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Prologue

More than a hundred years after Bénard discovery of cellular convective structures, the
dynamics of pattern formation at interfaces is still one of the main subject of numer-
ous studies over years. Consequently, constructing suitable mathematical models to
explain thermal convection in fluid layers requires the understanding of the physics and
the knowledge of length and time scales that characterize them regarding the fact that
interfaces play a dominant role at small scales and their appropriate modelling is there-
fore of paramount importance in the rapidly expanding fields of nanotechnology and
microfluidics (e.g. self-organized nano particle deposition patterns, quantum dots...).
In this study, after a brief discussion about the instability and origin of pattern for-

mation and a succinct review of the application-oriented aspects of Bénard instabilities,
we consider the case of surface-tension-driven instabilities. The latter leads to cellular
structures in the form of hexagons in thin liquid films, known as Bénard-Marangoni
convection, which has actually been much less studied than its buoyancy-driven coun-
terpart. Then, an attempt is made to perform numerical simulations of the process
of drying liquid films, using two different popular models, namely the modified Swift-
Hohenberg equation and the Knobloch equation. In the first case, a new code has
been developed based on semi-implicit finite difference scheme using operator-splitting
and internal iteration, while in the second, an existing spectral code has been used. A
comprehensive study of the outcome of these simulations will be done along with some
qualitative comparisons with the experimental results. And finally a brief discussion of
perspectives of this through study will be presented at the end.
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1 Introduction1

1.1 Notion of instability phenomena and origin of formation of

patterns

If a system is successively displaced from its equilibrium state by external forces, the ho-
mogeneity of the equilibrium state would be continuously replaced by an inhomogeneous
non equilibrium state (Reference state). It is possible to describe such phenomena
by defining the fluxes and the dissipation rate as a function of the imposed constraint
existing over all the system. This function may account for the linear response of the
system to the driving external gradients and can be characterized by parameters called
Control Parameters. In such situations linearity will be sustained in a close vicinity of
the equilibrium. Therefore although the system as a whole is in a non-equilibrium state
the deviation from equilibrium stays sufficiently small for the system to be described
as an ensemble of the infinitesimal volume elements locally at equilibrium (even though
the system still is in non-equilibrium macroscopic scale) but corresponding to infinites-
imally different values of the state variables [7]. These volume elements thus exchange
energy and matter through their fictive boundaries, producing a flux throughout the
system. Such situation can be regarded as weak non-equilibrium [1] or sustained
non-equilibrium [15].
Reference states, existing in the case of weak non-equilibrium similar to their equilib-

rium equivalents, are asymptotically stable. This means that they tend to be damped
in time since fluctuations around the reference state would eventually die out due to
dissipative mechanisms (heat conduction and viscous friction in the case of fluid dy-
namics) [1]. However if the constraints resulting in non-equilibrium state of the system
increase further, nonlinearities of different origins will act stronger and overcome the
linear behaviour of the system alongside of weakening the ability to dissipate the fluc-
tuations. And above a certain critical value of the constraints some fluctuations will
grow in time rather than decay, implying the loss of the stability of the non-equilibrium
reference state. Such an instability usually will be followed by the appearance of new
states of different nature which are not necessarily asymptotic stable.
Considering in the sense of dynamical systems [8], a phase space where the instanta-

neous state of the system can be interpreted as a point (describing some trajectory in the
case of time evolution), a bifurcation in the system can be resembled as the qualitative
change in the structure of the phase space. Given such an assumption then a reference

1Much of the content in this chapter owes to a book from Pierre Colinet, Jean Claude Legros
and Manuel G. Velarde titled ”Nonlinear Dynamics of Surface-Tension-Driven Instabilities” [1] and the
lecture notes of Pierre Colinet published in another comprehensive book titled ”Pattern Formation at
Interface” [2]
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state is a fixed point in the phase space which become unstable above the critical value
of the constraint. It means some trajectory around the reference state does not have
any tendency toward it anymore implying that after the bifurcation there will be some
directions in the phase space along which the trajectory gets away from the fixed point
toward either another fixed point(node), or a limit cycle (circle), or a more complex
situation (focus), all of which formally called attractor. It is worth to mention that the
dimensionality of the attractor in the phase space is much lower than the dimension of
the space due to property of contraction mapping of the volumes in the phase space.
Note that the new attractor that system will reach after a sufficiently long time will be
independent of the initial conditions providing some simplification (setting aside some
more complicated situations such as multistability) [1].
Such a description for instability can be generalized for a wide range of systems

undergoing bifurcation and the same macroscopic properties have been recognized in
seemingly unrelated disciplines like fluid mechanics, solid-state physics, biology, popu-
lation dynamics and even epidemiology or economics [1, 10, 11, 14]. This is because
although the details of the system are important to explain the process leading to insta-
bility, the new states resulting from bifurcation indeed exhibit macroscopic characters
that are independent from the specific details of their microscopic behaviours. Therefore
the similar regimes can be observed in different systems not being alike.

Figure 1.1: The flow of pedestrians in a crowded street which is self-ordered in lanes of
people walking in opposite directions, c©Mousäıd et al (2009)

In fact, the newly formed states appear from the cooperative behaviour of the micro-
scopic constituent of the system (for example the interaction between atoms in a ma-
terial as a system in solid-state physics or interdependence of humans in a society [see
Fig. 1.1]). These composers of the system are able to organize themselves on time and
length scales that are macroscopic compared to the microscopic scales of their individual
interactions. And the basic reason for the emergence of strongly correlated structures
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and formation of patterns corresponds to the dependency of the fluctuations growth rate
on their spatial structure in accordance with these macroscopic scales. For instance near
the threshold very limited fluctuations can extract energy from the reference state to be-
come fast enough for dealing with dissipation as a consequence such modes will strongly
determine the appearance of the structures above the limits of instability. On the other
hand their spatial structure is actuated by the symmetries underlying the system. [1]
The resulting structures manifest themselves into different types of patterns like stripes

(roll patterns) or hexagonal cells. It might be of the interest of the reader to know that
such kind of patterns have been observed in a variety of systems, from Buoyancy-driven
roll patterns in simple Rayleigh-Bénard setup (which will be considered more in details
in section §1.2.1), to the geological pattern in earth, from reaction diffusion systems
to optical settings or solidification systems, from dry eye syndrome, to semiconductor
processing etc. In some cases it is even possible to find a description for these geometrical
phenomena in large systems using the simpler ones. As an example the convections
caused by buoyancy in a fluid confined between two horizontal plane with different
temperatures is also the origin of the formation of cloud streets [see Fig. 1.2, left] at
the boundary of convection rolls in the atmosphere. Another interesting example is the
similar polygonal patterns observed in the the drying of the thin liquid films which can
be seen in a dried salty lake possibly as a result of concentration of minerals at the colder
boundaries of polygons[see Fig. 1.2, right]. This implies the importance of the better
understanding of the instabilities in apparently simple systems.

Figure 1.2: Left : Cloud streets due to buoyancy and shear stress of the wind, c©J. Master
(2005). Right : Khor salt lake Isphahan, Iran. The deposited minerals
formed polygonal patterns. c©Hamshahri online [34]

For this reason in the present academic work we intend to study more concretely the
convective flow in fluid layers submitted to temperature or concentration gradients in
order to have acquired more insight into the systems in non equilibrium state. The
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ostensible simplicity of such thermal convection which bring the instabilities to the labo-
ratory scale experiments, along with the complexity of the resulting patterns have made
it a very attracting subject to study.

1.2 Bénard intabilities

1.2.1 Rayleigh-Bénard convection

Consider a layer of incompressible and Newtonian pure liquid bounded by two smooth
flat horizontal plates whose dimensions are much larger than the fluid layers thickness,
and maintained at two controllable different temperatures where the lower plate has the
higher temperature (in other words heated from below or cooled from above e.g. by
evaporation at a free surface). Due to the warmer region at the bottom of the layer (we
consider the layer to be sufficiently thick) a localized fluctuation arises in a certain volume
element and as the density is less than the upper part, which is unfavourable in the field
of gravity, upward force on this fluid particle will induce by buoyancy2 and therefore
system enters in sustained non-equilibrium state. As soon as the temperature difference
∆T = Tlower − Tupper exceeds a threshold value (quantifiable with regard to the depth
of fluids, viscosity, thermal diffusivity...[see 2.1]) the fluid particle will set into motion
in the upward direction generated by the buoyancy and ascending to the colder region.
On the other hand the cooler fluid with higher density will be descending motivated
by gravity leading to breaking the natural symmetry of the system and destabilizing it.
This is the origin of amplification which illustrate itself in the form of convective roll
patterns [see Fig.1.3].

