.3: A diagram sketching the cascade mechanism of drug delivery and per-
cutaneous absorption in the vehicle-skin coupled system. A unbinding (resp. binding)
reaction occurs in the vehicle (resp. in the skin) (blue arrows). In both layers, reverse
reactions (red arrows) are present in a dynamic equilibrium. Drug di↵usion occurs only

in the free phases c0 and c1.

Local mass non-equilibrium processes, such as bidirectional drug binding/unbinding

phenomena, play a key role in TDD, with characteristic times faster than those of di↵u-

sion. In other cases of drug delivery, such as in eluting stents, a second-order saturable

reversible binding model has been proposed [2]: this comprehensive model includes a

number of drug dependent parameters which are di�cult to measure experimentally

and, nevertheless, does not necessarily apply to TDD. Here, a linear relationship is com-

monly used, as the density of binding sites far exceeds the local free drug concentration

[10, 25, 29]. In the first layer the process is described by the following equations:

@c

e

@t

= ��0ce + �0c0 in (�l0, 0) (1.1)

@c0

@t

= D0
@

2
c0

@x

2
+ �0ce � �0c0 in (�l0, 0) (1.2)

where D0 (cm2
/s) is the e↵ective di↵usion coe�cient of the unbound solute, �0 � 0 and

�0 � 0 (s�1) are the unbinding and binding rate constants in the vehicle, respectively.

In detail, the rate of release of encapsulated drug into its free state is implied by the

dissociation rate constant �0, while �0 provides a representation of the rate at which the

free solute re-associates in the bound state.
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Similarly, in the second layer, the drug dynamics is governed by similar reaction-di↵usion

equations:

@c1

@t

= D1
@

2
c1

@x

2
� �1c1 + �1c

b

in (0, l1) (1.3)

@c

b

@t

= �1c1 � �1c
b

in (0, l1) (1.4)

where D1 is the e↵ective di↵usivity of unbound drug, �1 � 0 and �1 � 0 are the binding

and unbinding rate constants in the skin, respectively, defined similarly as above for

the vehicle. They can be evaluated experimentally as described in [14, 29], sometimes

through the equilibrium dissociation constant K =
�1

�1
. To close the previous bi-layered

mass transfer system of eqns. (1.1)–(1.4), a flux continuity condition has to be assigned

at the vehicle-skin interface:

�D0
@c0

@x

= �D1
@c1

@x

at x = 0 (1.5)

As far as the concentration continuity is concerned, this is not guaranteed because of a

di↵erent drug partitioning between vehicle and skin. This is taken into account through

an appropriate mass transfer coe�cient P
r

[6, 14]. Additionally, a semi-permeable rate-

controlling membrane or an adhesive film or a non-perfect vehicle-skin contact, having

1/P
m

as mass resistance, might be present at the interface. Thus, a jump concentration

may occur:

�D1
@c1

@x

= P (c0 � c1) at x = 0 (1.6)

with P (cm/s) the overall mass transfer coe�cient :

1

P

=
1

P

r

+
1

P

m

Estimation of the partition coe�cient or of its derived quantity P

r

is a very di�cult

task. The recent review of Mitragotri et al. [25] provides an excellent overview of the

current methods used for its representation. The usually met condition c0 / c1 does not

apply, in our opinion, to time dependent cases.

No mass flux passes between the vehicle and the external surrounding due to the imper-

meable backing and we impose a no-flux condition :

D0
@c0

@x

= 0 at x = �l0 (1.7)

Finally, a boundary condition has to be imposed at the skin-receptor (capillary) bound-

ary. At this point the elimination of drug by capillary system follows first-order kinetics:
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K

cl

c1 +D1
@c1

@x

= 0 at x = l1 (1.8)

where K

cl

is the skin-capillary clearance per unit area (cm/s). The initial conditions

are:

c

e

(x, 0) = C

e

c0(x, 0) = 0 c1(x, 0) = 0 c

b

(x, 0) = 0 (1.9)

1.2.1 Dimensionless equations

All the variables and the parameters are now normalized to get easily computable di-

mensionless quantities as follows:

x̄ =
x

l1
t̄ =

D1

(l1)2
t � =

Pl1

D1

l̄0 =
l0

l1
� =

D0

D1
c̄

i

=
c

i

C

e

k =
K

cl

l1

D1
�̄

i

=
�

i

(l1)2

D1
�̄

i

=
�

i

(l1)2

D1
i = 0, 1 (1.10)

By omitting the bar for simplicity, the mass transfer problem (1.1)–(1.4) can be now

written in dimensionless form as:

@c

e

@t

= ��0ce + �0c0 in (�l0, 0) (1.11a)

@c0

@t

= �

@

2
c0

@x

2
+ �0ce � �0c0 in (�l0, 0) (1.11b)

@c1

@t

=
@

2
c1

@x

2
� �1c1 + �1c

b

in (0, 1) (1.11c)

@c

b

@t

= �1c1 � �1c
b

in (0, 1) (1.11d)

and the interface and boundary conditions (1.5)–(1.8) read:

@c0

@x

�

�

�

�

x=�l0

= 0 (1.12a)

�

@c0

@x

�

�

�

�

x=0

=
@c1

@x

�

�

�

�

x=0

= R(t) (1.12b)

�@c1

@x

�

�

�

�

x=0

= �(c0 � c1)

�

�

�

�

x=0

(1.12c)

kc1

�

�

�

�

x=1

+
@c1

@x

�

�

�

�

x=1

= 0 (1.12d)

Here R(t) is a matching interface function designed to model the temporal evolution of

the drug flux between the two layers.
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Finally, the initial conditions are:

c

e

(x, 0) = 1 c0(x, 0) = 0 c1(x, 0) = 0 c

b

(x, 0) = 0 (1.13)

In the next chapter we will develop the techniques necessary to solve this system of

PDE’s.



