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Abstract

In this thesis, we focus on the existence of a traveling wave solutions for

reaction- diffusion equations coupled with shallow water equations. We use

the reaction diffusion equations to model the chemical reaction and the diffu-

sion processes of sulfuric acid, which was carried by a barge that capsized into

Rhine river in 2011. In most cases, traveling waves solutions of a second order

partial differential equation are study by splitting the second order partial

differential equation into two first order ordinary differential equations, which

may lead to an autonomous system. We show the existence of traveling wave

solutions by following the phase plane analysis method and discuss our model

in terms of an autonomous system. We develop a numerical scheme based on

Finite Volume and Finite Difference method to discretize the Burgers’ equa-

tion and reaction-diffusion equation respectively. In the implementation, we

use MATLAB program to obtain our numerical results.

Keywords: Traveling wave solution. Chemical Reaction. Diffusion. SWE.

Numerical simulation
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1 Introduction

In the year 2011 [1], a barge carrying 2400 tons of a highly concentrated sulfuric

acid capsized on the Rhine river in Germany. Fortunately the barge was provided

with a double hall which prevented spill of sulfuric acid. On August 17th, 2005, a

barge carrying more than 425,000 gallons of sulfuric acid sits in Chocolate Bayou,

Texas [2] and on the 18th August, 1976, a tank barge containing 1060 tonnes of

fuming sulfuric acid capsized while being towed across Chesapeake Bay [3]. Within

30 to 60 minutes period, all the cargo on the barge spills in the river, and this lead

to a tremendous violent reaction with vast amount of steam and vapor beneath the

barge.

From an experimental point of view, the combination of an highly concentrated

sulfuric acid and water leads to an unsafe substances in the river and the air around

the barge, which it can lead to explosion of the barge. By taking into account the

incident that happened on the 18th of August, 1976, where large amount of steam

and vapor took place beneath the barge and because of sulfuric acid and water

mixture, a violent reaction occurred. Due to this phenomena, we are interested in

studying the reaction diffusion processes associated with this type of phenomena

using mathematical model.

From the above explanations, we have three cases that we may consider.

1. First case is the air pollutants produced by a chemical reaction

2. Second case is the transfer of the sulfuric acid by a diffusion process

3. And third case is the impacts on living creature inside the river

In our work, we consider only the second case.
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We focus on modeling the reaction-diffusion process of the sulfuric acid into

the Rhine river. In particular, we use the shallow water equations to describe the

movement of the flow in a river. Shallow water equations are a set of hyperbolic

partial differential equations that describe the flow of fluid and is also called Saint

Venant equations in its one dimensional form, after Adhemar Jean Claude Barre de

Saint-Venant [4].The term ’shallow’ means that the vertical length is smaller than

the horizontal length.

The shallow water equations are derived from the Navier-Stokes equation by inte-

grating it over the water depth, e.g., by integrating the continuity and the momen-

tum equations of the Navier Stokes over the water depth. For more details about

the derivation of the shallow water equations, we refer to [5], [6], [7].

In the second part of the model, we study the reaction- diffusion equation which

describe the chemical reaction between the sulfuric acid and the water.

The reaction- diffusion equation is a well known model, e.g., in mathematical biology

to model the chemotaxis or the population density of bacterias (see [6, 8, 9, 10, 11]).

In the chemotaxis model the traveling wave solutions of the reaction diffusion equa-

tion bases on the singularity in the logistic term or the nonlinear degenerate term of

the cell densities, for more about the chemotaxis model see [11]. In [6] it has been

shown that even without a singularity we can ensure a traveling wave solution by

introducing a microscopic term in the macroscopic model.

A classical way to investigate traveling wave solutions of second order partial

differential equations done by transforming the second order PDEs to a second or-

der ordinary differential equations using the traveling wave Ansatz. Then we split

the second odes into two ordinary differential equations representing an autonomous

system. We first compute the equilibrium points of the autonomous system, which

it corresponds to the steady states of the system, and to determine the stability of
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the steady states we linerize the set of the equations at these steady states and de-

termine the eigenvalues of the Jacobian matrix. For example in the Fisher equation,

has a traveling wave solutions if and only if s > 2 while s is the propagation wave

speed for more about Fisher equation we refer to [12],[13], [14].

By using the phase plane analysis , we show the existence of a traveling wave solu-

tions to our model in Section 3 and investigate it by the numerical simulation.