Figure 1.3: Roll patterns observed in Rayleigh-Bénard convection, the rolls are rotating
in the opposite directions. c©extracted from [1]

Significant progress in the understanding of pattern formation in spatially extended
systems has been possible thanks to well-controlled detailed experimental studies of the
buoyancy-induced hydrodynamic instability (see e.g. the reviews [12]). Roll like cellular

2Buoyancy is an upward force exerted by a fluid that opposes the gravitational of an immersed
object.
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patterns and their transitions to more complex structures and turbulent-like behavior
were indeed extensively studied, with or without additional effects [13], sometimes up
to very high Rayleigh numbers.
Now in the following we will consider the case of thinner layer (the order of 1cm

or less [1] where the buoyancy cannot be dominant) of liquid in contact with free sur-
face3 namely Bénard-Marangoni instability with a deeper look into the origin of such
instability since it will be the main focus of this study.

1.2.2 Marangoni effect

Interfacial (surface) tension4 at the boundary between two different fluid phases origi-
nates from the forces between molecules which are responsible for the cohesion of the
condensed matter. In the case of a liquid-gas interface the molecules in the bulk of the
liquid are attracted by their neighbours in an isotropic way (net force of zero) while
those positioned on the interface have more tendency toward the liquid phase as they do
not feel the presence of much more scattered molecules of gas. As a consequence they
are pulled inward, create some internal pressure putting the system in a higher energy
state which liquid tries to avoid by adopting a spherical shape to adjust the minimal
area since according to Laplace Law the spherical shape minimizes the necessary ”wall
tension” of the surface layer for not being collapsed.

Figure 1.4: Hexagonal convection cells typical of Bénard-Marangoni convection. c©: the
picture is extracted from [1]

Note that the surface tension is positive to be able to bring the molecules from the
bulk of the liquid to the surface and it will generally decrease by the increase in the
temperature in most liquids. Therefore if a fluctuation of temperature occurs at the
interface the resulting imbalance between intermolecular forces will lead to a macroscopic
tangential stress inducing a flow. This thermocapillary flow or Marangoni flow can
be considered as a mechanism that system adopt to reduce the region with high surface

3the term ”free” surface will be used for an interface between a liquid and a gas or a liquid and its
vapor

4The energy necessary to create a unit surface area is called surface tension and denoted by σ.
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tension by enlarging the low surface tension. It has to be noticed also provided that the
surface tension gradients are the result of concentration differences along the surface of a
mixture we will have solutal Marangoni (or solutocapillary effect) in the system. [2]
Nevertheless, considering a temperature fluctuation at the surface, a surface gradient

is created and directed radially away from the fluctuation. Its associated shear stress
(tangential stress) generates the divergence of the fluid motion on the surface, relaxing
the instability at the point of disturbance. Simultaneously the continuity of the fluid
cause a vertical ascending flow at the point of the disturbance. By increasing the tem-
perature of the surface (heating from below) the surface tension will decrease so the
tangential stress will increase and therefore after passing a critical value known as crit-
ical Marangoni number Mac (which again can be quantified by some properties of
the liquid see 2.1) the surface fluid motions will organize themselves in mostly hexagonal
patterns [Fig. 1.4].
Marangoni flows can be easily seen in our everyday life e.g. the motion of dusts in

the wax of the candle due to proximity of the flame being at a much higher temperature
compared to the edge of the candle. [2] or Formation of coffee rings at the bottom
of a cup by Marangoni effect [Fig.1.2.2,left] due to the evaporation together with the
influence of surfactants [20, 21]. Another famous example is the phenomenon of ”tears
of wine”[Fig. 1.2.2,right]. Although its mechanism is far more complicated engaging
preferential evaporation of alcohol, wetting properties with glass, gravitational instability
of fluid rising along the glass walls coupled with thermal and solutal Marangoni effect.
James Thomson gave a tentative description of this phenomenon in 1855 even though
Marangoni effect named after Carlo Marangoni’s later work in 1870’s. Henry Bénard
though first observed hexagonal structures generated by Marangoni flows (thence called
Marangoni-Bénard flows) in a fluid layer heated from below in 1901. However the correct
interpretation of these patterns as the surface-tension-driven structures was given no
sooner than 1956 experimentally by Block and theoretically by Pearson. [2, 16] This was
the beginning of many further developments in fluid mechanics, yet many basic questions
remain particularly in the case of high nonlinearity in the convection system when the
Marangoni effect dominates.
For example taking into account some interesting experimental findings while the

hexagonal patterns are typically observed in some range over the instability threshold,
a transition from hexagons to squares patterns has been evidenced by Eckert et al.
(inspired by the work of Nitschke) when the temperature gradient is increased. Such
observation has suggested further theoretical researches by Thiele and Eckert, Eckert and
Thess, Schatz et al., and Dondinger et al. Besides, Tokaruk et al. has also recognized
square patterns in the case of substituting gas with liquid in the upper phase called
two layer surface-tension-driven instabilities. In this case by increasing the constraint
a transition to roll patterns occurs which is yet to be explained since it appears that
buoyancy should not be the decisive element of the such phenomenon due to very small
thickness of the liquid used in their experiment. [1]
Formation of dry spots and high spots in very thin liquid film of relatively viscous

liquid heated from below is another fascinating finding by VanHook et al. Their work
not only confirm the earlier theoretical prediction of the feedback of such a system to
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Figure 1.5:

Figure 1.6: Left:Dark rings at the bottom of the cup arising from Marangoni flow.[35]
Right:Tears of wine. c©the picture is extracted from [2]

high surface deformation mode but also they have managed to demonstrate in more
detail the role of the gas in this instability.
The last instance to be presented in this section and will be one of the main focus

of this study is the experiment of Schatz who showed at very high supercriticality (see
second chapter) the convection cells, along with attaining irregular polygonal shape,
become time-dependent [Fig. 1.7]. The similar phenomenon has also been observed in
mass transfer experiments.
Still as mentioned before several aspects of highly supercritical convection patterns

(such as coarsening phenomena) are to be explained and might be the subject of future
theoretical and experimental studies.

Figure 1.7: Time-dependent patterns generated during drying of a liquid film where e is
the liquid thickness. c©: extracted from [31]
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1.3 Application-oriented aspects

Beside the fundamental importance of Bénard instabilities in understanding of the pat-
tern formations in vast array of sciences as mentioned before there are many practical
application of such instabilities. In large scale, Rayleigh-Bénard convection for example
is at the root of driving dynamics in the mantle of the Earth (plate tectonics). Moreover
because the Earth is still geologically young, its interior has not yet cooled down and
the flux of heat from its hot core out into space through its surface, together with heat
received from the Sun, drives the dynamics of the atmosphere and ocean which are very
determinant in the study of climate change. Buoyancy has also a major role in solar
activity by by affecting the transport of heat from the center to the surface. [1, 15]
In the laboratory scale and industrial set-up, both buoyancy-driven and surface-

tension-driven instabilities could yield desired enhancement in characteristics of heat/mass
transfer. In fact, In numerous situations involving interfacial heat and mass transfer such
as liquid-liquid extraction, gas absorption or deposition, distillation... order of magnitude
change of transfer rates from one phase to another have been correlated with empirical
relationships. Marangoni-Bénard convection is also important in the processes involv-
ing the phase changes (e.g. evaporation) such as drying of paint films in the coating
industry and in heat exchanger based on the transport of heat (latent heat) by vapour
(heat pipes). Convective cells reduce the overall thermal resistance of the liquid layer
and as a result contribute to an increase of evaporation rate. Indeed the understand-
ing of the basic mechanism of these pattern formations could lead to optimization of
these empirical processes. (As they are dependent on properties such as direction of the
transfer and bulk diffusivities, interfacial rheology, surface chemical reactions,...) The
thin film evaporators are even used in the food and pharmaceutical industries where the
liquid flowing on the heated plate may organize itself in the rivulet-like structures with
the possible increase of the mass transfer rate in the regions where the layer becomes
thinner. Although there is possibility of the appearance of dry spots. [24]
It also turns out that solutal Marangoni-Bénard convection has drawn out an growing