Chapter 2

Solution by Method of

Eigenfunctions Expansion

In order to solve the coupled PDE’s problem, we are going to use the Method of eigen-

functions expansion that consists of building up the solution of our boundary value

problem as a sum of eigenfunctions of a related Helmholtz problem with time dependent

coe�cients in order to reduce the problem to a system of ODE’s [3, 12]. The success of

this method on a given region depends on whether the eigenfunctions of the Helmholtz

problem on that region form a complete set, in the sense that a function defined on that

region can be expanded in a series in terms of the eigenfunctions, called an eigenseries

expansion. The interface condition given by (1.12b) will be handle by considering that

the partial derivatives of c
e

, c0, c1 and c

b

can also be expressed in terms of an eigen-

functions expansion, the result of this approach will give us a non homogeneous system

of ODE’s [26].

2.1 First layer

For the domain (�l0, 0) we want to solve equations (1.11a) and (1.11b)

@c

e

@t

= ��0ce + �0c0

@c0

@t

= �

@

2
c0

@x

2
+ �0ce � �0c0

with the interface/boundary conditions given by (1.12a) (1.12b)

@c0

@x

�

�

�

�

x=�l0

= 0, �

@c0

@x

�

�

�

�

x=0

= R(t)

9
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We assume that c
e

also satisfies the same interface/boundary conditions.

The initial conditions are given by (1.13)

c

e

(x, 0) = 1, c0(x, 0) = 0.

Using the Method of eigenfunctions expansion we propose that c
e

(x, t) and c0(x, t) can

be expressed in the following way

c

e

(x, t) =
1
X

n=0

T

n

e

(t)Xn

0 (x) and c0(x, t) =
1
X

n=0

T

n

0 (t)X
n

0 (x), (2.1)

with the spatial eigenfunctions for (�l0, 0) given by

X

n

0 (x) = cos[�n

0 (l0 + x)] where �

n

0 =
n⇡

l0
n � 0 (2.2)

These eigenfunctions satisfy the following orthogonality relation

Z 0

�l0

X

n

0X
m

0 dx = �

m

n

(Nn

0 )
2 (2.3)

here �m
n

is the usual Kronecker’s delta and (Nn

0 )
2 is the square L2(�l0, 0) norm of Xn

0 (x)

given by

(Nn

0 )
2 =

l0

2� �

n

0

. (2.4)

(See Appendix A). In figure (2.1) we can see some of eigenfunctions given by (2.2).

Using orthogonality we know that the coe�cients Tn

e

(t), Tn

0 (t) can be written as

T

n

e

(t) =
1

(Nn

0 )
2

Z 0

�l0

c

e

(x, t)Xn

0 (x)dx, T

n

0 (t) =
1

(Nn

0 )
2

Z 0

�l0

c0(x, t)X
n

0 (x)dx.

In the same way as for (2.1) we can write the partial derivatives with respect to time as

the expansions

@c

e

@t

=
1
X

n=0

dT

n

e

dt

X

n

0 (x) and
@c0

@t

=
1
X

n=0

dT

n

0

dt

X

n

0 (x) (2.5)

For the di↵usion term of (1.11b) we propose also an eigenfunctions expansion

@

2
c0

@x

2
=

1
X

n=0

W

n

0 (t)X
n

0 (x) (2.6)
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Figure 2.1: The first four eigenfunctions for layer 0 with l0 = 0.04.

with its coe�cients

W

n

0 (t) =
1

(Nn

0 )
2

Z 0

�l0

@

2
c0

@x

2
X

n

0 (x)dx

Using integration by parts we have that

W

n

0 (t) =
1

(Nn

0 )
2

 

X

n

0
@c0

@x

�

�

�

�

x=0

x=�l0

� c0
dX

n

0

dx

�

�

�

�

x=0

x=�l0

+

Z 0

�l0

c0(x, t)
d

2
X

n

0

dx

2
dx

!

=
1

(Nn

0 )
2

✓

(�1)n

�

R(t)� (�n

0 )
2
Z 0

�l0

c0(x, t)X
n

0 (x)dx

◆

=
(�1)n

(Nn

0 )
2
�

R(t)� (�n

0 )
2
T

n

0 (t) (2.7)

Notice that in this term we have included the information corresponding with the inter-

face condition (1.12b). Now with the help of (2.7) we can rewrite (2.6) as

@

2
c0

@x

2
=

1
X

n=0

✓

(�1)n

(Nn

0 )
2
�

R(t)� (�n

0 )
2
T

n

0 (t)

◆

X

n

0 (x) (2.8)

Plugging equations (2.1), (2.5) and (2.8) into (1.11a) - (1.11b) we have

1
X

n=0

✓

dT

n

e

dt

+ �0T
n

e

(t)� �0T
n

0 (t)

◆

X

n

0 (x) = 0
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1
X

n=0

✓

dT

n

0

dt

� �0T
n

e

(t) + (�0 + �(�n

0 )
2)Tn

0 (t)�
(�1)n

(Nn

0 )
2
R(t)

◆

X

n

0 (x) = 0

Given that the family of functions X

n

0 (x) is a complete basis in L

2(�L0, 0) we know

that every time dependent term in the previous expression is equal to zero. Therefore

it is only necessary to solve the system

0

B

B

B

@

dT

n

e

dt

dT

n

0

dt

1

C

C

C

A

=

0

B

B

@

��0 �0

�0 �✏

n

0

1

C

C

A

0

B

B

@

T

n

e

(t)

T

n

0 (t)

1

C

C

A

+

0

B

B

@

0

(�1)n

(Nn
0 )2R(t)

1

C

C

A

(2.9)

with

✏

n

0 = �0 + �(�n

0 )
2 (2.10)

and the initial conditions

T

0
e

(0) = 1, T

n

e

(0) = 0 for n > 1, T

n

0 (0) = 0 for n � 0.