The rest of the thesis is organized as follows: In Section 2 we define the mathematical

model of our phenomenon and present the simplification and the scaling procedure

to our mathematical model. Traveling wave solutions of our mathematical model

(8)- (9) are discussed in Section 3. In Section 4 we describe the Finite Volume and

Finite Difference methods used to perform a numerical simulation for the system

(4),(5). At the end we conclude the main results we obtain from both the analytical

method and the numerical simulation with a future scope in Section 5.
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2 Mathematical Modeling

2.1 General Model

The general mathematical model that describes the reaction- diffusion process and

water flow in a river are defined as

∂t(h) + ∂x(hu) = 0 (1)

∂t(hu) + ∂x(hu
2 +

gh2

2
) = −ghHx (2)

∂tc+ u∂xc = ∂x(Dp(u)∂xc) + βc(1− c

c∞
) (3)

where

∂t =
∂

∂t
, ∂x =

∂

∂x
.

The problem we introduced in our introduction gives us the following:

1. The flow of water in the river.

2. Diffusion process of the sulfuric acid in a short period of time in the river.

3. Chemical reaction between the sulfuric acid and the water in the river.

We use the shallow water equations (1),(2) to model the flow of water inside the

river, where u[m.s−1] represents the water velocity, h[m] represents the height of

water, and both of them depend on space x[m] and time t[s].

For the second point and the third point, we use the reaction diffusion equation (3)

to model the reaction and diffusion process of our physical problem.

In equation (3), c [mole.liter−1] represents the concentration of the sulfuric acid

inside the river and it depends on space x[m] and time t[s].
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In the model (1)-(3) g[m.s−2] is the gravity constant and H[m] is a given function,

which describes the bottom topography of the river. D is a constant of dimensional

t[s] and p(u) is a given function where Dp(u) represents a dependent diffusion coef-

ficient. β [s−1] is a constant which represents the chemical reaction time rate, and

c∞ [mole/liter] is the maximum value of sulfuric acid concentration per liter, which

equals to 19[mole.liter−1] or 1890 [gm.liter−1].

In our work, we will not consider the general model (1)-(3), instead we consider

a more simple model, which we describe in the next subsections.

2.2 Simplification of the general model

The simplification of the general model (1-3) depend on two main steps.

1. Due to the diffusion process of the sulfuric acid in a short period of time,

sedimentation process in the river can be ignored. From this point we can

consider the case with zero bed-load which means that the bottom topography

of the river is flat.

2. We assume that the water height h is constant, which it follows from the above

point.

For the general model of shallow water equation taking into account the sedimenta-

tion process we refer to [15],[16].

We summarize the method of how to simplified the general model (1)-(3) as follows:

• We assume that the water height or depth h is constant.

• We consider the case with a zero bed-load.
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Equation (1) in the general model can be eliminated by using h as a constant.

By considering the case with zero bed-load where H equals to 0 in the equation (2),

leads to our simplified model:

∂tu+ ∂x(
u2

2
) = 0 (4)

∂tc+ u∂xc = ∂x(Dp(u)∂xc) + βc(1− c

c∞
) (5)

The model equations (4), (5) are the simplified equations of our general model de-

fined in (1)-(3). From the simplified model one observes that the shallow water

equations reduced to a first order partial differential equation called inviscid Burg-

ers’ equation (4) coupled with the reaction diffusion equation (5).

Burgers’ equation is well known model in the context of partial differential equations

and it is a wide range model used in physics see [17] .

Now we have a system of partial differential equations in one dimensional form

(1-D). Equation (4) describes the velocity flow profile of the water instead of the full

shallow water equations in the general model and equation (5) describes reaction-

diffusion process of the sulfuric acid.

The model (4),(5) is governed by initial and boundary conditions and these condi-

tions are included in the numerical simulation part in Section 4.

2.3 Scaling the mathematical model

We perform more simplifications to our model (4),(5) by scaling the physical quan-

tities u(x, t) and c(x, t). First we consider the (chemical) concentration of sulfuric

acid c(x, t) and the maximum concentration value of the sulfuric acid is ≈ 19 mole

per liter or ≈ 1890 gramme per liter. By using the maximum concentration value

as a reference, we scale the concentration of the sulfuric acid c to take the value
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between 0 and 1.

We scale our model (4),(5) by using the scaled quantities which define in Table

2.3 and Table 2.3. Then we get our model (4),(5) in non- dimensional form or a

dimensionless form as it is shown from equations (6) and (7).

Unscaled Quantity Scaled Quantity

x xrx̃

t tr t̃

u urũ

c crc̃

Table 1: Scaling quantities

References Given Values

xr 100 [m]

tr
1
β

[s]

β 0.1 [s−1]

ur xrβ [m
s

]

c∞ 19 [mole
liter

]

cr c∞

D 0.1[s]

Table 2: References values

∂t̃ũ+ ∂x̃(
ũ2

2
) = 0 (6)

∂t̃c̃+ ũ∂x̃c̃ = λ∂x̃(p(ũ)∂x̃c̃) + c̃(1− c̃) (7)

where

λ = D ∗ β
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For convenience, we drop out the tilde and write down the scaled model (6),(7) as

follows:

∂tu+ ∂x(
u2

2
) = 0 (8)

∂tc+ u∂xc = λ∂x(p(u)∂xc) + c(1− c) (9)

Equations (8),(9) are written in the dimensionless form and they represent our de-

sired model for the reaction- diffusion process of the sulfuric acid and the flow of

water in the river.