interests nowadays in connection with the rapidly expanding areas of nanotechnology
and microfluidics [16]. Indeed, the production of functionalized surfaces with desired
properties is one of the aims of new technologies which often realized by a promising
technique consists in spreading (e.g. by spin-coating) a thin film of a mixtures and
allowing the solvent to evaporate leading to deposition of solute. The solute can be
a substance which crystallizes and sediments above a certain concentration, a polymer
which undergoes a glassy transition, or nanoparticles which cluster/aggregate and finally
organize themselves during the deposition when the solvent fully evaporates. The im-
plied coated surface thus will inherit some new properties from the solute such as optical,
electrical, magnetic, wetting or other chemical properties. Recently a novel method also
introduced by Majumder et al. [25] involving drop-drying of a suspension of nanoparti-
cles in water in an ethanol vapour atmosphere which can be used for uniform depositing
catalyst nanoparticles for the growth of single-walled carbon nanotubes as well as to
manufacture plasmonic films of well-spaced, unaggregated gold nanoparticles. And fi-
nally the last application of interfacial instabilities to be introduced in this section is in
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growing crystals onboard space laboratories (where the effect of buoyancy will consider-
ably decrease). It was motivated by the researches started a few decades ago with the
hope that weightlessness environment would allow constituting crystals of better quality
compared to those grown on earth. Thus Instabilities of floating zone configuration and
of half-zone model (liquid bridge) has been indeed extensively studied with regard to
hydrothermal and surface instabilities.
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2 Mathematical description and the

governing equations

For the modelling of the liquid layer undergoing thermal/solutal Marangoni instability
we can consider several different approaches. Starting from the smallest time and length
scales, molecular dynamics will be a good option which certainly provide the most
accurate description of interface structure and microscopic kinetics yet the computa-
tional costs of such techniques remains notably high, specially for polyatomic molecules.
At intermediate (mesoscopic) level, there are methods based on diffuse-interface or
phase-field theory which are numerically flexible for the problem involving complex
dynamics. Another technique at same scale is lattice Boltzmann methods advanc-
ing on the basis of discrete models of celebrated Boltzmann equation and its variants
which also characterize interface as non-zero thickness objects throughout which fluids
experience sharp variations. Finally at the macroscopic level, interfaces are described as
zero-thickness surfaces of discontinuity along which proper boundary condition should
be expressed. There has been remarkable progresses in using this approach in last
decades particularly in connection with nonlinear physics. Moreover these macroscopic
models can be employed in very small scale even in submicrometer range. The latter
will be the main approach of this study.
In the proceeding we will provide the general overview of the ingredients of the macro-

scopic modelling such as rescaling and dimensionless numbers.

2.1 Dimensionless numbers and time scales

To start with as we discussed thoroughly in chapter §1 we need to define the time scale
in order to have the macroscopic view over the system. In fact several time scales can
be introduced from the physical properties of the fluid and its spatial structure. For our
goal we will first define a thermal time scale.
Thermal time scale is the time necessary for the temperature fluctuation in the fluid

to be damped over a distance d.

τth =
d2

κ
(2.1)

where κ is the thermal diffusivity of the pure liquid.(Note that O(1) factors such as 4π2

are omitted in the previous relation and in what follows for the simplicity)
Similarly it is possible to define the time scale which can account for the damping of

velocity fluctuation called viscous time scale. Namely the time it takes for the velocity
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(or vorticity) fluctuation of the system to be decayed due to the viscosity of the fluid
(ν) over the distance d.

τvisc =
d2

ν
(2.2)

Two other time scales which do not depend on any molecular dissipation mechanism
should be defined too. By using these time scales it will be possible to characterize the
threshold above which the Bénard instabilities will occur.The first one is the time for
the fluid particle at the bottom of the layer to be accelerated by buoyancy to the upper
surface (Buoyancy time scale), i.e to a distance d

τbuoy =

√

d

αg∆T
(2.3)

Note that in the equation 2.3, α is the thermal expansion coefficient of the fluid, g is
the gravity acceleration and ∆T is the temperature drop across the layer of the fluid.
The typical time scale for the acceleration of the fluid particle along the interface is

called thermocapillary or Marangoni time scale and is also defined as

τma =

√

ρd3

γ∆T
(2.4)

In the above equation, ρ is the volumic mass and γ = − ∂σ

∂T
is the coefficient of the

variation of surface tension with respect to temperature (positive for usual liquids).
Now we are able to find a criteria for the instability given the time scales introduced

in this section. Since it is feasible to assume that instability will develop if the time
for a fluid particle to cross some distance is shorter than the times necessary for the
particle to either slow down by viscosity or thermally equilibrate with its surrounding.
Therefore it is possible now to introduce dimensionless numbers accounting for Bénard
instabilities.

Definition 2.1.1 (Rayleigh number).

Ra =
gα∆Td3

νκ
=

τviscτth
τ2buoy

(2.5)

Definition 2.1.2 (Marangoni number).

Ma =
γ∆Td

ρνκ
=

τviscτth
τ2ma

(2.6)

These numbers are the usual measure for the description of destabilizing and stabilizing
effects. Typically the critical value of the Rayleigh number above which the Rayleigh-
Bénard instability appears is of order 103, while the critical Marangoni number is of
order 102. Their actual values are dependent on the nature of the bed of the fluid and
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the upper plate. (e.g. rigid and heat-conducting, or free and poorly-conducting) and
must be determined by the instability analysis of the equations introduced in the next
section (but the detailed derivation of these numbers is out of the scope of this thesis).
In the case of the presence of a free surface, the heat transfer through the gas is

commonly considered to be described by a constant coefficient h (Its corresponding

dimensionless number is Biot number Bi =
hd

λ
where λ is the thermal conductivity of

the body). Such approximation provides a qualitative description of the heat transfer
influence on the interfacial dynamics. Actually the critical Marangoni number turns out
to become greater if Biot number increases.
Another usual dimensionless parameter is Prandtl number which is defined as the

ratio of the momentum and the thermal diffusivity and can also be written in the term
of τth and τvis

Pr =
ν

κ
=

τth
τvisc

(2.7)

Knobloch model, which is one of the simplified models for non-equilibrium patterns
and will be extensively studied in chapter §4, will be effective in high Prandtl number in
the modelling of highly viscous fluid. And other simplified model called Swift-Hohenberg
may also derived from the fundamental equations of fluid dynamics which will be intro-
duced in the next section in the limit of large Prandtl number. Galileo number is the
last parameter to be presented in this section. It quantifies the proportion of gravity
forces to viscous forces of the liquid and measures the stabilizing effect of gravity on the
surface deformations.

Ga =
gd

νκ
=

τviscτth
τ2grav

(2.8)

Where τgrav =
√

d
g
is the gravity time scale which measures the time necessary for a

body to travel over a distance d under the gravity acceleration.
Finally the notion of supercriticality should be mentioned for its importance in the

mathematical modelling of Bénard type instabilities. Supercriticality ǫ is the measure
of how far a system is above instability threshold after passing the critical it therefore
for Marangoni-Bénard instability it will be

ǫ =
Ma

Mac
− 1 (2.9)

where Mac denotes the critical Marangoni number. Another interpretation of this
parameter has been given in [1] as the proportion of the temperature drop of the system
(∆T ) to the temperature difference at which the system became unstable for the first

time (∆Tc) hence ǫT =
∆T

∆Tc
− 1

2.2 Wavelength vs. depth

The convective motions in the fluids embody themselves as superposition of waves exist-
ing in different directions hence concepts of length, periodicity and frequency will come
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to the light for characterization of their behaviour and system self-organize itself in the
form of a superposition of plane waves or Fourier modes (See later). On the other hand,
as mentioned before, the depth of the fluid highly determines the nature of instabilities
on the interface or inside the fluids. In general if the bed of the fluid is a good thermal
conductor, polygonal convection cells of Marangoni-Bénard effect appear with a size
proportional to the depth of the liquid layers.
On the contrary in the case that lower plate has a low heat transfer coefficient similar to

the upper free surface, the horizontal length of the fluid motion generated by the temper-
ature gradients will be much larger than the depth of the fluid hence the Marangoni cells
also become large-scale which offers a way to describe them using long-wave asymp-
totic techniques. This method can be used for constructing relatively accurate simplified
models for instabilities at some certain limits (using a multiscale long-wave expansion
method).
This mechanism has some similarity with the formation of dry spot in a very thin liquid

film [2]. The horizontal length of surface deformations in this case is also relatively larger
than the liquid depth. This instability mechanism is called long-wave deformation.
However the derivation of the simplified models using this technique will not be dis-

cussed any further in these notes, it implies the importance of rescaling of the parameters
to have a better view over the system.