The solutions of the system (2.9) are given by

T

0
e

(t) =
1

⇢0



�0 + �0e
�t⇢0 +

�0

(N0
0 )

2

Z

t

0
R(⌧)

⇣

1� e

�(t�⌧)⇢0
⌘

d⌧

�

(2.11)

T

0
0 (t) =

1

⇢0



�0(1� e

�t⇢0) +
1

(N0
0 )

2

Z

t

0
R(⌧)

⇣

�0 + �0e
�(t�⌧)⇢0

⌘

d⌧

�

(2.12)

T

n

e

(t) =
(�1)n

(Nn

0 )
2
⇢

n

Z

t

0
2�0R(⌧)e�

1
2 (t�⌧)(�0+✏n) sinh

✓

1

2
(t� ⌧)⇢

n

◆

d⌧ (2.13)

T

n

0 (t) =
(�1)n

(Nn

0 )
2
⇢

n

Z

t

0
⇢

n

R(⌧)e�
1
2 (t�⌧)(�0+✏n) cosh

✓

1

2
(t� ⌧)⇢

n

◆

d⌧

+
(�1)n

(Nn

0 )
2
⇢

n

Z

t

0
(�0 � ✏

n

)R(⌧)e�
1
2 (t�⌧)(�0+✏n) sinh

✓

1

2
(t� ⌧)⇢

n

◆

d⌧ (2.14)

where

⇢

n

=
p

(✏
n

� �0)2 + 4�0�0 (2.15)
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2.2 Second Layer

For the domain (0, 1), we want to solve (1.11c) and (1.11d)

@c1

@t

=
@

2
c1

@x

2
� �1c1 + �1c

b

@c

b

@t

= �1c1 � �1c
b

with the interface/boundary conditions (1.12b) and (1.12d)

@c1

@x

�

�

�

�

x=0

= R(t), kc1

�

�

�

�

x=1

+
@c1

@x

�

�

�

�

x=1

= 0

which are also satisfied by c

b

(x, t)

The initial conditions are given by (1.13)

c1(x, 0) = 0, c

b

(x, 0) = 0.

Analogously to the procedure with the First layer, we propose an expansion for the

domain (0.1) given by

c

b

(x, t) =
1
X

n=1

T

n

b

(t)Xn

1 (x), c1(x, t) =
1
X

n=1

T

n

1 (t)X
n

1 (x), (2.16)

with the eigenfunctions

X

n

1 (x) = cos(�n

1x), (2.17)

where �

n

1 is the n-th rooth of the trascendental equation

k cos(�n

1 )� �

n

1 sin(�
n

1 ) = 0. (2.18)

Figure (2.3) illustrates (2.18) for k = 12.85, while fig (2.2) shows the first four eigen-

functions for layer 1 with di↵erent values of k.

Also as with layer 0 functions Xn

1 (x) satisfies the following relation

Z 1

0
X

n

1 (x)X
m

1 (x)dx = �

m

n

(Nn

1 )
2 (2.19)

with (Nn

1 )
2 the square L

2(0, 1) norm of Xn

1 (x) given by (See Appendix A).

(Nn

1 )
2 =

(�n

1 )
2 + k cos2(�n

1 )

2(�n

1 )
2

(2.20)
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Figure 2.2: First four eigenfunctions for layer 1 with (A) k = 12857. and (B) k = 12.85
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The coe�cients Tn

1 (t) and T

n

b

(t) can be written as

T

n

b

(t) =
1

(Nn

1 )
2

Z 1

0
c

b

(x, t)Xn

1 (x)dx, T

n

1 (t) =
1

(Nn

1 )
2

Z 1

0
c0(x, t)X

n

1 (x)dx

In the same way as in the previous subsection, we can write the partial derivatives with

respect to time as the expansions

@c

b

@t

=
1
X

n=1

dT

n

b

dt

X

n

1 (x),
@c1

@t

=
1
X

n=1

dT

n

1

dt

X

n

1 (x). (2.21)

For the di↵usion term of (1.11c) we propose

@

2
c1

@x

2
=

1
X

n=1

W

n

1 (t)X
n

1 (x), (2.22)

with coe�cients

W

n

1 (t) =
1

(Nn

1 )
2

Z 1

0

@

2
c1

@x

2
X

n

1 (x)dx.

Using integration by parts in order to rewrite W

n

1 (t) we have

W

n

1 (t) =
1

(Nn

1 )
2

 

X

n

1
@c1

@x

�

�

�

�

x=1

x=0

� c1
dX

n

1

dx

�

�

�

�

x=1

x=0

+

Z 1

0
c1(x, t)

d

2
X

n

1

dx

2
dx

!

=
1

(Nn

1 )
2

✓

�R(t)� (�n

1 )
2
Z 1

0
c1(x, t)X

n

1 (x)dx

◆

= � 1

(Nn

1 )
2
R(t)� (�n

1 )
2
T

n

1 (t) (2.23)

Then, the di↵usion term can be written as

@

2
c1

@x

2
=

1
X

n=1

✓

� 1

(Nn

1 )
2
R(t)� (�n

1 )
2
T

n

1 (t)

◆

X

n

1 (x). (2.24)

Upon substitution of equations (2.16), (2.21) and (2.22) into (1.11c) - (1.11d) we have

1
X

n=1

✓

dT

n

b

dt

+ �1T
n

b

(t)� �1T
n

1 (t)

◆

X

n

1 (x) = 0

and

1
X

n=1

✓

dT

n

1

dt

� �1T
n

b

(t) + (�1 + (�n

1 )
2)Tn

1 (t) +
1

(Nn

1 )
2
R(t)

◆

X

n

1 (x) = 0
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Puttying everything in matrix form as before we have

0

B

B

B

@

dT

n

b

dt

dT

n

1

dt

1

C

C

C

A

=

0

B

B

@

��1 �1

�1 �⌘

n

1

1

C

C

A

0

B

B

@

T

n

b

(t)

T

n

1 (t)

1

C

C

A

+

0

B

B

@

0

� 1
(Nn

1 )2R(t)

1

C

C

A

(2.25)

with

⌘

n

1 = �1 + (�n

1 )
2 (2.26)

and the initial conditions

T

n

b

(0) = 0 for n � 1, T

n

1 (0) = 0 for n � 1.