Now we want to investigate the existence of traveling wave solutions for the model

(8),(9). It follows from Section3.
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3 Traveling wave solutions

Think about the wave in the sea, Ocean, or in the river. It can be estimated as a

bounded (i.e.finite) ridge of water which moves without changing of its shape.

This estimation forms the basis for the mathematical idea of the traveling wave

which can be expressed as a traveling wave ansatz in the form v(x, t) where

v(x, t) ≡ v(ξ), ξ = x± st, ξ ∈ R

where s is the propagation wave speed and ξ is the traveling wave variable. Traveling

wave coordinates is a good procedure to convert the partial differential equations

into an ordinary differential equations by combining two independent variables to

one independent variable which is called traveling wave variable ξ.

Now we focus on finding positive traveling wave solutions, that is positive solutions

of the form c(x, t) = C(x− st) , u(x, t) = U(x− st) for some s > 0 in the reaction

diffusion equation (9) and the Burgers’ equation (8) respectively . Here s is the

propagation speed of the wave. In addition, it is required that the wave front C(ξ)

and the shock wave U(ξ) are defined in ] − ∞,+∞[ and satisfies C(−∞) = 1,

C(+∞) = 0 and U(−∞) = Ul, U(+∞) = Ur. This means that we are looking for

the solutions of the ordinary differential equations (15)& (16) satisfying the limit

conditions (18) .

The equation (15) delivers a shock wave profile, which propagates with a constant

speed s = Ul+Ur

2
according to Rankine Hugoniot condition see [17]. In [18], it has

been shown that the viscid Burgers’ equation has a traveling wave solutions and the

solutions converges to the solutions of the inviscid burger solution when the viscosity

term tends to zero.

Now we apply the phase plan analysis technique. First of all we start by introducing

the traveling wave coordinates as follows:
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• First we define the traveling wave variable ξ as

ξ = x− st

with ξ ∈ R, and s > 0 is the traveling wave speed or the propagation speed of the wave.

• Second we define the traveling wave Ansatz for both velocity u(x, t) and con-

centration c(x, t) functions in the following forms

U(ξ) = U(x− st) = u(x, t),

C(x− st) = C(ξ) = c(x, t)

.

Using the traveling wave ansatz we have:

∂tu = −sdU
dξ

= −sU ′ (10)

∂xu =
dU

dξ
= U ′ (11)

∂tc = −sdC
dξ

= −sC ′ (12)

∂xc =
dC

dξ
= C ′ (13)

∂xxc =
d2C

dξ2
= C ′′ (14)

Then by substitution of equations (10), (11), (12), (13), (14) in the model (8),(9)

we get:

− sU ′ + UU ′ = 0 (15)

− sC ′ + UC ′ = λ(p(U)C ′)′ + C(1− C) (16)

The equations (15),(16) are written in a traveling wave coordinates and they are

completed with the following end points conditions

U(−∞) = Ul and U(+∞) = Ur (17)
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C(−∞) = 1 and C(+∞) = 0 (18)

(Ul, Ur) > 0

From the boundary conditions (17) of the Burgers’ equation, we have two possibili-

ties:

• Ul < Ur, in this case we have a rarefaction wave.

• Ul > Ur, in this case we have a shock wave profile and it propagates with speed

s which equals to the shock wave speed computed by the Rankine Hugoniot

condition see [17].

We shall focus on the second case, which means that we have a shock wave profile

propagates with the speed s. Here the shock wave equivalents to a traveling wave

solution.

By considering the case when Ul > Ur we expect that U(ξ) will satisfy Ur < U < Ul

for all ξ ∈ R and s is the propagation wave speed or the shock speed .

Now we consider the full model (15), (16) while equation (16) appears to be more

complicated, a non-linearity term represents the the chemical reaction process and a

diffusion coefficient dependent on u that are describing the reaction diffusion process

of the sulfuric acid.

The classical procedure to understand the solution of second order ordinary

differential equation is to write the equation in terms of a first order system and

to perform a phase plane analysis, in particular if the system turns out to be an

autonomous.

We start by considering the Fisher equation (19) as a simple case in order to show

the phase plane analysis technique and how we can apply to our model. We start

by the Fisher equation

C ′′ + sC ′ + g(C) = 0 (19)
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By taking

W = C ′

we get:

C ′ = W (20)

W ′ = −sW − g(C) (21)

If we set g(C) = C(1− C) we get:

C ′ = W

W ′ = −sW − C(1− C) (22)

The system (22) is an autonomous system of the Fisher equation with two equilib-

rium points according to the steady states (C ′,W ′) = 0.