2.3 Basic equations describing instabilities and the simplest

case

The modelling of Bénard instabilities in a layer with the presence of surface tension
ideally should involve the fluid motions and temperature fluctuation in both liquid and
gas phases. Nonetheless it is possible to describe them with the only regard to liquid
dynamics considering some simplifying assumptions and suitable boundary conditions.
Such approach is called one-sided modelling. Therefore given the thermal time scale

and dimensionless numbers introduced in 2.1, length scale d and pressure scale
µν

d2
and

a temperature range θ, the basic dimensionless equations to describe thermally-driven
Bénard instabilities read

∇.V = 0 (2.10)

∆V −∇p−Ga1z

(

1− αθ(T − T̃r)
)

= Pr−1

(

∂V

∂τ
+ (∇.V)V

)

(2.11)

∆T =
∂T

∂τ
+ (V.∇)T (2.12)

in which (2.10), (2.11) and (2.12) are mass conservation equation for incompressible
fluids, momentum conservation and finally energy conservation of Navier-Stokes equa-
tions, respectively. In this system of equations, V = (U, V,W ) denotes the velocity field,
T is the temperature field and p stands for pressure field all of which are dimensionless.

1z is the unit vector along the z axis orthogonal to the layer and T̃r =
Tlow + Tup

2θ
is the
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mean temperature at which the physical properties of the system are estimated (their
possible variation is neglected over temperature change of θ).
It is also assumed1 in this model that the density differences are sufficiently small to be

neglected (αθ ≪ 1) unless in terms containing the gravity acceleration. In other words
gravity is sufficiently strong to make a specific weight appreciably different between two
fluids. In equation 2.11, this fact can be seen knowing that Galileo number Ga is usually
quite large (of order 108), such that Gaαθ which is in face Rayleigh number (2.5) cannot
generally be neglected.
It is worth to mention that an equivalent mathematical description can be considered

for the case of mass transfer associated with solutocapillary flows disregarding some
complications related to mass transfer through the surface such as accumulation of solute
at the interface. Thereupon, in the simplest descriptions, essentially the pure fluid layer
heated from below (or cooled from above) and the isothermal liquid layer encountering
desorption through its free surface (or undergoing absorption of a soluble surfactant) are
formally equivalent systems. Therefore it is possible to rearrange the equations 2.10-2.12
to have a simplified model for solutal Marangoni effect without loss of generality. It can
be also applied to the simplified model to be discussed in §3 and §4 for modelling of the
solutocapillary Marangoni flows.
The choice of boundary conditions will fully determine the specific Bénard set-up to be

studied. In the simplest case, it is considered that on the bottom plate the temperature
is constant and there exists no-slip condition hence

V = T − Tbot = 0 at z = 0 (2.13)

where Tbot = θ−1Tlow . The free surface will be assumed at z = 1 therefore a coupling
of gas and liquid phases is expected on the free surface. Hence the correct interpretation
of the boundary conditions only in terms of liquid quantities at the interface is essential
to construct a one-sided model. So first the surface is considered without motion thus
the orthogonal velocity to the interface will be zero (we consider a non-evaporating case
here)

W = 0 at z = 1 (2.14)

The next assumption is to take into account the surface tension gradients (due to
temperature gradients) in the tangential stress balance. The gas viscous stresses in
interface also can be neglected by considering the fact that the viscosity of the gas is
much lower than the liquid. Therefore we have, in dimensionless form,

∂zU +Ma∂xT = 0 (2.15)

∂zV +Ma∂yT = 0 (2.16)

And finally by differentiating equation (2.15) with respect to x and equation (2.16)
with respect to y and adding the result another boundary condition will be

1Boussinesq approximation
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∂2
zW = Ma∆T at z = 1 (2.17)

which follows from incompressibility equation 2.10. And ∆ = ∂2

∂x2 +
∂2

∂y2
is the horizontal

Laplacian operator. And finally assuming the heat transfer coefficient of the gas to be
constant (Hence constant Biot number) the last condition yields

∂zT +Bi(T − T∞) = 0 (2.18)

where T∞ = θ−1Tup is the temperature of the environment. There are other possible
assumptions for more complicated situations by taking into account other effects e.g
evaporation, gas thermal conductivity or presence of deformable interface. Linear sta-
bility analysis, matched-asymptotic expansion and Fourier transformation provide the
helpful tools to deal with more complicated cases even analytically (please refer to [1, 2]
for more detailed explanation of more complex situations), however it is generally impos-
sible to solve the full system analytically even in the simplest case. Therefore for more
realistic modelling of these instabilities numerical methods have proved to be useful.
The first way for numerical analysis of such systems is the direct numerical simula-

tions considering the system of equations introduced earlier. However it appears to be
remarkably time-consuming specially for three-dimensional simulations. Not only due
to the need of finer mesh for capturing more details of the flow, but also because of the
difference in time scales inherent to the the system. As an example near the instability
threshold the evolution is quite slow (critical slowing down). Another difference of time
scales is associated with the time for the system to be organized compared to the time
for the convection cells to be shaped.
Studying simplified models of Bénard convection and pattern formation is another

way to proceed in numerically studying the system. These models can be derived from
the governing equations for instability such as those presented in this chapter within
some asymptotic limits. The latter approach will be the main concern of this thesis in
the following chapters.
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3 Swift-Hohenberg Equation

3.1 General overview

Simplified models offer a deep insight in understanding the details of pattern forma-
tion observed in experiments without engaging the difficulty that exists in quantitatively
accurate system of equations for the description of instabilities. Analytical and numerical
calculation shows that if a simplified model contains some symmetries (rotational, tran-
sitional...), is characterized by a preferred length (and time scale) and has non-linearities
that fully saturate the exponentially growing modes, it is able to reproduce the qual-
itative features of instabilities and in some cases quantitative details that have been
evidenced in the experiments. [15] Another advantage of model equations is that they
can usually be studied more thoroughly compared to the fully quantitative equations.
Nevertheless model equations are much more important than being mathematically sim-
pler and numerically faster to evaluate. And the most important feature of these models
is their flexibility to be modified by different terms to test various hypothesises. Since
they are often just based on symmetry and instability arguments and as a result they
are not usually constrained by basic conservation laws of energy, momentum, and mass.
(Although the details of the particular system should enter the numerical coefficients
inside the model)
Swift-Hohenberg equation, as one of the prototype time evolution PDEs displaying

formation of patterns, is one of such universal equations which was initially introduced
by P. C. Hohenberg and J. B. Swift in 1977 [3] to describe the thermal convection
in high Prandtl number and to account for the roll patterns seen in Rayleigh-Bénard
instability. But later it has been adopted for the description of many different pattern
formations. The different variants of it are widely used in different disciplines such as
hydrodynamics (Couette flow, magnetoconvection,...) liquid crystals, flame dynamics,
and nonlinear optics(see the references in [4]). This equation is derived from the basic
equations presented in the previous chapter at some asymptotic limits (For heuristic
derivation see [15]).
In this study the following Modified Swift-Hohenberg equation introduced in [2] will

be considered

∂tφ = ǫφ− (∆ + k2
0)

2φ+ δφ2 − φ3 (3.1)

in which φ(r = x1x + y1y, t) represents the two-dimensional free surface temperature
field in a Marangoni-Bénard problem, ǫ is the supercriticality, and k0 is the typical
wavenumber of the system. The operator ∆ is defined as ∂2

∂x2 + ∂2

∂y2
and nonlinear part

of the equation can be written as F (φ) = −dΦ(φ)
dφ

where Φ accounts for the potential of
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the nonlinear force acting upon the system. Therefore

Φ(φ) = − ǫ

2
φ2 − δ

3
φ3 +

1

4
φ4 (3.2)

When δ = 0 this equation is the celebrated Swift-Hohenberg equation. For δ 6= 0
equation(3.1) can be used for the simulation of Marnagoni convections, at least qualita-
tively.
Now consider the particular steady solution of the system φ = 0. It can be regarded

as non-equilibrium steady state of the system and can be treated as a reference state.
For determining the stability of this state we perturb the system in the form of Fourier
modes. Thus,

φ(r, t) = ηexp (σgrt) exp (k.r) with η ≪ 1 (3.3)

In which σgr is the growth rate and k = kx1x + ky1y is a two-dimensional wave
vector. Now inserting this solution into the linearised part of the equation yields the
dispersion relation of the perturbations (i.e. A = ηexp(σgrt))

∂tA = ǫA− k4A− 2k2k20A− k40A

⇒ σgrA = (ǫ− k4 − 2k2k20 − k40)A

⇒ σgr = ǫ− (k2 − k20)
2 (3.4)

which gives a relation between growth rate of the perturbation waves and their corre-
sponding wavenumber k = |k|. Similarly k0 = |k0|. As it can be seen in Fig 3.1