The solutions of system (2.25) are given by

T

n

b

(t) =
�1

(Nn

1 )
2
�

n

Z

t

0
2�1R(⌧)e�

1
2 (t�⌧)(�1+⌘

n
1 ) sinh

✓

1

2
(t� ⌧)�

n

◆

d⌧ (2.27)

T

n

1 (t) =
�1

(Nn

1 )
2
�

n

Z

t

0
�

n

R(⌧)e�
1
2 (t�⌧)(�1+⌘

n
1 ) cosh

✓

1

2
(t� ⌧)�

n

◆

d⌧

+
�1

(Nn

1 )
2
�

n

Z

t

0
(�1 � ⌘

n

1 )R(⌧)e�
1
2 (t�⌧)(�1+⌘

n
1 ) sinh

✓

1

2
(t� ⌧)�

n

◆

d⌧ (2.28)

with

�

n

=
q

(⌘n1 � �1)2 + 4�1�1 (2.29)

2.3 Working with the interface condition

As we can see from (2.12), (2.14), (2.27) and (2.28) once the compatibility time depen-

dent interface function R(t) is founded, all the time dependent co�cients are completely

determinated and c

e

, c0, c1 and c

b

can be obtained by equations (2.1) and (2.16). This

idea is similar to the one used by McGinty et al in [24], how ever they need to consider a

new problem with an overdetermined system with pure di↵usion equations. In our case

we arrive directly to the Volterra equation without considering any kind of auxiliary

problem.
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Using the interface condition (1.12c) we can find R(t) as solution of.

R(t) = �

 1
X

n=1

(Tn

1 (t)� (�1)nTn

0 (t))� T

0
0 (t)

!

(2.30)

For numerical purposes we are going to truncate the sum in (2.30) up to certain N . Then

we will see that this equation can be written as a Volterra integral equation of second

kind in the Uryshon’s form [22]. With this starting point we will use two numerical

methods to find the solution of this integral equation: i) Adomian decomposition method

[28] and iii) A quadrature method with trapezoidal rule [21]. This procedure is more

general than the one used by G. Pontrelli and F. de Monte in [9, 11]. The fact that we

don’t use the Laplace transform to solve the integral equation is because in our case is

di�cult to find the inverse Laplace transform for the resolvent of our particular integral

equation [22].

2.3.1 The interface condition as a Volterra integral equation

In order to see (2.30) as an integral equation we just need to plug in it the equations

(2.12), (2.14), (2.27) and (2.28). Then truncate the infinite sum up to certain number

N . Rewriting the hyperbolic sine and cosine in terms of the exponential function we

have.

R

N

(t) = � �

⇢0



�0(1� e

�t⇢0) +
1

(N0
0 )

2

Z

t

0
R

N

(⌧)
⇣

�0 + �0e
�(t�⌧)⇢0

⌘

d⌧

�

��
N

X

n=1



⇢

n

� ✏

n

+ �0

2(Nn

0 )
2
⇢

n

Z

t

0
R

N

(⌧)e�
1
2 (t�⌧)(�0+✏n�⇢n)

d⌧

+
⇢

n

+ ✏

n

� �0

2(Nn

0 )
2
⇢

n

Z

t

0
R

N

(⌧)e�
1
2 (t�⌧)(�0+✏n+⇢n)

d⌧

+
�

n

� ⌘

n

+ �1

2(Nn

0 )
2
�

n

Z

t

0
R

N

(⌧)e�
1
2 (t�⌧)(�1+⌘n��n)

d⌧

+
�

n

+ ⌘

n

� �1

2(Nn

0 )
2
�

n

Z

t

0
R

N

(⌧)e�
1
2 (t�⌧)(�1+⌘n+�n)

d⌧

�

(2.31)

If now we interchange the sum with the integral sign and defining the following functions

f(t) = ��
�0

⇢0
(1� e

�t⇢0) (2.32)
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and

K

N

(t� ⌧) =� �

(N0
0 )

2
⇢0

⇣

�0 + �0e
�(t�⌧)⇢0

⌘

��
1
X

n=1



⇢

n

� ✏

n

+ �0

2(Nn

0 )
2
⇢

n

e

� 1
2 (t�⌧)(�0+✏n�⇢n)

+
⇢

n

+ ✏

n

� �0

2(Nn

0 )
2
⇢

n

e

� 1
2 (t�⌧)(�0+✏n+⇢n) +

�

n

� ⌘

n

+ �1

2(Nn

0 )
2
�

n

e

� 1
2 (t�⌧)(�1+⌘n��n)

+
�

n

+ ⌘

n

� �1

2(Nn

0 )
2
�

n

e

� 1
2 (t�⌧)(�1+⌘n+�n)

�

(2.33)

we arrive to the next expression

R

N

(t)�
Z

t

0
R

N

(⌧)K
N

(t� ⌧)d⌧ = f(t). (2.34)

As we can appreciate, equation (2.34) is a Volterra integral equation of second kind

in the Uryshon’s form [17] with a di↵erence degenerated kernel K
N

(t � ⌧) [22]. Due

to the fact that f(t) and R

N

(t) are continuous on [0, T ] we know that solution R

N

(t)

of (2.34) exists and it is unique (see Appendix B). Let’s notice that equation (2.34)

carries the information that is interchanged between layers 0 and 1. In fact the kernel

K

N

(t, ⌧) (2.33) contains all the physical constants involved in the phenomenon and the

eigenvalues �n

0 , �
n

1 of both layers.

2.3.2 Adomian Decomposition Method

The Adomian decomposition method [28] consists of decomposing the unknown function

R

N

(t) of any equation into a sum of an infinite number of components defined by the

decomposition series

R

N

(t) =
1
X

m=0

R

m

N

(t), (2.35)

where the components Rm

N

(t), m � 0 are to be determinated in a recursive manner, The

decomposition method concerns itself with finding the components R0
N

, R

1
N

, R

2
N

, . . . in-

dividually.

To establish the recurrence relation, we substitute (2.35) into the Volterra integral equa-

tion (2.34) to obtain

1
X

m=0

R

m

N

(t) = f(t) +

Z

t

0

 1
X

m=0

R

m

N

(⌧)

!

K

N

(t� ⌧)d⌧ (2.36)

The zeroth component R0
n

(t) is indentified by all terms that are not included under the

integral sign. Consequently, teh components R

m

N

(t), m � 1 of the unknown function
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R

N

(t) are completely determinated by setting the recurrence relation:

R

0
N

(t) = f(t),

R

m+1
N

=

Z

t

0
R

m

N

(⌧)K
N

(t� ⌧)d⌧. (2.37)

In view of (2.37) the components R0
N

(t), R1
N

(t), R2
N

(t), . . . are completely determinated.

As a result, the solution R

N

(t) of the Volterra integral equation (2.34) in a series form

is obtained by using the series assumption in (2.35). For a real problem, where a closed

form is not obtainable, a truncated number of terms is used for numerical purposes. The

more components we use the higher accuracy we obtain [5]. In this case we are going to

use a trapezoidal rule in order to compute the numerical integrations.