Next, we want to compute the Jacobian matrix of the system (22) which follows

from the following equation:

J(C,W ) =


∂f1
∂C

∂f1
∂W

∂f2
∂C

∂f2
∂W

 =

 0 1

−1 + 2C − s

 (23)

where

f1 = W,

f2 = −sW − C(1− C).

From equation (22) which represents an autonomous system, we compute the equi-

librium points at the steady states C ′ = W ′ = 0, this gives two equilibrium points

(C,W ) = (0, 0) and (C,W ) = (1, 0).

In order to specify the nature of the equilibrium points of the system (22), we de-

termine the eigenvalues of the Jacobian matrix which obtain from the next equation

|J − λI| = 0 (24)
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|


−λ 1

−1 + 2C − s− λ


| = 0 (25)

From equation (34) we get:

λ2 + sλ+ (1− 2C) = 0 (26)

For the equilibrium point (C,W ) = (0, 0), we get

λ1,2 = −s
2
± 1

2

√
s2 − 4 (27)

if s2 ≥ 4, the equilibrium point (0, 0) is a stable node and if s2 < 4 (0, 0) is a stable

spiral. For the equilibrium point (C,W ) = (1, 0), we get

λ1,2 = −s
2
± 1

2

√
s2 + 4 (28)

then the equilibrium point (1, 0) is a saddle point. The phase plane trajectories

determines by the following equation

dW

dC
=
−CW − C(1− C)

W
(29)

Figure 1 shows the phase plane trajectories of the Fisher equation, the stable node

(0, 0) acts as an attractor when s > 2.
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Figure 1: Phase plane trajectories of the Fisher equation [12]

Figure 2 shows the traveling wave front for the Fisher equation. Since C assume

negative values if there is a stable spiral at (C,W ) = (0, 0), we require s ≥ 2 for

more physical realistic traveling wave solutions. Further more for the traveling wave

solutions of the Fisher equation to exist, we require one stable node and one saddle

node.

14



Figure 2: Traveling wave front for C [12]

It has been shown in [19] that for g ∈ C1[0, 1], there exists a heteroclinc orbit

that connecting the equilibrium points (0, 0) and (1, 0) if and only if s > s∗ where

s∗ = 2 see Figure 3 and Figure 4.
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Figure 3: Stable node

Figure 4: Spiral focus
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Now we look at our model (15), (16) and perform the same steps as for the Fisher

equation.

From equation (16) we have

λp(U)C ′′ = (−s+ U − λp′(U))C ′ − C(1− C) (30)

We start by writing the equation (15),(30) in terms of a system of differential equa-

tions as follows:

U ′ = 0 (31)

C ′ = W (32)

W ′ =
1

λp(U)
(U − s− λp′(U))W − 1

λp(U)
C(1− C) (33)

Equations (30), (31), (32) represent an autonomous system. By taking (U ′, C ′,W ′) =

0 we compute the equilibrium points of the steady states of the system. We have

(U, 0, 0) and (U, 1, 0) as an equilibrium points for all possible values of U . In order

to ensure the traveling wave solution to be exist we require one stable node and one

saddle point.

First we take the case when U = 0 and perform the phase plane analysis, and later

on we generalize it for all values of U . We start by linearized the set of equations

(30), (31), (32) at the steady states, determine the Jacobian matrix, and determine

the eigenvalues of the Jacobian matrix.

The Jacobian matrix reads

J(U,C,W)=


∂f1
∂U

∂f1
∂C

∂f1
∂W

∂f2
∂U

∂f2
∂C

∂f2
∂W

∂f3
∂U

∂f2
∂C

∂f2
∂W

 =


0 0 0

0 0 1

0 − 1−2C
p(U)

U−s−λp′(U)
λp(U)
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where

f1 = 0,

f2 = W,

f3 =
1

λp(U)
(U − s− λp′(U))W − 1

λp(U)
C(1− C)

Determine the eigenvalues µ of the Jacobian matrix

|J − µI| = 0 (34)

we get

µ[−µ(
U − s− λp′(U)

λp(U)
− µ) +

1− 2C

λp(U)
] = 0 (35)

We set p(U) to be (1 +U2) to avoid the case P (0) = 0 and we have δ = 1
λ

such that

λ = D ∗ β.

For the equilibrium point (0, 0, 0) we have the following eigenvalues µ:

µ1 = 0,

µ2,3 =
δ

2
(−s±

√
s2 − 4

δ
)

then the origin (0, 0, 0) is a stable node if

s2 ≥ 4

δ

and a stable spiral if

s2 <
4

δ
.

For the second equilibrium point (0, 1, 0) we have the following eigenvalues µ:

µ1 = 0,

µ2,3 =
δ

2
(−s±

√
s2 +

4

δ
)

then the point (0, 1, 0) is a saddle point. We can conclude that for the propagation

wave speed s ≥ (2/
√
δ) we have one stable node and one saddle point which ensures
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the traveling wave solution to exist.