0.0 0.5 1.0 1.5 2.0
k

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

σ
g

ǫ<0

ǫ=0

ǫ>0

Dispersion relation

Figure 3.1: Dispersion relation of the Swift-Hohenberg equation

if ǫ < 0 the reference state is stable since all Fourier modes have negative growth
rate, thus corresponds to Ma < Mac given the definition of ǫ. The case where ǫ = 0
is the only situation where only one mode kc = k0 has a zero growth rate. Reference
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state then is said to be neutrally or marginally stable. But a band of wavenumbers
can be seen in the figure whose growth rates are positive, which shows the existence
of instability. So if ǫ > 1 some Fourier modes grow exponentially and the assumption
of very small η in equation 3.3 is not anymore effective, and nonlinearity (φ2 and φ3)
will act on the system, therefore coupling the Fourier modes. Thus patterns start to be
formed. Note that at this stage the value of the parameters ǫ and δ will determine the
nature of patterns to be formed. The study of their effect however is out of the scope of
this work. Instead as mentioned in chapter §1 we attempt to use this model to capture
the time-dependent convective cells which have been evidenced in the experiments by
varying k0 and ǫ linearly in time.
An important feature of Swift-Hohenberg (afterward SH) model is that this equation

possesses a Lyapunov functional which ensures the potential behaviour of the solution.
Therefore the evolution of dynamics described by this equation will be always tend
to a steady state monotonically by minimizing Lyapunov functional and the numerical
approximation should satisfy this constraint on the solution. In the present work by
using the numerical scheme proposed by Christov and Pontes in [5], a two dimensional
semi implicit finite difference scheme of second order in time and space subject to
generalized Dirichlet boundary condition will be presented. It will employ internal
iterations to secure adequate approximation of the nonlinear term and it can be shown
that the scheme satisfies a discrete approximation of Lyapunov functional (for more
detail explanation see [5, 27])

3.2 The numerical scheme

For posing the problem1 in domain D different type of physically acceptable boundary
conditions can be imposed on the boundary of the domain ∂D. Let’s first expand the
equation 3.1 and rewrite it by denoting the non-linear part as F (φ)

∂tφ = −(∆2 + 2k20∆+ k40)φ+ F (φ)

For finding the correct set of boundary conditions we consider the difference v =
φ1−φ2, where φ1 and φ2 are two solutions satisfying the same boundary conditions. By
rewriting the equation 3.1 with respect to v, multiplying it by v and integrating over the
domain it is possible to derive an energy equation as follows (n is the outward normal
unit vector at the boundary)

∂t

∫

v2

2
dxdy = −

∮

∂D

2k20v
∂v

∂n
dl +

∮

∂D

∆v
∂v

∂n
dl

−
∮

∂D

v
∂∆v

∂n
dl +

∫

D

2k20(∇v)2 dxdy

−
∫

D

∆2v dxdy −
∫

D

k20v
2 dxdy (3.5)

1Some notation used in this section is the same notation in [27, 5]
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The correct set of b.c. is the one which secures the fact that the evolution of the
energy is only dependent on its production or dissipation in the bulk of the fluid, but
not on the surface. Therefore in 3.5 one has to make the surface integrals vanish. As a
result the possible boundary conditions are

v =
∂v

∂n
= 0 v = ∆v = 0

∂v

∂n
=

∂∆v

∂n
x, y ∈ ∂D (3.6)

(3.6)1 and (3.6)2 are called generalized Dirichlet conditions of first and second kind and
(3.6)3 which contain only derivatives at the boundary is generalized Neuman condi-
tions. [3] Note that there is no restriction of using the mixed boundary conditions since
any admissible mixture of boundary condtions introduced in 3.6 yields a well-posed
boundary problem. For the sake of simplicity, we restrict ourselves to the generalized
Dirichlet boundary condition of first kind (3.6)1.

3.2.1 Implicit time-stepping

To ensure the potential behaviour of 3.1 by minimizing a monotonic functional, it is
a priori clear that a scheme which is both implicit in time and nonlinear will possess
the necessary symmetry to accommodate for this constraint [5]. For this reason an
approximation for the nonlinearity also should be provided. Therefore our scheme reads

φn+1 − φn

τ
= −

(

∆2 + 2k20∆+ k40
) φn+1 + φn

2
− Φ(φn+1)− Φ(φn)

φn+1 − φn
(3.7)

which can be expanded as

φn+1 − φn

τ
=−

(

∂4

∂x4
+

∂4

∂y4
+ 2k20

∂2

∂x2
+ 2k20

∂2

∂y2
+ 2

∂4

∂x2∂y2
+ k40

)

φn+1 + φn

2

− Φ(φn+1)− Φ(φn)

φn+1 − φn
(3.8)

and hence the nonlinear potential term will adopt the form

−Φ(φn+1)− Φ(φn)

φn+1 − φn
=

ǫ

2

(

φn+1 + φn
)

+
δ

3

(

(φn+1)2 + φn+1φn + (φn)2
)

−1

4

(

(φn+1)3 + (φn+1)2φn + (φn+1)(φn)2) + (φn)3
)

3.2.2 Internal iteration

The internal iteration is used to deal with the nonlinearity of the scheme alongside with
smoother handling of the inversion of linear operators in the case they are not negative
definite. One should note that a simple consequence of the nondefiniteness of the linear
operator is the occurrence of a linear bifurcation of the stationary problem. To face this
complication we employ an explicit approximation of the second order terms.(Hence,
the name semi-implicit method) An additional benefit of internal iteration method will
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also be the possibility of using relatively larger time steps and hence decreasing the
computational cost of the algorithm. Therefore we modify the scheme as follows

φn,k+1 − φn,k

τ
= −

(

∂4

∂x4
+

∂4

∂y4
+ k40 − ǫ

)

φn,k+1 + φn,k

2

−
(

2k20
∂2

∂x2
+ 2k20

∂2

∂y2
+ 2

∂4

∂x2∂y2

)

φn,k+1 + φn,k

2
+

δ

3

(

φn,k + φn
)

φn,k+1 (3.9)

− 1

4

(

(φn,k)2 + φn,kφn + (φn)2
)

φn,k+1 +
δ

3
(φn)2 − 1

4
(φn)3

where the superscript (n,k+1) denotes new iteration of the unknown function in the same
time step, (n,k) shows the known quantity obtained from the previous iteration and (n)
distinguishes the known value of the function from the last time step from which we can
define φn,0 def

= φn. The scheme with internal iterations is linear with respect to φn,k+1 and
the iterations will be conducted until the convergence is reached with following criterion

‖φn,K+1 − φn,K‖∞
‖φn,K+1‖∞

< δ′ where δ′ ≪ 1 (3.10)

for certain K. And ‖.‖∞ is infinity norm or Chebyshev norm which is for a given
domain X defined as

‖x‖∞ = max
i∈I

|xi| xi ∈ X

Then the last iteration gives the sought function on the new time stage φn+1 def

= φn,K+1.
The number of iterations needed for convergence is very much dependent on the mag-
nitude of the time increment of the scheme (τ). For smaller τ , the initial function of
the iteration will be close to the sought function and the number of internal iterations is
also expected to be small. Therefore for a very small time increment the computational
cost will increase significantly for each nodal point of the grid. On the opposite for
inappropriately large τ , number of internal iteration to reach one time step will increase
heavily compelling the advantage of faster stepping in the time. This dependence be-
tween number of iteration and time increment is nonlinear and subject to another study
for its optimization. In this simulation however based on the suggestion of Pontes and
Cristov in [5] τ has been chosen to have at most 16 internal iterations and at least 4.
Considering the time evolution of k0 in our simulation, even smaller steps in time have
been used to catch the details of the faster time dependent systems.