2.3.3 A Quadrature Method

We develop a numerical scheme by choosing a constant integration step h and consider

the discrete set of points t
i

= h(i� 1), i =, 1 . . . , n in the time domain. We assume that

the kernel K
N

(t � ⌧) and f(t) are continuos functions. From equation (2.34) we find

that R
N

(0) = f(0) = 0 and for t = t

i

equation (2.34) acquires the form

R

N

(t
i

)�
Z

ti

0
K

N

(t
i

� ⌧)R
N

(⌧)d⌧ = f(t
i

), i = 1, . . . , n. (2.38)

Applying the quadrature formula with the trapezoidal rule [22] to the integral in (2.38)

and choosing t

j

(j = 1 . . . i) to be the nodes in ⌧ , we arrive at the system of equations

R

N

(t1) = f(t1), R

N

(t
i

) =

f(t
i

) + h

i�1
X

j=1

B

j

K

N

(t
i

� t

j

)R
N

(t
j

)

1� 1
2hKN

(0)
i = 2, . . . , n (2.39)

with

t

i

= (i� 1)h, n =
T

h

+ 1, B

j

=

8

<

:

1
2 for j = 1

1 for j > 1.
. (2.40)



Chapter 3

Numerical Simulations and

Results

In this chapter we are going to show the results for our numerical simulations. First, we

will show some numerical results for the interface condition R

N

(t) and make a compari-

son between the Quadrature Method and the Adomian method. Second, we present the

results of our simulations for c
e

, c0, c1 and c

b

.

Let’s emphasize that the physical problem depends on a large number of parameters,

each of them may vary in a finite range, with a variety of combinations and limiting

cases. The model constants cannot be chosen independently from each other and there

is a compatibility condition among them and the binding/unbinding constants. In our

case all the numerical schemes where implemented for l0 = 4⇥ 10�2, with the physical

constants fixed for simulations as in [6, 10, 16, 18, 30] and using (1.10) we get the

following dimensionless quantities

� = 7.14, � = 4.28, k = 12857 (3.1)

and the binding/unbinding constants

�0 = 128.57, �0 = 128.57, �1 = 192.85, �1 = 128.57. (3.2)

3.1 Numerical results for R

N

(t)

The aim of this section is to show some results for R

N

(t) with the Adomian method

and the Quadrature Method using trapezoidal rule. The results were computed for a

time interval of length T = 0.6, the integration step was h = 2.5 ⇥ 10�5 and in the

20
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case of the Adomian method the number of terms in the decomposition is M = 10. In

figure (3.1) we can appreciate how the solutions obtained with both methods show the

same qualitative behaviour but without being exactly the same solution, in particular

the minimum is slightly di↵erent.
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Figure 3.1: RN (t) with Quad. Method and Adomian Method with M = 10

However if now we increase the length of the time interval to T = 1.0 we can see in fig

3.2 how the behaviour of R
N

(t) with the Adomian method starts to diverge from the

Quadrature method. However this can be fixed if we add more terms Rm

N

(t) (fig 3.2).
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Figure 3.2: Comparison between the Quadrature method with trapezoidal rule and
the Adomian method for (A) M = 10 and (B) M = 15. The lenght of time interval is

given by T = 1.0

The fact that each time that the length of time interval is increased we have the necessity

to add more terms, is one of the reasons that make us choose the Quadrature method
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with trapezoidal rule over the Adomian decomposition method. The second reason,

which is very related with the first one, is the big di↵erence between the computation

times for both methods. As an illustrative example table 3.1 shows the computation

times and the percentage change for di↵erent values of T . From now on we will only use

the Quadrature method with trapezoidal rule.

T Quad. Method Ad. Method with M = 15 % change
0.2 1.42 17.32 91.80
0.4 5.71 69.53 91.78
0.6 12.70 179.96 92.94
0.8 24.08 502.71 95.20
1.0 35.63 862.56 95.86

Table 3.1: Comparison between computation times for Quad. Method and Adomian
Method with M = 15

3.2 Numerical results for c

e

, c0, c1 and c

b

Once we computed R

N

(t) numerically we can obtain the time dependent coe�cientes

T

n

i

(t), i = e, o, 1, b using equations (2.11)-(2.14) and (2.27)-(2.28), these integrals were

obtained numerically using the trapezoidal rule with h = 2.5⇥10�5. Using the previous

results we can get the solutions for c
i

(x, t) i = e, o, 1, b via (2.1) and (2.16). All the series

were truncated up to 50 terms.

In fig 3.3 we can see the evolution for c

e

(x, t) and c0(x, t) for di↵erent times. The

concentration profiles are almost flat in the vehicle, because of its small size, and have a

decreasing behaviour in the skin layer. At the beginning the bound phase c
e

starts to be

transferred to the unbound phase c0 until the dynamic equilibrium is reached. And at

the same time one fraction of the drug is passing to the skin layer, this process continues

until the concentrations vanish.

In the case of the skin layer the evolution of c1(x, t) and c

b

(x, t) can be seen in fig 3.4,

a part of the unbound drug c1 is metabolized by the cell receptors and transformed in

the bound state c

b

and again to an unbound phase with the reverse unbindign process.

Also, we can see how at the beginning the concentration of c1 is bigger than c

b

but as

the time passes c

b

increases and overcomes c1 this means that a bigger quantity of the

drug is metabolized.
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3.3 Conclusions

• Currently TDD is one of the most promising method for drug administration and

an increasing number of drugs are being added to the list of therapeutic agents that

can be delivered topically or systemically through the skin. One of the approaches

to evaluate the characteristics of drug elution from the transdermal patch into

the skin and to optimize the physico-chemical parameters is the mathematical

modelling and the numerical simulation.

• Local mass non-equilibrium processes, such as bidirectional drug binding/unbind-

ing phenomena, play a key role in TDD. We consider a coupled linear system of

reaction-di↵usion PDE’s in order to model the kinetics of a drug in the delivery

device together with the percutaneous absorption in the skin, as a unique system.

• Using the Eigenfunctions expansion method with shifted data, we reduced the

PDE’s system to an non homogeneous system of ODE’s. The solutions obtained

for the time-dependent coe�cients are in terms of the matching interface condition

R

N

(t).