Now we want to ensure the traveling wave solutions of our system (30), (31), (32)

for all possible values of U , this gives a large number of equilibrium points at the

steady states. During this large amount of equilibrium points it would be difficult to

sketch the phase portrait of the set of equations in 3-D, but we are able to estimate a

condition for the existence of the traveling wave solutions, which ensures one stable

node and one saddle point for every U .

By computing the eigenvalues we get:

µ1 = 0,

µ2,3 =
δ

2p(U)
(U − s±

√
(U − s)2 − 4p(U)

δ
)

which correspond to the equilibrium points (U, 0, 0) for all possible value of U and

these equilibrium points are either a stable node if

(U − s) ≥ ±2
√
p(U)/δ

or a stable spiral if

(U − s) < ±2
√
p(U)/δ.

Furthermore, we have the eigenvalues

µ1 = 0,

µ2,3 =
δ

2p(U)
(U − s±

√
(U − s)2 +

4p(U)

δ
)

which correspond to the equilibrium points (U, 1, 0) for all possible values of U and

these equilibrium points are a saddle point.

We claim that we have more than one stable node and saddle point which are neces-

sary to the existence of a traveling wave solutions of our model with a propagation

wave speed

(U − s) ≥ ±2
√
p(U)/δ
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and indeed there exists a heteroclinic orbits connecting the equilibrium points of

the system in the steady states due to the fact that the origin (0, 0, 0) acts as an

attractor.

One can say that there exists a heteroclinic orbits connecting the equilibrium points

of the system if and only if the propagation wave speed satisfies

(U − s) ≥ ±2
√
p(U)/δ.

We verify the above inequality which grantee the existence of a traveling wave so-

lution in behalf of our numerical simulation in Section 4 by considering the shock

wave of the velocity U in Figure 5 and the wave front of the concentration C in

Figure 6.

Figure 5: Shock wave front for U(ξ)
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Figure 6: Wave front for C(ξ)

Then we expect that the point (Ur, 0) is a stable node if

(U − s)2 > 4
p(U)

δ

is satisfied.

Since we have s = Ul+Ur

2
which correspond to the shock wave speed, then for the

point (Ur, 0) we have U = Ur and substitute in the previous inequality we get the

left hand side of the inequality

(Ur −
Ul + Ur

2
)2 = (

Ur − Ul
2

)2

from the numerical simulation in Section 4 we have the following values

Ul = 0.75[m.s−1], Ur = 05[m.s−1]

then the left hand side of the inequality equals to 0.39[m.s−1].

Now we check the right hand side, we have p(U) = 1+U2
r = 1.25[m.s−1] and δ = 1/λ
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where λ = D ∗ β = 0.1 × 0.1, then the right hand side equals to 0.05[m.s−1], and

0.39 > 0.05 then Ur = 0.5[m.s−1] satisfies the inequality condition and we claim

that the point (Ur, 0) is a stable node. Furthermore the point (Ul, 1) is a saddle

point. We can also claim that the point (Ur, 0) acts as an attractor and we expect

a heteroclinic orbit connecting the equilibrium points.

In the numerical simulation in Section 4, Figure 14 and Figure 17 shows the traveling

wave solutions propagating with wave speed s equals to 0.625[m.s−1].
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4 Numerical Simulations

In this section, we discuss the Finite Volume method for the Burgers’ equation (8)

and discuss the Finite Difference method for the reaction diffusion equation (9). We

have been shown that the numerical solution of the reaction diffusion equation (9)

is stable under a small perturbation. We use MATLAB program to implement the

numerical schemes.

4.1 Finite Volume method (FVM)

4.1.1 Background

FVM is popular numerical method for the approximate solution of partial differential

equations(PDEs). If we compare FVM with finite difference method(FDM), the

FVM has the following advantages [20]:

• Spatial discretisation is totally flexible:the mesh can accommodate to irregu-

larly shaped boundaries to reduce geometric errors and the mesh can be refined

locally to give more resolution in regions of particular interest.

• Equations are presented in integral form which are often as they are derived

from the underlying physical laws.

• Because of the previous point there is no need for dependent variables to be

differentiable everywhere which means that a larger class of problems can be

solved.

• The FVM naturally conserves conserved variables when applied to PDEs ex-

pressing conservation laws since, two neighboring cells share a common inter-

face, the total flow of a conserved quantity out of one cell will be the same as

it is entering the other cell.
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The main disadvantage of FVM that there is no solid theory that can explain the

accuracy of the scheme produced by FVM. However a FVM in a uniform Cartesian

mesh can be treated as a FDM which depend on Taylor series to estimate the

accuracy condition. So we used heuristic formula to establish the accuracy of the

scheme based on experimental results as we shall see later on in subsection 4.1.4

By writing the equation (9) as follow:

∂tu+∇.H = 0 (36)

Where ∇ = i ∂
∂x

+ j ∂
∂y

is the vector differential operator and H = Fi + Gj with

F = u2

2
and G = 0 while the equation (8) is one dimensional.