3.2.3 Operator spliting

The inversion of the sparse matrix obtained from equation 3.9 is an expensive procedure
as it is a pentadiagonal matrix. It becomes more problematic during the several
repetition of computing the inverse matrix in every iteration in each time step. Therefore
for minimizing the operations per unit iteration (hence per unit time step), an operator
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splitting method is introduced as follows

φ̃− φn

τ
= Ln,k

11 φ̃+ Ln,k
22 φn − 1

2

(

∂4

∂x4
+

∂4

∂y4
+ k40 − ǫ− 2δ

3
φn +

1

2
(φn)2

)

φn

− (L1 + L2 + L12) (φ
n,k + φn) (3.11)

φn,k+1 − φ̃

τ
= Ln,k

22 (φn,k+1 − φn)

in which Lij(i, j ∈ [1, 2]) operators are defined as

Ln,k
11

def

= −1

2

∂4

∂x4
− 1

4
k40 −

1

8

(

(φn,k)2 + φn,kφn + (φn)2
)

+
ǫ

4
+

δ

6

(

φn,k + φn
)

Ln,k
22

def

= −1

2

∂4

∂y4
− 1

4
k40 −

1

8

(

(φn,k)2 + φn,kφn + (φn)2
)

+
ǫ

4
+

δ

6

(

φn,k + φn
)

L12
def

=
∂4

∂x2∂y2
L1

def

= k20
∂2

∂x2
and L2

def

= k20
∂2

∂y2

To show that the original scheme will be achieved through the splitting method let’s
rewrite the relation 3.11 as follows (E is unity)

(

E − τLn,k
11

)

φ̃ =
(

E + τLn,k
22

)

φn − τ

2

(

∂4

∂x4
+

∂4

∂y4
+ k40 + ǫ− 2δ

3
φn +

1

2
(φn)2

)

φn

− τ (L1 + L2 + L12) (φ
n,k + φn) (3.12)

(

E − τLn,k
22

)

φn,k+1 = φ̃− τLn,k
22 φn (3.13)

Now by applying the operator
(

E − τLn,k
11

)

to the equation 3.13

(

E − τLn,k
11

)(

E − τLn,k
22

)

φn,k+1 =
(

E − τLn,k
11

)

φ̃−
(

E − τLn,k
11

)

τLn,k
22 φn (3.14)

By replacing the term
(

E − τLn,k
11

)

φ̃ in (3.14) from the equation (3.12)

(

E − τLn,k
11

)(

E − τLn,k
22

)

φn,k+1 =
(

E + τLn,k
22

)

φn − τ (L1 + L2 + L12) (φ
n,k + φn)

− τ

2

(

∂4

∂x4
+

∂4

∂y4
+ k40 + ǫ− 2δ

3
φn +

1

2
(φn)2

)

φn − τ
(

E − τLn,k
11

)

Ln,k
22 φn (3.15)

Thus the result will be

(

E + τ2Ln,k
11 Ln,k

22

) φn,k+1 − φn,k

τ
=

(

Ln,k
11 + Ln,k

22

)

φn,k+1 − (L1 + L2 + L12) (φ
n,k + φn)

− 1

2

(

∂4

∂x4
+

∂4

∂y4
+ k40 + ǫ− 2δ

3
φn +

1

2
(φn)2

)

φn (3.16)
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It is not difficult to see that equation 3.16 is the same as the internal iteration relation 3.9
save the positive definite operator of norm larger than unity (E) acting upon the time

difference
φn,k+1 − φn,k

τ

B ≡ E + τ2Ln,k
11 Ln,k

22 ≡ E +O(τ2) (3.17)

By considering the definition of the operators Lij clearly operator B has no effect on the
steady state result of the system. Furthermore the fact that ‖B‖ > 1 shows that the
splitting scheme is more stable than the original implicit scheme with the same order of
accuracy (O(τ2)).

3.2.4 Spatial discretization

For the discretization, a simple uniform mesh in both directions is used in a rectangular
box defined as (Rect := {x ∈ [0, Lx], y ∈ [0, Ly]}), therfore

xi = ihx, hx =
Lx

Nx
i = 0, . . . , Nx yj = jhy, hy =

Ly

Ny
j = 0, . . . , Ny (3.18)

where Nx and Ny are the number of points in x axis and y axis respectively. Consider
φi,j the value of the function at the point (i, j). The simplest symmetric approximations
for the fourth order derivatives existing in the model will be

Λ11φi,j =− φi−2,j − 4φi−1,j + 6φi,j − 4φi+1,j + φi+2,j

h2x
≈ − ∂4

∂x4
def

= L11φ

Λ22φi,j =− φi,j−2 − 4φi,j−1 + 6φi,j − 4φi,j+1 + φi,j+2

h2y
≈ − ∂4

∂y4
def

= L22φ

Λ12φi,j =− 1

h2xh
2
y

[φi−1,j−1 − 2φi−1,j + φi−1,j+1 − 2(φi,j−1 − 2φi,j + φi,j+1)

+ φi+1,j−1 − 2φi+1,j + φi+1,j+1] ≈ − ∂4

∂x2∂y2
def

= L12φ (3.19)

Λ1φi,j =− φi−1,j − 2φi,j + φi+1,j

h2x
≈ − ∂2

∂x2
def

= L1φ

Λ2φi,j =− φi,j−1 − 2φi,j + φi,j+1

h2y
≈ − ∂2

∂y2
def

= L2φ

Where Λ denotes the discrete approximation of each derivative operator. In this sim-
ulation, our domain is an incircle of a square box to have a better agreement with the
experimental observations realized in TIPs2 [31, 32]. As a consequence at each iteration
we imposed the boundary condition by rendering φi,j at the gridpoints out of the circle
equal to zero i.e. (I is the index set of the mesh)

φi,j = 0 ∀i, j ∈ I where x2i + y2j >
a2

2
(3.20)

2Transfers, Interfaces and Processes laboratory of Université Libre du Bruxelles

25



in which a is the side length of the square. In §5.1 determinant role of boundary enclosing
the systems in the formation of the patterns in the fluid layers will be discussed by using
this circular boundary.
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4 Knobloch Equation

4.1 Long-wave instability modes

Another class of models applying to different types of instabilities are those which de-
scribe cases where the primary instability of the system has a relatively large spatial scale
in comparison with the other characteristic dimension of the problem. For instance in
Bénard instability phenomena when both boundary of the system are heat-insulating as
it was presented in §2.2 it is possible to have a uniform temperature increase throughout
the system and there exist no force to restore the initial temperature of the system. It
implies that system is neutrally stable for such homogeneous perturbations and there-
fore the dispersion relation of the system (obtained by linear stability analysis explained
in §3.1) will possibly possess a zero root at kc = 0.
By slowly tempering the system along its horizontal coordinate, system will be dis-

placed from its neutral equilibrium and some dynamics is expected. It may imply a
convection flow which possibly leads to instability of the horizontally stable state. Now
considering a control parameter µ of such instability, the dispersion relation should adopt
the form (coefficient of k4 set to unity by suitable scaling of µ)

σgr(k, µ) = k2µ− k4 +O(k6) (4.1)

since the model equation should satisfy some symmetry and according to the assumption
explained above

∀µ ∃σgr(k, µ) such that σgr(0, µ) = 0

In order to extend the model to cases where the boundaries have a very small thermal
conductivity such that homogeneous mode of equation equation (4.1) k itself has a slow
evolution (assumed to be slow exponential damping here) it is possible to take into
account a small term −α where 0 < α ≪ 1.
Now the linear part of the model for conserved or quasi conserved scalar quantity φ

consistent with (4.1) and complemented with the term α will read

∂tφ = −αφ− µ∆φ−∆2φ (4.2)

Above the instability threshold the nonlinear behaviour of the system requires ac-
counting for nonlinearity. The form of nonlinearity is restricted by the symmetry con-
siderations such as rotations (r → Rθr), reflections (r → Mθr) and translation in time
(τ → t+∆t) and space (r → r−r0). Moreover nonlinear terms are also subject to scaling
considerations. For example, in the case of the system satisfying a strict invariance with
respect to φ → φ+ φ̃ (φ̃ is small homogeneous perturbation, i.e. a uniform temperature
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or depth variation as described above) all terms should be invariant to this transforma-
tion. As a consequence nonlinear terms such as φ2 and φ3 seen in SH model (3.1) cannot
appear and α = 0. On the other hand (∇φ)2 respects all the symmetries for small φ and
no other nonlinear term can be found at this order thus yields the Kuramoto-Sivashinsky
(KS) equation [2]

∂tφ = −µ∆φ−∆2φ+ (∇φ)2 (4.3)

In order to allow weak dissipiation in the system hence breaking the strict invariance
φ → φ + φ̃ (φ̃, α will be inserted in the equation (4.3) and we will get the damped KS
equation

∂tφ = −αφ− µ∆φ−∆2φ+ (∇φ)2 (4.4)

Normand et al, Chapman and Proctor, Garcia-Ybarra, Castillo and Velarde also con-
sider models to describe such nonlinear evolutions [2, 29] for different cases. Knobloch
also proposed a general model [6] in 1990 for Bénard convection between undeformabl
poorly heat-insulating boundaries in the limit of large Prandtl number which show very
nice agreement with experiments [2]

∂tφ =− αφ− µ∆φ−∆2φ+ κ∇.
[

(∇φ)2∇φ
]

+ β∇. [∆φ∇φ] +

δ∆
[

(∇φ)2
]