• In order to get R
N

(t) we solved a Volterra Integral Equation of second kind with

two numerical methods: A quadrature method with trapezoidal rule and the Ado-

mian decomposition method. The best numerical result between these two meth-

ods was chosen for the further coming simulations.

• The simulations obtained capture the essential physics of drug release and percuta-

neous absorption and it helps in identify and quantify the e↵ects in TDD. Because

of the large space of parameters, a crucial step is the experimental assessment of

the key parameters which the model is based on
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Figure 3.3: Concentration profiles for ce and c0 with dimensionless time : (A) t =
2.23⇥ 10�4, (B) t = 0.012, (C) t = 0.049, (D) t = 0.018
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Figure 3.4: Concentration profiles for c1 and cb with dimensionless time: (A) t =
2.23⇥ 10�4, (B) t = 0.012, (C) t = 0.049, (D) t = 0.018



Appendix A

Eigenfunctions for the domains

(�l0, 0) and (0, 1)

A.1 Solution of the Helmholtz Problem in (�l0, 0)

In order to find the right eigenfunctions for the domain (�l0, 0) let’s consider the asso-

ciated 1D Helmholtz problem given by the equation

d

2
X0

dx

2
+ (�0)

2
X0 = 0 (A.1)

and the boundary conditions

dX0

dx

�

�

�

�

x=�l0

= 0 (A.2a)

dX0

dx

�

�

�

�

x=0

= 0 (A.2b)

We know that the solution of (A.1) is

X0(x) = A cos(�0x) +B sin(�0x)

Applying the first boundary condition (A.2a) we get

�0(B cos(�0l0) +A sin(�0l0)) = 0

If now we pick A = cos(�0l0) and B = � sin(�0l) we can rewrite the solution of (A.1) in

a much more compact way as

X0(x) = cos[�0(l0 + x)] (A.3)

26
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Using the second boundary condition (A.2b) we arrive to the expression

��0 sin(�0l0) = 0

this implies

�

n

0 =
n⇡

l0
for n � 0 (A.4)

Therefore the solution of (A.1)-(A.2) is given by (A.3) with (A.4)

A.1.1 Orthogonality of Xn

0 (x)

The next step is to prove the orthogonality of (A.3).

Theorem A.1. Let Xn

0 (x) and X

m

0 (x) two di↵erent solutions of (A.1)-(A.2) with (n 6=
m) and �

n

0 , �
m

0 the corresponding eigenvalues, then

Z 0

�l0

X

n

0 (x)X
m

0 (x)dx = 0 (A.5)

Proof. As we know X

n

0 (x) and X

m

0 (x) satisfy

� (�n

0 )
2
X

n

0 =
d

2
X

n

0

dx

2
(A.6)

� (�m

0 )2Xm

0 =
d

2
X

m

0

dx

2
(A.7)

Multiplying (A.6) by �X

m

0 and (A.7) by X

n

0 and then adding them we get

((�n

0 )
2 � (�m

0 )2)Xn

0X
m

0 =
d

2
X

m

0

dx

2
X

n

0 � d

2
X

n

0

dx

2
X

m

0

Integrating now from �l0 to 0

((�n

0 )
2 � (�m

0 )2)

Z 0

�l0

X

n

0X
m

0 dx =

Z 0

�l0

d

2
X

m

0

dx

2
X

n

0 � d

2
X

n

0

dx

2
X

m

0 dx

=
dX

m

0

dx

X

n

0

�

�

�

�

0

�l0

� dX

n

0

dx

X

m

0

�

�

�

�

0

�l0

= 0

Finally we just need to remember that �n

0 6= �

m

0 and (A.5) follows.
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A.1.2 Square L

2
(�l0, 0) norm of Xn

0 (x)

In order to find the square L

2(�l0, 0) norm of Xn

0 (x) we have the following theorem

Theorem A.2. The square L

2(�l0, 0) norm of Xn

0 (x) is given by

Z 0

�l0

(Xn

0 (x))
2
dx =

l0

2� �

n,0
(A.8)

with �

n,0 the usual Kronecker Delta

Proof. We should proced by cases

n = 0 This case is very easy

Z 0

�l0

(X0
0 (x))

2
dx =

Z 0

�l0

1dx

= l0

n � 0 For this case we multiply (A.6) by X

n

0 (x) and then we integrate from �l0 to 0

�(�n

0 )
2
Z 0

�l0

(Xn

0 (x))
2
dx =

Z 0

�l0

d

2
X

n

0

dx

2
X

n

0 dx

=
dX

n

0

dx

X

n

0

�

�

�

�

0

�l0

�
Z 0

�l0

✓

dX

n

0

dx

◆2

dx

= �
Z 0

�l0

✓

dX

n

0

dx

◆2

dx (A.9)

Adding �(�n

0 )
2
R 0
�l0

(Xn

0 (x))
2
dx to both sides of (A.9) and dividing over �2(�n

0 )
2 we get

Z 0

�l0

(Xn

0 (x))
2
dx =

1

2

Z 0

�l0

1

(�n

0 )
2

✓

dX

n

0

dx

◆2

+ (Xn

0 (x))
2
dx

=
1

2

Z 0

�l0

1

(�n

0 )
2
(��

n

0 sin[�
n

0 (l0 + x)])2 + cos2[�n

0 (l0 + x)]dx

=
l0

2

this finishes the proof
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A.2 Solution of the Helmholtz Problem in (0, 1)

As with the previous domain in order to find the right eigenfunctions for the domain

(0, 1) we consider the 1D Boundary Value Problem given by the equation

d

2
X1

dx

2
+ (�1)

2
X1 = 0 (A.10)

and the boundary conditions

dX1

dx

�

�

�

�

x=0

= 0 (A.11a)

kX1

�

�

�

�

x=1

+
dX1

dx

�

�

�

�

x=1

= 0 (A.11b)

Again we have that the solution of (A.10) is

X1(x) = C cos(�1x) +D sin(�1x)

Applying the first boundary condition (A.11a) we get D = 0 and without loss of gener-

ality we can choose C = 1. Then we just rewrite the solution of (A.10) as

X1(x) = cos(�1x) (A.12)

Using the second boundary condition (A.11b) we obtain that �n

1 should be the n-th root

of the trascendental equation

cot(�n

1 )� �

n

1 = 0 (A.13)

Therefore the solution of (A.10)-(A.11) is given by (A.12) with �

n

1 the solution of (A.13)

A.2.1 Orthogonality of Xn

1 (x)

The next step is to prove the orthogonality of (A.12).