Then equation (36) is the starting point for the finite volume method which is writ-

ten in conservative form.

Integrating (36) over an arbitrary region R gives:

∫∫
R

(
∂u

∂t
+∇.H)dR = 0 (37)

Then, we have ∫∫
R

∂u

∂t
dR +

∫∫
R

∇.HdR = 0 (38)

Using one form of the Greens’s theorem, the second integral in (38) can be replaced

by a line integral around the boundary of the region R, we get∫∫
R

∂u

∂t
dR +

∮
C

H.nds = 0 (39)

Where n is the outward pointing unit normal vector to R at any point on the curve

C. We define u as the average value of u over the region R, then the integral of the

time derivative term in equation (39) gives

A
∂u

∂t
+

∮
C

H.nds = 0 (40)
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Where A is the area of the region R and later on we shall consider it as ∆x for the

1-D case. Rewriting (40) gives

∂u

∂t
= − 1

A

∮
C

H.nds (41)

Equation (41) is a semi- integral form of (8) and applies to any region in the plane

over which (9) holds.

Next, we define the mesh or the grid by dividing the domain into a finite number of

polygonal cells. Since we deal with a 1-D case we have chosen the polygonal shape

to be rectangular with a fixed size. This means that we use structured mesh cells.

Structured mesh cells lead to a significant decrease in the computation time. We

may also use unstructured mesh cells for more complex geometries.

The approximation of (41) over the mesh cells is done by a forward difference in

time, then we get

un+1
i − uni

∆t
= − 1

A

∑
sides

Hn.S (42)

where the integral term in (41) is approximated by the total sum of the fluxes over

the cell interfaces, ∆t is the time difference between two time levels indicated by n

and i is the spatial grid size index. A is the cell area and S is the outward pointing

normal vector whose length is the length of the cell side and is called a side vector.

Hn is the flux through the cell interface which is constant along the cell side see

Figure 7.
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Figure 7: Side vectors over Computational cell

4.1.2 Finite Volume scheme (FVS) for Burgers’ equation

We start from the equation (42) by defining the side vectors S and the fluxes through

the interfaces as shown in Figure 7.

The side vectors in Cartesian mesh

Si+1/2 = ∆yi+ 0j (43)

Si−1/2 = −∆yi+ 0j (44)

and

H = Fi+Gj (45)

where F = u2

2
and G = 0

From equations (42)-(45) we get

un+1
i = uni −

∆t

∆x
(F n

i+1/2 − F n
i−1/2) (46)

where F n
i+1/2, F n

i−1/2 are the fluxes in x direction at the cell interfaces.

From equation (46) we see that the fluxes at the interfaces can be approximated by

the flux values at two neighboring cell centers .

Fi+1/2 =
Fi+1 + Fi

2
(47)
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Fi−1/2 =
Fi + Fi−1

2
(48)

From equations (46)-(48) we get:

un+1
i = uni −

∆t

2∆x
(F n

i+1 − F n
i−1) (49)

Since F = u2

2
, then we can write (49) as follows:

un+1
i = uni −

∆t

4∆x
(uni+1 − uni−1) (50)

The FVS (50) is identical to the classical forward in time backward in space(FTBS)

but is unfortunately unconditionally unstable scheme. To stabilize it we use Lax-

Friedrichs approach and write eq.(50) with central difference in time which gives

un+1
i =

uni+1 + uni−1

2
− ∆t

4∆x
(uni+1

2 − uni−1
2) (51)

Equation (51) represents the FVS of the Burgers’ equation (8) and implemented by

MATLAB program.

4.1.3 Boundary condition

Lax- Friedrichs scheme (51) needs a ghost cell extended to the left and the right of

the domain. We use a transmissive (zero gradient) boundary condition by inserting

a ghost cell to the left and to the right of the domain and copies them from its

neighbor cell(i.e.).. if we denote to the left ghost cell by u(1) and the right gohst

cell by u(N) where N is the number of computational cells then we have

u(1) = u(2), u(N) = u(N − 1)

4.1.4 Heuristic time step for FVS (51)

FVM, no theory guarantees the stability of the numerical scheme as for the FDM. By

using a heuristic time step condition, our FVS (51) perform well under the following
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time step condition

∆t ≤ ∆x

max|u|

Our numerical stability condition is equivalent to the heuristic time step condition

used for SWE in [20].
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4.2 Finite Difference method(FDM)

4.2.1 Background

A Finite Difference method proceeds by replacing the derivatives in the differential

equations with finite difference approximations. This gives a large finite algebraic

system of equations to be solved instead of the partial differential equation, and it

can be done by computer.