− γ∇. [φ∇φ] (4.5)

where γ quantifies non-Boussinesq effects and other parameters can be obtained for
different particular problems(one-layer or two-layer system, buoyancy-driven or surface-
tension-driven...).
In the present work we will consider a rescaled variant of this equation, taking into ac-

count the KS nonlinear term (∇φ)2, for the simulation of Marangoni-Bénard convection.
Therefore the model is

∂tφ =
[

ǫ̃− (1 + ∆)2
]

φ+ η(∇φ)2 + δ∆(∇φ)2 + κ∇.
[

(∇φ)2∇φ
]

+ β∇. [∆φ∇φ]− γ∇. [φ∇φ] (4.6)

in which we rescale the Laplacian operator found in the SH model by ∆ → ∆

k20
to be

able to define a way to control the the typical wavenumber of the model and to have a
ground for comparison between the modified Knobloch model and the model introduced
in the SH model. Therefore by writing the dispersion relation by considering the linear
part of the equation (4.6)

σgr = ǫ̃− (1− k2

k20
)2 = (ǫ̃− 1) + 2

k2

k20
− k4

k40
= k−4

0

(

k40 (ǫ̃− 1) + 2k2k20 − k4
)

Then by equalising with growth relation for the SH model (3.4) and rescaling time (to
cast aside the factor k40)
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k40(ǫ̃− 1) = ǫ− k40

=⇒ ǫ̃ =
ǫ

k40
(4.7)

Therefore by obtaining the relation between the supercriticality parameter in this
model and its SH counterpart we will have a ground for the comparison. And as the
previous case by considering k0 and ǫ as linear functions in time, we would attempt to
investigate the ramping of the system in time in our simulation.
For this reason a home made software developed by P. Colinet using C language

based on Fast Fourier Transform(FFT) will be employed for the simulations. In
what follows we will have a brief overview of this method.

4.2 Fast Fourier Transform method

Sometimes Fourier transform of an equation will bring notable simplicity to the structure
of it and as a consequence the way to solve the equation. Numerical solution is not an
exempt to this fact. Indeed for many models involving high order derivatives moving
from the real space to Fourier space is highly recommended [30].
One can define the discrete Fourier transform and its inverse as follow (for a given

function f , fk is its value in the point k where 0 6 k 6 N and f̃n is its corresponding
Fourier transform)

f̃n =
N−1
∑

k=0

fkexp(
2πikn

N
) (4.8)

fk =
1

N

N−1
∑

k=0

f̃nexp(
2πikn

N
) (4.9)

But how much computation is involved in the process of transform is the essential
question which leads to the Fast Fourier Transform. Let’s define Wn,k as W = exp(2πikn

N

hence f̃n =
N−1
∑

k=0

Wn,kfk. Common sense suggests that ,considering the matrix W ∈ Mn∗k

with Wn,k as its component, the computation cost of the transform is of order O(N2).
Though it is possible to prove that by rewriting the Fourier transform of the length N
as the sum of two discrete Fourier transform of length N

2 one from the even number of
points of N and the other one from the odd number of points like

f̃ = f̃e
k +W 1,kf̃o

k (4.10)

it is possible to calculate the transform in O(Nlog2 N) operations which cause a re-
markable optimization in the time of calculation for large database. There can be
many modification to have more efficient method for decomposition of the Fourier trans-
form (see [30]).
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The idea behind the method used for solving the model (4.6) in our simulation is
therefore solving linear part of the equation in Fourier space and frequency domain
by employing fast Fourier transform and the nonlinear part in real space separately to
avoid more complicated calculations related to their Fourier transform (e.g. convolution).
After approximating of nonlinear part the result will be transformed to the Fourier space
to be merged with the linear part and finally by an inverse transform to the time domain
again the real solution will be achieved. This method has been used for many different
models and it is one of the fastest model which sustains relatively high accuracy.
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5 Results

5.1 Numerical results of Swif-Hohenberg equation

For the simulation of this model using the finite difference method explained in chapter §3
a C++ program has been developed using Eigen [33] library as the numerical solver. The
Cholesky decomposition employed to deal with the system of equations arising from the
implicit method in iteration. The typical result of the simulation for a circular domain
inside a big square with the size of a = 50 therefore with the radius of 25 and using
a mesh with 150 × 150 points from random initial condition produced by the random
number generator introduced in [30] can be seen in Fig. 5.1.
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Figure 5.1: The snapshot of the system at unit time t = 0.765 with the typical wavenum-
ber k0 = 1.1711 for the model with the parameters ǫ = 0.1 and δ = 1.3 and
τ = 10−3. The left image is a heat map of the solution where the redish re-
gions denote the higher temperature. The right one represents the grayscale
image of the same sample where the brighter regions have higher temperature

To illustrate Marangoni convective cells more clearly we will apply a Voronoi dia-
gram to the image by which it will be simpler to recognise the effect of the boundaries
and also the presence of different polygons in the result. Voronoi diagram or Voronoi
decomposition is the technique that enables the division of space into subspaces. It in-
volves P as a set of n distinct points (sites) in the plane and subdivide the plane into n
cells one for each site by halving the hypothetical lines which connects each two neigh-
bour points of P . The cells are the result of the intersection of these lines. We assume
P is the set of local maxima of φ at the given time space. therefore the resulting cells of

31



0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

Figure 5.2: The polygonal convection cells captured by a Voronoi diagram

Voronoi diagram containing these points demonstrate the polygonal patterns expected
as it is illustrated in Fig. 5.1. The effect of the boundary on the formation of patterns
can be clearly recognised in this figure where the spatial structure of layer is strongly de-
termined by the boundaries enclosing the system. Distorted hexagons are the dominant
patterns in the system although few pentagons can be seen near the boundary.
Now in order to simulate the time-dependent patterns seen while the liquid thickness

continuously decreases we will use the fact that supercriticality also decreases in time
(given its definition based on Marangoni number (2.9) whereas the natural wavenumber
should increase to account for the splitting of the convective cells. The variations of
typical wavenumber and supercriticality is assumed to be linear and the system should
be at its equilibrium state at the initial time i.e. considering the dispersion relation (3.4)
ǫ − k40 < 0. We will increase k0 from 1 to 5 and decrease ǫ from 0.9 to 0.1 throughout
the simulation. Therefore

k0 = 1 +
4t

Tmax
(5.1)

ǫ = 0.9− 0.8t

Tmax
(5.2)

where Tmax is the endpoint of the time interval in which simulation will run hence slower
change happens for larger Tmax. The result for the case that Tmax = 500 and for the
circular boundary of the radius 15 with the resolution 150× 150 can be seen in Fig.5.1
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Figure 5.3: The snapshots of the system at three different time steps relatively close to
each other with respect to Tmax for the slowest change in k0

We also run the simulation for the similar set-up with Tmax = 50 and Tmax = 5 to
have faster evolution though even for the slowest case seen in Fig.5.1 the patterns evolve
in time very fast and they strongly tend to damp which implies the need to validate
the current implementation. Although qualitatively the splitting of the convective cells
which was expected from theory and experiments can be recognized in this figure.
Despite the fair agreement of the results of the simulation with the experiments the

program needs more validation for modelling more complex cases since by the current
implementation it evolves very fast in time which is not very physical. Moreover it has
the room for optimization to be more efficient (possibly by using faster numerical solvers
and parallel computing methods) which will be considered for further improvement of
implementation of the method for faster computations in near future. Nevertheless we
were able to qualitatively observe the role of boundaries using these simulations and also
the splitting of the convective cells in the thin liquid film which can be used in future
studies of Bénard-Marangoni effect using Swift-Hohenberg model. This simulation has
been in overall slower than the simulation of the modified Knobloch equation however
the possibility of using circular boundary condition for the system is an advantage of
the method used for numerical approximation of SH model.