Theorem A.3. Let X

n

0 (x) and X

m

0 (x) two di↵erent solutions of (A.10)-(A.11) with

(n 6= m) and �

n

0 , �
m

0 the corresponding eigenvalues, then

Z 1

0
X

n

1 (x)X
m

1 (x)dx = 0 (A.14)
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Proof. As we know X

n

1 (x) and X

m

1 (x) satisfy

� (�n

1 )
2
X

n

1 =
d

2
X

n

1

dx

2
(A.15)

� (�m

1 )2Xm

1 =
d

2
X

m

1

dx

2
(A.16)

Multiplying (A.15) by �X

m

1 and (A.16) by X

n

1 and then adding them we get

((�n

1 )
2 � (�m

1 )2)Xn

1X
m

1 =
d

2
X

m

1

dx

2
X

n

1 � d

2
X

n

1

dx

2
X

m

1

Integrating now from 0 to 1

((�n

1 )
2 � (�m

1 )2)

Z 1

0
X

n

1X
m

1 dx =

Z 1

0

d

2
X

m

1

dx

2
X

n

1 � d

2
X

n

1

dx

2
X

m

1 dx

=
dX

m

1

dx

X

n

1

�

�

�

�

1

0

� dX

n

1

dx

X

m

1

�

�

�

�

1

0

= �kX

m

1 X

n

1

�

�

�

�

1

+X

n

1X
m

1

�

�

�

�

1

= 0

Finally we just need to remember that �n

1 6= �

m

1 and (A.14) follows.

A.2.2 Square L

2
(0, 1) norm of Xn

1 (x)

In order to find the square L

2(0, 1) norm of Xn

1 (x) we have the following theorem

Theorem A.4. The square L

2(0, 1) norm of Xn

1 (x) is given by

Z 1

0
(Xn

1 (x))
2
dx =

(�n

1 )
2 + k cos2(�n

1 )

2(�n

1 )
2

(A.17)

Proof. As before we multiply (A.15) by X

n

1 (x) and then we integrate from 0 to 1

�(�n

1 )
2
Z 1

0
(Xn

1 (x))
2
dx =

Z 1

0

d

2
X

n

1

dx

2
X

n

1 dx

=
dX

n

1

dx

X

n

1

�

�

�

�

1

0

�
Z 1

0

✓

dX

n

1

dx

◆2

dx

= �k(Xn

1 (1))
2 �

Z 1

0

✓

dX

n

1

dx

◆2

dx (A.18)
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Adding �(�n

1 )
2
R 1
0 (X

n

1 (x))
2
dx to both sides of (A.18) and dividing over �2(�n

1 )
2 we get

Z 1

0
(Xn

0 (x))
2
dx =

k cos2(�n

1 )

2(�n

1 )
2

+
1

2

Z 1

0

1

(�n

1 )
2

✓

dX

n

1

dx

◆2

+ (Xn

1 (x))
2
dx

=
k cos2(�n

1 )

2(�n

1 )
2

+
1

2

Z 1

0

1

(�n

1 )
2
(��

n

1 sin(�
n

1x))
2 + cos2(�n

1x)dx

=
k cos2(�n

1 )

2(�n

1 )
2

+
1

2

=
(�n

1 )
2 + k cos2(�n

1 )

2(�n

1 )
2

this finishes the proof



Appendix B

The Volterra integral equation of

second kind

B.1 Banach’s fixed point theorem

Banach’e fixed point theorem assures the existence and uniqueness of fixed points of

certain functions of a metric space on itself. This theorem gives a constructive method

to obtain a fixed point trought a iteration method.

Let X = (X, d) a metric space.

Definition B.1. A function �

�

: X �! X is called a contraction if exists ↵ 2 (0, 1)

such that

d(�(t),�(⌧))  ↵d(t, ⌧) 8t, ⌧ 2 X (B.1)

This is, a contraction it is a function of a metric space in itself that is Lipschitz continuous

with Lipschitz constant strictly less than 1.

Definition B.2. A point x

⇤ 2 X is called a fixed point of function � : X �! X if

�(x⇤) = x

⇤.

We deonte by �

k the composition

�

k = � � · · · � �
| {z }

ktimes

if k 2 N �

0 = id

X

, (B.2)

where id

X

: X �! X is the identity function.
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Theorem B.3. Let X a complete metric space, non empty, and let � : X �! X a

contraction. Then the following is true

1. � has a unique fixed point x⇤.

2. For any x0 2 X the succession (�k(x0)) converges to x

⇤ in X, and it follows that

d(�k(x0), x) 
↵

k

1� ↵

d(�(x0), x0), (B.3)

where ↵ 2 (0, 1) satisfies (B.1).

Proof. Let x0 any point of X0 and let’s denote by

x

k

= �

k(x0).

We will proof first that the sequence (x
k

) is Cauchy in X. Note that, if � satisfies (B.1),

then

d(x
k+1, xk) = d(�k(x1),�

k(x0))  ↵

k

d(x1, x0) 8k 2 N.

Also, for any y, z 2 N, it follows that

d(y, z)  d(y,�(y)) + d(�(y),�(z)) + d(�(z), z)

 d(y,�(y)) + ↵d(y, z) + d(�(z), z),

this is

(1� ↵)d(y, z)  d(y,�(y)) + d(�(z), z).

Tomando y = x

k

and z = x

j

we get

d(x
k

, x

j

)  d(x
k+1, xk) + d(x

j+1, xj)

1� ↵

 ↵

k + ↵

j

1� ↵

d(x1, x0). (B.4)

Let ✏ > 0. Because ↵ 2 (0, 1) exists k0 2 N such that

↵

k

1� ↵

d(x1, x0) <
✏

2
8k � k0.