We should ask our self how we can approximate the derivatives of a known function

by finite difference formula based only on values of the function itself at discrete

points (grid points). And what we can say about the order of accuracy of an ap-

proximation in the simplest possible way.

For example, Let f(x, t) is a function of two variables and always assumed to be

smooth, meaning that we can differentiate the function several times and each deriva-

tive is a well defined.

Suppose that we want to approximate ∂xf(x, t) by finite difference approximation

based only on the values of f at finite number of points near x one can choose the

following option

∂x(f(x, t) ≈ f(x+ h, t)− f(x, t)

h
(52)

∂x(f(x, t) ≈ f(x, t)− f(x− h, t)
h

(53)

for some value of h which is called a spatial difference between two grid points.

Eq.(52) is called forward finite difference and eq.(53) is called backward finite dif-

ference.

For more options about the type of the finite approximation see Table (4.2.1).

The truncation error is so important in order to estimate the accuracy of the finite

difference approximation. The standard approach for analyzing the error in a finite

difference approximation is to expand each of the function values of f in Taylor
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expansions around the point x

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +O(h4) (54)

This expression is valid since f is assumed to be sufficiently smooth. For more about

estimating the error or the order of accuracy of the finite difference approximations

method we refer to [21].

partial derivative finite difference approximation type order

∂c
∂x

= cx
cni+1−cni

∆x
forward first in x

∂c
∂x

= cx
cni −cni−1

∆x
backward first in x

∂c
∂x

= cx
cni+1−cni−1

2∆x
central second in x

∂2c
∂x2

= cxx
cni+1−2cni +cni−1

∆x2
symmetric second in x

∂c
∂t

= ct
cn+1
i −cni

∆t
forward first in t

∂c
∂t

= ct
cni −c

n−1
i

∆t
backward first in t

∂c
∂t

= ct
cn+1
i −cn−1

i

2∆t
central second in t

∂2c
∂t2

= ctt
cn+1
i −2cni +cn−1

i

∆t2
central second in t

Table 3: Toolkit
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4.2.2 Finite Difference Scheme(FDS) for Eq.(9)

By using the information in Table (4.2.1) with some support from [22] [23], we can

write down the reaction diffusion equation (9) in its discrete form as follows:

cn+1
i = cni +

λ∆t

∆x2
(P n

i+ 1
2
(cni+1 − cni )− P n

i− 1
2
(cni − cni−1))

+ (
∆t

∆x
)uni (cni+1 − cni ) + ∆tcni (1− cni ). (55)

with

P n
i+ 1

2
= P (x+

1

2
, tn) = 1 + u(x+

1

2
, tn)2 = P (

xi+1 + xi
2

, tn),

P n
i− 1

2
= P (x− 1

2
, tn) = 1 + u(x− 1

2
, tn)2 = P (

xi + xi−1

2
, tn)

Where cni denotes the approximation value of the chemical concentration c(x, t) at

a spatial grid point i and time level n. We require u to be approximated at the cell

center and this is provided by the finite volume scheme (51). The time step size is

∆t and ∆x is the spatial grid size.

Equation (55) represents an explicit finite difference scheme (FDS) for the reaction

diffusion equation (9) and it can be seen from Figure 8.

Figure 8: Grid point stencil
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4.2.3 Stability condition for FDS (55)

In this part we discuss the stability condition for the finite difference scheme (55)

in the spirit of the lectures given by J. Struckmeier, summer term 2011, University

of Hamburg [23]. The FDS (55) leads to the following

en+1
i = eni +

λ∆t

∆x2
(P n

i+ 1
2
(eni+1 − eni )− P n

i− 1
2
(eni − eni−1))

+ (
∆t

∆x
)uni (eni+1 − eni )−∆tT ni (56)

where e is the error and T is the truncation error with ν = ∆t
∆x2

and µ = ∆t
∆x

. By

arrangement the previous equation we get

en+1
i = eni + λν(P n

i+ 1
2
eni+1 − (P n

i+ 1
2

+ P n
i− 1

2
)eni − P n

i− 1
2
eni−1)

+ µuni (eni+1 − eni )−∆tT ni

= (1− νλ(P n
i+ 1

2
+ P n

i− 1
2
)− µuni )eni

+ (νλP n
i+ 1

2
+ µuni )eni+1

+ (νλP n
i− 1

2
)eni−1 −∆tT ni (57)

In order to estimate the stability condition of the FDS (55) we need to ensure that

all the coefficients on the right hand side of the equation (57) are non-negative,

which means

νλ(P n
i+ 1

2
+ P n

i− 1
2
) + µuni ≤ 1 (58)

From equation (58) we have no restriction on the spatial step size ∆x but rather this

requires a more severe restriction on the size of the time step. Unfortunately the

forward difference approximation of the advection term introduces an error of order

∆x instead of the order (∆x)2 given by the central difference. This can be consider

as the price we have to pay in order to eliminate the restriction on the spatial step

size.
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Now we can write the stability condition of the FDS (55) as follows