5.2 Simulation results of Knobloch equation

For the simulation samples we consider Boussinesq situations with undeformable inter-
faces. Therefore in all the instances of the model simulation the parameter γ = 0 in the
equation (4.6). Other coefficients of the nonlinear part of the system are considered to
be constant and fixed as follows

δ = −1.984 κ = 0 β = −0.331 η = 0

Therefore the nonlinear forces over the threshold act similarly for different cases giving
the room for studying the effect of initial wavenumber and supercriticality on pattern
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Figure 5.4: Marangoni convection cells in the simulation for k0 = 20. Hexagons can be
observed along with transition to squares and some heptagonal and pentag-
onal defects

formation in the domain. A typical result can be seen in Fig. 5.4 for k0 = 20 and

Ma = 0.8 and the resolution of 128 × 128 for a rectangular domain of 2π × 4
√
3π

3
and with the random initial conditions generated by the built-in random generator of
C.(Note that in this figure the y axis is scaled by the coefficient

√
3/2 for the sake of

simplicity) In this figure polygonal patterns are captured by Voronoi diagram. Most of
the patterns seen in this figure are relatively regular hexagons together with some defects
in the form of pentagons and heptagons (and also typical features of the transition to
square patterns which has a good qualitative agreement with the experiments).
We repeated the similar simulation with k0 = 8 for different time increments till as

large as ∆t = 0.5 for the same resolution to test the convergence of the scheme. In
order to analyse the data we use a statistical function called power spectral density
(PSD) function which is widely used in statistical signal processing and physics. For
this reason first the discrete Fourier transform φ̃n(k) of φn (where n denotes the time
step and k = (kx, ky)) obtained from the simulation at the time step will be evaluated(
see Fig. 5.5 demonstrate a state of the system in Fourier space)
Then PSD Psd(k) can be defined as follows (kx = kcosφ and ky = ksinφ)

Psd(k) =

∫ 2π

0
φ̃(kcosφ, ksinφ)dφ (5.3)
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Figure 5.5: An example of the Fourier transform of the last state of the system in the
simulation with k0 = 20

which is indeed the distribution function of waves with different lengths(hence wavenum-
ber) throughout the system. Fig... shows a sample plot of this function with respect
to wavenumber. By considering this function it is possible to find the average value of
the kmax at each time step which is in fact an approximation of k0 in the relation(4.7)
and can be used as a tool to analyse the simulation results. This average value can be
obtained from the following equation

kmax =

∫ kmax

0 kPsd(k)dk
∫ kmax

0 Psd(k)dk
(5.4)

There is another way to evaluate this average value by undertaking the Fourier trans-
form of the solution at each time step to evaluate the local maxima of spectral density
function and find the average value at each step with dividing the summation of them
by the number of these local maxima. Therefore now by using this method the stability
of the scheme can be realized By plotting (kmax) with respect to time in Fig. 5.6 for dif-
ferent time increments. As the figure shows kmax after a finite time tends to a constant
value
Interestingly this shows that the system does not only reach a steady state but also

that the average of local maximum power densities and as a consequence the simulation
results for ∆t = 0.1 and ∆t = 0.5 is quite similar after t = 400. Hence the simulation
with relatively large strides (magnitude of time steps) can provide some qualitative infor-
mation about the patterns. Another case considered is varying the natural wavenumber
in the same resolution to have an intuition of possibility of varying the wavenumber by a
function of time (k0(t)) to be able to simulate the time-dependence nature of Marangoni
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Figure 5.6: The comparison of the result for the simulation with the same parameter for
different magnitude of time increment using PSD functions

cells in very thin liquid films. We will conduct the same power spectrum density analysis
this time for different k0
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Figure 5.7: The comparison of the result for the simulation with different k0 using local
maximum of PSD at each time step for ∆t = 10−3. Brown line corresponds
to results for k0 = 20, green line denotes k0 = 16, purple, red and yellow
lines representing the results for k0 = 12, k0 = 10, k0 = 8 respectively

The convergence to a steady state can be recognized in the Fig. 5.7. Note that at
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larger value of k0 > 20 stripes are dominant in visualization of the results.
Now we are equipped to deal with the time-dependent evolution of patterns in thin

liquid films. We will increase k0 from 2 to 12 linearly by time while linearly decreasing
the supercriticality from 0.8 to 0.3. Providing the fact that the system at initial time is
in equilibrium state which means ǫ̃− k40 < 0 we will introduce the functions for ramping
the system. (Tmax is representing the endpoint of time interval in which the simulation
will run)

k0 = 2 +
10

Tmax
t (5.5)

ǫ̃ = 0.8− 1

2Tmax
t (5.6)

The speed of evolution of the patterns hence will be determined by changing Tmax.
Therefore we run simulation for three different speed of ramping namely fast (Tmax =
100) Fig.5.8, moderate speed (Tmax = 200) Fig.5.9 and finally pattern evolution with
slow pace(Tmax = 500) Fig.5.10. As it can be seen in these images, The model suc-
cessfully captures the time evolving nature of convection cells in time. At the start of
the simulation from the random initial condition, the formation of cells can be seen and
in all three cases over the time interval the splitting of the cells complying with the
experimental observations.

Figure 5.8: Snapshot of the systerm at different time units t ∈ [0, 100] to show the fast
evolution of Marangoni convection cells in the 100 unit of time

Now we will employ PSD analysis once again to check if the kmax obtained from the
equation (5.4) will be close to the linear evolution of k0 in the model equation. Fig 5.11
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Figure 5.9: Snapshot of the Marangoni convection cells developing and evolving in time
interval t ∈ [0, 200] with moderate speed

Figure 5.10: Snapshot of the systerm at different time units (t ∈ [0, 500]) to show the
slow evolution of Marangoni convection cells in the 500 units of time

demonstrate that kmax in all the instance simulations increase in time quite close to the
line which shows the linear evolution of k0 in the model implying a relatively accurate
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numerical solutions using the FFT method. Hence the distribution of solutions yields a
power spectrum that coincides within the accuracy of our calculations possibly related
to the rotation of the patterns in the domain, with that given by direct variation of the
typical wavenumber.
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Figure 5.11: Comparison between evolution of kmax obtained from the simulation datas
in time which are denoted by color circle and its corresponding linear in-
creasing line of k0 in time. Yellow, red circles and blue are respectively
showing fast, moderate and slow pattern evolution and their line counter-
parts are representing the k0 equation with the same order

Although we could not treat the model in circular domain with FFT method, in
this latter case the results are very promising and it is credible enough to be used
for the comparison with the real time experiments and investigating of the pentagon-
heptagon defects for the nucleation of the new convection cells. It is also conceivable
as mentioned before by some assumption to use this model for simulating the solutal
Bénard-Marangoni convection which have wide range of applications in nano particle
depositions and polymer coating and. . . .
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Conclusion and possible future perspectives

In this thesis after a general introduction to Bénard-type patterns and notion of instabil-
ities and the applications of such a study in connection with a wide range of disciplines in
science and technology, two very popular simplified models for non-equilibrium patterns
have been studied in order to understand mostly fundamental aspects of wave and pat-
tern formation in such systems. These models can be derived from the governing equa-
tions of fluid dynamics using some asymptotic analysis technique (small super-criticality
ǫ, rescaling, long-wave expansions, ...).
The first model considered is a variation of celebrated Swift-Hohenberg equation intro-

duced by P. C. Hohenberg and J. B. Swift in 1977, which is a nonlinear parabolic equa-
tion containing fourth-order space derivatives.This model describes Bénard-Marangoni
convection at least qualitatively and it monotonically evolves in time to a steady state
which minimizes some energy functional (Lyapunov functional). A semi-implicit finite-
difference scheme has been developed for this model based on the operator-splitting
method and using internal iteration to deal with nonlinearity considering a circular
boundary in a square box (as used in the earlier experiments realized in TIPs 1). This
scheme was initially proposed by C. I. Christov and J. Pontes in 2001. In addition,
the model has been modified to account for the decreasing depth characteristic of the
evaporative layer during the evolution in time, by prescribing the time evolution of some
parameters measuring the typical wavenumber and the supercriticality of the liquid layer.
The other model which has been discussed in this study is Knobloch generalization

of the works of G. I. Sivashinsky and Garcia-Ybarra et al. Knobloch equation indeed
describes the nonlinear evolution of fluctuations (temperature deviations from the con-
ductive profile) of very small wavenumber compared to other characteristic dimensions
of the problem. He proposed this equation for Bénard convection between poorly con-
ducting undeformable boundaries, and in the limit of large Prandtl number (the ratio
of momentum diffusivity and thermal diffusivity). For the numerical simulation of this
equation the Fast Fourier Transform (FFT) method has been previously implemented
by P. Colinet, and it is briefly explained and employed for the simulation of the pattern
formation. Again, we have modified it for ramping the system in time, to take into
account the change in the layer depth in the process of evaporation.
Finally a succinct qualitative comparison between the outcome of these simulation

and the results of experimental observation found in the literature (or obtained at TIPs)
has been made.
As a future perspective a comparison can be made between the results of these two

simulations based on careful assumptions for more accurate investigation. Further stud-

1Transfers, Iterfaces and Processes department of Université Libre du Bruxelles
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ies could be done for improvement in computational efficiency of the finite-difference
scheme and also for more precise characterization of the function accounting for the
change of parameters of the models in time, in order to illustrate a stronger resemblance
with experiments particularly as far as the patterns induced by drying in liquid films are
concerned.
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