As a consequence,

d(x
k

, x

j

) < ✏ 8j, k � k0.
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This proofs that the succession (x
k

) is Cauchy in X. As X is complete, exists x

⇤ 2 X

such that x

k

�! x

⇤ in X and, due that � is continuous, then we have that x

k+1 =

�(x
k

) �! �(x⇤) in X. Because the limit of a succession is unique, we conclude that

�(x⇤) = x

⇤, that is, x⇤ is a fixed point of �.

Let’s see that x⇤ is unique. If x⇤1 and x

⇤
2 are fixed points of � then

d(x⇤1, d
⇤
2) = d(�(x⇤1, x

⇤
2))  ↵d(x⇤1, x

⇤
2).

Because ↵ < 1, this inequality inplies that d(x⇤1, x
⇤
2) = 0, this is, x

⇤
1 = x

⇤
2. Finally,

making j �! 1 in (B.4) we get that

d(x
k

, x

⇤) = lim
j�!1

 ↵

k

1� ↵

d(x1, x0) 8k 2 N.

This concludes the proof.

B.2 Existence and Uniqueness of the solution

Let’s consider the equation

�y(t)�
Z

t

0
K(t, ⌧)y(⌧)d⌧ = f(t) 8 t 2 [a, b] (B.5)

whereK : [a, b]⇥[a, b] �! R and y : [a, b] �! R are given continuous functions and � is a

real number. A equation of this type is called a Volterra integral equation of second kind.

We want to express the solutions of (B.5) as fixed points of a function �

�

: C0[a, b] �!
C0. In order to do that , for each function y(t) 2 C0[a, b] we associate the function

Dy : [a, b] �! R given by

(Dy)(t) :=

Z

t

a

K(t, ⌧)y(⌧)d⌧ (B.6)

In terms of this function, equation (B.5) is written as

�y �Dy = f (B.7)

We will prove that D 2 [a, b] If � 6= 0 we can then define a function of C0[a, b] in itself

as follows

�

�

: C0[a, b] �! C0[a, b], �

�

(y) =
1

�

(Dy + f) (B.8)
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The fixed points of this operator are the solutions of (B.5). We are going to prove that

for each � 6= 0 there exists k 2 N such that �k

�

is a contraction. Then by Banach fixed

point theorem, �
�

has a unique fixed point, i.e. equation (B.5) has a unique solution.

Theorem B.4. For each y 2 C0[a, b], the operator Dy : [a, b] �! R given by

(Dy)(t) =

Z

t

0
K(t, ⌧)y(⌧)d⌧ (B.9)

is continuous

Proof. Let y 2 C0[a, b]. If y = 0 then Dy = 0. If y 6= 0, then due that in any compact

metric space every continuous function is uniform continuous, we have that for each

✏ > 0 there exists � > 0 such that

|K(t1, ⌧1)�K(t2, ⌧2)| <
✏

2(b� a) kyk1
if k(t1, ⌧1)� (t2, ⌧2)k < � (B.10)

In consequence, if |t1 � t2| < min
n

�,

✏

2kKk1kyk1

o

and t1  t2 we have that

|(Dy)(t1)� (Dy)(t2)| =
�

�

�

�

Z

t1

a

(K(t1, ⌧)�K(t2, ⌧))y(⌧)d⌧ �
Z

t2

t1

K(t2, ⌧)|y(⌧)|d⌧
�

�

�

�


Z

t1

a

|K(t1, ⌧)�K(t2, ⌧)||y(⌧)|d⌧ +

Z

t2

t1

|K(t2, ⌧)||y(⌧)|d⌧

< (t1 � a)
✏

2(b� a) kyk1
kyk1 +

✏

2 kKk1 kyk1
kKk1 kyk1

 ✏

2
+

✏

2
= ✏.

This proves Dy is continuous.

Given � 6= 0 and f 2 C0[a, b], we define �

�

: C0[a, b] �! C0[a, b] as

�

�

(y) =
1

�

(Dy + f).

The previous Theorem assures that �

�

is, in fact, a function of C0[a, b] in itself. Let’s

prove the following result

Theorem B.5. The function �

�

satisfies the inequality

�

�

�

�

k

�

(y1)� �

k

�

(y2)
�

�

�

1
 |�|�k kKkk1

(b� a)k

k!
ky1 � y2k1 , (B.11)

with �

k = � � · · · � � ( k times) and for all y1, y2 2 C0[a, b], k 2 N.
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Proof. We will prove that

|�k

�

(y1)(t)� �

k

�

(y2)(t)| 
(|�|�1 kKk1 (t� a))k

k!
ky1 � y2k1 8t 2 [a, b]. (B.12)

For k = 1 we have that

|�k

�

(y1)(t)� �

k

�

(y2)(t)| 
1

|�|

Z

t

a

|K(t, ⌧)||y1(⌧)� y2(⌧)|d⌧

 1

|�| kKk1 (t� a) ky1 � y2k1 .

Let’s suppose that the inequality (B.12) is valid for k � 1. Then

|�k

�

(y1)(t)� �

k

�

(y2)(t) 
1

|�| |
Z

t

a

|K(t, ⌧)||�k�1
�

(y1)(⌧)� �

k�1
�

(y2)(⌧)|d⌧

 kKk1
|�|

Z

t

a

|�k�1
�

(y1)(⌧)� �

k�1
�

(y2)(⌧)|d⌧

 kKkk1
|�|k ky1 � y2k1

(t� a)k

k!
.

This proves inequality (B.12). From it follows that

|�k

�

(y1)(t)� �

k

�

(y2)(t)|  |�|�k kKk1
(b� a)k

k!
ky1 � y2k1 8t 2 [a, b]

and, in consequence

�

�

�

�

k

�

(y1)� �

k

�

(y2)
�

�

�

1

(|�|�1 kKk1 (b� a))k

k!
ky1 � y2k1 ,

as the Theorem states.

Theorem B.6. If � 6= 0 then, for each f 2 C0[a, b], the Volterra integral equation (B.5)

has a unique solution.

Proof. We know that there exists k0 2 N such that

(k�|�1 kKk1 (b� a))k

k!
< 1 8k � k0.

By the previous theorem, for each k � k0, the function �

k

�

: C0[a, b] �! C0[a, b] is a

contraction. From Banach’s fixed point theorem it follows that �

�

has a unique fixed

point, i.e. equation (B.5) has a unique solution.
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