∆t ≤ ∆x2

λ(P n
i+ 1

2

+ P n
i− 1

2

) + ∆xuni
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4.3 Numerical simulations results

In this subsection, we show some numerical simulations for the model (8),(9) to verify

our theoretical results. In this simulation we set the following initial conditions:

c(x, 0) = c0(x) = 0.05∗γ/(1 + exp(2∗(x− η))), 0 < x < L

u(x, 0) = Ul = 0.75[m.s−1] 0 ≤ x ≤ 20 &

u(x, 0) = Ur = 0.5[m.s−1] 20 < x ≤ L (59)

with boundary conditions for the reaction diffusion equation, the left and right states

of the concentration c are given by 1 and 0, respectively. That is for t = 0.3[s]

cl = 1 0 ≤ x ≤ 40 &

cr = 0 x ≥ 40 (60)

The plot of the initials data of the model (8),(9) are given in Figure 9 and Figure

10.

Figure 9: Initial water speed
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Figure 10: Plot of initial concentration function with η = 40, γ = 1

Figure (11) shows a shock wave profile for Burgers’ equation (8) which evolves

with time t, this result is totally agrees with the theoretical point of view in Section

(2).
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Figure 11: Shock profile for the water speed evolves with time

For the reaction diffusion equation when the time is less than 0.3 second we get

the results shown in Figure (12) which correspond to the fact that the chemical

reaction rate of the sulfuric acid with the water is 0.3sec−1.

Figure 12: Chemical concentration with time t ≤ 0.3 and η = 40, γ = 20

For the case when t > 0.3 we can see from Figure 13 a heteroclinic acts as a
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front wave profile, which propagates with wave speed s = 0.625[m.s−1] and evolves

with the time and this agrees with the analysis performed in Section (2).

Figure 13: Chemical concentration evolves with time t > 0 : 3 and η = 40, γ = 20.

Figure (14) shows that the concentration profile evolves with time t > 0

Figure 14: Concentration evolve with time t > 0
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4.4 Stability of the numerical solution

In this part, we focus on the solution of the reaction diffusion equation (9). We

apply a small perturbation to the initial concentration in order to examine either the

solution of the reaction diffusion equation (9) is stable under this small perturbation

or it blows up and shows instability.

The initial perturbation is given by

c0 =
0.5 sinx

(x−80
10

)2 + 1
(61)

Figure (15) represents the plot of the initial concentration under a small perturbation

Figure 15: Initial concentration with small perturbation
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Figure 16: Concentration evolves under a small perturbation with t < 0.3

Figure (16) shows the evolution of the perturbed solution of a reaction diffu-

sion equation with t ≤ 0.5 and Figure 17 shows that the perturbation disappears

completely after reaching the equilibrium point 1 in time less than 0.3[s].

Figure 17: Concentration c evolves with time t
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5 Conclusion and future scope

We established the verification of a traveling wave solutions of the reaction diffu-

sion equation coupled with shallow water equations. The advection and diffusion

coefficients are dependent on the water flow velocity u and consequently we have a

coefficients which it changes with time t and space x. For simplicity, we reduce the

shallow water equation into Burgers’ equation which gives the water velocity profile

in the river and from the numerical simulation we have seen the shock wave profiles

which acts as a traveling wave solution of the Burgers’ equation.

By using the phase plane analysis we conclude that there exists a traveling wave

solutions of our model if the inequality (U − s)2 ≥ ±4p(U)/δ hold for all possible

values of U as shown in Section (3).

We observe from the numerical simulation that how good is the analytical analysis

to show the existence of traveling wave solutions of the system (4)-(5), where we can

easily see from the numerical part that for the Burgers’ equation we have a shock

profile in a nice form. Furthermore, we observe the traveling wave solution of the

reaction diffusion equation, which moves with speed s = 0.625[m.s−1].

To investigate the stability of the numerical solution for the reaction diffusion equa-

tion solution, we apply small perturbation in the initial data. We observe that

the numerical solution of the reaction diffusion equation is stable under this small

perturbation, where the perturbation disappeared within 0.3[s] and the solution is

almost as the normal solution without perturbation.

In this thesis we did not address the stability of the traveling wave solutions of the

reaction diffusion equations analytically and it is left for future work. In the future,

we may consider more general model of the incident we studied while we can con-

sider the impact of the air pollutants and the affects of these kind of pollutants into

the environment inside the rivers.
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For more accuracy in the numerical simulation we may use a modern technology

to observe the natural hazards and estimate the measurements rather than only

relying on the classical ways. For example, in our incident no real measurements

are available because of difficulty to measure the concentration of sulfuric acid in

its violent reaction. But if we can measure it remotely it could be a great chance to

enhance our numerical simulation, and this can be obtain by using satellite images.
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